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Abstract

We prove that any positive solution of ∂tu −∆u + uq = 0 (q > 1) in RN × (0,∞) with
initial trace (F, 0), where F is a closed subset of RN can be represented, up to two universal
multiplicative constants, by a series involving the Bessel capacity C2/q,q′ . As a consequence
we prove that there exists a unique positive solution of the equation with such an initial
trace. We also characterize the blow-up set of u(x, t) when t ↓ 0 , by using the ”density” of
F expressed in terms of the C2/q,q′ -Bessel capacity.
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1 Introduction

Let T ∈ (0,∞] and QT = R
N × (0, T ] (N ≥ 1). If q > 1 and u ∈ C2(QT ) is nonnegative and

verifies
∂tu−∆u+ uq = 0 in QT , (1.1)

it has been proven by Marcus and Véron [28] that there exists a unique outer-regular positive
Borel measure ν in R

N such that
lim
t→0

u(., t) = ν, (1.2)

in the sense of Borel measures; the set of such measures is denoted by B
reg
+

(RN ). To each of its
element ν is associated a unique couple (Sν , µν) (we write ν ≈ (Sν , µν)) where Sν , the singular

part of ν, is a closed subset of RN and µν , the regular part is a nonnegative Radon measure on
Rν = R

N \ Sν . In this setting, relation (1.2) has the following meaning :

(i) limt→0

∫

Rν
u(., t)ζdx =

∫

Rν

ζdµν , ∀ζ ∈ C0(Rν),

(ii) limt→0

∫

O
u(., t)dx = ∞, ∀O ⊂ R

N open, O ∩ Sν 6= ∅.
(1.3)

The measure ν is by definition the initial trace of u and denoted by TrRN (u). It is wellknown
that equation (1.1) admits a critical exponent

1 < q < qc = 1 +
N

2
.

This is due to the fact, proven by Brezis and Friedman [7], that if q ≥ qc, isolated singularities
of solutions of (1.1) in R

N \ {0} are removable. Conversely, if 1 < q < qc, it is proven by the
same authors that for any k > 0, equation (1.1) admits a unique solution ukδ0 with initial data
kδ0. This existence and uniqueness results extends in a simple way if the initial data kδ0 is
replaced by any Radon measure µ in R

N (see [6]). Furthermore, if k → ∞, ukδ0 increases and
converges to a positive, radial and self-similar solution u∞ of (1.1). Writing it under the form

u∞(x, t) = t
− 1

q−1 f(|x| /
√
t), f is a positive solution of
{

∆f + 1
2y.Df + 1

q−1f − f q = 0 in R
N

lim|y|→∞ |y|
2

q−1 f(y) = 0.
(1.4)

The existence, uniqueness and the expression of the asymptotics of f has been studied thoroughly
by Brezis, Peletier and Terman in [8]. Later on, Marcus and Véron proved in [28] that in the
same range of exponents, for any ν ∈ B

reg
+

(RN ), the Cauchy problem
{

∂tu−∆u+ uq = 0 in Q∞,

T rRN (u) = ν,
(1.5)

admits a unique positive solution. This result means that the initial trace establishes a one to
one correspondence between the set of positive solutions of (1.1) and B

reg
+

(RN ). A key step for
proving the uniqueness is the following inequalities

t−
1

q−1 f(|x− a| /
√
t) ≤ u(x, t) ≤ ((q − 1)t)−

1
q−1 ∀(x, t) ∈ Q∞, (1.6)
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valid for any a ∈ Sν . As a consequence of Brezis and Friedman’s result, if q ≥ qc, i.e. in
the supercritical range, Problem (1.5) may admit no solution at all. If ν ∈ B

reg
+

(RN ), ν ≈
(Sν , µν), the necessary and sufficient conditions for the existence of a maximal solution u = uν
to Problem (1.5) are obtained in [28] and expressed in terms of the the Bessel capacity C2/q,q′ ,
(with q′ = q/(q − 1)). Furthermore, uniqueness does not hold in general as it was pointed out
by Le Gall [23]. In the particular case where Sν = ∅ and ν is simply the Radon measure µν , the
necessary and sufficient condition for solvability is that µν does not charge Borel subsets with
C2/q,q′-capacity zero. This result was already proven by Baras and Pierre [5] in the particular
case of bounded measures and extended by Marcus and Véron [28] to the general case. We
denote by M

q
+
(RN ) the positive cone of the space M

q(RN ) of Radon measures which do not

charge Borel subsets with zero C2/q,q′-capacity. Notice that W−2/q,q(RN )∩M
b
+(R

N ) is a subset

of Mq
+
(RN ) where M

b
+(R

N ) is the cone of positive bounded Radon mesures in R
N . For such

measures, uniqueness always holds and we denote uµν = uµν .

In view of the already known results concerning the parabolic equation, it is useful to recall
the main advanced results previously obtained for the stationary equation

−∆u+ uq = 0 in Ω, (1.7)

in a smooth bounded domain Ω of RN . This equation has been intensively studied since 1993,
both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The
existence of a boundary trace for positive solutions, in the class of outer-regular positive Borel
measures on ∂Ω, is proven by Le Gall [22], [23] in the case q = N = 2, by probabilistic methods,
and by Marcus and Véron in [26], [27] in the general case q > 1, N > 1. The existence of
a critical exponent qe = (N + 1)/(N − 1) is due to Gmira and Véron [14] who shew that, if
q ≥ qe boundary isolated singularities of solutions of (1.7) are removable, which is not the case
if 1 < q < qe. In this subcritical case Le Gall and Marcus and Véron proved that the boundary
trace establishes a one to one correspondence between positive solutions of (1.7) in Ω and outer
regular positive Borel measures on ∂Ω. This fundamental result does not hold in the supercritical
case q ≥ qe. In [12] Dynkin and Kuznetsov introduced the notion of σ-moderate solution which
means that u is a positive solution of (1.7) such that there exists an increasing sequence of
positive Radon measures on ∂Ω {µn} belonging to W−2/q,q′(∂Ω) such that the corresponding
solutions v = vµn of

{

−∆v + vq = 0 in Ω
v = µn in ∂Ω

(1.8)

converges to u locally uniformly in Ω. This class of solutions plays a fundamental role since
Dynkin and Kuznetsov proved that a σ-moderate solution of (1.7) is uniquely determined by its
fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena.
Later on, it is proved by Mselati (if q = 2) [36], then by Dynkin (if qe ≤ q ≤ 2) [10] and
finally by Marcus with no restriction on q [25], that all the positive solutions of (1.7) are σ-
moderate. One of the key-stones element in their proof (partially probabilistic) is the fact that
the maximal solution uK of (1.7) with a boundary trace vanishing outside a compact subset
K ⊂ ∂Ω is indeed σ-moderate. This deep result was obtained by a combination of probabilistic
and analytic methods by Mselati [36] in the case q = 2 and by purely analytic tools by Marcus
and Véron [31], [32] in the case q ≥ qe. Defining uK as the largest σ-moderate solution of
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(1.7) with a boundary trace concentrated on K, the crucial step in Marcus-Véron’s proof (non
probabilistic) is the bilateral estimate satisfied by uK and uK

C−1ρ(x)WK(x) ≤ uK(x) ≤ uK(x) ≤ Cρ(x)WK(x). (1.9)

In this expression C = C(Ω, q), ρ(x) = dist (x, ∂Ω) and WF (x) is the elliptic capacitary potential

of K defined by

WK(x) =

∞
∑

−∞
2
−m(q+1)

q−1 C2/q,q′(2
mKm(x)), (1.10)

where Km(x) = K ∩ {z : 2−m−1 ≤ |z − x| ≤ 2−m}, the Bessel capacity being relative to R
N−1.

Note that, using a technique introduced in [27], inequality uK ≤ C2uK implies uK = uK .

The aim of this article is to initiate the fine study of the complete initial trace problem for
positive solutions of (1.1) in the supercritical case q ≥ qc and to give in particular the parabolic
counterparts of the results of [36], [31] and [32]. Extending Dynkin’s ideas to the parabolic case,
we introduce the following notion

Definition 1.1 A positive solution u of (1.1) is called σ-moderate if their exists an increasing

sequence {µn} ⊂W−2/q,q(RN ) ∩M
b
+(R

N ) such that the corresponding solution u := uµn of

{

∂tu−∆u+ uq = 0 in Q∞

u(x, 0) = µn in R
N ,

(1.11)

converges to u locally uniformly in Q∞.

If F is a closed subset of RN , we denote by uF the maximal solution of (1.1) with an initial
trace vanishing on F c, and by uF the maximal σ-moderate solution of (1.1) with an initial trace
vanishing on F c. Thus uF is defined by

uF = sup{uµ : µ ∈W−2/q,q(RN ) ∩M
b
+(R

N ), µ(F c) = 0}, (1.12)

(and clearly W−2/q,q(RN ) ∩ M
b
+(R

N ) can be replaced by M
q
+(R

N )). One of the main goal of
this article is to prove that uF is σ-moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of RN , uF = uF .

We define below a set function which will play a fundamental role in the sequel.

Definition 1.3 Let F be a closed subset of RN . The Bessel parabolic capacitary potential WF

of F is defined by

WF (x, t) =
1

t
N
2

∞
∑

n=0

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Fn

dn+1

)

∀(x, t) ∈ Q∞, (1.13)

where C2/q,q′ is the N -dimensional Bessel capacity, dn =
√
nt and Fn = {y ∈ F : dn ≤ |x− y| ≤ dn+1}.
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In our study, it is useful to introduce a variant of WF with the help of the Besov capacity:
if Ω ⊂ R

N is a bounded domain, we set

‖φ‖B2/q,q′
=

(

∫ ∫

Ω×Ω

|φ(x)− φ(y)|q′

|x− y|N+ 2
q−1

dxdy

)1/q′

, (1.14)

if 1 < 2/q < 1, and ‖φ‖B1,2
= ‖∇φ‖L2 if 2/q = 1 (i.e. N = 2 and q = 2). The Besov capacity of

a compact set K ⊂ Ω relative to Ω is expressed by

RΩ
2/q,q′ = inf

{

‖φ‖q′B2/q,q′
: φ ∈ C∞

0 (Ω), 0 ≤ φ ≤ 1, η = 1 on K
}

. (1.15)

The Besov-parabolic capacitary potential W̃F of F is defined by

W̃F (x, t) = t−
N
2

∞
∑

n=0

d
N− 2

q−1

n+1 e−
n
4RΓn

2/q,q′

(

Fn

dn+1

)

∀(x, t) ∈ Q∞, (1.16)

where Γn = Bdn+1 \ Bdn . The Besov-parabolic capacitary potential is equivariant with respect
to the same scaling transformation which let (1.1) invariant in the sense that, for any ℓ > 0,

ℓ
1

q−1 W̃F (
√
ℓx, ℓt) = W̃F/

√
ℓ(x, t) ∀(x, t) ∈ Q∞. (1.17)

and we prove that there exists c = c(N, q) > 0 such that

c−1W̃F (x, t) ≤WF (x, t) ≤ cW̃F (x, t) ∀(x, t) ∈ Q∞. (1.18)

One of the tool for proving Theorem 1.2 is the following bilateral estimate which is only
meaningful in the supercritical case, otherwhile it reduces to (1.6);

Theorem 1.4 For any q ≥ qc there exist two positive constants C1 ≥ C2 > 0, depending only

on N and q such that for any closed subset F of RN , there holds

C2WF (x, t) ≤ uF (x, t) ≤ uF (x, t) ≤ C1WF (x, t) ∀(x, t) ∈ Q∞. (1.19)

Actually our result is more general since the upper estimate in (1.19) is valid for any positive
solution of

∂tu−∆u+ uq ≤ 0 in QT (1.20)

satisfying
lim
t→0

u(x, t) = 0 locally uniformly in F c. (1.21)

Extension to positive solutions of

∂tu−∆u+ f(u) = 0 in QT (1.22)

where f is continuous from R
+ to R

+ and satisfies

c2r
q ≤ f(r) ≤ c1r

q ∀r ≥ 0 (1.23)

5



for some 0 < c2 ≤ c1 is straightforward.

This quasi representation, up to uniformly upper and lower bounded functions, is also
interesting in the sense that it indicates precisely how to characterize the blow-up points of
uF = uF := uF . Introducing an integral expression comparable to WF , we show in particular
the following results

lim
τ→0

τ
2

q−1
−NC2/q,q′ (F ∩Bτ (x)) = γ ∈ [0,∞) =⇒ lim

t→0
t

1
q−1uF (x, t) = Cγ (1.24)

for some Cγ = C(N, q, γ) > 0, and

lim sup
τ→0

τ
2

q−1C2/q,q′

(

F

τ
∩B1(x)

)

<∞ =⇒ lim sup
t→0

uF (x, t) <∞. (1.25)

Our paper is organized as follows. In Section1 we recall some properties of the Besov spaces
with fractional derivatives Bs,p and their links with heat equation. In Section 2 we obtain
estimates from above on uF . In Section 3 we give estimates from below on uF . In Section 4 we
prove the main theorems and expose various consequences. In Appendix we derive a series of
sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N◦ HPRN-CT-
2002-00274 for the support provided in the realization of this work. The authors are grateful to
Luc Tartar for providing them the proof of the sharp Poincaré inequality Proposition 2.5 and
related references.

2 Estimates from above

Some notations. Let Ω be a domain in R
N with a compact C2 boundary and T > 0. Set Br(a)

the open ball of radius r > 0 and center a (and Br(0) := Br) and

QΩ
T := Ω× (0, T ), ∂ℓQ

Ω
T = ∂Ω × (0, T ), QT := QRN

T , Q∞ := QRN

∞ .

Let HΩ[.] (resp. H[.]) denote the heat potential in Ω with zero lateral boundary data (resp. the
heat potential in R

N ) with corresponding kernel

(x, y, t) 7→ HΩ(x, y, t) (resp.(x, y, t) 7→ H(x, y, t) = (4πt)−
N
2 e−

|x−y|2
4t ).

We denote by qc := 1 + N
2 , the Brezis-Friedman critical exponent.

Theorem 2.1 Let q ≥ qc. Then there exists a positive constant C1 = C1(N, q) such that for

any closed subset F of RN and any u ∈ C2(Q∞) ∩ C(Q∞ \ F ) satisfying
∂tu−∆u+ uq = 0 in Q∞

lim
t→0

u(x, t) = 0 locally uniformly in F c,
(2.1)

there holds

u(x, t) ≤ C1WF (x, t) ∀(x, t) ∈ Q∞, (2.2)

where WF is the (2/q, q′)-parabolic capacitary potential of F defined by (1.13).
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First we consider the case where F = K is compact and

K ⊂ Br ⊂ Br, (2.3)

and then we extend to the general case by a covering argument.

2.1 Capacities and Besov spaces

2.1.1 Lp regularity

Throughout this paper C will denote a generic positive constant, depending only on N , q
and sometimes T , the value of which may vary from one occurrence to another. We also use
sometimes the notation A ≈ B for meaning that there exists a constant C > 0 independent of
the data such that C−1A ≤ B ≤ CA.

We recall some classical results dealing with Lp capacities as they are developed in [5]: if
1 < p <∞ we denote

W 2,1
p (RN+1) := {φ ∈ Lp(RN+1) : ∂tφ,∇φ,D2φ ∈ Lp(RN+1)}, (2.4)

with the associated norm

‖φ‖
W 2,1

p
= ‖φ‖Lp + ‖∇φ‖Lp + ‖∂tφ‖Lp +

∥

∥D2φ
∥

∥

Lp . (2.5)

We define a corresponding capacity on compact sets, that we extend it classicaly on capacitable
sets.

C2,1,p(E) = inf{‖φ‖W 2,1
p

: φ ∈ C∞
0 (RN+1) : φ ≥ 1 in a neighborhood of E}, (2.6)

We extend the heat kernel H in R
N+1 = {(x, t) ∈ R

N × R} by assigning the value 0 for t < 0.
Then, for any η ∈ C0(R

N ),

H[η](x, t) =

{

0 if t < 0
H ∗ (η ⊗ δ0)(x, t) if t > 0,

(2.7)

where δ0 has to be understood as the Dirac measure on R at t = 0. For any subset E ∈ R
N+1

CH,p(E) = inf{‖f‖Lp : f ∈ Lp(RN+1),H ∗ f ≥ 1 on E}. (2.8)

The following result is proved in [5, Prop 2.1].

