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EIGENVALUES ESTIMATE FOR THE NEUMANN PROBLEM OF A
BOUNDED DOMAIN

BRUNO COLBOIS AND DANIEL MAERTEN

ABSTRACT. In this note, we investigate upper bounds of the Neumann eigenvalue prob-
lem for the Laplacian of a domain  in a given complete (not compact a priori) Rie-
mannian manifold (M,g). For this, we use test functions for the Rayleigh quotient
subordinated to a family of open sets constructed in a general metric way, interesting for
itself. As applications, we prove that if the Ricci curvature of (M, g) is bounded below
Ric? > —(n — 1)a®, a > 0, then there exist constants A,, > 0, B,, > 0 only depending on
the dimension, such that

2/n
M (Q) < Anad® + B, (é) ,

where A\, (Q) (k € N*) denotes the k-th eigenvalue of the Neumann problem on any
bounded domain © C M of volume V = Vol(£2, g). Furthermore, this upper bound is
clearly in agreement with the Weyl law. As a corollary, we get also an estimate which is
analogous to Buser’s upper bounds of the spectrum of a compact Riemannian manifold
with lower bound on the Ricci curvature.

1. INTRODUCTION

The goal of this paper is to give upper bounds for the spectrum of the Laplacian acting on
compact domains of given volume of a complete Riemannian manifold with Ricci curvature
bounded below, and, as far as possible, to make these estimates optimal with respect to
the Weyl law.

For compact Riemannian manifolds without boundary, the following result was proved
by P. Buser in 3] (Satz 7), [ (Thm. 6.2 (c)) (see also Li-Yau in [I3] (Thm.16)). If {A\;}7°,
denote the spectrum of the Laplacian acting on functions, then:

1.1. Theorem. Let (M",g) be a compact n-dimensional Riemannian manifold with Ricci
curvature bounded below Ric? > —(n — 1)a?, a > 0, and of volume V.
There exists a constant C,, > 1 only depending on the dimension, such that for all

k € N*, we have
C1\2 2/n
(1.1) ming) < ey g, (é) |

1.2. Remarks. (i) In [13], the constant C,, depends also on the diameter.
(ii) In dimension higher than 2, a normalization on the volume is not enough to control
the spectrum: namely, on any compact manifold of dimension higher than 2, one

can find a metric of given volume, with arbitrarily large first non—zero eigenvalue
A2 of the Laplacian, in vertue of the result of B. Colbois and J. Dodziuk [6].
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2 BRUNO COLBOIS AND DANTEL MAERTEN

(iii) When Ric? > 0, we deduce that there exists C,, > 1 with \p(M,g) < Cy (%)Q/n
for all k. However, when Ricci is not supposed positive, then the presence of a
term like @cﬂ is necessary: by a result of R. Brooks [2], it is possible to find a
family of compact hyperbolic manifolds with volume going to infinity and a positive

uniform lower bound on the first nonzero eigenvalue.

The idea of the proof of Theorem [Tl is to consider k disjoint balls of radius r which

almost cover the manifold (M, g), with r around (%)1/11, and to apply then Cheng’s the-
orem [5)]. However, such a theorem does not exist on manifolds with boundary, and with
Neumann boundary condition. A reason for this is that there is no Bishop-Gromov the-
orem: indeed, even for a Euclidean domain, it is not possible to control the volume of a
ball of radius 2r with respect to the volume of a ball of radius r and same center. See also
Example 1.4 in [4].

This does not mean that a result in the spirit of Theorem [Tl does not exist for domains.
Namely, P. Kroger [T2] proved thanks to harmonic analysis, that on bounded Euclidean
domains, the k—th eigenvalue of the Neumann problem was bounded by above by some
expression C), (k/ |Q|)”/ % where C,, only depends upon the dimension. An analogous result
can be derived from the much more general and difficult work of N. Korevaar [IT] ( see
also [I0]), for bounded domains of non-negative Ricci curvature manifolds, and also for
bounded domains of negative Ricci curvature compact manifolds (in this case the bound
depends on the diameter).

This naturally leads to the

Question: What can be said for bounded domains of a complete Riemannian manifold
with Ricci curvature bounded below ?

