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EIGENVALUES ESTIMATE FOR THE NEUMANN PROBLEM OF ABOUNDED DOMAINBRUNO COLBOIS AND DANIEL MAERTENAbstra
t. In this note, we investigate upper bounds of the Neumann eigenvalue prob-lem for the Lapla
ian of a domain Ω in a given 
omplete (not 
ompa
t a priori) Rie-mannian manifold (M, g). For this, we use test fun
tions for the Rayleigh quotientsubordinated to a family of open sets 
onstru
ted in a general metri
 way, interesting foritself. As appli
ations, we prove that if the Ri

i 
urvature of (M, g) is bounded below
Ricg

≥ −(n − 1)a2, a ≥ 0, then there exist 
onstants An > 0, Bn > 0 only depending onthe dimension, su
h that
λk(Ω) ≤ Ana

2 + Bn

(
k

V

)2/n

,where λk(Ω) (k ∈ N
∗) denotes the k�th eigenvalue of the Neumann problem on anybounded domain Ω ⊂ M of volume V = Vol(Ω, g). Furthermore, this upper bound is
learly in agreement with the Weyl law. As a 
orollary, we get also an estimate whi
h isanalogous to Buser's upper bounds of the spe
trum of a 
ompa
t Riemannian manifoldwith lower bound on the Ri

i 
urvature.1. Introdu
tionThe goal of this paper is to give upper bounds for the spe
trum of the Lapla
ian a
ting on
ompa
t domains of given volume of a 
omplete Riemannian manifold with Ri

i 
urvaturebounded below, and, as far as possible, to make these estimates optimal with respe
t tothe Weyl law.For 
ompa
t Riemannian manifolds without boundary, the following result was provedby P. Buser in [3℄ (Satz 7), [4℄ (Thm. 6.2 (
)) (see also Li-Yau in [13℄ (Thm.16)). If {λk}

∞
k=1denote the spe
trum of the Lapla
ian a
ting on fun
tions, then:1.1. Theorem. Let (Mn, g) be a 
ompa
t n-dimensional Riemannian manifold with Ri

i
urvature bounded below Ricg ≥ −(n − 1)a2, a ≥ 0, and of volume V .There exists a 
onstant Cn ≥ 1 only depending on the dimension, su
h that for all

k ∈ N
∗, we have(1.1) λk(M,g) ≤

(n − 1)2

4
a2 + Cn

(
k

V

)2/n

.1.2. Remarks. (i) In [13℄, the 
onstant Cn depends also on the diameter.(ii) In dimension higher than 2, a normalization on the volume is not enough to 
ontrolthe spe
trum: namely, on any 
ompa
t manifold of dimension higher than 2, one
an �nd a metri
 of given volume, with arbitrarily large �rst non�zero eigenvalue
λ2 of the Lapla
ian, in vertue of the result of B. Colbois and J. Dodziuk [6℄.Date: 20th February 2008.Key words and phrases. Neumann spe
trum, upper bound, Weyl law, metri
 geometry.2000 Mathemati
s Subje
t Classi�
ation. 35P15, 53C99, 51F99.1



2 BRUNO COLBOIS AND DANIEL MAERTEN(iii) When Ricg ≥ 0, we dedu
e that there exists Cn > 1 with λk(M,g) ≤ Cn

(
k
V

)2/nfor all k. However, when Ri

i is not supposed positive, then the presen
e of aterm like (n−1)2

4 a2 is ne
essary: by a result of R. Brooks [2℄, it is possible to �nd afamily of 
ompa
t hyperboli
 manifolds with volume going to in�nity and a positiveuniform lower bound on the �rst nonzero eigenvalue.The idea of the proof of Theorem 1.1 is to 
onsider k disjoint balls of radius r whi
halmost 
over the manifold (M,g), with r around (
V
k