Proposition 2.2 For any T > 0, there exists c = c(T, p,N) such that

c−1CH,p(E) ≤ C2,1,p(E) ≤ cCH,p(E) ∀E ⊂ R
N×]− T, T [, E Borel. (2.9)

We recall the Gagliardo Nirenberg inequality valid for any φ ∈ C∞
0 (Rd)

‖∇φ‖2p
L2p ≤ cd,p ‖φ‖pL∞

∥

∥D2φ
∥

∥

p

Lp . (2.10)
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Furthermore, the trace at t = 0 of functions in W 2,1
p belongs to the Besov space B

2− 2
p
,p
(RN ).

However, in our range of exponents B2− 2
p
,p(RN ) = W 2− 2

p
,p(RN ). The reason for this is that

2− 2
p is not an integer except if p = 2, in which case equality holds also. If we set

c2− 2
p
,p(K) = inf{‖φ‖

W
2− 2

p ,p : φ ∈ C∞
0 (RN ), φ ≥ 1 in a neighborhood of K}. (2.11)

then [5, Prop 2.3].

Proposition 2.3 There exist c = c(N, p) > 0 such that

c−1c2− 2
p
,p(E) ≤ C2,1,p(E × {0}) ≤ cc2− 2

p
,p(E) ∀E ⊂ R

N , E Borel. (2.12)

The c2− 2
p
,p-capacity is equivalent to the Bessel capacity C2− 2

p
,p defined by

C2− 2
p
,p(E) = inf{‖f‖Lp : f ∈ Lp(RN ), G2− 2

p
∗ f ≥ 1 on E} (2.13)

where G2− 2
p
= F [(1+|ξ|2)

1
p
−1] denotes the Bessel kernel associated to the operator (−∆+I)1−

1
p .

2.1.2 The Aronszajn-Slobodeckij integral

If Ω is a domain in R
N and 0 < s < 1, we denote by ‖.‖Ḃs,p(Ω) the Aronszajn-Slobodeckij norm

defined on C∞
0 (Ω) by

‖η‖Ḃs,p =

(
∫ ∫

Ω×Ω

|η(x) − η(y)|p
|x− y|N+sp

dxdy

)1/p

∀η ∈ C∞
0 (Ω). (2.14)

In the case 1 < s < 2, all the results which are presented still holds by replacing the function by
its gradient. We also consider the case s = 1, but in our range of exponents the corresponding
exponent for p is 2, in which case the space under consideration is just H1

0 (Ω). Since the
imbedding of W 1,p(Ω) is compact, it follows the imbedding of Bs,p(Ω) into Lp(Ω) is compact
too. Therefore the following Poincaré type inequality holds [39, p. 134]. Actually, the proof,
obtained by contradiction, is given with W 1,p(Ω) instead of Bs,p(Ω), but it depends only on the
compactness of the imbedding.

Proposition 2.4 Let Ω be a bounded domain and, p ∈ (1,∞) and 0 < s ≤ 1 such that sp ≤ N .

Then there exists λ = λ(Ω, N, p) > 0 such that

∫ ∫

Ω×Ω

|η(x) − η(y)|p
|x− y|N+sp

dxdy ≥ λ

∫

Ω
|η(x)|pdx ∀η ∈ C∞

0 (Ω). (2.15)

Remark. If sp > N , the same proof re holds for all η ∈ C∞
0 (Ω) (see the proof of [9, Th 8.2])

(
∫ ∫

Ω×Ω

|η(x)− η(y)|p
|x− y|N+sp

dxdy

)1/p

≥ C
|η(z) − η(z′)|

|z − z′|α ∀(z, z′) ∈ Ω× Ω, z 6= z′, (2.16)
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with α = s−N/p and C = C(s,N, p). This estimate implies

(∫ ∫

Ω×Ω

|η(x) − η(y)|p
|x− y|N+sp

dxdy

)1/p

≥ Cd−α ‖u‖L∞ , (2.17)

where d is the width of Ω, i.e. the smallest of δ > 0 such that there exists an isometry R such
that R(Ω) ⊂ Dδ := {x = (x1, x

′) : 0 < x1 < δ}.
The related unpublished result due to L. Tartar [40] will be useful in the sequel. We reproduce

its proof for the sake of completeness.

Proposition 2.5 Assume b > a and Ω ⊂ Γa,b := {x = (x1, x
′) : a < x1 < b} is a domain. If

sp ≤ N there exists C = C(s, p,N, b/a) > 0 such that that

∫ ∫

Ω×Ω

|η(x)− η(y)|p
|x− y|N+sp

dxdy ≥ λ (b− a)sp
∫

Ω
|η(x)|pdx ∀η ∈ C∞

0 (Ω). (2.18)

Proof. Using the notation of [24], W s,p(RN ) is the interpolation space [W 1,p(RN ), Lp(RN )]s,p
and subset of Lp(RN−1; [W 1,p(R), Lp

R]s,p) = Lp(RN−1;W s,p(R)), with continuous imbedding.
Thus there exist C > 0 such that

‖η‖pLp +

∫

RN−1

∫ ∫

R×R

|η(x1, x′)− η(y1, x
′)|p

|x1 − y1|1+sp
dx1dy1dx

′

≤ C

(

‖η‖pLp +

∫ ∫

RN×RN

|η(x)− η(y)|p
|x− y|N+sp

dxdy

) (2.19)

for all η ∈ C∞
0 (RN ). This inequality is valid if η is replaced by ητ where ητ (x) = η(τx) and

τ > 0. This gives

‖η‖pLp + τ sp−N

∫

RN−1

∫ ∫

R×R

|η(x1, x′)− η(y1, x
′)|p

|x1 − y1|1+sp
dx1dy1dx

′

≤ C

(

‖η‖pLp + τ sp−N

∫ ∫

RN×RN

|η(x)− η(y)|p
|x− y|N+sp

dxdy

)

.

Letting τ → 0, we obtained
∫

RN−1

∫ ∫

R×R

|η(x1)− η(y1)|p
|x1 − y1|1+sp

dx1dy1dx
′ ≤ C

∫ ∫

RN×RN

|η(x) − η(y)|p
|x− y|N+sp

dxdy ∀η ∈ C∞
0 (RN ).

(2.20)
Using Proposition 2.4 with N = 1 we get

∫ 1

0

∫ 1

0

|η(x1, x′)− η(y1, x
′)|p

|x1 − y1|1+sp
|dx1dy1 ≥ λ

∫ 1

0
|η(x1, x′)|pdx1 ∀η ∈ C∞

0

(

(0, 1) × R
N−1

)

for all x′ ∈ R
N−1. Using a standard change of scale, it transforms into

∫ b

a

∫ b

a

|η(x1, x′)− η(y1, x
′)|p

|x1 − y1|1+sp
|dx1dy1 ≥ λ(b− a)sp

∫ b

a
|η(x1, x′)|pdx1 ∀η ∈ C∞

0

(

(a, b)× R
N−1

)

Integrating over RN−1 and using (2.20), we derive (2.18). �
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Definition 2.6 Assume s ∈ (0, 1) and sp < 1 or s = 1 and p = 2. If Ω is any domain in R
N ,

the Besov space Bs,p
0 (Ω) is the closure of C∞

0 (Ω) with respect to the norm

‖η‖Bs,p = ‖η‖Ḃs,p + ‖η‖Lp . (2.21)

The following result is derived from Proposition 2.5.

Corollary 2.7 Let b > a > 0 and Ω be an open domain of RN such that Ω ⊂ Bb \ Ba. Then

there exists a constant C = C(s, p,N) > 0 such that for any η ∈ C∞
0 (Ω)

‖η‖Ḃs,p ≤ ‖η‖Bs,p ≤ C(b− a)sp ‖η‖Ḃs,p . (2.22)

2.1.3 Heat potential and Besov space

If η ∈ C∞
0 (Ω), we extend it by 0 outside Ω and set

‖η‖B̃s,p =

(
∫ ∫

Q∞

∣

∣

∣
t1−s/2∂tH[η]

∣

∣

∣

p
dx

dt

t

)1/p

(2.23)

It is well known (see e.g. [3]) that the Besov space Bs,p(Ω) can be defined directly as the
space of η ∈ Lp(Ω) functions such that ‖η‖Ḃs,p < ∞ or or such that ‖η‖B̃s,p < ∞. It coincides
with the the interpolation space

[

W 2,p(Ω), Lp(Ω)
]

s/2,p
(see [24]). Furthermore, there exists

C = C(s, p,N) > 0 such that

C−1
(

‖η‖Lp + ‖η‖Ḃs,p

)

≤ ‖η‖Lp + ‖η‖B̃s,p ≤ C
(

‖η‖Lp + ‖η‖Ḃs,p

)

∀η ∈ Bs,p(Ω). (2.24)

Lemma 2.8 Assume 0 < s < 1 and 1 < p <∞ or s = 1 and p = 2. Then there exists a positive

constant C, depending only on s, p,N , such that for any domain Ω, there holds

C−1 ‖η‖Ḃs,p ≤ ‖η‖B̃s,p ≤ C ‖η‖Ḃs,p ∀η ∈ C∞
0 (Ω). (2.25)

Proof. Let η ∈ C∞
0 (RN ) and τ > 0. Set ητ (x) = η(τx), then (2.25) applied to ητ yields to

C−1
(

‖η‖Lp + τ s ‖η‖Ḃs,p

)

≤
(

‖η‖Lp + τ s ‖η‖B̃s,p

)

≤ C
(

‖η‖Lp + τ s ‖η‖Ḃs,p

)

.

Since it holds for any arbitrary large τ and η ∈ C∞
0 (RN ), (2.25) follows. �

We denote by TΩ(K) the set of functions η ∈ C∞
0 (Ω) such that 0 ≤ η ≤ 1 and η = 1 on K.

If Ω is a bounded subset of RN , we define the Besov capacity of a compact set K ⊂ Ω ⊂ R
N by

RΩ
s,p(K) = inf{‖η‖p

Ḃs,p
: η ∈ TΩ(K)}, (2.26)

and the Bessel capacity relative to Ω by

CΩ
s,p(K) = inf{‖η‖pBs,p : η ∈ TΩ(K)}. (2.27)

We extend classicaly this capacity to any capacitable set K ⊂ Ω. This capacity has the following
scaling property.
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Lemma 2.9 For any τ > 0 and any capacitable set K ⊂ Ω, there holds

RΩ
s,p(K) = τN−spRτ−1Ω

s,p (τ−1K). (2.28)

Furthermore, if Ω ⊂ Bb \Ba, there exists c = c(b− a, b/a,N, s, p) > 0 such that

c−1CΩ
s,p(K) ≤ RΩ

s,p(K) ≤ cCΩ
s,p(K). (2.29)

Finally, if K ⊂ Ω′ ⊂ Ω′ ⊂ Ω, there exists c = c(N, s, p,dist (Ω′,Ωc)) such that

Cs,p(K) ≤ CΩ
s,p(K) ≤ cCs,p(K). (2.30)

Proof. The scaling property (2.28) is clear by change of variable. Estimate (2.29) is a con-
sequence of Definition 2.6 and Proposition 2.5. For the last statement, the left-hand side is
obvious. For the right-hand side, consider a smooth nonnegative cut-off function ζ which is 1 on
Ω′, has value between 0 and 1 and has compact support in Ω. If η ∈ TRN (K), ζη ∈ TΩ(K) and

‖ζη‖pBs,p = ‖ζη‖pLp(Ω) + ‖ζη‖p
Ḃs,p

≤ ‖η‖pLp(Ω) + ‖η‖p
Ḃs,p

+ ‖ζ‖p
Ḃs,∞ ‖η‖pLp

≤ c ‖η‖pBs,p ,

where

‖ζ‖Ḃs,∞ = sup
x 6=y

|ζ(x)− ζ(y)|
|x− y|s

and c ≈ 1 + (dist (Ω′,Ωc))−s. The proof follows. �

In the sequel we assume that q ≥ qc and we take p = q′ and s = 2/q. If K ⊂ Ω, Ω is bounded
and η ∈ TΩ(K), we set

R[η] = |∇H[η]|2 + |∂tH[η]| . (2.31)

Lemma 2.10 There exists C = C(N, q) > 0 such that for every η ∈ TΩ(K)

‖η‖q′
B̃2/q,q′ ≤

∫ ∫

Q∞
(R[η])q

′
dx dt := ‖R[η]‖q′

Lq′ ≤ C ‖η‖q′
B̃2/q,q′ (2.32)

Proof. Using (2.23) and Lemma 2.8, it follows from Corollary 2.7 that

‖η‖q′
B̃2/q,q′ ≈

∫∫

Q∞
|∂tH[η]|q′ dxdt.

Using the Gagliardo-Nirenberg inequality in R
N , an elementary elliptic estimate and the fact

that 0 ≤ H[η] ≤ 1, we see that

∫

RN

|∇(H[η](., t))|2q′ dx ≤ C
∥

∥D2
H[η](., t)

∥

∥

q′

Lq′ ‖H[η](., t)‖q′L∞ ≤ C ‖∆H[η](., t)‖q′
Lq′ , (2.33)

for all t > 0. Since ∂tH[η] = ∆H[η], it implies (2.32). �
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The dual space B−2/q,q(Ω) of B2/q,q′(Ω) is naturally endowed with the norm

‖µ‖B−2/q,q = sup
{

µ(η) : η ∈ B2/q,q′(Ω), ‖η‖B2/q,q′ ≤ 1
}

.

The following result is may be already known, but we have not found it in the literature.
If µ is a bounded measure in R

N , we denote by H[µ] the solution of heat equation in Q∞ with
initial data µ.

Lemma 2.11 Assume q ≥ qc. For any T > 0, there exist a constant c > 0 such that, for any

bounded measure µ belonging to B−2/q,q(RN ), there holds

c−1‖µ‖B−2/q,q(RN ) ≤ ‖H[µ]‖Lq(QT ) ≤ c‖µ‖B−2/q,q(RN ). (2.34)

Furthermore, if q > qc there holds

c−1‖µ‖B−2/q,q(RN ) ≤ ‖H[µ]‖Lq(Q∞) ≤ c‖µ‖B−2/q,q(RN ) + c‖µ‖
M(RN ). (2.35)

.

Proof. If µ ∈ B−2/q,q(RN ), there exists a unique ω ∈ B2−2/q,q(RN ) such that µ = (I −∆)ω, and
‖µ‖B−2/q,q ≈ ‖ω‖B2−2/q,q . Applying standard interpolation methods to the analytic semi-group
e−t(I−∆) = e−tet∆ (see e.g. [3], [41]) we obtain,

(
∫ ∫

Q∞

∣

∣t1/q(I −∆)H[ω]
∣

∣

q
dx
e−qtdt

t

)1/q

=

(
∫ ∫

Q∞

∣

∣t1/qH[µ]
∣

∣

q
dx
e−qtdt

t

)1/q

≈ ‖ω‖B2−2/q,q

≈ ‖µ‖B−2/q,q .

(2.36)

Clearly

e−qT

∫ ∫

QT

∣

∣

∣t1/qH[µ]
∣

∣

∣

q
dx
dt

t
≤
∫ ∫

Q∞

∣

∣

∣t1/qH[µ]
∣

∣

∣

q
dx
e−qtdt

t
,

and
∫ ∫

Q∞

∣

∣t1/qH[µ]
∣

∣

q
dx
e−qtdt

t
=

∞
∑

n=0

∫ ∫

QT+n+1\QT+n

∣

∣

∣t1/qH[µ]
∣

∣

∣

q
dx
e−qtdt

t

=

∞
∑

n=0

∫ ∫

QT

|H[µ](s+ n)|q e−q(s+n)ds

≤
( ∞
∑

n=0

e−qn

)

∫ ∫

QT

∣

∣

∣
t1/qH[µ]

∣

∣

∣

q dt

t
.

This implies (2.34). Furthermore, ‖|H[µ](., t)|‖qLq ≤ ct−N(q−1)/2 ‖µ‖q
M
, thus H[µ] ∈ Lq(Q∞) if

q > qc (but this does not hold if q = qc). If q > qc (equivalently N(q − 1)/2 > 1),
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∫ ∫

Q∞

∣

∣t1/qH[µ]
∣

∣

q
dx
dt

t
=

∞
∑

n=0

∫ ∫

QT+n+1\QT+n

∣

∣

∣
t1/qH[µ]

∣

∣

∣

q
dx
dt

t

=

∫ ∫

QT

∣

∣t1/qH[µ]
∣

∣

q
dx
dt

t
+

∫ ∫

QT

∞
∑

n=1

|H[µ](s + n)|q dxds

≤
∫ ∫

QT

∣

∣t1/qH[µ]
∣

∣

q
dx
dt

t
+ C

( ∞
∑

n=1

n−N(q−1)/2

)

‖µ‖q
M
.