In this note, we consider the Neumann eigenvalue problem for the Laplacian of a bounded
domain Q with smooth boundary, in a given complete (not compact a priori) Riemannian
manifold (M, g). More precisely, we search for a couple (\,u) € R x C* (€2) which is a
solution of the following boundary elliptic problem

{Au:)\u on

%:0 on 0N ,

where A is the non—negative Laplacian of the metric g and v the outward unit normal of
09). Since € is bounded with smooth boundary, the spectrum of A on € is an unbounded
sequence of real numbers (A (€2)),cn- Which can be increasingly ordered

0=XA(02) <A2(R) <+ < A() < A () < -
There exist standard variational characterisations of the spectrum of A which can be found

for instance in the book of P. Bérard [I] (or in [9]).

The main result of this article is the following.
1.3. Theorem. Let (M™,g) be a complete n-dimensional Riemannian manifold with Ricci
curvature bounded below Ric? > —(n — 1)a?, a > 0.

There exist constants A, > 0, B, > 0 only depending on the dimension, such that for all
ke N*, V. > 0 and for each bounded domain Q@ C M, with smooth boundary and volume
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V', we have

2/n
(1.2) Me(Q) < Ana® + B, <§> .

If the manifold M is compact, an interesting special case is to choose ) = M, and we

—1)2
recover Theorem [l up to the value of the constant A,, which is not equal to % in

our paper.

The proof Theorem goes in the same spirit as the proof of Theorem [Tk in order
to bound A;(Q2), we consider k disjoint sets Aj, ..., Ax in Q of measure of the order of
%(Q), and introduce test functions fi, ..., fr subordinated to these sets. We estimate the
Rayleigh quotient of these fonctions by a direct calculation, which gives the theorem. The
main improvement of this paper is the construction of an adapted family of sets Ay, .., A,
more convenient for our purpose as balls. As this construction is interesting by itself and

will be used in other contexts, we present it in a rather abstract (indeed metric) way.

The paper is organised as follows: the metric construction of our sets is done in Section Bl
and in Section Bl we will use them so as to prove Theorem by producing some test
functions for the variational characterisation of the spectrum.

2. A METRIC APPROACH

In this section, we formalize the geometric situation of Theorem (a bounded domain
in a complete manifold) in a more general setting (a bounded domain in a complete metric
space). More precisely, let (X,d) be a complete, locally compact metric space, Y C X a
bounded Borelian subset endowed with the induced distance, and g a Borelian measure
with support in Y such that u(Y) = w, 0 < w < co. We will need in addition the following
technical assumptions:

(H1) For each r > 0, there exists a constant C'(r) > 0 such that each ball of radius 4r in
X may be covered by C(r) balls of radius r. Moreover, r +— C(r) is an increasing
function of the radius.

(H2) We suppose that the volume of the r—balls tends to 0 uniformly on X, namely
lir% sup{u(B(z,r)) : © € X} = 0. However, taking (H1) into account, this vol-
r—

ume condition is equivalent to lir% sup{2C (r)u(B(z,r)) : « € X} = 0 which is the
r—>
(more convenient) condition that will be used in the remainder of the article.

It is important to remark that these hypothesis are quite natural since they make part
of the metric properties of the Riemannian manifolds that are involved in Theorem
These specific metric properties are collected in the following fundamental example.

2.1. Example. A typical example of a couple (X,Y") satisfying the hypothesis (H1),(H2) is
to choose X as a complete n-dimensional Riemannian manifold (M, g) with Ricci curvature
bounded below Ric? > —(n — 1)a®, a > 0 (which are the class of manifolds involved in
Theorem [[Z3), and as Y a bounded domain with smooth boundary in M. The distance d
is the distance associated to the Riemannian metric g, the measure p is the restriction to
Y of the Riemannian measure of g. The existence of the constant C(a,r) is given by the
classical Bishop-Gromouv inequality thanks to the lower bound on the Ricci curvature of g
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(see [T4] p. 156). Precisely, for 0 <r < R, and for each point p € M, we have

Vol(B(p, k), ) _ va(R)

Vol(B(p,7),9) ~ va(r)

where vy,(R) denotes the volume of a ball of radius R in M), the simply connected n—
dimensional manifold of constant sectional curvature —a?.

