Eigenvalues estimate for the Neumann problem on bounded domains - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Eigenvalues estimate for the Neumann problem on bounded domains

Résumé

In this note, we investigate upper bounds of the Neumann eigenvalue problem for the Laplacian of a bounded domain (with smooth boundary) in a given complete (not compact a priori) Riemannian manifold with Ricci bounded below . For this, we use test functions for the Rayleigh quotient subordinated to a family of open sets constructed in a general metric way, interesting for itself. As application, we get upper bounds for the Neumann spectrum which is clearly in agreement with the Weyl law and which is analogous to Buser's upper bounds of the spectrum of a closed Riemannian manifold with lower bound on the Ricci curvature.
Fichier principal
Vignette du fichier
ColboisMaerten.pdf (252.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00257734 , version 1 (20-02-2008)

Identifiants

Citer

Bruno Colbois, Daniel Maerten. Eigenvalues estimate for the Neumann problem on bounded domains. 2008. ⟨hal-00257734⟩
123 Consultations
49 Téléchargements

Altmetric

Partager

More