)1/n, and to apply then Cheng's the-orem [5℄. However, su
h a theorem does not exist on manifolds with boundary, and withNeumann boundary 
ondition. A reason for this is that there is no Bishop-Gromov the-orem: indeed, even for a Eu
lidean domain, it is not possible to 
ontrol the volume of aball of radius 2r with respe
t to the volume of a ball of radius r and same 
enter. See alsoExample 1.4 in [4℄.This does not mean that a result in the spirit of Theorem 1.1 does not exist for domains.Namely, P. Kröger [12℄ proved thanks to harmoni
 analysis, that on bounded Eu
lideandomains, the k�th eigenvalue of the Neumann problem was bounded by above by someexpression Cn (k/ |Ω|)n/2 , where Cn only depends upon the dimension. An analogous result
an be derived from the mu
h more general and di�
ult work of N. Korevaar [11℄ ( seealso [10℄), for bounded domains of non�negative Ri

i 
urvature manifolds, and also forbounded domains of negative Ri

i 
urvature 
ompa
t manifolds (in this 
ase the bounddepends on the diameter).This naturally leads to theQuestion: What 
an be said for bounded domains of a 
omplete Riemannian manifoldwith Ri

i 
urvature bounded below ?In this note, we 
onsider the Neumann eigenvalue problem for the Lapla
ian of a boundeddomain Ω with smooth boundary, in a given 
omplete (not 
ompa
t a priori) Riemannianmanifold (M,g). More pre
isely, we sear
h for a 
ouple (λ, u) ∈ R × C∞
(
Ω

) whi
h is asolution of the following boundary ellipti
 problem
{

∆u = λu on Ω
∂u
∂ν = 0 on ∂Ω ,where ∆ is the non�negative Lapla
ian of the metri
 g and ν the outward unit normal of

∂Ω. Sin
e Ω is bounded with smooth boundary, the spe
trum of ∆ on Ω is an unboundedsequen
e of real numbers (λk(Ω))k∈N∗ whi
h 
an be in
reasingly ordered
0 = λ1(Ω) < λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ λk+1(Ω) ≤ · · · .There exist standard variational 
hara
terisations of the spe
trum of ∆ whi
h 
an be foundfor instan
e in the book of P. Bérard [1℄ (or in [9℄).The main result of this arti
le is the following.1.3. Theorem. Let (Mn, g) be a 
omplete n-dimensional Riemannian manifold with Ri

i
urvature bounded below Ricg ≥ −(n − 1)a2, a ≥ 0.There exist 
onstants An > 0, Bn > 0 only depending on the dimension, su
h that for all

k ∈ N
∗, V > 0 and for ea
h bounded domain Ω ⊂ M , with smooth boundary and volume



EIGENVALUES ESTIMATES FOR NEUMANN 3
V , we have(1.2) λk(Ω) ≤ Ana2 + Bn

(
k

V

)2/n

.If the manifold M is 
ompa
t, an interesting spe
ial 
ase is to 
hoose Ω = M , and were
over Theorem 1.1, up to the value of the 
onstant An whi
h is not equal to (n−1)2

4 inour paper.The proof Theorem 1.3 goes in the same spirit as the proof of Theorem 1.1: in orderto bound λk(Ω), we 
onsider k disjoint sets A1, ..., Ak in Ω of measure of the order of
V ol(Ω)

k , and introdu
e test fun
tions f1, ..., fk subordinated to these sets. We estimate theRayleigh quotient of these fon
tions by a dire
t 
al
ulation, whi
h gives the theorem. Themain improvement of this paper is the 
onstru
tion of an adapted family of sets A1, .., Ak,more 
onvenient for our purpose as balls. As this 
onstru
tion is interesting by itself andwill be used in other 
ontexts, we present it in a rather abstra
t (indeed metri
) way.The paper is organised as follows: the metri
 