This gives a bound on the number of balls of radius r that are necessary to cover a ball of
radius 4r (this property known as the paking lemma is a consequence of Inequality (Z1)).
In fact, fix By, a 4r-ball and consider {B(x;,7/2)},c; a mazimal family of disjoint balls
whose center z; live in By.; then the corresponding family of r—balls {B(xi,r)};c; cover

Byy. In consequence, we can cover a ball of radius 4r with < 1 + {M} r—balls. We

va(r/2)
clen =i [}

The increasing character of r — C(a,r) is by definition.

(2.1)

just define

Vol(B(p,r).9)
vq (1)

VOl((B(p, R)ag) < 'Ua(R) ’

Furthermore, as r — 0, the ratio — 1, we obtain

and consequently (B(p,r)) := Vol(B(p,r) NY,g) goes uniformly to 0 as r — 0.

We prove in the sequel that, under our technical assumptions, one can build some subsets
A and D satisfying certain volume conditions.

2.2. Lemma. Let (X,d) be a complete, locally compact metric space, Y C X a bounded
Borelian with the induced distance, and j a Borelian measure with support in'Y such that
wY)=w,0<w<ooand u(Y \Y)=0. In addition, we make the hypothesis (H1),(H2).
Let 0 < a < %. Thanks to (H2) there exists r > 0 with sup{2C(r)u(B(z,r)) :x € X} < a.
Then there exist A, D CY such that A C D and

n(A) = o

p(D) < 2C(r)a
d(A,Y N D) > 3r

Proof. We fix the positive numbers r and «. Let us consider any positive integer m € N*
and define a non—negative application W, : X" = X x X x --- x X — R by the relation

m times
Wm:m:(xJ)T:l»—»p UB(xJ,T) ,
j=1

which is simply the restriction of the measure pu to %, (r) a particular class of open sets
which is defined by

U (1) := U B (xj,r)/ (xj);.n:l exm
j=1
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Since (X, d) is a complete and locally compact metric space, it is also the case of the finite
product X™ when it is endowed with the product distance. Then for each m € N* there
exists some Tmaxm € X (not necessary unique) such that

m
U, (Tmaxm) = max W, = max p = B (2) T
m( ma; ,m) X m U (1) M 1% ]LJl ( max,m )

We first prove that there exists a finite integer £ € N* such that Vj(Zmaxr) > « and
Ui 1 (Tmaxk—1) < . Indeed, consider the function £ : N* — R defined by the relation
&(m) = ¥y (Tmax,m). On one hand, the condition sup{2C(r)u(B(z,r)) : z € X} < «

(8]

obviously implies £(1) < e S On the other hand, since Supp . C Y, there exists a
radius R > 0 large enough such that p(B(z, R)) > 3w/4, for a certain z € X. But it can
be clearly deduced from Assumption (H1) that B(z, R) can be finitely covered by my € N*
balls of radius r (notice that mg depends on R). Consequently it turns out

< (B < — .
5 1 < u( (Z’R))—%rﬂ?fi) mo = &£(mo)

Thereby the function £ : N* — R satisfies £(1) < a and &(mg) > 370‘, which entails the

existence of some k € N* such that Vj(Zmax k) > o and ¥y (Tmaxk—1) < .

We now set Uy, := |J B <xfnaxk,r> and V,:= | B <xfnaxk,4r). The next step is to
1<j<k ’ 1<j<k ’

show that

p(Vi) < C(r)p(Us) -

Still according to Assumption (H1), Vj is covered by kC(r) balls of radius r, namely
Vi C U  Bj, where the Bj are balls of radius 7. But it is quite clear that this union

1<5<kC(r)
of r—balls can be written as  |J Bj= |J W, where each W, € %,(r). It follows
1<5<kC(r) 1<5<C(r)
sy <p|l U B = wl U W
1<j<kC(r) 1<5<C(r)
C(r)
< n(Wj)
j=1
< Of(r) max p = C(r)€(k) = C(r)u(Us) -
(7

We finally define the sets A := Y N U, and D := Y N Vi. We only have to check that
they satisfy the properties stated in Lemma We observe that p(A) = u(Uy) since the
measure g is supported in Y and u(Y \ Y) = 0. Besides, U, can be written as the union
of an element of %4,_1(r) and an element of % (r) so that

N —

W) <ete-D+em <alieg) .