Thus we obtain (2.35). �

2.2 Global Lq-estimates

Let ρ > 0, we assume (2.3) holds. With the previous notations, Tr,r+ρ(K) denotes the set of
functions η ∈ C∞

0 (Br+ρ), such that 0 ≤ η ≤ 1 and value 1 on K. If η ∈ Tr,ρ(K), we set

η∗ = 1− η and ζ = H[η∗]2q
′
.

Lemma 2.12 Assume u is a positive solution of (2.1) in Q∞. There exists C = C(N, q) > 0
such that for every T > 0 and every compact set K ⊂ Br,

∫ ∫

QT

uqζdx dt+

∫

RN

(uζ)(x, T )dx ≤ C‖R[η]‖q′
Lq′ ∀η ∈ Tr,ρ(K). (2.37)

Proof. We recall that there always holds

0 ≤ u(x, t) ≤
(

1

t(q − 1)

)
1

q−1

∀(x, t) ∈ Q∞, (2.38)

and

0 ≤ u(x, t) ≤
(

C

t+ (|x| − r)2

) 1
q−1

∀(x, t) ∈ Q∞ \Br × R, (2.39)

by the Brezis-Friedman estimate [7]. Since η∗ vanishes in an open neighborhood N1, for any
open subset N2 such that K ⊂ N2 ⊂ N 2 ⊂ N1 there exist c2 = cN2

> 0 and C2 = CN2
> 0 such

that
H[η∗](x, t) ≤ C2e

− c2
t , ∀(x, t) ∈ QN2

T .

Therefore

lim
t→0

∫

RN

(uζ)(x, t)dx = 0.

Thus ζ is an admissible test function and one has

∫ ∫

QT

uqζdx dt+

∫

RN

(uζ)(x, T )dx =

∫ ∫

QT

u(∂tζ +∆ζ)dx dt. (2.40)
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Notice that the two terms on the left-hand side are nonnegative. Put Hη∗ = H[η∗], then

∂tζ +∆ζ = 2q′H2q′−1
η∗ (∂tHη∗ +∆Hη∗) + 2q′(2q′ − 1)H2q′−2

η∗ |∇Hη∗ |2,
= 2q′H2q′−1

η∗ (∂tHη +∆Hη) + 2q′(2q′ − 1)H2q′−2
η |∇Hη|2,

because Hη∗ = 1−Hη, hence

u(∂tζ +∆ζ) = uH
2q′/q
η∗

[

2q′(2q′ − 1)H
2q′−2−2q′/q
η∗ |∇Hη|2 − 2q′H2q′−1−2q′/q

η∗ (∆Hη + ∂tHη)
]

.

Finally, since 2q′ − 2− 2q′/q = 0 and 0 ≤ Hη∗ ≤ 1, there holds

∣

∣

∣

∣

∫ ∫

QT

u(∂tζ +∆ζ)dx dt

∣

∣

∣

∣

≤ C(q)

(∫ ∫

QT

uqζdx dt

)1/q (∫ ∫

QT

Rq′(η)dx dt

)1/q′

,

where
R(η) = |∇Hη|2 + |∆Hη + ∂tHη| .

Using Lemma 2.10 one obtains (2.37). �

Proposition 2.13 Under the assumptions of Lemma 2.12, let r > 0, ρ > 0, T ≥ (r + ρ)2

Er+ρ := {(x, t) : |x|2 + t ≤ (r + ρ)2}

and Qr+ρ,T = QT \ Er+ρ. There exists C = C(N, q, T ) > 0 such that

∫ ∫

Qr+ρ,T

uqdx dt+

∫

RN

u(x, T )dx ≤ C‖R[η]‖q′
Lq′ ∀η ∈ Tr,ρ(K). (2.41)

Proof. In view of Lemma 2.12 we only have to show that there exists a positive constant c(N, q)
such that, for η as above and T ≥ (r + ρ)2,

ζ = Hη∗2q
′
> c(N, q).

Since, by assumption K ⊂ Br, η
∗ ≡ 1 outside Br+ρ and 0 ≤ η∗ ≤ 1,

H[η∗](x, t) ≥ H[1− χ
Br+ρ

](x, t) =

(

1

4πt

)N
2
∫

|y|≥r+ρ
e−

|x−y|2
4t dy,

= 1−
(

1

4πt

)N
2
∫

|y|≤r+ρ
e−

|x−y|2
4t dy.

For (x, t) ∈ Qr+ρ,T , put x = (r + ρ)ξ, y = (r + ρ)υ and t = (r + ρ)2τ . Then (ξ, τ) ∈ Q1, T
(r+ρ)2

and

(

1

4πt

)
N
2
∫

|y|≤r+ρ
e−

|x−y|2
4t dy =

(

1

4πτ

)
N
2
∫

|υ|≤1
e−

|ξ−υ|2
4τ dυ.
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We claim that

max

{

(

1

4πτ

)
N
2
∫

|υ|≤1
e−

|ξ−υ|2
4τ dυ : (ξ, τ) ∈ Q1, T

(r+ρ)2

}

= ℓ, (2.42)

for some ℓ = ℓ(N, T
(r+ρ)2

) ∈ (0, 1], and ℓ is actually independent of T
(r+ρ)2

if this quantity is larger

than 1. We recall that

(

1

4πτ

)N
2
∫

|υ|≤1
e−

|ξ−υ|2
4τ dυ < 1 ∀τ > 0. (2.43)

If the maximum is achieved for some (ξ̄, τ̄) ∈ Q1, T
(r+ρ)2

, it is smaller than 1 and

H[η∗](x, t) ≥ H[1− χBr+ρ
](x, t) ≥ 1− ℓ > 0, ∀(x, t) ∈ Qr+ρ,T . (2.44)

Let us assume that the maximum is achieved following a sequence {(ξn, τn)} with τn → 0 and
|ξn| → α ≥ 1. Then

(

1

4πτn

)
N
2
∫

|υ|≤1
e−

|ξn−υ|2
4τn dυ =

(

1

4πτn

)
N
2
∫

B1(ξn)
e−

|υ|2
4τn dυ ≤ 1

2
.

To verify this, note that B1(ξn) ∩B1(−ξn) = ∅, so that
∫

B1(ξn)
e−

|υ|2
4τn dυ +

∫

B1(−ξn)
e−

|υ|2
4τn dυ <

∫

RN

e−
|υ|2
4τn dυ < 1

and
∫

B1(ξn)
e−

|υ|2
4τn dυ =

∫

B1(−ξn)
e−

|υ|2
4τn dυ.

If the supremum is achieved with a sequence {(ξn, τn)} such that |ξn| → ∞, the same argument
applies. Finally if {ξn} is bounded but τn → ∞ then the expression in (2.43) tends to zero.
Therefore (2.43) holds. Put C = (1− ℓ)−1, then

∫ ∫

Qr,T

uqdx dt+

∫

RN

u(., T )dx ≤ C ‖R[η]‖q′
Lq′ , (2.45)

and (2.41) follows. �

2.3 Pointwise estimates

In this subsection u is a positive solution of (2.1) in Q∞ and the assumptions of Lemma 2.12
hold. We first derive a rough pointwise estimate.

Lemma 2.14 There exists a constant C = C(N, q) > 0 such that, for any η ∈ Tr,ρ(K),

u(x, (r + 2ρ)2) ≤
C ‖R[η]‖q′

Lq′

(ρ(r + ρ))
N
2

, ∀x ∈ R
N . (2.46)
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Proof. We recall that

∫ T

s

∫

RN

uqdx dt+

∫

RN

u(x, T )dx =

∫

RN

u(x, s)dx ∀T > s > 0, (2.47)

and
∫

RN

u(., s)dx ≤ C ‖R[η]‖q′
Lq′ ∀T > s ≥ (r + ρ)2, (2.48)

by Proposition 2.13. Using the fact that

u(x, τ + s) ≤ H[u(., s)](x, τ) ≤
(

1

4πτ

)
N
2
∫

RN

u(., s)dx,

(2.46) follows from (2.48) with s = (r + ρ)2 and τ = (r + 2ρ)2 − (r + ρ)2 ≈ ρ(r + ρ). �

The above estimate does not take into account the fact that u(x, 0) = 0 if |x| ≥ r. It is
mainly interesting if |x| ≤ r. In order to derive a sharper estimate which takes this fact into
account, we need some lateral boundary estimates.

Lemma 2.15 Let γ ≥ r+2ρ and c > 0 and either N = 1 or 2 and 0 ≤ t ≤ cγ2 for some c > 0,
or N ≥ 3 and t > 0. Then, for any η ∈ Tr,ρ(K), there holds

∫ t

0

∫

∂Bγ

udSdτ ≤ C5γ ‖R[η]‖q
′

Lq′ . (2.49)

where C > 0 depends on N , q and c if N = 1, 2 or depends only on N and q if N ≥ 3.

Proof. First we assume N = 1 or 2. Put Gγ := Bc
γ × (−∞, 0) and ∂ℓG

γ = ∂Bγ × (−∞, 0). We
set

hγ(x) = 1− γ

|x| ,

and let ψγ be the solution of

∂τψγ +∆ψγ = 0 in Gγ ,

ψγ = 0 on ∂ℓG
γ ,

ψγ(., 0) = hγ in Bc
γ .

(2.50)

Thus the function
ψ̃(x, τ) = ψγ(γx, γ

2τ)

satisfies
∂tψ̃ +∆ψ̃ = 0 in G1

ψ̃ = 0 on ∂ℓG
1

ψ̃(., 0) = h̃ in Bc
1,

(2.51)

and h̃(x) = 1− |x|−1. By the maximum principle 0 ≤ ψ̃ ≤ 1, and by Hopf Lemma

−∂ψ̃
∂n ∂B1×[−c,0] ≥ θ > 0, (2.52)
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where θ = θ(N, c). Then 0 ≤ ψγ ≤ 1 and

−∂ψγ

∂n ∂Bγ×[−γ2,0] ≥ θ/γ. (2.53)

Multiplying (1.1) by ψγ(x, τ − t) = ψ∗
γ(x, τ) and integrating on Bc

γ × (0, t) yields to

∫ t

0

∫

Bc
γ

uqψ∗
rdxdτ +

∫

Bc
γ

(uhγ)(x, t)dx−
∫ t

0

∫

∂Bγ

∂u

∂n
ψ∗
γdSdτ = −

∫ t

0

∫

∂Bγ

∂ψ∗
γ

∂n
udσdτ. (2.54)

Since ψ∗
γ is bounded from above by 1, estimate (2.49) follows from (2.53) and Proposition 2.13

(notice that Bc
γ × (0, t) ⊂ Ec

γ), first by taking t = T = γ2 ≥ (r + 2ρ)2, and then for any t ≤ γ2.

If N ≥ 3, we proceed as above except that we take

hγ(x) = 1−
(

γ

|x|

)N−2

.

Then ψγ(x, t) = hγ(x) and θ = N − 2 is independent of the length of the time interval. This
leads to the conclusion. �

Lemma 2.16 I- Let M, a > 0 and η ∈ L∞(RN ) such that

0 ≤ η(x) ≤Me−a|x|2 a.e. in R
N . (2.55)

Then, for any t > 0,

0 ≤ H[η](x, t) ≤ M

(4at+ 1)
N
2

e−
a|x|2
4at+1 ∀x ∈ R

N . (2.56)

II- Let M, a, b > 0 and η ∈ L∞(RN ) such that

0 ≤ η(x) ≤Me
−a(|x|−b)2

+ a.e. in R
N . (2.57)

Then, for any t > 0,

0 ≤ H[η](x, t) ≤ Me−
a(|x|−b)2

+
4at+1

(4at+ 1)
N
2

∀x ∈ R
N , ∀t > 0. (2.58)

Proof. For the first statement, put a = 1
4s. Then

0 ≤ η(x) ≤M(4πs)
N
2

1

(4πs)
N
2

e−
|x|2
4s = C(4πs)

N
2 H[δ0](x, s).

By the order property of the heat kernel,

0 ≤ H[η](x, t) ≤M(4πs)
N
2 H[δ0](x, t+ s) =M

(

s

t+ s

)N
2

e
− |x|2

4(t+s) ,
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and (2.56) follows by replacing s by 1
4a.

For the second statement, let ã < a and R = max{e−a(r−b)2
+
+ãr2

: r ≥ 0}. A direct computation

gives R = e
aãb2

a−ã , and (2.58) implies

0 ≤ η(x) ≤Me
aãb2

a−ã e−ã|x|2 .

Applying the statement I, we derive

0 ≤ H[η](x, t) ≤ Ce
aãb2

a−ã

(4ãt+ 1)
N
2

e−
ã|x|2
4ãt+1 ∀x ∈ R

N , ∀t > 0. (2.59)

Since for any x ∈ R
N and t > 0,

(4ãt+ 1)−
N
2 e−

ã|x|2
4ãt+1 ≤ e−

aãb2

a−ã (4at+ 1)−
N
2 e−

a(|x|−b)2

4at+1 ,

(2.58) follows from (2.59). �

Lemma 2.17 There exists a constant C = C(N, q) > 0 such that, for any η ∈ Tr,ρ(K), there
holds

u(x, (r + 2ρ)2) ≤ Cmax

{

r + ρ

(|x| − r − 2ρ)N+1
,
|x| − r − 2ρ

(r + ρ)N+1

}

e
− (|x|−(r+2ρ))2

4(r+2ρ)2 ‖R[η]‖q′
Lq′ , (2.60)

for any x ∈ R
N \Br+3ρ.

Proof. It is classical that the Dirichlet heat kernel HBc
1 in the complement of B1 satisfies, for

some C = C(N) > 0,

HBc
1(x′, y′, t′, s′) ≤ C7(t

′ − s′)−(N+2)/2(|x′| − 1)e
− |x′−y′|2

4(t′−s′) , (2.61)

for t′ > s′. By performing the change of variable x′ 7→ (r + 2ρ)x′, t′ 7→ (r + 2ρ)2t′, for any
x ∈ R

N \Br+2ρ and 0 ≤ t ≤ T , one obtains

u(x, t) ≤ C(|x| − r − 2ρ)

∫ t

0

∫

∂Br+2ρ

e
− |x−y|2

4(t−s)

(t− s)1+
N
2

u(y, s)dσ(y)ds. (2.62)

The right-hand side term in (2.62) is smaller than

max

{

C(|x| − r − 2ρ)

(t− s)1+
N
2

e
− (|x|−r−2ρ)2

4(t−s) : s ∈ (0, t)

}

∫ t

0

∫

∂Br+2ρ

u(y, s)dσ(y)ds.

We fix t = (r + 2ρ)2 and |x| ≥ r + 3ρ. Since

max







e−
(|x|−r−2ρ)2

4s

s1+
N
2

: s ∈
(

0, (r + 2ρ)2
)







= (|x| − r − 2ρ)−2−N max

{

e−
1
4σ

σ1+
N
2

: 0 < σ <

(

r + 2ρ

|x| − r − 2ρ

)2
}

,
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a direct computation gives

max

{

e−
1
4
σ

σ1+
N
2

: 0 < σ <

(

r + 2ρ

|x| − r − 2ρ

)2
}

=











(2N + 4)1+
N
2 e−(N+2)/2 if r + 3ρ ≤ |x| ≤ (r + 2ρ)(1 +

√
4 + 2N ),

( |x| − r − 2ρ

r + 2ρ

)2+N

e
−
(

|x|−r−2ρ
2r+4ρ

)2

if |x| ≥ (r + 2ρ)(1 +
√
4 + 2N ).

Thus there exists a constant C(N) > 0 such that

max







e−
(|x|−r−2ρ)2

4s

s1+
N
2

: s ∈
(

0, (r + 2ρ)2
)







≤ C(N)ρ−2−Ne
−
(

|x|−(r+2ρ)
2r+4ρ

)2

. (2.63)

Combining this estimate with (2.49) with γ = r + 2ρ and (2.62), one derives (2.60). �

Lemma 2.18 There exists a constant C = C(N, q) > 0 such that

0 ≤ u(x, (r + 2ρ)2) ≤ Cmax

{

(r + ρ)3

ρ(|x| − r − 2ρ)N+1
,

1

(r + ρ)N−1ρ

}

e
−
(

|x|−r−3ρ
2r+4ρ

)2

‖R[η]‖q′
Lq′ ,

(2.64)
for every x ∈ R

N \Br+3ρ.

