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EIGENVALUES ESTIMATE FOR THE NEUMANN PROBLEM OF ABOUNDED DOMAINBRUNO COLBOIS AND DANIEL MAERTENAbstrat. In this note, we investigate upper bounds of the Neumann eigenvalue prob-lem for the Laplaian of a domain Ω in a given omplete (not ompat a priori) Rie-mannian manifold (M, g). For this, we use test funtions for the Rayleigh quotientsubordinated to a family of open sets onstruted in a general metri way, interesting foritself. As appliations, we prove that if the Rii urvature of (M, g) is bounded below
Ricg

≥ −(n − 1)a2, a ≥ 0, then there exist onstants An > 0, Bn > 0 only depending onthe dimension, suh that
λk(Ω) ≤ Ana

2 + Bn

(
k

V

)2/n

,where λk(Ω) (k ∈ N
∗) denotes the k�th eigenvalue of the Neumann problem on anybounded domain Ω ⊂ M of volume V = Vol(Ω, g). Furthermore, this upper bound islearly in agreement with the Weyl law. As a orollary, we get also an estimate whih isanalogous to Buser's upper bounds of the spetrum of a ompat Riemannian manifoldwith lower bound on the Rii urvature.1. IntrodutionThe goal of this paper is to give upper bounds for the spetrum of the Laplaian ating onompat domains of given volume of a omplete Riemannian manifold with Rii urvaturebounded below, and, as far as possible, to make these estimates optimal with respet tothe Weyl law.For ompat Riemannian manifolds without boundary, the following result was provedby P. Buser in [3℄ (Satz 7), [4℄ (Thm. 6.2 ()) (see also Li-Yau in [13℄ (Thm.16)). If {λk}

∞
k=1denote the spetrum of the Laplaian ating on funtions, then:1.1. Theorem. Let (Mn, g) be a ompat n-dimensional Riemannian manifold with Riiurvature bounded below Ricg ≥ −(n − 1)a2, a ≥ 0, and of volume V .There exists a onstant Cn ≥ 1 only depending on the dimension, suh that for all

k ∈ N
∗, we have(1.1) λk(M,g) ≤

(n − 1)2

4
a2 + Cn

(
k

V

)2/n

.1.2. Remarks. (i) In [13℄, the onstant Cn depends also on the diameter.(ii) In dimension higher than 2, a normalization on the volume is not enough to ontrolthe spetrum: namely, on any ompat manifold of dimension higher than 2, onean �nd a metri of given volume, with arbitrarily large �rst non�zero eigenvalue
λ2 of the Laplaian, in vertue of the result of B. Colbois and J. Dodziuk [6℄.Date: 20th February 2008.Key words and phrases. Neumann spetrum, upper bound, Weyl law, metri geometry.2000 Mathematis Subjet Classi�ation. 35P15, 53C99, 51F99.1



2 BRUNO COLBOIS AND DANIEL MAERTEN(iii) When Ricg ≥ 0, we dedue that there exists Cn > 1 with λk(M,g) ≤ Cn

(
k
V

)2/nfor all k. However, when Rii is not supposed positive, then the presene of aterm like (n−1)2

4 a2 is neessary: by a result of R. Brooks [2℄, it is possible to �nd afamily of ompat hyperboli manifolds with volume going to in�nity and a positiveuniform lower bound on the �rst nonzero eigenvalue.The idea of the proof of Theorem 1.1 is to onsider k disjoint balls of radius r whihalmost over the manifold (M,g), with r around (
V
k