onstru
tion of our sets is done in Se
tion 2,and in Se
tion 3 we will use them so as to prove Theorem 1.3 by produ
ing some testfun
tions for the variational 
hara
terisation of the spe
trum.2. A metri
 approa
hIn this se
tion, we formalize the geometri
 situation of Theorem 1.3 (a bounded domainin a 
omplete manifold) in a more general setting (a bounded domain in a 
omplete metri
spa
e). More pre
isely, let (X, d) be a 
omplete, lo
ally 
ompa
t metri
 spa
e, Y ⊂ X abounded Borelian subset endowed with the indu
ed distan
e, and µ a Borelian measurewith support in Y su
h that µ(Y ) = ω, 0 < ω < ∞. We will need in addition the followingte
hni
al assumptions:(H1) For ea
h r > 0, there exists a 
onstant C(r) > 0 su
h that ea
h ball of radius 4r in
X may be 
overed by C(r) balls of radius r. Moreover, r 7→ C(r) is an in
reasingfun
tion of the radius.(H2) We suppose that the volume of the r�balls tends to 0 uniformly on X, namely
lim
r→0

sup{µ(B(x, r)) : x ∈ X} = 0. However, taking (H1) into a

ount, this vol-ume 
ondition is equivalent to lim
r→0

sup{2C(r)µ(B(x, r)) : x ∈ X} = 0 whi
h is the(more 
onvenient) 
ondition that will be used in the remainder of the arti
le.It is important to remark that these hypothesis are quite natural sin
e they make partof the metri
 properties of the Riemannian manifolds that are involved in Theorem 1.3.These spe
i�
 metri
 properties are 
olle
ted in the following fundamental example.2.1. Example. A typi
al example of a 
ouple (X,Y ) satisfying the hypothesis (H1),(H2) isto 
hoose X as a 
omplete n-dimensional Riemannian manifold (M,g) with Ri

i 
urvaturebounded below Ricg ≥ −(n − 1)a2, a ≥ 0 (whi
h are the 
lass of manifolds involved inTheorem 1.3), and as Y a bounded domain with smooth boundary in M . The distan
e dis the distan
e asso
iated to the Riemannian metri
 g, the measure µ is the restri
tion to
Y of the Riemannian measure of g. The existen
e of the 
onstant C(a, r) is given by the
lassi
al Bishop-Gromov inequality thanks to the lower bound on the Ri

i 
urvature of g



4 BRUNO COLBOIS AND DANIEL MAERTEN(see [14℄ p. 156). Pre
isely, for 0 < r < R, and for ea
h point p ∈ M , we have(2.1) Vol(B(p,R), g)

Vol(B(p, r), g)
≤

va(R)

va(r)
,where va(R) denotes the volume of a ball of radius R in M

n
a , the simply 
onne
ted n�dimensional manifold of 
onstant se
tional 
urvature −a2.This gives a bound on the number of balls of radius r that are ne
essary to 
over a ball ofradius 4r (this property known as the paking lemma is a 
onsequen
e of Inequality (2.1)).In fa
t, �x B4r a 4r�ball and 
onsider {B(xi, r/2)}i∈I a maximal family of disjoint ballswhose 
enter xi live in B4r; then the 
orresponding family of r�balls {B(xi, r)}i∈I 
over

B4r. In 
onsequen
e, we 
an 
over a ball of radius 4r with ≤ 1 +
[

va(4r+r/2)
va(r/2)

]

r�balls. Wejust de�ne
C(a, r) = max

t≤r

{

1 +

[
va(4t + t/2)

va(t/2)

]}

.The in
reasing 
hara
ter of r 7→ C(a, r) is by de�nition.Furthermore, as r −→ 0, the ratio Vol(B(p,r),g)
va(r) −→ 1, we obtain

Vol((B(p,R), g) ≤ va(R) ,and 
onsequently µ(B(p, r)) := Vol(B(p, r) ∩ Y, g) goes uniformly to 0 as r → 0.We prove in the sequel that, under our te
hni
al assumptions, one 
an build some subsets
A and D satisfying 
ertain volume 
onditions.2.2. Lemma. Let (X, d) be a 
omplete, lo
ally 
ompa
t metri
 spa
e, Y ⊂ X a boundedBorelian with the indu
ed distan
e, and µ a Borelian measure with support in Y su
h that
µ(Y ) = ω, 0 < ω < ∞ and µ(Y \ Y ) = 0. In addition, we make the hypothesis (H1),(H2).Let 0 < α ≤ ω