Proof. This is a direct consequence of the inequality

(|x| − r − 2ρ)e
−
(

|x|−r−2ρ
2r+4ρ

)2

≤ C(r + ρ)2

ρ
e
−
(

|x|−r−3ρ
2r+4ρ

)2

, ∀x ∈ Bc
r+2ρ, (2.65)

and Lemma 2.17. �

Lemma 2.19 There exists a constant C = C(N, q) > 0 such that, for any η ∈ Tr,ρ(K), the

following estimate holds

u(x, t) ≤ CM̃e−
(|x|−r−3ρ)2

+
4t

t
N
2

‖R[η]‖q′
Lq′ , ∀x ∈ R

N , ∀t ≥ (r + 2ρ)2, (2.66)

where

M̃ = M̃(x, r, ρ) =



















(

1 + r
ρ

)
N
2

if |x| < r + 3ρ

(r+ρ)N+3

ρ(|x|−r−2ρ)N+2 if r + 3ρ ≤ |x| ≤ c∗N (r + 2ρ)

1 + r
ρ if |x| ≥ c∗N (r + 2ρ)

(2.67)

with c∗N = 1 +
√
4 + 2N .
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Proof. It follows by the maximum principle

u(x, t) ≤ H[u(., (r + 2ρ)2)](x, t− (r + 2ρ)2).

for t ≥ (r + 2ρ)2 and x ∈ R
N . By Lemma 2.14 and Lemma 2.18

u(x, (r + 2ρ)2) ≤ C10M̃e
− (|x|−r−3ρ)2

4(r+2ρ)2 ‖R[η]‖q′
Lq′ ,

where

M̃ =



















((r + ρ)ρ)−
N
2 if |x| < r + 3ρ

(r+ρ)3

ρ (|x| − r − 2ρ))N+2 if r + 3ρ ≤ |x| ≤ c∗N (r + 2ρ)

1
(r+ρ)N−1ρ

if |x| ≥ c∗N (r + 2ρ)

Applying Lemma 2.16 with a = (2r + 4ρ)−2, b = r + 3ρ and t replaced by t− (r + 2ρ)2 implies

u(x, t) ≤ C
(r + 2ρ)NM̃

t
N
2

e−
(|x|−r−3ρ)2

4t ‖R[η]‖q′
Lq′ , (2.68)

for all x ∈ Bc
r+3ρ and t ≥ (r + 2ρ)2, which is (2.66). �

The next estimate gives a precise upper bound for u when t is not bounded from below.

Lemma 2.20 Assume that 0 < t ≤ (r + 2ρ)2, then there exists a constant C = C(N, q) > 0
such that the following estimate holds

u(x, t) ≤ C(r + ρ)max

{

1

(|x| − r − 2ρ)N+1
,

1

ρt
N
2

}

e−
(|x|−r−3ρ)2

4t ‖R[η]‖q′
Lq′ , (2.69)

for any (x, t) ∈ R
N \Br+3ρ × (0, (r + 2ρ)2].

Proof. Thanks to (2.49) the following estimate is a straightforward variant of (2.60) for any
|x| ≥ r + 2ρ,

u(x, t) ≤ C8(|x| − r − 2ρ)(r + 2ρ)max







e−
(|x|−r−2ρ)2

4s

s1+
N
2

: 0 < s ≤ t







‖R[η]‖q′
Lq′ . (2.70)

Clearly

max







e−
(|x|−r−2ρ)2

4s

s1+
N
2

: 0 < s ≤ t







=















(2N + 4)1+
N
2 (|x| − r − 2ρ)−N−2e−

N+2
2 if 0 < |x| ≤ r + 2ρ+

√

2t(N + 2)

e−
(|x|−r−2ρ)2

4t

t1+
N
2

if |x| > r + 2ρ+
√

2t(N + 2).
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By elementary analysis, if x ∈ Bc
r+3ρ,

(|x| − r − 2ρ)e−
(|x|−r−2ρ)2

4t ≤ e−
(|x|−r−3ρ)2

4t











ρe−
ρ2

4t if 2t < ρ2

2t

ρ
e−1+ ρ2

4t if ρ2 ≤ 2t ≤ 2(r + 2ρ)2.

However, since
ρ

t
e−

ρ2

4t ≤ 4

ρ
,

we derive

(|x| − r − 2ρ)e−
(|x|−r−2ρ)2

4t ≤ Ct

ρ
e−

(|x|−r−3ρ)2

4t ,

and (2.69) follows. �

Remark. In the subcritical case 1 < q < qc, it is easy to show by using Lemma 2.20, that any
positive solution u of (2.1), such that u(x, 0) = 0 for x 6= 0, satisfies

u(x, t) ≤ Ct
− 1

q−1 min

{

1,

( |x|√
t

) 2
q−1

−N

e−
|x|2
4t

}

∀(x, t) ∈ Q∞. (2.71)

This upper estimate corresponds to the one obtained in [8]. If F = Br the upper estimate is less
esthetic. However, it is proved in [28] by a barrier method that, if the initial trace of positive
solution u of (2.1), vanishes outside F, and if 1 < q < 3, there holds

u(x, t) ≤ t−
1

q−1 f1((|x| − r)/
√
t) ∀(x, t) ∈ Q∞, |x| ≥ r, (2.72)

where f = f1 is the unique positive (and radial) solution of







f ′′ +
y

2
f ′ +

1

q − 1
f − f q = 0 in (0,∞)

f ′(0) = 0 , limy→∞ |y|
2

q−1 f(y) = 0.
(2.73)

Notice that the existence of f1 follows from [8] since q belongs to the subcritical range on
exponents in dimension one. Furthermore f1 has the following asymptotic expansion

f1(y) = Cy(3−q)/(q−1)e−y2/4t(1 + ◦(1))) as y → ∞.

2.4 The upper Wiener test

Definition 2.21 We define on R
N × R the two parabolic distances δ2 and δ∞ by

δ2[(x, t), (y, s)] :=

√

|x− y|2 + |t− s|, (2.74)

and
δ∞[(x, t), (y, s)] := max{|x− y|,

√

|t− s|}. (2.75)
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If K ⊂ R
N and i = 2,∞,

δi[(x, t),K] = inf{δi[(x, t), (y, 0)] : y ∈ K} =







max
{

dist (x,K),
√

|t|
}

if i = ∞,
√

dist 2(x,K) + |t| if i = 2.

For β > 0 and i = 2,∞, we denote by Bi
β(m) the parabolic ball of center m = (x, t) and radius

β in the parabolic distance δi.

Let K be any compact subset of RN and uK the maximal solution of (1.1) which blows up
on K. The function uK is constructed in [28] as being the decreasing limit of the uKǫ (ǫ > 0)
when ǫ → 0, where

Kǫ = {x ∈ R
N : dist (x,K) ≤ ǫ}

and uKǫ = limk→∞ uk,Kǫ = uK , where uk is the solution of the classical problem,















∂tuk −∆uk + uqk = 0 in QT ,

uk = 0 on ∂ℓQT ,

uk(., 0) = kχ
Kǫ

in R
N .

(2.76)

If (x, t) = m ∈ R
N × (0, T ], we set dK = dist (x,K), DK = max{|x− y| : y ∈ K} and

λ =
√

d2K + t = δ2[m,K]. We define a slicing of K, by setting dn = dn(K, t) :=
√
nt (n ∈ N),

d±n =

(√
nt±

√
t√
n

)

+

(the positive part is only needed when n = 0) and

T ∗
n = Bd+n+1

(x) \Bd−n
(x) , Tn = Bdn+1(x) \Bdn(x), ∀n ∈ N,

thus T ∗
0 = B2

√
t(x), T0 = B√

t(x), and

Kn(x, t) = K ∩ Tn(x, t) for n ∈ N and Qn(x, t) = K ∩Bdn+1(x, t).

When there is no ambiguity, we will skip the (x, t) variable in the above sets. The main result
of this section is the following discrete upper Wiener-type estimate.

Theorem 2.22 Assume q ≥ qc. Then there exists C = C(N, q, T ) > 0 such that

uK(x, t) ≤ C

t
N
2

at
∑

n=0

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

∀(x, t) ∈ QT , (2.77)

where at is the largest integer j such that Kj 6= ∅.

With no loss of generality, we can assume that x = 0. Furthermore, in considering the scaling

transformation uℓ(y, t) = ℓ
1

q−1u(
√
ℓy, ℓt), with ℓ > 0, we can assume t = 1. Thus the new

compact singular set of the initial trace becomes K/
√
ℓ, that we still denote K. We also set

aK = aK,1 For n ∈ N∗ set δn = dn+1 − dn, then
1

2
√
n+1

≤ δn ≤ 1
2
√
n
. By convention δ0 = 1. It
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is possible to exhibit a collection Θn of points an,j with center on the sphere Σn = {y ∈ R
N :

|y| = (dn+1 + dn)/2}, such that

Tn ⊂
⋃

an,j∈Θn

Bδn(an,j), |an,j − an,k| ≥ δn and #Θn ≤ CnN−1,

for some constant C = C(N). If Kn,j = Kn ∩Bδn(an,j), there holds

K =
⋃

0≤n≤a
K

⋃

an,j∈Θn

Kn,j.

The first intermediate step is based on the quasi-additivity property of capacities developed
in [2].

Lemma 2.23 Let q ≥ qc. There exists a constant C = C(N, q) such that

∑

an,j∈Θn

R
B2δn (an,j )

2/q,q′ (Kn,j) ≤ Cd
N− 2

q−1

n+1 C2/q,q′

(

Kn

dn+1

)

∀n ∈ N∗. (2.78)

Proof. The following result is proved in [2, Th 3]: if the spheres Bρθj
(bj), θ = 1−2/N(q−1), are

disjoint in R
N and G is an analytic subset of

⋃

Bρj (bj) where the ρj are positive and smaller
than some ρ∗ > 0, there holds

C2/q,q′(G) ≤
∑

j

C2/q,q′(G ∩Bρj (bj)) ≤ AC2/q,q′(G), (2.79)

for some A depending on N , q and ρ∗. This property is called quasi-additivity. We define for
n ∈ N∗,

T̃n = dn+1Tn, K̃n = dn+1Kn and Q̃n = dn+1Qn.

Since Kn,j ⊂ Bδn(an,j), it follows that

K̃n,j := dn+1Kn,j ⊂ Bdn+1δn(ãn,j).

Note that by Lemma 2.9

R
B2δn (an,j)

2/q,q′ (Kn,j) = d
2

q−1
−N

n+1 R
B2δndn+1

(dn+1an,j)

2/q,q′ (K̃n,j)

≈ d
2

q−1
−N

n+1 C
B2δndn+1

(dn+1an,j)

2/q,q′ (K̃n,j)

≈ d
2

q−1
−N

n+1 C2/q,q′(K̃n,j)

(2.80)

where K̃n,j = dn+1Kn,j. For a fixed n > 0 and each repartition Λ of points ãn,j = dn+1 an,j such
that the balls B2θ (ãn,j) are disjoint, the quasi-additivity property holds: if we set

Kn,Λ =
⋃

an,j∈Λ
Kn,j , K̃n,Λ = dn+1Kn,Λ =

⋃

an,j∈Λ
K̃n,j and K̃n = dn+1Kn,
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then
∑

an,j∈Λ
C2/q,q′(K̃n,j) ≈ C2/q,q′(K̃n,Λ). (2.81)

The maximal cardinal of any such repartition Λ is of the order of CnN−1 for some positive
constant C = C(N), therefore, the number of repartitions needed for a full covering of the set
T̃n is of finite order depending upon the dimension. Because K̃n is the union of the K̃n,Λ,

∑

an,j∈Θn

C2/q,q′(K̃n,j) =
∑

Λ

∑

an,j∈Λ
C2/q,q′(K̃n,j) ≈ C2/q,q′(K̃n). (2.82)

By Lemma 2.9,

C2/q,q′(K̃n) ≤ C
B2dn+1

2/q,q′ (K̃n) ≈ d
N− 1

q−1

n+1 CB2

2/q,q′

(

Kn

dn+1

)

≈ d
N− 1

q−1

n+1 C2/q,q′

(

Kn

dn+1

)

,

we obtain (2.78) by combining this last inequality with (2.80) and (2.82). �

Proof of Theorem 2.22. Step 1. We first notice that

uK ≤
∑

0≤n≤a
K

∑

an,j∈Θn

uKn,j . (2.83)

Actually, sinceK =
⋃

n

⋃

an,j
Kn,j, for any 0 < ǫ′ < ǫ, there holdsKǫ′ ⊂

⋃

n

⋃

an,j
Kn,j ǫ. Because

a finite sum of positive solutions of (1.1) is a super solution,

uKǫ′ ≤
∑

0≤n≤a
K

∑

an,j∈Θn

uKn,j ǫ . (2.84)

Letting successively ǫ′ and ǫ go to 0 implies (2.83).

Step 2. Let n ∈ N. Since Kn,j ⊂ Bδn(an,j) and |x− an,j| = (dn + dn+1)/2, we can apply the
previous lemmas with r = δn and ρ = r. For n ≥ nN , there holds t = 1 ≥ (r+ 2ρ)2 = 9/(n+ 1)
and |x− an,j| = (

√
n+ 1−√

n)/2 ≥ (2 + CN )(3/
√
n+ 1) (notice that nN ≥ 8). Thus

uKn,j(0, 1) ≤ Ce(
√
n−3/

√
n+1)

2
/4R

B2δn (an,j )

2/q,q′ (Kn,j) ≤ Ce3/2e−
n
4R

B2δn (an,j )

2/q,q′ (Kn,j). (2.85)

Using Lemma 2.23 we obtain, with dn = dn(1) =
√
n+ 1

a
K
∑

n=n
N

∑

an,j∈Θn

uKn,j (0, 1) ≤ C

a
K
∑

n=n
N

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

. (2.86)

Finally, we apply Lemma 2.14 if 1 ≤ n < n
N

and get

n
N
−1

∑

1

∑

an,j∈Θn

uKn,j(0, 1) ≤ C

n
N
−1

∑

1

C2/q,q′

(

Kn

dn+1

)

≤ C ′
n
N
−1

∑

1

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

.

(2.87)
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For n = 0, we proceed similarly, in splitting K1 in a finite number of K1,i, depending only on
the dimension, such that diamK1,i < 1/3. Combining (2.86) and (2.87), we derive

uK(0, 1) ≤ C

a
K
∑

n=0

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

. (2.88)

In order to derive the same result for any t > 0, we notice that

uK(y, t) = t
− 1

q−1uK/
√
t(y/

√
t, 1).

Going back to the definition of dn = dn(K, t) =
√
nt = dn(K

√
t, 1), we derive from (2.88) and

the fact that a
K,t

= a
K

√
t,1

uK(0, t) ≤ Ct−
N
2

aK
∑

n=0

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

, (2.89)

with dn = dn(t) =
√

t(n+ 1) . This is (2.77) with x = 0, and a space translation leads to the
final result. �

Proof of Theorem 2.1. Let m > 0 and Fm = F ∩Bm. We denote by UBc
m

the maximal solution
of (1.1) in Q∞ the initial trace of which vanishes on Bm. Such a solution is actually the unique
solution of (2.1) which satisfies

lim
t→0

u(x, t) = ∞

uniformly on Bc
m′ , for any m′ > m: this can be easily proved by noticing that

UBc
m ℓ(y, t) = ℓ

1
q−1UBc

m
(
√
ℓy, ℓt) = UBc

m/
√

ℓ
(y, t).

Furthermore
lim

m→∞
UBc

m
(y, t) = lim

m→∞
m

− 2
q−1UBc

1
(y/m, t/m2) = 0

uniformly on any compact subset of Q∞. Since uFm + UBc
m

is a super-solution, it is larger that
uF and therefore uFm ↑ uF . Because WFm(x, t) ≤ WF (x, t) and uFm ≤ C1WFm(x, t), the result
follows. �

Remark. It is clear that Theorem 2.1 still holds if u is a positive subsolution of (1.1) satisfying
the initial trace condition (1.21).

Theorem 2.1 admits the following integral expression.