)1/n, and to apply then Cheng's the-orem [5℄. However, suh a theorem does not exist on manifolds with boundary, and withNeumann boundary ondition. A reason for this is that there is no Bishop-Gromov the-orem: indeed, even for a Eulidean domain, it is not possible to ontrol the volume of aball of radius 2r with respet to the volume of a ball of radius r and same enter. See alsoExample 1.4 in [4℄.This does not mean that a result in the spirit of Theorem 1.1 does not exist for domains.Namely, P. Kröger [12℄ proved thanks to harmoni analysis, that on bounded Eulideandomains, the k�th eigenvalue of the Neumann problem was bounded by above by someexpression Cn (k/ |Ω|)n/2 , where Cn only depends upon the dimension. An analogous resultan be derived from the muh more general and di�ult work of N. Korevaar [11℄ ( seealso [10℄), for bounded domains of non�negative Rii urvature manifolds, and also forbounded domains of negative Rii urvature ompat manifolds (in this ase the bounddepends on the diameter).This naturally leads to theQuestion: What an be said for bounded domains of a omplete Riemannian manifoldwith Rii urvature bounded below ?In this note, we onsider the Neumann eigenvalue problem for the Laplaian of a boundeddomain Ω with smooth boundary, in a given omplete (not ompat a priori) Riemannianmanifold (M,g). More preisely, we searh for a ouple (λ, u) ∈ R × C∞
(
Ω

) whih is asolution of the following boundary ellipti problem
{

∆u = λu on Ω
∂u
∂ν = 0 on ∂Ω ,where ∆ is the non�negative Laplaian of the metri g and ν the outward unit normal of

∂Ω. Sine Ω is bounded with smooth boundary, the spetrum of ∆ on Ω is an unboundedsequene of real numbers (λk(Ω))k∈N∗ whih an be inreasingly ordered
0 = λ1(Ω) < λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ λk+1(Ω) ≤ · · · .There exist standard variational haraterisations of the spetrum of ∆ whih an be foundfor instane in the book of P. Bérard [1℄ (or in [9℄).The main result of this artile is the following.1.3. Theorem. Let (Mn, g) be a omplete n-dimensional Riemannian manifold with Riiurvature bounded below Ricg ≥ −(n − 1)a2, a ≥ 0.There exist onstants An > 0, Bn > 0 only depending on the dimension, suh that for all

k ∈ N
∗, V > 0 and for eah bounded domain Ω ⊂ M , with smooth boundary and volume



EIGENVALUES ESTIMATES FOR NEUMANN 3
V , we have(1.2) λk(Ω) ≤ Ana2 + Bn

(
k

V

)2/n

.If the manifold M is ompat, an interesting speial ase is to hoose Ω = M , and wereover Theorem 1.1, up to the value of the onstant An whih is not equal to (n−1)2

4 inour paper.The proof Theorem 1.3 goes in the same spirit as the proof of Theorem 1.1: in orderto bound λk(Ω), we onsider k disjoint sets A1, ..., Ak in Ω of measure of the order of
V ol(Ω)

k , and introdue test funtions f1, ..., fk subordinated to these sets. We estimate theRayleigh quotient of these fontions by a diret alulation, whih gives the theorem. Themain improvement of this paper is the onstrution of an adapted family of sets A1, .., Ak,more onvenient for our purpose as balls. As this onstrution is interesting by itself andwill be used in other ontexts, we present it in a rather abstrat (indeed metri) way.The paper is organised as follows: the metri onstrution of our sets is done in Setion 2,and in Setion 3 we will use them so as to prove Theorem 1.3 by produing some testfuntions for the variational haraterisation of the spetrum.2. A metri approahIn this setion, we formalize the geometri situation of Theorem 1.3 (a bounded domainin a omplete manifold) in a more general setting (a bounded domain in a omplete metrispae). More preisely, let (X, d) be a omplete, loally ompat metri spae, Y ⊂ X abounded Borelian subset endowed with the indued distane, and µ a Borelian measurewith support in Y suh that µ(Y ) = ω, 0 < ω < ∞. We will need in addition the followingtehnial assumptions:(H1) For eah r > 0, there exists a onstant C(r) > 0 suh that eah ball of radius 4r in
X may be overed by C(r) balls of radius r. Moreover, r 7→ C(r) is an inreasingfuntion of the radius.(H2) We suppose that the volume of the r�balls tends to 0 uniformly on X, namely
lim
r→0

sup{µ(B(x, r)) : x ∈ X} = 0. However, taking (H1) into aount, this vol-ume ondition is equivalent to lim
r→0