2 . Thanks to (H2) there exists r > 0 with sup{2C(r)µ(B(x, r)) : x ∈ X} ≤ α.Then there exist A,D ⊂ Y su
h that A ⊂ D and






µ(A) ≥ α
µ(D) ≤ 2C(r)α
d(A,Y ∩ Dc) ≥ 3r

.Proof. We �x the positive numbers r and α. Let us 
onsider any positive integer m ∈ N
∗and de�ne a non�negative appli
ation Ψm : Xm = X × X × · · · × X

︸ ︷︷ ︸

m times

−→ R by the relation
Ψm : x =

(
xj

)m

j=1
7−→ µ





m⋃

j=1

B
(
xj, r

)



 ,whi
h is simply the restri
tion of the measure µ to Um(r) a parti
ular 
lass of open setswhi
h is de�ned by
Um(r) :=







m⋃

j=1

B
(
xj, r

)
/

(
xj

)m

j=1
∈ Xm






.



EIGENVALUES ESTIMATES FOR NEUMANN 5Sin
e (X, d) is a 
omplete and lo
ally 
ompa
t metri
 spa
e, it is also the 
ase of the �niteprodu
t Xm when it is endowed with the produ
t distan
e. Then for ea
h m ∈ N
∗ thereexists some xmax,m ∈ Xm (not ne
essary unique) su
h that

Ψm(xmax,m) = max
Xm

Ψm = max
Um(r)

µ = µ





m⋃

j=1

B
(
xj

max,m, r
)



 .We �rst prove that there exists a �nite integer k ∈ N
∗ su
h that Ψk(xmax,k) ≥ α and

Ψk−1(xmax,k−1) ≤ α. Indeed, 
onsider the fun
tion ξ : N
∗ −→ R de�ned by the relation

ξ(m) = Ψm(xmax,m). On one hand, the 
ondition sup{2C(r)µ(B(x, r)) : x ∈ X} ≤ αobviously implies ξ(1) ≤ α
2C(r) ≤ α. On the other hand, sin
e Suppµ ⊂ Y , there exists aradius R > 0 large enough su
h that µ(B(z,R)) ≥ 3ω/4, for a 
ertain z ∈ X. But it 
anbe 
learly dedu
ed from Assumption (H1) that B(z,R) 
an be �nitely 
overed by m0 ∈ N

∗balls of radius r (noti
e that m0 depends on R). Consequently it turns out
3α

2
≤

3ω

4
≤ µ (B(z,R)) ≤ max

Um0
(r)

Ψm0
= ξ(m0) .Thereby the fun
tion ξ : N

∗ −→ R satis�es ξ(1) ≤ α and ξ(m0) ≥ 3α
2 , whi
h entails theexisten
e of some k ∈ N

∗ su
h that Ψk(xmax,k) ≥ α and Ψk−1(xmax,k−1) ≤ α.We now set Uk :=
⋃

1≤j≤k

B
(

xj
max,k, r

) and Vk :=
⋃

1≤j≤k

B
(

xj
max,k, 4r

). The next step is toshow that
µ(Vk) ≤ C(r)µ(Uk) .Still a

ording to Assumption (H1), Vk is 
overed by kC(r) balls of radius r, namely

Vk ⊂
⋃

1≤j≤kC(r)

Bj, where the Bj are balls of radius r. But it is quite 
lear that this unionof r�balls 
an be written as ⋃

1≤j≤kC(r)

Bj =
⋃

1≤j≤C(r)

Wj where ea
h Wj ∈ Uk(r). It follows
µ(Vk) ≤ µ




⋃

1≤j≤kC(r)

Bj



 = µ




⋃

1≤j≤C(r)

Wj





≤

C(r)
∑

j=1

µ(Wj)

≤ C(r) max
Uk(r)

