Minimal hypersurfaces in $\HH^n \times \R$, total curvature and index - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Minimal hypersurfaces in $\HH^n \times \R$, total curvature and index

Pierre Bérard
Ricardo Sa Earp
  • Fonction : Auteur
  • PersonId : 852990

Résumé

In this paper, we consider minimal hypersurfaces in the product space $\mathbb{H}^n \times \mathbb{R}$. We begin by studying examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations. We then consider minimal hypersurfaces with finite total curvature. This assumption implies that the corresponding curvature goes to zero uniformly at infinity. We show that surfaces with finite total intrinsic curvature have finite index. The converse statement is not true as shown by our examples which also serve as useful barriers.
Fichier principal
Vignette du fichier
berard-sa_earp-minimal-hal-v2.pdf (267.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00315294 , version 1 (27-08-2008)
hal-00315294 , version 2 (02-11-2009)
hal-00315294 , version 3 (07-11-2009)

Identifiants

Citer

Pierre Bérard, Ricardo Sa Earp. Minimal hypersurfaces in $\HH^n \times \R$, total curvature and index. 2009. ⟨hal-00315294v2⟩
98 Consultations
272 Téléchargements

Altmetric

Partager

More