sup{2C(r)µ(B(x, r)) : x ∈ X} = 0 whih is the(more onvenient) ondition that will be used in the remainder of the artile.It is important to remark that these hypothesis are quite natural sine they make partof the metri properties of the Riemannian manifolds that are involved in Theorem 1.3.These spei� metri properties are olleted in the following fundamental example.2.1. Example. A typial example of a ouple (X,Y ) satisfying the hypothesis (H1),(H2) isto hoose X as a omplete n-dimensional Riemannian manifold (M,g) with Rii urvaturebounded below Ricg ≥ −(n − 1)a2, a ≥ 0 (whih are the lass of manifolds involved inTheorem 1.3), and as Y a bounded domain with smooth boundary in M . The distane dis the distane assoiated to the Riemannian metri g, the measure µ is the restrition to
Y of the Riemannian measure of g. The existene of the onstant C(a, r) is given by thelassial Bishop-Gromov inequality thanks to the lower bound on the Rii urvature of g



4 BRUNO COLBOIS AND DANIEL MAERTEN(see [14℄ p. 156). Preisely, for 0 < r < R, and for eah point p ∈ M , we have(2.1) Vol(B(p,R), g)

Vol(B(p, r), g)
≤

va(R)

va(r)
,where va(R) denotes the volume of a ball of radius R in M

n
a , the simply onneted n�dimensional manifold of onstant setional urvature −a2.This gives a bound on the number of balls of radius r that are neessary to over a ball ofradius 4r (this property known as the paking lemma is a onsequene of Inequality (2.1)).In fat, �x B4r a 4r�ball and onsider {B(xi, r/2)}i∈I a maximal family of disjoint ballswhose enter xi live in B4r; then the orresponding family of r�balls {B(xi, r)}i∈I over

B4r. In onsequene, we an over a ball of radius 4r with ≤ 1 +
[

va(4r+r/2)
va(r/2)

]

r�balls. Wejust de�ne
C(a, r) = max

t≤r

{

1 +

[
va(4t + t/2)

va(t/2)

]}

.The inreasing harater of r 7→ C(a, r) is by de�nition.Furthermore, as r −→ 0, the ratio Vol(B(p,r),g)
va(r) −→ 1, we obtain

Vol((B(p,R), g) ≤ va(R) ,and onsequently µ(B(p, r)) := Vol(B(p, r) ∩ Y, g) goes uniformly to 0 as r → 0.We prove in the sequel that, under our tehnial assumptions, one an build some subsets
A and D satisfying ertain volume onditions.2.2. Lemma. Let (X, d) be a omplete, loally ompat metri spae, Y ⊂ X a boundedBorelian with the indued distane, and µ a Borelian measure with support in Y suh that
µ(Y ) = ω, 0 < ω < ∞ and µ(Y \ Y ) = 0. In addition, we make the hypothesis (H1),(H2).Let 0 < α ≤ ω

2 . Thanks to (H2) there exists r > 0 with sup{2C(r)µ(B(x, r)) : x ∈ X} ≤ α.Then there exist A,D ⊂ Y suh that A ⊂ D and






µ(A) ≥ α
µ(D) ≤ 2C(r)α
d(A,Y ∩ Dc) ≥ 3r

.Proof. We �x the positive numbers r and α. Let us onsider any positive integer m ∈ N
∗and de�ne a non�negative appliation Ψm : Xm = X × X × · · · × X

︸ ︷︷ ︸

m times

−→ R by the relation
Ψm : x =

(
xj

)m

j=1
7−→ µ





m⋃

j=1

B
(
xj, r

)



 ,whih is simply the restrition of the measure µ to Um(r) a partiular lass of open setswhih is de�ned by
Um(r) :=







m⋃

j=1

B
(
xj, r

)
/

(
xj

)m

j=1
∈ Xm






.