µ = C(r)ξ(k) = C(r)µ(Uk) .We �nally de�ne the sets A := Y ∩ Uk and D := Y ∩ Vk. We only have to 
he
k thatthey satisfy the properties stated in Lemma 2.2. We observe that µ(A) = µ(Uk) sin
e themeasure µ is supported in Y and µ(Y \ Y ) = 0. Besides, Uk 
an be written as the unionof an element of Uk−1(r) and an element of U1(r) so that
µ(A) ≤ ξ(k − 1) + ξ(1) ≤ α

(

1 +
1

2

)

.Still sin
e Suppµ = Y , we obtain µ(D) = µ(Vk) ≤ C(r)µ(Uk) = C(r)µ(A) ≤ 2C(r)α. Bythe de�nition of Uk and Vk, we straightforwardly have d(A,Y ∩ Dc) ≥ 3r. �



6 BRUNO COLBOIS AND DANIEL MAERTENIn se
tion 3, we will use the following 
orollary of Lemma 2.2 to make the proof ofTheorem 1.3. We give therein an expli
ite 
onstru
tion of the domains that were mentionedat the end of the introdu
tion.2.3. Corollary. Let (X, d) be a 
omplete, lo
ally 
ompa
t metri
 spa
e, Y ⊂ X a boundedBorelian with the indu
ed distan
e, and µ a Borelian measure with support in Y su
h that
µ(Y ) = ω, 0 < ω < ∞ and µ(Y \ Y ) = 0. In addition, we make the hypothesis (H1),(H2)as in Lemma 2.2, and take N a positive integer.Let r > 0 su
h that 4C2(r)µ(B(x, r)) ≤ ω

N holds for all x ∈ X, and let α = ω
2C(r)N . Then,there exist N measurable subsets A1, ..., AN ⊂ Y su
h that µ(Ai) ≥ α and, for ea
h i 6= j,

d(Ai, Aj) ≥ 3r.Proof. We 
onstru
t the family (Aj)
N
j=1 by �nite indu
tion applying Lemma 2.2.

• j = 1. We set (X1, d1, µ1) = (X, d, µ) and Y1 = Y , whi
h satisfy the assumptions ofLemma 2.2. Therefore there exist A1,D1 su
h that A1 ⊂ D1 ⊂ Y1 = Y and






µ(A1) ≥ α
µ(D1) ≤ 2C(r)α = ω

N
d(A1, Y1 ∩ Dc

1) ≥ 3r
.

• j = 2. We set (X2, d2, µ2) = (X, d, µ|Y2
) and Y2 = Dc

1∩Y1, whi
h satisfy the assumptionsof Lemma 2.2 with ω2 = µ2(Y2) ≥ ω
(
1 − 1

N

)
= ω

(
N+1−2

N

)
≥ α. Therefore thereexist A2,D2 su
h that A2 ⊂ D2 ⊂ Y2 = Dc

1 ∩ Y1 and






µ(A2) ≥ α
µ(D2) ≤ 2C(r)α = ω

N
d(A2, Y2 ∩ Dc

2) ≥ 3r
.As A1 ⊂ D1 and A2 ⊂ Y1 ∩Dc

1 we get d(A1, A2) ≥ d(A1, Y1 ∩ Dc
1) ≥ 3r thanks tothe 
ase j = 1.

•j ≥ 3. We suppose that we have already 
onstru
ted the families (As)
j−1
s=1 and (Ds)

j−1
s=1that satisfy the 
onditions







As ⊂ Ds ⊂ Y ∩ (D1 ∪ · · · ∪ Ds−1)
c = Ys, s ≤ j − 1

d(As, At) ≥ 3r s 6= t,

µ (D1 ∪ · · · ∪ Dj−1) ≤ ω
(

j−1
N

)

.We set (Xj , dj , µj) = (X, d, µ|Yj
) and Yj = Y ∩ (D1 ∪ · · · ∪ Dj−1)

c, whi
h satisfythe assumptions of Lemma 2.2 with ωj = µj(Yj) ≥ ω
(

1 − j−1
N

)