Still since Suppp =Y, we obtain u(D) = u(Vi) < C(r)u(Ux) = C(r)u(A) < 2C(r)a. By
the definition of Uy and V}, we straightforwardly have d(A,Y N D¢) > 3r. [ |
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In section B, we will use the following corollary of Lemma to make the proof of
Theorem [[3 We give therein an explicite construction of the domains that were mentioned
at the end of the introduction.

2.3. Corollary. Let (X,d) be a complete, locally compact metric space, Y C X a bounded
Borelian with the induced distance, and p a Borelian measure with support in'Y" such that
wY)=w,0<w<ooand w(Y\Y) =0. In addition, we make the hypothesis (H1),(H2)
as in LemmalZA, and take N a positive integer.
Let r > 0 such that AC?(r)u(B(z,r)) < % holds for all x € X, and let @ = sc(N - Lhen,
there exist N measurable subsets Ay, ...,Ax CY such that u(A;) > « and, for each i # j,
d(AZ,AJ) > 3r.
Proof. We construct the family (Aj)j.vzl by finite induction applying Lemma B2
e j=1. We set (X1,d1,p1) = (X,d,u) and Y7 = Y, which satisfy the assumptions of
Lemma Therefore there exist Ay, Dy such that A1 € D; C Y7 =Y and
(A1) o
WD) < 20(r)a=%
d(Ay, YN D) > 3¢

Y

e j =2. Weset (Xo,da, u2) = (X, d, j1y,) and Yo = DfNY7, which satisfy the assumptions
of Lemma with wo = pa(Ya) > w (1 - %) =w (%) > «. Therefore there
exist Ag, Dy such that Ay C Dy C Yo = D{NY; and

nw(A2) > «a
w(Dy) < 20(r)a =%
d(As,YonDS) > 3r
As Ay C Dy and Ay C Y1 N DY we get d(Ay, Az) > d(A1, Y1 N DY) > 3r thanks to
the case 7 = 1.

ej > 3. We suppose that we have already constructed the families (As)g; and (Ds)g;%
that satisfy the conditions

AsCDsCcYN(DiU---UDg 1) =Y;, s<j—1
d(As, Ay) > 3r s #t,

,U,(D1U'-'UD]',1) §w<%) .
We set (Xj,dj, pj) = (X,d,puy;) and Y; =Y N (D1 U--- U Dj_1), which satisfy

the assumptions of Lemma A with w; = p1;(Y;) > w <1 - % =w <%) >«
if j < N. Therefore there exist A;, D; such that A; C D; C Y; and
u(dy) > a

) 2 Seten s
d(A;,Y;n D) > 3r

As Aj cYn (DlU---UD]‘_l)c cYn (DlU---UDS_l)c =Y, s < j, and

Ag C Dy, we get d(Aj, As) > d(As, Y, N DS) > 3r thanks to the case j = s. As

already said, we can proceed this construction so longer we have enough volume
to do it, that is N times. |
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3. PROOF oF THEOREM [L3

Let (M",g) be a complete n-dimensional Riemannian manifold with Ricci curvature
bounded below Ric? > —(n — 1)a?, and Q C M a bounded domain of volume V, with
smooth boundary.

We observe first that, by renormalisation, it is enough to prove the theorem for the
case a = 1: namely, if Theorem is true for a = 1, and if ¢ is a Riemannian metric
with Ric? > —(n — 1)t%g, then gy = t?g satisfies Ric% > —(n — 1)go. Since we have

2/n
Mie(90) < Ap + By, <%> , then, because \.(9) = t*Ai(go) and V(g) = t"V (go), we get
Ae(g) < Ant? + B, (£)7",

So, let use prove Theorem [[3 for a = 1. As in Example Bl let us consider the Borelian
measure g which is the restriction to the domain Q of the Riemannian volume of (M, g).