EIGENVALUES ESTIMATES FOR NEUMANN 5Sine (X, d) is a omplete and loally ompat metri spae, it is also the ase of the �niteprodut Xm when it is endowed with the produt distane. Then for eah m ∈ N
∗ thereexists some xmax,m ∈ Xm (not neessary unique) suh that

Ψm(xmax,m) = max
Xm

Ψm = max
Um(r)

µ = µ





m⋃

j=1

B
(
xj

max,m, r
)



 .We �rst prove that there exists a �nite integer k ∈ N
∗ suh that Ψk(xmax,k) ≥ α and

Ψk−1(xmax,k−1) ≤ α. Indeed, onsider the funtion ξ : N
∗ −→ R de�ned by the relation

ξ(m) = Ψm(xmax,m). On one hand, the ondition sup{2C(r)µ(B(x, r)) : x ∈ X} ≤ αobviously implies ξ(1) ≤ α
2C(r) ≤ α. On the other hand, sine Suppµ ⊂ Y , there exists aradius R > 0 large enough suh that µ(B(z,R)) ≥ 3ω/4, for a ertain z ∈ X. But it anbe learly dedued from Assumption (H1) that B(z,R) an be �nitely overed by m0 ∈ N

∗balls of radius r (notie that m0 depends on R). Consequently it turns out
3α

2
≤

3ω

4
≤ µ (B(z,R)) ≤ max

Um0
(r)

Ψm0
= ξ(m0) .Thereby the funtion ξ : N

∗ −→ R satis�es ξ(1) ≤ α and ξ(m0) ≥ 3α
2 , whih entails theexistene of some k ∈ N

∗ suh that Ψk(xmax,k) ≥ α and Ψk−1(xmax,k−1) ≤ α.We now set Uk :=
⋃

1≤j≤k

B
(

xj
max,k, r

) and Vk :=
⋃

1≤j≤k

B
(

xj
max,k, 4r

). The next step is toshow that
µ(Vk) ≤ C(r)µ(Uk) .Still aording to Assumption (H1), Vk is overed by kC(r) balls of radius r, namely

Vk ⊂
⋃

1≤j≤kC(r)

Bj, where the Bj are balls of radius r. But it is quite lear that this unionof r�balls an be written as ⋃

1≤j≤kC(r)

Bj =
⋃

1≤j≤C(r)

Wj where eah Wj ∈ Uk(r). It follows
µ(Vk) ≤ µ




⋃

1≤j≤kC(r)

Bj



 = µ




⋃

1≤j≤C(r)

Wj





≤

C(r)
∑

j=1

µ(Wj)

≤ C(r) max
Uk(r)

µ = C(r)ξ(k) = C(r)µ(Uk) .We �nally de�ne the sets A := Y ∩ Uk and D := Y ∩ Vk. We only have to hek thatthey satisfy the properties stated in Lemma 2.2. We observe that µ(A) = µ(Uk) sine themeasure µ is supported in Y and µ(Y \ Y ) = 0. Besides, Uk an be written as the unionof an element of Uk−1(r) and an element of U1(r) so that
µ(A) ≤ ξ(k − 1) + ξ(1) ≤ α

(

1 +
1

2

)

.Still sine Suppµ = Y , we obtain µ(D) = µ(Vk) ≤ C(r)µ(Uk) = C(r)µ(A) ≤ 2C(r)α. Bythe de�nition of Uk and Vk, we straightforwardly have d(A,Y ∩ Dc) ≥ 3r. �



6 BRUNO COLBOIS AND DANIEL MAERTENIn setion 3, we will use the following orollary of Lemma 2.2 to make the proof ofTheorem 1.3. We give therein an expliite onstrution of the domains that were mentionedat the end of the introdution.2.3. Corollary. Let (X, d) be a omplete, loally ompat metri spae, Y ⊂ X a boundedBorelian with the indued distane, and µ a Borelian measure with support in Y suh that
µ(Y ) = ω, 0 < ω < ∞ and µ(Y \ Y ) = 0. In addition, we make the hypothesis (H1),(H2)as in Lemma 2.2, and take N a positive integer.Let r > 0 suh that 4C2(r)µ(B(x, r)) ≤ ω

N holds for all x ∈ X, and let α = ω
2C(r)N . Then,there exist N measurable subsets A1, ..., AN ⊂ Y suh that µ(Ai) ≥ α and, for eah i 6= j,

d(Ai, Aj) ≥ 3r.Proof. We onstrut the family (Aj)
N
j=1 by �nite indution applying Lemma 2.2.