= ω
(

N+1−j
N

)

≥ αif j ≤ N . Therefore there exist Aj,Dj su
h that Aj ⊂ Dj ⊂ Yj and






µ(Aj) ≥ α
µ(Dj) ≤ 2C(r)α = ω

N
d(Aj , Yj ∩ Dc

j) ≥ 3r
.As Aj ⊂ Y ∩ (D1 ∪ · · · ∪ Dj−1)

c ⊂ Y ∩ (D1 ∪ · · · ∪ Ds−1)
c = Ys, s < j, and

As ⊂ Ds, we get d(Aj , As) ≥ d(As, Ys ∩ Dc
s) ≥ 3r thanks to the 
ase j = s. Asalready said, we 
an pro
eed this 
onstru
tion so longer we have enough volumeto do it, that is N times. �



EIGENVALUES ESTIMATES FOR NEUMANN 73. Proof of Theorem 1.3.Let (Mn, g) be a 
omplete n-dimensional Riemannian manifold with Ri

i 
urvaturebounded below Ricg ≥ −(n − 1)a2, and Ω ⊂ M a bounded domain of volume V , withsmooth boundary.We observe �rst that, by renormalisation, it is enough to prove the theorem for the
ase a = 1: namely, if Theorem 1.3 is true for a = 1, and if g is a Riemannian metri
with Ricg ≥ −(n − 1)t2g, then g0 = t2g satis�es Ricg0 ≥ −(n − 1)g0. Sin
e we have
λk(g0) ≤ An + Bn

(
k

V (g0)

)2/n, then, be
ause λk(g) = t2λk(g0) and V (g) = tnV (g0), we get
λk(g) ≤ Ant2 + Bn

(
k
V

)2/n.So, let use prove Theorem 1.3 for a = 1. As in Example 2.1, let us 
onsider the Borelianmeasure µ whi
h is the restri
tion to the domain Ω of the Riemannian volume of (M,g).In order to prove Theorem 1.3, we will use the 
lassi
al variational 
hara
terization ofthe spe
trum: to estimate λk from above, it su�
es to 
onstru
t an H1(Ω)-orthogonalfamily of k test fun
tions (fj)
k
j=1, su
h as ea
h fj has 
ontroled Rayleigh quotient. Inthe sequel, we 
onstru
t test fun
tions with disjoint support related to the sets A1, ..., Akarising from Corollary 2.3, so that it immediately implies orthogonality in H1(Ω).3.1. Lemma. Let A ⊂ M a subset as in Corollary 2.3. Let Ar := {x ∈ M : d(x,A) ≤ r},

r > 0. There exists a fun
tion f supported in Ar whose restri
tion to Ω is of Rayleighquotient
R(f) ≤

1

r2

µ(Ar \ A)

µ(A)
.Proof. Let us de�ne a plateau fun
tion

f(p) =







1 if p ∈ A

1 − d(p,A)
r if p ∈ (Ar \ A)

0 if p ∈ (Ar)c .In Corollary 2.3, the domain A is a �nite union of metri
 balls and interse
tion with 
om-plement of balls. The boundary is not smooth, but the fun
tion d(∂A, ·) "distan
e to theboundary of A" is well known to be 1�Lips
hitz on M . A

ording to Radema
her's theo-rem (see Se
tion 3.1.2, page 81�84 in [8℄), d(∂A, ·) is di�erentiable L n almost everywhere(sin
e dVolg is absolutely 
ontinuous with respe
t to Lebesgue's measure L n), and its g�gradient satis�es |∇d(∂A, ·)|g ≤ 1, L n almost everywhere. It 
omes out that the gradientof f satis�es L n almost everywhere
|∇f(p)|g ≤

{
1
r if p ∈ (Ar \ A)
0 if p ∈ (Ar \ A)c .We immediately dedu
e

R(f) =

∫

Ω |∇f |2g dVolg
∫

Ω f2 dVolg
≤

1

r2

µ(Ar \ A)

µ(A)
.