In order to prove Theorem [[3] we will use the classical variational characterization of
the spectrum: to estimate )\ from above, it suffices to construct an H!(2)-orthogonal
family of k test functions ( f]-)le, such as each f; has controled Rayleigh quotient. In
the sequel, we construct test functions with disjoint support related to the sets Ay, ..., Ag
arising from Corollary EZ3 so that it immediately implies orthogonality in H!(£2).

3.1. Lemma. Let A C M a subset as in Corollary[Z3 Let A" := {x € M : d(x,A) <r},
r > 0. There exists a function f supported in A" whose restriction to Q is of Rayleigh
quotient

1 p(A"\ A)
R(f) < )

Proof. Let us define a plateau function

1 if peA

Fp)=q 1-424 if pe (A 4)

0 if pe(A)°.
In Corollary 23], the domain A is a finite union of metric balls and intersection with com-
plement of balls. The boundary is not smooth, but the function d(9A,-) "distance to the
boundary of A" is well known to be 1-Lipschitz on M. According to Rademacher’s theo-
rem (see Section 3.1.2, page 81-84 in [R]), d(0A,-) is differentiable .#™ almost everywhere
(since dVoly is absolutely continuous with respect to Lebesgue’s measure £"), and its g—
gradient satisfies |[Vd(9A, )|, <1, £™ almost everywhere. It comes out that the gradient
of f satisfies " almost everywhere

1 if pe(Am\A)
AEOTES B R
We immediately deduce

V£|? dVol r

Jo [2dVol, r
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Proof of Theorem As already said, we apply Corollary let £ € N* and set
N = 2k. As the volume of the r—balls uniformly tends to 0 (see assumption (H2)), there
exist r > 0 with r small enough so that

(3.1) 20(r)u(B(z,r)) < a:= 40‘(1)]{ ,

holds for every x € M. Corollary Z3 gives the existence of 2k measurable subsets A1, ... Aoy
of measure pu(A4;) > MLT)k with d(A;, A;) > 3r if i # j. In particular, the corresponding
sets A7 and A7 are also disjoint.

We can now apply the construction of Lemma Bl and we get an H'(2)-orthogonal family

of 2k test functions ( fj)iil’ of disjoint supports and whose Rayleigh quotient satisfies
1 p(A7\ Ai)
r? (A
At this point, Corollary does not give any control on p(A]). Let
Vv
Q=1 { € {120} : (A7) > z} .

As Vol(Q,g) = V, we already see that Q < k, so that for at least k of these 2k subsets
Ay, ..., Ay, we have p(A7) < % We choose the corresponding functions as test functions.
For such a function f, we have, as p(A? \ 4;) < ¥ and p(4;) > a = ﬁ, that

1 V/k 40(r)

Our aim is now to prove an upper bound of the kind

R(fi) <

w448 ()

Let w], > 0 the positive constant such that u(B(z,r)) < w)r™ for radius r < 1 in the
hyperbolic space of curvature —1. We then define the integer kg = [W] + 1 (remark

n

that it strongly depends on the volume) and for every k > ky, we set

B 174 1 1/n
"=\ ksC(1)2w, ‘

Clearly, r,, < 1 and () holds, since by definition 8C(14)?u(B(z, 1)) < 8C(1)%*w
Our Inequality ([B2) now reads as

=<

lan
nl'k =

4C(1) o N\ RN\
> < — r .
VEk>ky A < = 4C(1)(8C(1) wn> -
Now if k < kg, then we obviously have \;, < \g,, so that we straightly obtain
(3.3) Vk € N* A < Mgy + By, <V> )

2/n
where we have set B, := 40(1)(80(1)%);) . The last thing to do is to estimate the
particular eigenvalue Ay, .
1) If kg =1, then Ag, = A1 = 0 and we get Inequality (CZ), with A,, = 0.
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2) On the contrary, if kg > 2, then we deduce W < ko < QW. We can
apply Inequality (B3)) with k& = kg, which implies
4C(1
Mo < 58 = sopin
r
ko

and then Inequality ([B3) is nothing but Inequality () with A, = 4C(1)2%/",
2/
B, = 40(1)(3C(1)%},) "anda=1.
|

3.2. Remark . For the case a = 0, a slightly better constant B, can be otained by making
a direct proof instead of plugging a = 0 in Inequality (L2A).
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