Theorem 2.24 Assume q ≥ qc. Then there exists a positive constant C∗
1 = C∗(N, q, T ) such

that, for any closed subset F of RN , there holds

uF (x, t) ≤
C∗
1

t1+
N
2

∫

√
t(at+2)

√
t

e−
s2

4t s
N− 2

q−1C2/q,q′

(

1

s
F ∩B1(x)

)

s ds, (2.90)

where at = min{n : F ⊂ B√
n+1)t

(x)}.
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Proof. We first use

C2/q,q′

(

Fn

dn+1

)

≤ C2/q,q′

(

F

dn+1
∩B1

)

,

and we denote

Φ(s) = C2/q,q′

(

F

s
∩B1

)

∀s > 0. (2.91)

Step 1. The following inequality holds

c1Φ(αs) ≤ Φ(s) ≤ c2Φ(βs) ∀s > 0, ∀1/2 ≤ α ≤ 1 ≤ β ≤ 2, (2.92)

for some positive constants c1, c2 depending on N and q. See [1] and [32]. If β ∈ [1, 2],

Φ(βs) = C2/q,q′

(

1

β

(

F

s
∩Bβ

))

≈ C2/q,q′

(

F

s
∩Bβ

)

≥ c1Φ(s).

If α ∈ [1/2, 1],

Φ(αs) = C2/q,q′

(

1

α

(

F

s
∩Bα

))

≈ C2/q,q′

(

F

s
∩Bα

)

≤ c2Φ(s).

Step 2. By (2.92)

C2/q,q′

(

F

dn+1
∩B1

)

≤ c2C2/q,q′

(

F

s
∩B1

)

∀ s ∈ [dn+1, dn+2],

and n ≤ at . Then

c2

∫ dn+2

dn+1

sN− 2
q−1 e−s2/4tC2/q,q′

(

F

s
∩B1

)

s ds

≥ C2/q,q′

(

F

dn+1
∩B1

)∫ dn+2

dn+1

s
N− 2

q−1 e−s2/4ts ds.

Using the fact that N − 2
q−1 ≥ 0, we get,

∫ dn+2

dn+1

sN− 2
q−1 e−

s2

4t s ds ≥ e−
n+2
4 d

N− 2
q−1

+1

n+1 (dn+2 − dn+1) (2.93)

≥ t

4e2
d
N− 2

q−1

n+1 e−
n
4 . (2.94)

Thus

uF (x, t) ≤
C

t1+
N
2

∫

√
t(at+2)

√
t

s
N− 2

q−1 e−
s2

4tC2/q,q′

(

1

s
F ∩B1

)

s ds, (2.95)

which ends the proof. �
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3 Estimate from below

If µ ∈ M
q
+
(RN ) ∩M

b(RN ), we denote by uµ = uµ,0 the solution of

{

∂tuµ −∆uµ + uqµ = 0 in QT ,

uµ(., 0) = µ in R
N .

(3.1)

The maximal σ-moderate solution of (1.1) which has an initial trace vanishing outside a closed
set F is defined by

uF = sup
{

uµ : µ ∈ M
q
+
(RN ) ∩M

b(RN ) , µ(F c) = 0
}

. (3.2)

The main result of this section is the next one

Theorem 3.1 Assume q ≥ qc. There exists a constant C2 = C2(N, q, T ) > 0 such that, for any

closed subset F ⊂ R
N , there holds

uF (x, t) ≥ C2WF (x, t) ∀(x, t) ∈ QT . (3.3)

We first assume that F is compact, and we denote it by K. The first observation is that if
µ ∈ M

q
+(R

N ), uµ ∈ Lq(QT ) (see lemma below) and 0 ≤ uµ ≤ H[µ] := Hµ. Therefore

uµ ≥ H[µ]−G [H[µ]q] , (3.4)

where G is the parabolic Green potential in QT defined by

G[f ](t) =

∫ t

0
H[f(s)](t− s)ds =

∫ t

0

∫

RN

H(., y, t− s)f(y, s)dyds.

The main idea of the proof is as follows. For any (x, t) ∈ QT , construct a measure µ =
µ(x, t) ∈ M

q
+(R

N ) such that there holds

H[µ](x, t) ≥ CWK(x, t) ∀(x, t) ∈ QT , (3.5)

and
G (H[µ])q ≤ C H[µ] in QT , (3.6)

with constants C depends only on N , q, and T . Then replace µ by µǫ = ǫµ with ǫ = (2C)
− 1

q−1

in order to derive
uµǫ ≥ 2−1

Hµǫ ≥ 2−1CWK. (3.7)

From this follows
uK ≥ 2−1

Hµǫ ≥ 2−1CWK . (3.8)

and the proof of Theorem 3.1 with C2 = 2−1C. In the following sections we describe the
construction of measures µ(x, t) satisfying (3.5) and (3.6).
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3.1 Estimate from below of the solution of the heat equation

The purely spatial slicing used is the trace on R
N × {0} of an extended slicing in QT which is

constructed as follows: if K is a compact subset of RN , m = (x, t), we define dK , λ, dn and at
as in Section 2.3. Let α ∈ (0, 1) to be fixed later on, we define Tn for n ∈ Z by

Tn =







B2√
t(n+1)

(m) \ B2√
tn
(m) if n ≥ 1,

B2
α−n

√
t
(m) \ B2

α1−n
√
t
(m) if n ≤ 0,

and put
T ∗
n = Tn ∩ {s : 0 ≤ s ≤ t}, for n ∈ Z.

We recall that for n ∈ N∗,

Qn = K ∩ B2√
t(n+1)

(m) = K ∩Bdn(x)

and
Kn = K ∩ Tn+1 = K ∩

(

Bdn+1(x) \Bdn(x)
)

.

Let νn ∈ M
b
+
(RN ) ∩W−2/q,q(RN ) be the q-capacitary measure of the set Kn/dn+1. See [1, Sec.

2.2]. Such a measure has support in Kn/dn+1 and

νn(Kn/dn+1) = C2/q,q′(Kn/dn+1) and ‖νn‖W−2/q,q′(RN ) =
(

C2/q,q′(Kn/dn+1)
)1/q

. (3.9)

We define µn as follows

µn(A) = d
N− 2

q−1

n+1 νn(A/dn+1) ∀A ⊂ Kn, A Borel , (3.10)

and set

µt,K =

at
∑

n=0

µn,

and

Hµt,K
=

at
∑

n=0

Hµn . (3.11)

Proposition 3.2 Let q ≥ qc, then there holds

Hµt,K
(x, t) ≥ 1

(4πt)
N
2

at
∑

n=0

e−
n+1
4 d

N− 2
q−1

n+1 C2/q,q′

(

Kn

dn+1

)

, (3.12)

in R
N × (0, T ).

Proof. Since

Hµn(x, t) =
1

(4πt)
N
2

∫

Kn

e−
|x−y|2

4t dµn, (3.13)

and
y ∈ Kn =⇒ |x− y| ≤ dn+1,

(3.12) follows because of (3.10) and (3.11). �
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3.2 Estimate from above of the nonlinear term

We write (3.4) under the form

uµ(x, t) ≥
∑

n∈Z
Hµn(x, t)−

∫ t

0

∫

RN

H(x, y, t− s)





∑

n∈AK

Hµn(y, s)





q

dyds

= I1 − I2.

(3.14)

since µn = 0 if n /∈ AK = N ∩ [1, at], and

I2 =
1

(4π)
N
2

∫ t

0

∫

RN

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∑

n∈AK

Hµn(y, s)





q

dyds

=
1

(4π)
N
2

(Jℓ + J ′
ℓ),

(3.15)

for some ℓ ∈ N
∗ to be fixed later on, where

Jℓ=
∑

p∈Z

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∑

n<p+ℓ

Hµn(y, s)





q

dyds,

and

J ′
ℓ =
∑

p∈Z

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∑

n≥p+ℓ

Hµn(y, s)





q

dyds.

The next estimate will be used several times in the sequel.

Lemma 3.3 Let 0 < a < b and t > 0, then,

max

{

σ−
N
2 e−

ρ2

4σ : 0 ≤ σ ≤ t, at ≤ ρ2 + σ ≤ bt

}

= e
1
4



















t−
N
2 e−

a
4 if

a

2N
> 1,

(

2N

at

)N
2

e−
N
2 if

a

2N
≤ 1.

Proof. Set

J (ρ, σ) = σ−
N
2 e−

ρ2

4σ

and
Ka,b,t =

{

(ρ, σ) ∈ [0,∞) × (0, t] : at ≤ ρ2 + σ ≤ bt
}

.

We first notice that, for fixed σ, the maximum of J (., σ) is achieved for ρ minimal. If σ ∈ [at, bt]
the minimal value of ρ is 0, while if σ ∈ (0, at), the minimum of ρ is

√
at− s.

- Assume first a ≥ 1, then J (
√
at− σ, σ) = e

1
4σ−

N
4 e−

at
4σ . Thus if 1 ≤ a/2N , the minimal value

of J (
√
at− σ, σ) is e

1−2N
4

(

2N
at

)
N
2 , while if a/2N < 1 ≤ a, the minimum is e

1
4 t−

N
2 e−

a
4 .
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- Assume now a ≤ 1. Then

max{J (ρ, σ) : (ρ, σ) ∈ Ka,b,t} = max

{

max
σ∈(at,t]

J (0, σ), max
σ∈(0,at]

J (
√
at− σ, σ)

}

= max

{

(at)−
N
2 , e

1−2N
4

(

2N

at

)N
2

}

= e
1−2N

4

(

2N

at

)
N
2

.

Combining these two estimates, we derive the result. �

Remark. The following variant of Lemma 3.3 will be useful in the sequel: For any θ ≥ 1/2N
there holds

max{J (ρ, σ) : (ρ, σ) ∈ K(a, b, t)} ≤ e
1
4

(

2Nθ

t

)N
2

e−
a
4 if θa ≥ 1. (3.16)

Lemma 3.4 There exists a positive constant C = C(N, ℓ, q) such that

Jℓ ≤ Ct−
N
2

at
∑

n=1

d
N− 2

q−1

n+1 e−(1+(n−ℓ)+ )/4 C2/q,q′

(

Kn

dn+1

)

. (3.17)

Proof. The set of the p’s for the summation in Jℓ is reduced to Z ∩ [−ℓ+ 2,∞), thus we write

Jℓ = J1,ℓ + J2,ℓ

where

J1,ℓ =

0
∑

p=2−ℓ

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∑

n<p+ℓ

Hµn(y, s)





q

and

J2,ℓ =
∞
∑

p=1

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∑

n<p+ℓ

Hµn(y, s)





q

.

If p = 2− ℓ, . . . , 0,
(y, s) ∈ T ∗

p =⇒ tα2−2p ≤ |x− y|2 + t− s ≤ tα−2p,

and, if p ≥ 1
(y, s) ∈ T ∗

p =⇒ pt ≤ |x− y|2 + t− s ≤ (p+ 1)t.

By Lemma 3.3 and (3.16), there exists C = C(N, ℓ, α) > 0 such that

max

{

(t− s)−
N
2 e

− |x−y|2
4(t−s) : (y, s) ∈ T ∗

p

}

≤ Ct−
N
2 e−α2−2p/4, (3.18)

if p = 2− ℓ, . . . , 0, and

max

{

(t− s)−
N
2 e

− |x−y|2
4(t−s) : (y, s) ∈ T ∗

p

}

≤ Ct−
N
2 e−p/4, (3.19)
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if p ≥ 1. When p = 2− ℓ, . . . , 0

[

p+ℓ−1
∑

1

Hµn(y, s)

]q

≤ C

p+ℓ−1
∑

1

H
q
µn
(y, s), (3.20)

for some C = C(ℓ, q) > 0, thus

J1,ℓ ≤ Ct−
N
2

0
∑

p=2−ℓ

e−
α2−2p

4

p+ℓ−1
∑

n=1

‖Hµn‖qLq(Qt)

≤ Ct−
N
2

ℓ−1
∑

n=1

‖Hµn‖qLq(Qt)

0
∑

p=n−ℓ+1

e−
α2−2p

4 (3.21)

≤ Ct−
N
2 e−

α2ℓ−2

4

ℓ−1
∑

n=1

‖Hµn‖qLq(Qt)
.

If the set of p’s is not upper bounded, we introduce some parameter δ > 0 to be made precise
later on. Then

[

p+ℓ−1
∑

1

Hµn(y, s)

]q

≤
[

p+ℓ−1
∑

1

eδq
′ n
4

]q/q′ p+ℓ−1
∑

1

e−
δqn
4 H

q
µn
(y, s), (3.22)

with q′ = q/(q−1). If, by convention µn = 0 whenever n > at, we obtain, for some C > 0 which
depends also on δ,

J2,ℓ ≤ Ct−
N
2

∞
∑

p=1

e
δ(p+ℓ−1)q−p

4

p+ℓ−1
∑

n=1

e−
δqn
4 ‖Hµn‖qLq(Qt)

≤ Ct−
N
2

∞
∑

n=1

‖Hµn‖qLq(Qt)
e−

δqn
4

∞
∑

p=(n−ℓ+1)∨1
e

δ(p+ℓ−1)q−p
4 (3.23)

≤ Ct−
N
2

∞
∑

n=1

e−
1+(n−ℓ)+

4 ‖Hµn‖qLq(Qt)
.

Notice that we choose δ such that δℓq < 1. Combining (3.21) and (3.23), we derive (3.17) from
Lemma 2.11, (3.9) and (3.10). �

The set of indices p for which the µn terms are not zero in J ′
ℓ is Z ∩ (−∞, at − ℓ]. We write

J ′
ℓ = J ′

1,ℓ + J ′
2,ℓ,

where

J ′
1,ℓ =

0
∑

p=−∞

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∞
∑

n=1∨p+ℓ

Hµn(y, s)





q

dyds,
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and

J ′
2,ℓ =

at−ℓ
∑

p=1

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)





∞
∑

n=p+ℓ

Hµn(y, s)





q

dyds.

Lemma 3.5 There exists a constant C = C(N, q, ℓ) > 0 such that

J ′
1,ℓ ≤ Ct1−

Nq
2

at
∑

n=0

e−
(1+β0)(n−h)+

4 dNq−2q′
n+1 Cq

2/q,q′

(

Kn

dn+1

)

, (3.24)

where β0 = (q − 1)/4 and h = 2q(q + 1)/(q − 1)2.

Proof. Since

(y, s) ∈ T ∗
p , and (z, 0) ∈ Kn =⇒ |y − z| ≥ (

√
n− α−p)

√
t, (3.25)

there holds

Hµn(y, s) ≤ (4πs)−
N
2 e−

(
√

n−α−p)2t
4s µn(Kn) ≤ Ct−

N
2 e−

(
√

n−α−p)2

4 µn(Kn),

by Lemma 3.3. Let {ǫn} be a sequence of positive numbers such that

Aǫ =

∞
∑

n=1

ǫq
′

n <∞,

then

J ′
1,ℓ ≤ CA

q/q′
ǫ t−

Nq
2

0
∑

p=−∞

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)

∞
∑

n=1∨(p+ℓ)

ǫ−q
n e−q (

√
n−α−p)2

4 µqn(Kn)ds dy

≤ CA
q/q′
ǫ t−

Nq
2

∞
∑

n=1

ǫ−q
n µqn(Kn)

p=0∧(n−ℓ)
∑

−∞
e−

q(
√

n−α−p)2

4

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s) ds dy

≤ CA
q/q′
ǫ t−

Nq
2

∞
∑

n=1

ǫ−q
n µqn(Kn)e

− q(
√

n−1)2

4

∫ ∫

{∪p≤0T ∗
p }

(t− s)−
N
2 e

− |x−y|2
4(t−s) ds dy

≤ CA
q/q′
ǫ t1−

Nq
2

∞
∑

n=1

ǫ−q
n µqn(Kn)e

− q(
√

n−1)2

4 .