�



8 BRUNO COLBOIS AND DANIEL MAERTENProof of Theorem 1.3. As already said, we apply Corollary 2.3: let k ∈ N
∗ and set

N = 2k. As the volume of the r�balls uniformly tends to 0 (see assumption (H2)), thereexist r > 0 with r small enough so that(3.1) 2C(r)µ(B(x, r)) ≤ α :=
V

4C(r)k
,holds for every x ∈ M . Corollary 2.3 gives the existen
e of 2k measurable subsets A1, ...A2kof measure µ(Ai) ≥ V

4C(r)k with d(Ai, Aj) ≥ 3r if i 6= j. In parti
ular, the 
orrespondingsets Ar
i and Ar

j are also disjoint.We 
an now apply the 
onstru
tion of Lemma 3.1 and we get an H1(Ω)-orthogonal familyof 2k test fun
tions (fj)
2k
j=1, of disjoint supports and whose Rayleigh quotient satis�es

R(fi) ≤
1

r2

µ(Ar
i \ Ai)

µ(Ai)
.At this point, Corollary 2.3 does not give any 
ontrol on µ(Ar

i ). Let
Q = ♯

{

i ∈ {1, ..., 2k} : µ(Ar
i ) ≥

V

k

}

.As Vol(Ω, g) = V , we already see that Q ≤ k, so that for at least k of these 2k subsets
A1, ..., A2k , we have µ(Ar

i ) ≤
V
k . We 
hoose the 
orresponding fun
tions as test fun
tions.For su
h a fun
tion f , we have, as µ(Ar

i \ Ai) ≤
V
k and µ(Ai) ≥ α = V

4C(r)k , that(3.2) R(f) ≤
1

r2

V/k

V/4C(r)k
=

4C(r)

r2
.Our aim is now to prove an upper bound of the kind

λk(g) ≤ An + Bn

(
k

V

)2/n

.Let ω′
n > 0 the positive 
onstant su
h that µ (B(x, r)) ≤ ω′

nrn for radius r ≤ 1 in thehyperboli
 spa
e of 
urvature −1. We then de�ne the integer k0 =
[

V
8C(1)2ω′

n

]

+ 1 (remarkthat it strongly depends on the volume) and for every k ≥ k0, we set
rk =

(
V

k

1

8C(1)2ω′
n

)1/n

.Clearly, rk ≤ 1 and (3.1) holds, sin
e by de�nition 8C(rk)
2µ(B(x, rk)) ≤ 8C(1)2ω′

nrn
k = V

k .Our Inequality (3.2) now reads as
∀k ≥ k0 λk ≤

4C(1)

r2
k

= 4C(1)
(

8C(1)2ω′
n

)2/n
(

k

V

)2/n

.Now if k < k0, then we obviously have λk ≤ λk0
, so that we straightly obtain(3.3) ∀k ∈ N

∗ λk ≤ λk0
+ Bn

(
k

V

)2/n

,where we have set Bn := 4C(1)
(

8C(1)2ω′
n

)2/n. The last thing to do is to estimate theparti
ular eigenvalue λk0
.1) If k0 = 1, then λk0

= λ1 = 0 and we get Inequality (1.2), with An = 0.
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ontrary, if k0 ≥ 2, then we dedu
e V
8C(1)2ω′

n
< k0 ≤ 2 V

8C(1)2ω′

n
. We 
anapply Inequality (3.3) with k = k0, whi
h implies

λk0
≤

4C(1)

r2
k0

= 4C(1)22/n ,and then Inequality (3.3) is nothing but Inequality (1.2) with An = 4C(1)22/n,
Bn = 4C(1)

(

8C(1)2ω′
n

)2/n and a = 1.
�3.2. Remark . For the 
ase a = 0, a slightly better 
onstant Bn 
an be otained by makinga dire
t proof instead of plugging a = 0 in Inequality (1.2).A
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