Capacitary estimates of solutions of semilinear parabolic equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

Capacitary estimates of solutions of semilinear parabolic equations

Moshe Marcus
  • Fonction : Auteur
  • PersonId : 849149

Résumé

We prove that any positive solution of $ \prt_tu-\Delta u+u^q=0$ ($q>1$) in $\BBR^N\ti(0,\infty)$ with initial trace $(F,0)$, where $F$ is a closed subset of $\BBR^N$ can be estimated from above and below and up to two universal multiplicative constants, by a series involving the Bessel capacity $C_{2/q,q'}$. As a consequence we prove that there exists a unique positive solution of the equation with such an initial trace. We also characterize the blow-up set of $u(x,t)$ when $t\downarrow 0$ , by using the "density" of $F$ expressed in terms of the $C_{2/q,q'}$-capacity.
Fichier principal
Vignette du fichier
Artlast13.pdf (365.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00282315 , version 1 (27-05-2008)
hal-00282315 , version 2 (24-09-2010)
hal-00282315 , version 3 (01-07-2011)
hal-00282315 , version 4 (11-03-2012)
hal-00282315 , version 5 (17-06-2012)

Identifiants

Citer

Moshe Marcus, Laurent Veron. Capacitary estimates of solutions of semilinear parabolic equations. 2006. ⟨hal-00282315v5⟩
243 Consultations
306 Téléchargements

Altmetric

Partager

More