(3.26)

Set h = 2q(q + 1)/(q − 1)2 and Q = (1 + q)/2, then q(
√
n− 1)2 ≥ Q(n − h)+ for any n ≥ 1. If

we choose ǫn = e−
(q−1)(n−h)+

16q , there holds ǫ−q
n e−

q(
√

n−1)2

4 ≤ e−
(q+3)(n−h)+

16 . Finally

J ′
1,ℓ ≤ Ct1−

Nq
2

∞
∑

n=1

e−
(1+β0)(n−h)+

4 µqn(Kn),

with β0 = (q − 1)/4, which yields to (3.24) by the choice of the µn. �

In order to make easier the obtention of the estimate of the term J ′
2,ℓ, we first give the proof

in dimension 1.
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Lemma 3.6 Assume N = 1 and ℓ is an integer larger than 1. There exists a positive constant

C = C(q, ℓ) > 0 such that

J ′
2,ℓ ≤ Ct−1/2

at
∑

n=ℓ

e−
n
4 d

q−3
q−1

n+1C2/q,q′

(

Kn

dn+1

)

. (3.27)

Proof. If (y, s) ∈ T ∗
p and z ∈ Kn (p ≥ 1, n ≥ p = ℓ) , there holds |x− y| ≥

√
t
√
p and

|y − z| ≥
√
t(
√
n−√

p+ 1). Therefore

J ′
2,ℓ ≤ C

√
t

at−ℓ
∑

p=1

1√
p

∫ t

0
e
− pt

4(t−s)





at
∑

n=p+ℓ

s−1/2e−
(
√

n−√
p+1 )2t

4s µn(Kn)





q

.

If ǫ ∈ (0, q) is some positive parameter which will be made more precise later on, there holds




at
∑

n=p+ℓ

s−1/2e−
(
√

n−√
p+1 )2t

4s µn(Kn)





q

≤





at
∑

n=p+ℓ

e−ǫq′ (
√

n−√
p+1 )2t

4s





q/q′
at
∑

n=p+ℓ

s−
q
2 e−(q−ǫ)

(
√

n−√
p+1 )2t

4s µqn(Kn),

by Hölder’s inequality. By comparison between series and integrals and using Gauss integral

at
∑

n=p+ℓ

e−ǫq′ (
√

n−√
p+1)2t

4s ≤
∫ ∞

p+ℓ
e−ǫq′ (

√
x−√

p+1)2t
4s dx

= 2

∫ ∞
√
p+ℓ−√

p+1
e−

ǫq′x2t
4s (x+

√
p+ 1)dx

≤ 4s

ǫq′t
e−ǫq′ (

√
p+ℓ−√

p+1)2t
4s + 2

√
p+ 1

∫ ∞

√
p+ℓ−√

p+1
e−

ǫq′x2t
4s dx

≤ C

√

(p + 1)s

t
e−ǫq′ (

√
p+ℓ−√

p+1)2t
2s

≤ C

√

(p + 1)s

t
.

If we set qǫ = q − ǫ, then

J ′
2,ℓ ≤ Cǫ−q′/qt1−

q
2

∞
∑

n=ℓ+1

µqn(Kn)

n−ℓ
∑

p=1

p
q−2
2

∫ t

0
(t− s)−1/2s−1/2e

− pt
4(t−s) e−qǫ

(
√
n−√

p+1 )2t
4s ds.

where C = C(ǫ, q) > 0. Since
∫ t

0
(t− s)−1/2s−1/2e

− pt
4(t−s) e−qǫ

(
√

n−√
p+1 )2t

4s ds

=

∫ 1

0
(1− s)−1/2s−1/2e

− p
4(1−s) e−qǫ

(
√

n−√
p+1 )2

4s ds,
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we can apply Lemma A.1 with a = 1/2, b = 1/2, A =
√
p and B =

√
qǫ(

√
n−√

p+ 1). In this

range of indices B ≥ √
qǫ(

√
p+ ℓ−√

p+ 1) ≥
√
qǫ(ℓ−1)√

p , thus κ =
√
qǫ(ℓ− 1) and

√

A

A+B

√

B

A+B
≤ p

1
4n−1/2(

√
n−√

p)1/2.

Therefore

∫ t

0
(t− s)−1/2s−

q
2 e

− pt
4(t−s) e−q

(
√
n−√

p+1)2t
4s ds ≤ Cp

1
4 (
√
n−√

p)1/2√
n

e−
(
√

p+
√

qǫ(
√

n−√
p+1))2

4 , (3.28)

which implies

J ′
2,ℓ ≤ Ct1−

q
2

at
∑

n=ℓ+1

µqn(Kn)√
n

n−ℓ
∑

p=1

p
2q−3

4 (
√
n−√

p)1/2e−
(
√

p+
√

qǫ(
√

n−√
p+1))2

4 , (3.29)

where C depends of ǫ, q and ℓ. By Lemma A.2

J ′
2,ℓ ≤ Ct1−

q
2

at
∑

n=ℓ+1

n
q−3
2 e−

n
4 µqn(Kn) (3.30)

Because µn(Kn) = d
q−3
q−1

n+1C2/q,q′

(

Kn

dn+1

)

(remember N = 1) and diam Kn
dn+1

≤ n−1, there holds

µqn(Kn) ≤ C

(
√
t√
n

)q−3

µn(Kn) = C

(
√
t√
n

)q−3

d
q−3
q−1

n+1C2/q,q′(Kn/dn+1) (3.31)

and inequality (3.27) follows. �

Next we give the general proof. For this task we will use again the quasi-additivity with
separated partitions.

Lemma 3.7 Assume N ≥ 2 and ℓ is an integer larger than 1. There exists a positive constant

C1 = C1(q,N, ℓ) > 0 such that

J ′
2,ℓ ≤ C1t

−N
2

at
∑

n=ℓ

e−
n
4 d

N− 2
q−1

n+1 C2/q,q′

(

Kn

dn+1

)

. (3.32)

Proof. As in the proof of Theorem 2.22, we know that there exists a finite number J , de-
pending only on the dimension N , of separated sub-partitions {#Θh

t,n}Jh=1 of the rescaled sets

T̃n =
√

n+1
t Tn by the N -dim balls B2(ãn,j) where ãn,j =

√

n+1
t an,j, |an,j| =

dn+1 + dn
2

and

|an,j − an,k| ≥
√

4t
n+1 . Furthermore #Θh

t,n ≤ CnN−1. We denote Kn,j = Kn ∩ B√

t
n+1

(an,j).

34



We write µn =

J
∑

h=1

µhn, and accordingly J ′
2,ℓ =

J
∑

h=1

J ′
2,ℓ
h , where µhn =

∑

j∈Θh
t,n

µn,j, and µn,j are the

capacitary measures of Kn,j relative to Bn,j = B6t/5
√
n(an, j), which means

νn,j(Kn,j) = C
Bn,j

2/q,q′(Kn,j) and ‖νn,j‖W−2/q,q′(Bn,j )
=
(

C
Bn,j

2/q,q′(Kn,j)
)1/q

. (3.33)

Thus

J ′
2,ℓ =

at−ℓ
∑

p=1

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)







∞
∑

n=p+ℓ

J
∑

h=1

∑

j∈Θh
t,n

Hµn,j (y, s)







q

dyds.

We denote

J ′
2,ℓ
h =

at−ℓ
∑

p=1

∫ ∫

T ∗
p

(t− s)−
N
2 e

− |x−y|2
4(t−s)







∞
∑

n=p+ℓ

∑

j∈Θh
t,n

Hµn,j (y, s)







q

dyds,

and clearly

J ′
2,ℓ ≤ C

J
∑

h=1

J ′
2,ℓ
h, (3.34)

where C depends only on N and q. For integers n and p such that n ≥ ℓ+ 1, we set

λn,j,y = inf{|y − z| : z ∈ B√
t/
√
n+1(an,j)} = |y − an,j| −

√
t√

n+ 1
.

Therefore

at
∑

n=p+ℓ

∫

Kn

e−
|y−z|2

4s dµhn(z) =

at
∑

n=p+ℓ

∑

j∈Θh
t,n

∫

Kn,j

e−
|y−z|2

4s dµn,j(z)

≤







at
∑

n=p+ℓ

∑

j∈Θh
t,n

e−ǫq′
λ2n,j,y

4s







1/q′





at
∑

n=p+ℓ

∑

j∈Θh
t,n

e−qλ2
n,j,y

1−ǫ
4s µqn,j(Kn,j)







1/q

where ǫ > 0 will be made precise later on.

Step 1 We claim that

at
∑

n=p+ℓ

∑

j∈Θt,n

e−ǫq′
λ2n,j,y

4s ≤ C

√

ps

t
(3.35)

where C depends on ǫ, q and N . If y is fixed in Tp, we denote by zy the point of Tn which solves
|y − zy| = dist (y, Tn). Thus

√
t(
√
n−

√

p+ 1) ≤ |y − zy| ≤ t(
√
n−√

p).
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Let Y = y
√

t(p+ 1)/ |y|. On the axis
−→
0Y we set e = Y/ |Y |, consider the points bk = (k

√
t/
√
n)e

where −n ≤ k ≤ n and denote by Gn,k the spherical shell obtained by intersecting the spherical
shell Tn with the domain Hn,k which is the set of points in R

N limited by the hyperplanes

orthogonal to
−→
0Y going through ((k +1)

√
t/
√
n)e and ((k − 1)

√
t/
√
n)e. The number of points

an,j ∈ Gn,k is smaller than C(n + 1− |k|)N−2, where C depends only on N , and we denote by
Λn,k the set of j ∈ Θt,n such that an,j ∈ Gn,k. Furthermore, if an,j ∈ Gn,k elementary geometric
considerations (Pythagora’s theorem) imply that λ2n,j,y is greater than t(n+p+1−2k

√
p+ 1/

√
n).

Therefore
at
∑

n=p+ℓ

∑

j∈Θt,n

e−ǫq′
λ2n,j,y

4s ≤ C

at
∑

n=p+ℓ

n
∑

k=−n

(n+ 1− |k|)N−2e
− ǫq′(n+p+1−2k

√
p+1/)t

4s
√

n . (3.36)

Case N = 2. Summing a geometric series and using the inequality eu

eu−1 ≤ 1 + u−1 for u > 0,
we obtain

n
∑

k=−n

e
ǫq′(k

√
p+1)t

2s
√

n ≤ e
ǫq′t

√
n(p+1)

2s
e

ǫq′t√p+1
2s

√
n

e
ǫq′t√p+1

2s
√

n
−1

≤ e
ǫq′t

√
n(p+1)

2s

(

1 +
2s
√
n

ǫq′t
√
p+ 1

)

.

(3.37)

Thus, by comparison between series and integrals,
at
∑

n=p+ℓ

∑

j∈Θt,n

e−
ǫq′λ2n,j,y

4s ≤ C

at
∑

n=p+ℓ

(

1 +
s
√
n

t
√
p

)

e−
ǫq′(√n−√

p+1 )2

4s

≤ C

∫ ∞

p+1
e−

ǫq′(√x−√
p+1 )2t

4s dx

+
Cs

t
√
p

∫ ∞

p+1

√
xe−

ǫq′(√x−√
p+1 )2t

4s dx.

(3.38)

Next
∫ ∞

p+1
e−

ǫq′(√x−√
p+1 )2t

4s dx = 2

∫ ∞

√
p+1

e−
ǫq′(y−√

p+1 )2t
4s ydy

= 2

∫ ∞

0
e−

ǫq′y2t
4s ydy + 2

√
p+ 1

∫ ∞

0
e−

ǫq′y2t
4s dy

=
2s

t

∫ ∞

0
e−

ǫq′z2
4 zdz + 2

√

(p+ 1)s

t

∫ ∞

0
e−

ǫq′z2
4 dz,

(3.39)

and
∫ ∞

p+1

√
xe−

ǫq′(√x−√
p+1 )2t

4s dx = 2

∫ ∞

√
p+1

e−
ǫq′(y−√

p+1 )2t
4s y2dy

= 2

∫ ∞

0
e−

ǫq′y2t
4s (y +

√
p+ 1)2dy

≤ 4

∫ ∞

0
e−

ǫq′y2t
4s y2dy + 4(p + 1)

∫ ∞

0
e−

ǫq′y2t
4s dy

≤ 4
(s

t

)3/2
∫ ∞

0
e−

ǫq′z2
4 z2dz + 4(p + 1)

√

s

t

∫ ∞

0
e−

ǫq′z2
4 dz

(3.40)
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Jointly with (3.38), these inequalities imply

at
∑

n=p+ℓ

∑

j∈Θt,n

e−
ǫq′λ2n,j,y

4s ≤ C

√

ps

t
. (3.41)

Case N > 2. Because the value of the right-hand side of (3.36) is an increasing value of N , it is
sufficient to prove (3.35) when N is even, say (N − 2)/2 = d ∈ N∗. There holds

n
∑

k=−n

(n + 1− |k|)de
ǫq′(k

√
p+1)t

2s
√

n ≤ 2
n
∑

k=0

(n+ 1− k)de
ǫq′(k

√
p+1)t

2s
√

n . (3.42)

We set

α = ǫq′
t
√
p+ 1

2s
√
n

and Id =

n
∑

k=0

(n+ 1− k)dekα.

Since

ekα =
e(k+1)α − ekα

eα − 1
,

we use Abel’s transform to obtain

Id =
1

eα − 1

(

e(n+1)α − (n+ 1)d +

n
∑

k=1

(

(n+ 2− k)d − (n+ 1− k)d
)

ekα

)

≤ 1

eα − 1

(

(1− d)e(n+1)α − (n+ 1)d + deα
n
∑

k=1

(

(n+ 1− k)d−1
)

ekα

)

.

Therefore the following induction holds

Id ≤ deα

eα − 1
Id−1. (3.43)

In (3.37), we have already used the fact that

deα

eα − 1
≤ C

(

1 +
s
√
n

t
√
p

)

,

and

Id ≤ C

(

1 +

(

s
√
n

t
√
p

)d+1
)

I0.

Thus (3.38) is replaced by

at
∑

n=p+ℓ

∑

j∈Θt,n

e−
ǫq′λ2n,j,y

4s ≤ C

at
∑

n=p+ℓ

(

1 +

(

s
√
n

t
√
p

)d+1
)

e−
ǫq′(√n−√

p+1 )2t
4s

≤ C

∫ ∞

p+1
e−

ǫq′(√x−√
p+1 )2t

4s dx

+

(

Cs

t
√
p

)d+1 ∫ ∞

p+1
x(d+1)/2e−

ǫq′(√x−√
p+1 )2t

4s dx.

(3.44)
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The first integral on the right-hand side has already been estimated in (3.39), for the second
integral, there holds

∫ ∞

p+1
x(d+1)/2e−

ǫq′(√x−√
p+1 )2t

4s dx =

∫ ∞

0
(y +

√
p+ 1 )d+2e−

ǫq′y2t
4s dx

≤ C

∫ ∞

0
yd+2e−

ǫq′y2t
4s dy + Cp1+

d
2

∫ ∞

0
e−

ǫq′y2t
4s dy

≤ C
(s

t

)2+ d
2

∫ ∞

0
z(d+1)/2e−

ǫq′z2
4 dz

+ C
(s

t

)3/2
p1+

d
2

∫ ∞

0
e−

ǫq′z2
4 dz.

(3.45)

Combining (3.39), (3.44) and (3.45), we derive (3.35).

Step 2. Since T ∗
p ⊂ Γp × [0, t] where Γp = Bdp+1(x) \ Bdp−1(x), (y, s) ∈ T ∗

p implies that

|x− y|2 ≥ (p− 1)t, thus J ′
2,ℓ
h satisfies

J ′
2,ℓ
h ≤ Ct

1−q
2

∞
∑

p=1

p
q−1
2

∫ t

0

∫

Γp

(t− s)−
N
2 s−(q(N−1)+1)/2e

− |x−y|2
4(t−s)

×
at
∑

n=p+ℓ

∑

j∈Θh
t,n

e−
qλ2n,j,y(1−ǫ)

4s µqn,j(Kn,j)dsdy

≤ Ct
1−q
2

at
∑

n=ℓ+1

∑

j∈Θh
t,n

µqn,j(Kn,j)

×
n−ℓ
∑

p=1

p
q−1
2

∫ t

0

∫

Γp

(t− s)−
N
2 s−(q(N−1)+1)/2e−|x−y|2/4(t−s)e−

qλ2n,j,y(1−ǫ)

4s dsdy

(3.46)

and the constant C depends on N, q and ǫ. Next we set qǫ = (1− ǫ)q. Writting

|y − an,j|2 = |x− y|2 + |x− an,j|2 − 2〈y − x, an,j − x〉 ≥ pt+ |x− an,j|2 − 2〈y − x, an,j − x〉,

we get

∫

Γp

e−
qǫ|y−an,j|2

4s dy = e−
qǫ|x−an,j|2

4s

∫

√
t(p+1)

√
tp

e−
qǫr

2

4s

∫

|x−y|=r
e2qǫ〈y−x,an,j−x〉/4sdSr(y)dr.

For estimating the value of the spherical integral, we can assume that an,j−x = (0, . . . , 0, |an,j − x|),
y = (y1, . . . , yN ) and, using spherical coordinates with center at x, that the unit sphere has the
representation SN−1 = {(sinφ.σ, cos φ) ∈ R

N−1 × R : σ ∈ SN−2, φ ∈ [0, π]}. With this repre-
sentation, dSr = rN−1 sinN−2 φdφdσ and 〈y − x, an,j − x〉 = |an,j − x| |y − x| cosφ. Therefore

∫

|x−y|=r
e2qǫ

〈y−x,an,j−x〉
4s dSr(y) = rN−1

∣

∣SN−2
∣

∣

∫ π

0
e2qǫ

|an,j−x|r cosφ

4s sinN−2 φdφ.
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By Lemma A.3

∫

|x−y|=r
e2qǫ

〈y−x,an,j−x〉
4s dSr(y) ≤ C

rN−1e2qǫ
r|an,j−x|

4s

(

1 +
r|an,j−x|

s

)
N−1

2

≤ Cs
N−1

2

(

r

|an,j − x|

)
N−1

2

e2qǫ
r|an,j−x|

4s .

(3.47)

Therefore
∫

Γp

e−qǫ
|y−an,j|2

4s dy ≤ Ct
N−1

4 p
N−3

4
s

N−1
2 e−qǫ

(|an,j−x|−√
t(p+1) )2

4s

|an,j − x|N−1
2

, (3.48)

and, since |an,j − x| ≥
√
tn,

∫ t

0

∫

Γp

(t− s)−
N
2 s−(q(N−1)+1)/2e

− |x−y|2
4(t−s) e−qǫ

λ2n,j,y
4s dy ds

≤ C

√
tp

N−3
4

n
N−1

4

∫ t

0
(t− s)−

N
2 s−

(q−1)(N−1)+1
2 e

− pt
4(t−s) e−qǫ

(
√

tn−
√

t(p+1) )2

4s ds

≤ C
t
1−q(N−1)

2 p
N−3

4

n
N−1

4

∫ 1

0
(1− s)−

N
2 s−

(q−1)(N−1)+1
2 e

− p
4(1−s) e−qǫ

(
√

n−√
p+1 )2

4s .

(3.49)

We apply Lemma A.1, with A =
√
p, B =

√
qǫ(

√
n − √

p+ 1), b = (q−1)(N−1)+1
2 , a = N

2 and
κ =

√
qǫ(ℓ− 1)/8 as in the case N = 1, and noticing that, for these specific values,

A1−aB1−b(A+B)a+b−2 = p
2−N

4 (
√
qǫ(

√
n−√

p+ 1))
1−(q−1)(N−1)

2

× (
√
p+

√
qǫ(

√
n−√

p+ 1))
(q−1)(N−1)+N−3

2

≤ C

(

n

p

)
N
4
−1/2(√

n−√
p√

n

)

1−(q−1)(N−1)
2

,

where C depends on N , q and κ. Therefore
∫ t

0

∫

Γp

(t− s)−
N
2 s−

N
2 e

− |x−y|2
4(t−s) e−qǫ|y−z|2/4sdy ds

≤ C
t(1−q(N−1))/2p

N−3
4

n
N−1

4

(

n

p

)N
4
−1/2(√

n−√
p√

n

)

1−(q−1)(N−1)
2

e−
(
√

p+
√
qǫ(

√
n−√

p+1))2

4

≤ Ct
1−q(N−1)

2 p−
1
4n

(q−1)(N−1)−2
4 (

√
n−√

p)
1−(q−1)(N−1)

2 e−
(
√

p+
√
qǫ(

√
n−√

p+1))2

4 .

(3.50)

We derive from (3.46), (3.50),

J ′
2,ℓ
h ≤ Ct1−

Nq
2

×
at
∑

n=ℓ+1

∑

j∈Θh
t,n

n
(q−1)(N−1)−2

4 µqn,j(Kn,j)

n−ℓ
∑

p=1

p
2q−3

4 (
√
n−√

p)
1−(q−1)(N−1)

2 e−
(
√

p+
√
qǫ(

√
n−√

p+1 ))2

4 .

(3.51)
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By Lemma A.2 with α =
2q − 3

4
, β = 1−(q−1)(N−1)

2 , δ = 1
4 and γ = qǫ, we obtain

n−ℓ
∑

p=1

p
2q−3

4 (
√
n−√

p)
1−(q−1)(N−1)

2 e−
(
√

p+
√

qǫ(
√

n−√
p+1 ))2

4 ≤ Cn
N(q−1)+q−3

4 e−
n
4 , (3.52)

thus

J ′
2,ℓ
h ≤ Ct1−

Nq
2

at
∑

n=ℓ+1

n
N(q−1)

2
−1e−

n
4

∑

j∈Θh
t,n

µqn,j(Kn,j). (3.53)

Because
µn,j(Kn,j) = C

Bn,j

2/q,q′(Kn,j),

we use the rescaling procedure as in the proof of Lemma 2.23, except that the scale factor is
√

(n+ 1)t instead of
√
n+ 1 so that the sets T̃n, K̃n, Q̃n and K̃n remains unchanged Using

again the quasi-additivity and the fact that J ′
2,ℓ =

J
∑

h=1

J ′
2,ℓ
h , we deduce

J2,ℓ ≤ C ′t−
N
2

at
∑

n=ℓ+1

d
N− 2

q−1

n+1 e−
n
4C2/q,q′

(

Kn

dn+1

)

, (3.54)

which implies (3.32). �

The proof of Theorem 3.1 follows from the previous estimates on J1 and J2. Furthermore
the following integral expression holds

Theorem 3.8 Assume q ≥ qc. Then there exists a positive constants C∗
2 , depending on N ,q

and T , such that for any closed set F , there holds

uF (x, t) ≥
C∗
2

t1+
N
2

∫

√
tat

0
e−

s2

4t sN− 2
q−1C2/q,q′

(

F

s
∩B1(x)

)

s ds, (3.55)

where at is the smallest integer j such that F ⊂ B√
jt(x).

Proof. We distinguish according q = qc, or q > qc, and for simplicity we denote Br = Br(x) for
the various values of r.

Case 1: q = qc ⇐⇒ N − 2
q−1 = 0. Because Fn = F ∩ (Bdn+1 \Bdn) there holds

C2/q,q′

(

Fn

dn+1

)

≥ C2/q,q′

(

F

dn+1
∩B1

)

− C2/q,q′

(

F ∩Bdn

dn+1

)

,

Furthermore, since dn+1 ≥ dn,

C2/q,q′

(

F ∩Bdn

dn+1

)

= C2/q,q′

(

dn
dn+1

F ∩Bdn

dn

)

≤ C2/q,q′

(

F

dn
∩B1

)

,

thus

C2/q,q′

(

Fn

dn+1

)

≥ C2/q,q′

(

F

dn+1
∩B1

)

− C2/q,q′

(

F

dn
∩B1

)

,
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it follows

at
∑

n=1

e−
n
4C2/q,q′

(

Fn

dn+1

)

≥
at
∑

n=1

e−
n
4C2/q,q′

(

F

dn+1
∩B1

)

−
at
∑

n=1

e−
n
4C2/q,q′

(

F

dn
∩B1

)

≥
at
∑

n=1

e−
n
4C2/q,q′

(

F

dn+1
∩B1

)

− e−
1
4

at−1
∑

n=0

e−
n
4C2/q,q′

(

F

dn+1
∩B1

)

≥ (1− e−
1
4 )

at−1
∑

n=1

e−
n
4C2/q,q′

(

F

dn+1
∩B1

)

− e−
1
4C2/q,q′

(

F√
t
∩B1

)

.

Since, by (2.92),

C2/q,q′

(

F

s′
∩B1

)

≥ C2/q,q′

(

F

dn+1
∩B1

)

≥ C2/q,q′

(

F

s
∩B1

)

,

for any s′ ∈ [dn+1, dn+2] and s ∈ [dn, dn+1], there holds

te−
n
4C2/q,q′

(

F

dn+1
∩B1

)

≥ C2/q,q′

(

F

dn+1
∩B1

)∫ dn+1

dn

e−s2/4ts ds

≥
∫ dn+1

dn

e−s2/4tC2/q,q′

(

F

s
∩B1

)

s ds.

This implies

WF (x, t) ≥ (1− e−
1
4 )t−(1+N

2
)

∫

√
tat

0
e−s2/4tC2/q,q′

(

F

s
∩B1

)

s ds.

Case 2: q > qc ⇐⇒ N − 2
q−1 > 0. In that case it follows from Lemma 2.9 that

C2/q,q′

(

Fn

dn+1

)

≈ d
2

q−1
−N

n+1 C2/q,q′ (Fn) .

Thus

WF (x, t) ≈ t−1−N
2

at
∑

n=0

e−
n
4C2/q,q′ (Fn) .

Since
C2/q,q′ (Fn) ≥ C2/q,q′

(

F ∩Bdn+1

)

− C2/q,q′ (F ∩Bdn) ,

and again

t−
N
2

at
∑

n=0

e−
n
4C2/q,q′ (Fn) ≥ (1− e−

1
4 )t−

N
2

at−1
∑

n=0

e−
n
4C2/q,q′

(

F ∩Bdn+1

)

≥ (1− e−
1
4 )t−(1+N

2
)

∫

√
tat

0
e−

s2

4tC2/q,q′ (F ∩Bs) s ds.

Because C2/q,q′ (F ∩Bs) ≈ sN− 2
q−1C2/q,q′

(

s−1F ∩B1

)

, (3.55) follows. �
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4 Applications

The first result of this section is the following

Theorem 4.1 Assume N ≥ 1 and q > 1. Then uK = uK .

Proof. If 1 < q < qc, the result is already proved in [28]. The proof in the super-critical case is
an adaptation that we recall, for the sake of completeness. By Theorem 2.24 and Theorem 3.8
there exists a positive constant C, depending on N , q and T such that

uF (x, t) ≤ CuF (x, t) ∀(x, t) ∈ QT .

By convexity ũ = uF − 1

2C
(uF − uF ) is a super-solution, which is smaller than uF if we assume

that uF 6= uF . If we set θ := 1/2 + 1/(2C), then uθ = θuF is a subsolution. Therefore there
exists a solution u1 of (1.1) in Q∞ such that uθ ≤ u1 ≤ ũ < uF . If µ ∈ M

q
+(R

N ) satisfies
µ(F c) = 0, then uθµ is the smallest solution of (1.1) which is above the subsolution θuµ. Thus
uθµ ≤ u1 < uF and finally uF ≤ u1 < uF , a contradiction. �

If we combine Theorem 2.24 and Theorem 3.8 we derive the following integral approximation
of the parabolic capacitary potential

Proposition 4.2 Assume q ≥ qc. Then there exist two positive constants C†
1, C

†
2, depending

only on N , q and T such that

C†
2t

−(1+N
2
)

∫

√
tat

0
sN− 2

q−1 e−
s2

4tC2/q,q′

(

F

s
∩B1(x)

)

s ds ≤WF (x, t)

≤ C†
1t

−(1+N
2
)

∫

√
t(at+2)

√
t

sN− 2
q−1 e−

s2

4tC2/q,q′

(

F

s
∩B1(x)

)

s ds

(4.56)

for any (x, t) ∈ QT .

Definition 4.3 If F is a closed subset of RN , we define the (2/q, q′)-integral parabolic capacitary

potential WF by

WF (x, t) = t−1−N
2

∫ DF (x)

0
sN− 2

q−1 e−s2/4tC2/q,q′

(

F

s
∩B1(x)

)

s ds ∀(x, t) ∈ Q∞, (4.57)

where DF (x) = max{|x− y| : y ∈ F}.

An easy computation shows that

0 ≤ WF (x, t)− t−(1+N
2
)

∫

√
tat

0
sN− 2

q−1 e−
s2

4tC2/q,q′

(

F

s
∩B1(x)

)

s ds

≤ C
t(q−3)/2(q−1)

DF (x)
e−D2

F (x)/4t,

(4.58)
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and

0 ≤ t−(1+N
2
)

∫

√
t(at+2)

0
s
N− 2

q−1 e−
s2

4tC2/q,q′

(

F

s
∩B1(x)

)

s ds−WF (x, t)

≤ C
t(q−3)/2(q−1)

DF (x)
e−

D2
F (x)

4t ,

(4.59)

for some C = C(N, q) > 0. Furthermore

WF (x, t) = t
− 1

q−1

∫ DF (x)/
√
t

0
s
N− 2

q−1 e−
s2

4 C2/q,q′

(

F

s
√
t
∩B1(x)

)

s ds. (4.60)

The following result gives a sufficient condition in order that uF does not have a strong
blow-up at a point x.

Proposition 4.4 Assume q ≥ qc and F is a closed subset of RN . If there exists γ ∈ [0,∞) such
that

lim
τ→0

C2/q,q′

(

F

τ
∩B1(x)

)

= γ, (4.61)

then

lim
t→0

t
1

q−1uF (x, t) = Cγ, (4.62)

for some C = C(N, q) > 0.

Proof. Clearly, condition (4.61) implies

lim
t→0

C2/q,q′

(

F√
ts

∩B1(x)

)

= γ

for any s > 0. Then (4.62) follows by Lebesgue’s theorem. Notice also that the set of γ is
bounded from above by a constant depending on N and q. �

In the next result we give a condition in order that the solution remains bounded at a point
x. The proof is similar to the previous one.

Proposition 4.5 Assume q ≥ qc and F is a closed subset of RN . If

lim sup
τ→0

τ−
2

q−1C2/q,q′

(

F

τ
∩B1(x)

)

<∞, (4.63)

then uF (x, t) remains bounded when t→ 0.

Remark. If we assume that f is a convex function on R
+ satisfying

c2r
q ≤ f(r) ≤ c1r

q ∀r ≥ 0 (4.64)

for some 0 < c2 ≤ c1 we can construct in the same way as for (1.1) the solutions uF and uF for
equation

∂tu−∆u+ f(u) = 0 in QT . (4.65)

The bilateral estimate estimate (1.19) is still valid (up to change of the Ci). Since only convexity
of f is used in the proof of Theorem 4.1, there still holds uF = uF . Similar extensions of
Proposition 4.4 and Proposition 4.5 are also clear.
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A Appendix

The next estimate is crucial in our study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and κ > 0. Then there exists a constant

C = C(a, b, κ) > 0 such that for any A > 0, B > κ/A there holds

∫ 1

0
(1− x)−ax−be−A2/4(1−x)e−B2/4xdx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.1)

Proof. We first notice that

max{e−A2/4(1−x)e−B2/4x : 0 ≤ x ≤ 1} = e−(A+B)2/4, (A.2)

and it is achieved for x0 = B/(A+B). Set Φ(x) = (1− x)−ax−be−A2/4(1−x)e−B2/4x, thus

∫ 1

0
Φ(x)dx =

∫ x0

0
Φ(x)dx+

∫ 1

x0

Φ(x)dx = Ia,b + Ja,b.

Put

u =
A2

4(1− x)
+
B2

4x
, (A.3)

then
4ux2 − (4u+B2 −A2)x+B2 = 0. (A.4)

If 0 < x < x0 this equation admits the solution

x = x(u) =
1

8u

(

4u+B2 −A2 −
√

16u2 − 8u(A2 +B2) + (A2 −B2)2
)

∫ x0

0
(1− x)−ax−be−A2/4(1−x)−B2/4xdx = −

∫ ∞

(A+B)2/4
(1− x(u))−ax(u)−be−ux′(u)du

Putting x′ = x′(u) and differentiating (A.4),

4x2 + 8uxx′ − (4u+B2 −A2)x′ − 4x = 0 =⇒ −x′ = 4x(1− x)

4u+B2 −A2 − 8ux
.

Thus
∫ x0

0
Φ(x)dx = 4

∫ ∞

(A+B)2/4

(1− x(u))−a+1x(u)−b+1e−udu

4u+B2 −A2 − 8ux(u)
. (A.5)

Using the explicit value of the root x(u), we finally get

∫ x0

0
Φ(x)dx = 4

∫ ∞

(A+B)2/4

(1− x(u))−a+1x(u)−b+1e−udu
√

16u2 − 8u(A2 +B2) + (A2 −B2)2
, (A.6)

and the factorization below holds

16u2 − 8u(A2 +B2) + (A2 −B2)2 = 16(u− (A+B)2/4)(u − (A−B)2/4).
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We set u = υ + (A+B)2/4 and obtain

x(u) =
v + (AB +B2)/2−

√

v(v +AB)

2 (v + (A+B)2/4)
,

and

1− x(u) =
v + (A2 +AB)/2 +

√

v(v +AB)

2 (v + (A+B)2/4)
.

We introduce the relation ≈ linking two positive quantities depending on A and B. It means
that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

∫ x0

0
Φ(x)dx = 2a−b−4e−(A+B)2/4

∫ ∞

0
Φ̃(v)dv where

Φ̃(v) =

(

v + (AB +B2)/2−
√

v(v +AB)
)1−b (

v + (A2 +AB)/2 +
√

v(v +AB)
)1−a

(v + (A+B)2/4)2−a−b
√

v(v +AB)
e−vdv.

(A.7)
Case 1: a ≥ 1, b ≥ 1. First

(

v + (A+B)2/4
)a+b−2

√

v(v +AB)
≤
(

v + (A+B)2/4
)a+b−2

√

v(v + κ)
≈
(

v + (A+B)2
)a+b−2

√

v(v + κ)
(A.8)

since a+ b− 2 ≥ 0 and AB ≥ κ. Next
(

v + (A2 +AB)/2 +
√

v(v +AB)
)1−a

≈ (v +A(A+B))1−a . (A.9)

Furthermore

v + (AB +B2)/2−
√

v(v +AB) = B2 v + (A+B)2/4

v +B(A+B)/2 +
√

v(v +AB)

≈ B2 v + (A+B)2

v +B(A+B)
.

(A.10)

Then

(

v + (AB +B2)/2−
√

v(v +AB)
)1−b

≈ B2−2b

(

v +B(A+B)

v + (A+B)2

)b−1

(A.11)

It follows

Φ̃(v) ≤ CB2−2b

(

v + (A+B)2

v +A(A+B)

)a−1
(v +B(A+B))b−1

√

v(v + κ)

≤ CB2−2b

(

v + (A+B)2

v +A(A+B)

)a−1
vb−1 + (B2 +AB)b−1

√

v(v + κ)

(A.12)

where C depends on a, b and κ. The function v 7→ (v+ (A+B)2)/(v+A(A+B)) is decreasing
on (0,∞). If we set

C1 =

∫ ∞

0

vb−1e−vdv
√

v(v + κ)
and C2 =

∫ ∞

0

e−vdv
√

v(v + κ)
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then
C1 ≤ K(B2 +AB)b−1C2

with K = C1κ
1−b/C2. Therefore

∫ x0

0
Φ(x)dx ≤ Ce−(A+B)2/4B1−bA1−a(A+B)a+b−2. (A.13)

The estimate of Ja,b is obtained by exchanging (A, a) with (B, b) and replacing x by 1 − x.
Mutadis mutandis, this yields directely to the same expression as in A.13 and finally

∫ 1

0
Φ(x)dx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.14)

Case 2: a ≥ 1, b < 1. Estimates (A.7), (A.8), (A.9), (A.10) and (A.11) are valid. Because
v 7→ (v +B(A+B))b−1 is decreasing, (A.12) has to be replaced by

Φ̃(v) ≤ CB2−2b

(

v + (A+B)2

v +A(A+B)

)a−1 (AB +B2
)b−1

√

v(v + κ)
. (A.15)

This implies (A.13) directly. The estimate of Ja,b is performed by the change of variable x 7→
1− x. If x1 = 1− x0 , there holds

Ja,b =

∫ x1

0
x−a(1− x)−be−A2/4xe−B2/4(1−x)dx =

∫ x1

0
Ψ(x)dx.

Then
∫ x1

0
Ψ(x)dx = 2b−a−4e−(A+B)2/4

∫ x1

0
Ψ̃(v)dv where

Ψ̃(v) =

(

v + (AB +A2)/2−
√

v(v +AB)
)1−a (

v + (B2 +AB)/2 +
√

v(v +AB)
)1−b

(v + (A+B)2/4)2−a−b
√

v(v +AB)
e−vdv.

(A.16)
Equivalence (A.8) is unchanged; (A.9) is replaced by

(

v + (B2 +AB)/2 +
√

v(v +AB)
)1−b

≈ (v +B(A+B))1−b , (A.17)

(A.10) by

v + (AB +A2)/2−
√

v(v +AB) ≈ A2 v + (A+B)2

v +A(A+B)
, (A.18)

and (A.11) by

(

v + (AB +A2)/2 −
√

v(v +AB)
)1−a

≈ A2−2a

(

v +A(A+B)

v + (A+B)2

)a−1

. (A.19)
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Because a > 1, (A.12) turns into

Ψ̃(v) ≤ CA2−2b(v + (A+B)2)b−1 (v +A2 +AB)a−1(v +B2 +AB)1−b

√

v(v + κ)

≤ Ce−(A+B)2/4A2−2b(A+B)2b−2

× va−b + (A2 +AB)a−1v1−b + (B2 +AB)1−bva−1 +Aa−1B1−b(A+B)a−b

√

v(v + κ)
.

(A.20)
Because AB ≥ κ, there exists a positive constant C, depending on κ, such that

∫ ∞

0

va−b + (A2 +AB)a−1v1−b + (B2 +AB)1−bva−1

√

v(v + κ)
e−vdv

≤ CAa−1B1−b(A+B)a−b

∫ ∞

0

e−vdv
√

v(v + κ)
.

(A.21)

Combining (A.20) and (A.21) yields to

∫ x1

0
Ψ(x)dx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.22)

This, again, implies that (A.1) holds.

Case 3: max{a, b} < 1. Inequalities (A.7)-(A.11) hold, but (A.12) has to be replaced by

Φ̃(v) ≤ CB2−2b

(

v + (A+B)2

v +A(A+B)

)a−1 (v +B2 +AB
)b−1

√

v(v + κ)

≤ CB1−b(A+B)2a+b−3
v1−a +

(

A2 +AB
)1−a

√

v(v + κ)

(A.23)

Noticing that
∫ ∞

0

v1−ae−vdv
√

v(v + κ)
≤ C

(

A2 +AB
)1−a

∫ ∞

0

e−vdv
√

v(v + κ)
,

it follows that (A.13) holds. Finally (A.14) holds by exchanging (A, a) and (B, b). �

Lemma A.2 . Let α, β, γ, δ be real numbers and ℓ an integer. We assume γ > 1, δ > 0 and

ℓ ≥ 2. Then there exists a positive constant C such that, for any integer n > ℓ

n−ℓ
∑

p=1

pα(
√
n−√

p )βe−δ(
√
p+

√
γ(

√
n−√

p+1))2 ≤ Cnα−β/2e−δn. (A.24)

Proof. The function x 7→ (
√
x+

√
γ(
√
n−

√
x+ 1))2 is decreasing on [(γ−1)−1,∞). Furthermore

there exists C > 0 depending on ℓ, α and β such that pα(
√
n − √

p )β ≤ Cxα(
√
n −

√
x+ 1 )β
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for x ∈ [p, p + 1] If we denote by p0 the smallest integer larger than (γ − 1)−1, we derive

S =

n−ℓ
∑

p=1

pα(
√
n−√

p )βe−(
√
p+

√
γ(

√
n−√

p+1))2/4 =

p0−1
∑

p=1

+

n−ℓ
∑

p0

pα(
√
n−√

p )βe−δ(
√
p+

√
γ(

√
n−√

p+1))2

≤
p0−1
∑

p=1

pα(
√
n−√

p )βe−δ(
√
p+

√
γ(

√
n−√

p+1))2

+ C

∫ n+1−ℓ

p0

xα(
√
n−√

x )βe−δ(
√
x+

√
γ(

√
n−

√
x+1))2dx,

(notice that
√
n−√

x ≈ √
n−

√
x+ 1 for x ≤ n− ℓ). Clearly

p0−1
∑

p=1

pα(
√
n−√

p )βe−δ(
√
p+

√
γ(

√
n−√

p+1))2 ≤ C0n
α(
√
n−

√
n− ℓ )βe−δn (A.25)

for some C0 independent of n. We set y = y(x) =
√
x+ 1−√

x/
√
γ. Obviously

y′(x) =
1

2

(

1√
x+ 1

− 1√
γ
√
x

)

∀x ≥ p0,

and their exists ǫ = ǫ(δ, γ) > 0 such that
√
2
√
x ≥ y(x) ≥ ǫ

√
x and y′(x) ≥ ǫ/

√
x. Furthermore

√
x =

√
γ
(

y +
√

γy2 + 1− γ
)

γ − 1
,

√
n−√

x =

√
n(γ − 1)−√

γy −√
γ
√

γy2 + 1− γ

γ − 1

=
n(γ − 1) + γ − 2y

√
γn− γy2

√
n(γ − 1)−√

γy +
√
γ
√

γy2 + 1− γ

≈ n(γ − 1) + γ − 2y
√
γn− γy2√

n

since y(x) ≤ √
n. Furthermore

n(γ − 1) + γ − 2y
√
γn− γy2 = γ(

√
n+ 1 +

√
n/

√
γ + y)(

√
n+ 1−√

n/
√
γ − y)

≈ √
n(
√
n+ 1−√

n/
√
γ − y),

because y ranges between
√
n+ 2− ℓ−

√
n+ 1− ℓ

√
γ ≈ √

n and
√
p0 + 1−√

p0
√
γ. Thus

(
√
n−√

x )β ≈
(√
n+ 1−√

n/
√
γ − y

)β
.
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This implies
∫ n+1−ℓ

p0

xα(
√
n−√

x )βe−δ(
√
x+γ(

√
n−√

x+1))2dx

≤ C

∫ y(n+1−ℓ)

y(p0)
y2α+1

(√
n+ 1−√

n/
√
γ − y

)β
e−γδ(

√
n−y)2dy

≤ Cnα+β/2+1

∫ 1−y(p0)/
√
n

1−y(n+1−ℓ)/
√
n
(1− z)2α+1(z +

√

1 + 1/n − 1− 1/
√
γ)βe−γδnz2dz.

(A.26)
Moreover

1− y(p0)√
n

= 1− 1√
n

(√
p0 + 1−

√
p0√
γ

)

,

1− y(n− ℓ+ 1)√
n

= 1−
√
n− ℓ+ 2√

n
+

√
n− ℓ+ 1√

nγ

=
1√
γ

(

1 +

√
γ (ℓ− 2)− ℓ+ 1

2n
+

√
γ (ℓ− 2)2 − (ℓ− 1)2

8n2

)

+O(n−3).

(A.27)

Let θ fixed such that 1− y(n− ℓ+ 1)√
n

< θ < 1− y(p0)√
n

for any n > p0. Then

∫ 1−y(p0)/
√
n

θ
(1− z)2α+1(z +

√

1 + 1/n− 1− 1/
√
γ)βe−γδnz2dz ≤ Cθ

∫ 1−y(p0)/
√
n

θ
(1− z)2α+1e−γδnz2dz

≤ Cθ e
−γδnθ2

∫ 1−y(p0)/
√
n

θ
(1− z)2α+1dz

≤ C e−γδnθ2 max{1, n−α−1/2}.

Because γθ2 > 1 we derive

∫ 1−y(p0)/
√
n

θ
(1− z)2α+1(z +

√

1 + 1/n − 1− 1/
√
γ)βe−γδnz2dz ≤ Cn−βe−δn, (A.28)

for some constant C > 0. On the other hand
∫ θ

1−y(n+1−ℓ)/
√
n
(1− z)2α+1(z +

√

1 + 1/n− 1− 1/
√
γ)βe−γδnz2dz

≤ C ′
θ

∫ θ

1−y(n+1−ℓ)/
√
n
(z +

√

1 + 1/n− 1− 1/
√
γ)βe−γδnz2dz.

The minimum of z 7→ (z +
√

1 + 1/n − 1− 1/
√
γ)β is achieved at 1− y(n+ 1− ℓ) with value

√
γ(ℓ+ 1) + 1− ℓ

2n
√
γ

+O(n−2),

and the maximum of the exponential term is achieved at the same point with value

e−nδ+((ℓ−2)
√
γ+1−ℓ)/2(1 + ◦(1)) = Cγe

−nδ(1 + ◦(1)).
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We denote

zγ,n = 1 + 1/
√
γ −

√

1 + 1/n and Iβ =

∫ θ

1−y(n+1−ℓ)/
√
n
(z − zγ,n)

βe−γδnz2dz.

Since 1− y(n+ 1− ℓ) ≥ 1/
√
2γ for n large enough,

Iβ ≤ √
2γ

∫ θ

1−y(n+1−ℓ)/
√
n
(z − zγ,n)

βze−γδnz2dz

≤ −√
2γ

2nγδ

[

(z − zγ,n)
βe−γδnz2

]θ

1−y(n+1−ℓ)/
√
n
+
β
√
2γ

2nγδ

∫ θ

1−y(n+1−ℓ)/
√
n
(z − zγ,n)

β−1ze−γδnz2dz

But 1− y(n+ 1− ℓ)/
√
n− zγ,n = (ℓ− 1)(1 − 1/

√
γ)/2n, therefore

Iβ ≤ C1n
−β−1e−δn + βC ′

1n
−1Iβ−1. (A.29)

If β ≤ 0 , we derive
Iβ ≤ C1n

−β−1e−δn,

which inequality, combined with (A.26) and (A.28), yields to (A.24). If β > 0, we iterate and
get

Iβ ≤ C1n
−β−1e−δn + C ′

1n
−1(C1n

−βe−δn + (β − 1)C ′
1n

−1Iβ−2)

If β − 1 ≤ 0 we derive

Iβ ≤ C1n
−β−1e−δn + C1C

′
1n

−1−βe−δn = C2n
−β−1e−δn,

which again yields to (A.24). If β− 1 > 0, we continue up we find a positive integer k such that
β − k ≤ 0, which again yields to

Iβ ≤ Ckn
−β−1e−δn

and to (A.24). �

The next estimate is fundamental in deriving the N -dimensional estimate.

Lemma A.3 For any integer N ≥ 2 there exists a constant cN > 0 such that

∫ π

0
em cos θ sinN−2 θ dθ ≤ cN

em

(1 +m)(N−1)/2
∀m > 0. (A.30)

Proof. Put IN (m) =

∫ π

0
em cos θ sinN−2 θ dθ. Then I ′

2(m) =

∫ π

0
em cos θ cos θ dθ and

I ′′
2 (m) =

∫ π

0
em cos θ cos2 θ dθ = I2(m)−

∫ π

0
em cos θ sin2 θ dθ

= I2(m)− 1

m

∫ π

0
em cos θ cos θ dθ

= I2(m)− 1

m
I ′
2(m).
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Thus I2 satisfies a Bessel equation of order 0. Since I2(0) = π and I ′
2(0) = 0, π−1I2 is the

modified Bessel function of index 0 (usually denoted by I0) the asymptotic behaviour of which
is well known, thus (A.30) holds. If N = 3

I3(m) =

∫ π

0
em cos θ sin θ dθ =

[−em cos θ

m

]π

0

=
2 sinhm

m
.

For N > 3 arbitrary

IN (m) =

∫ π

0

−1

m

d

dθ
(em cos θ) sinN−3 θ dθ =

N − 3

m

∫ π

0
em cos θ cos θ sinN−4 θ dθ. (A.31)

Therefore,

I4(m) =
1

m

∫ π

0
em cos θ cos θ dθ = I ′

2(m),

and, again (A.30) holds since I ′0(m) has the same behaviour as I0(m) at infinity. For N ≥ 5

IN(m) =
3−N

m2

[

em cos θ cos θ sinN−5 θ
]π

0
+
N − 3

m2

∫ π

0
em cos θ d

dθ

(

cos θ sinN−5 θ
)

dθ.

Differentiating cos θ sinN−5 θ and using (A.31), we obtain

I5(m) =
4 sinhm

m2
− 4 sinhm

m3
,

while

IN (m) =
(N − 3)(N − 5)

m2
(IN−4(m)− IN−2(m)) , (A.32)

for N ≥ 6. Since the estimate (A.30) for I2, I3, I4 and I5 has already been obtained, a straigth-
forward induction yields to the general result. �

Remark. Although it does not has any importance for our use, it must be noticed that IN can
be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.
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