• j = 1. We set (X1, d1, µ1) = (X, d, µ) and Y1 = Y , whih satisfy the assumptions ofLemma 2.2. Therefore there exist A1,D1 suh that A1 ⊂ D1 ⊂ Y1 = Y and






µ(A1) ≥ α
µ(D1) ≤ 2C(r)α = ω

N
d(A1, Y1 ∩ Dc

1) ≥ 3r
.

• j = 2. We set (X2, d2, µ2) = (X, d, µ|Y2
) and Y2 = Dc

1∩Y1, whih satisfy the assumptionsof Lemma 2.2 with ω2 = µ2(Y2) ≥ ω
(
1 − 1

N

)
= ω

(
N+1−2

N

)
≥ α. Therefore thereexist A2,D2 suh that A2 ⊂ D2 ⊂ Y2 = Dc

1 ∩ Y1 and






µ(A2) ≥ α
µ(D2) ≤ 2C(r)α = ω

N
d(A2, Y2 ∩ Dc

2) ≥ 3r
.As A1 ⊂ D1 and A2 ⊂ Y1 ∩Dc

1 we get d(A1, A2) ≥ d(A1, Y1 ∩ Dc
1) ≥ 3r thanks tothe ase j = 1.

•j ≥ 3. We suppose that we have already onstruted the families (As)
j−1
s=1 and (Ds)

j−1
s=1that satisfy the onditions







As ⊂ Ds ⊂ Y ∩ (D1 ∪ · · · ∪ Ds−1)
c = Ys, s ≤ j − 1

d(As, At) ≥ 3r s 6= t,

µ (D1 ∪ · · · ∪ Dj−1) ≤ ω
(

j−1
N

)

.We set (Xj , dj , µj) = (X, d, µ|Yj
) and Yj = Y ∩ (D1 ∪ · · · ∪ Dj−1)

c, whih satisfythe assumptions of Lemma 2.2 with ωj = µj(Yj) ≥ ω
(

1 − j−1
N

)

= ω
(

N+1−j
N

)

≥ αif j ≤ N . Therefore there exist Aj,Dj suh that Aj ⊂ Dj ⊂ Yj and






µ(Aj) ≥ α
µ(Dj) ≤ 2C(r)α = ω

N
d(Aj , Yj ∩ Dc

j) ≥ 3r
.As Aj ⊂ Y ∩ (D1 ∪ · · · ∪ Dj−1)

c ⊂ Y ∩ (D1 ∪ · · · ∪ Ds−1)
c = Ys, s < j, and

As ⊂ Ds, we get d(Aj , As) ≥ d(As, Ys ∩ Dc
s) ≥ 3r thanks to the ase j = s. Asalready said, we an proeed this onstrution so longer we have enough volumeto do it, that is N times. �



EIGENVALUES ESTIMATES FOR NEUMANN 73. Proof of Theorem 1.3.Let (Mn, g) be a omplete n-dimensional Riemannian manifold with Rii urvaturebounded below Ricg ≥ −(n − 1)a2, and Ω ⊂ M a bounded domain of volume V , withsmooth boundary.We observe �rst that, by renormalisation, it is enough to prove the theorem for thease a = 1: namely, if Theorem 1.3 is true for a = 1, and if g is a Riemannian metriwith Ricg ≥ −(n − 1)t2g, then g0 = t2g satis�es Ricg0 ≥ −(n − 1)g0. Sine we have
λk(g0) ≤ An + Bn

(
k

V (g0)

)2/n, then, beause λk(g) = t2λk(g0) and V (g) = tnV (g0), we get
λk(g) ≤ Ant2 + Bn

(
k
V

)2/n.So, let use prove Theorem 1.3 for a = 1. As in Example 2.1, let us onsider the Borelianmeasure µ whih is the restrition to the domain Ω of the Riemannian volume of (M,g).In order to prove Theorem 1.3, we will use the lassial variational haraterization ofthe spetrum: to estimate λk from above, it su�es to onstrut an H1(Ω)-orthogonalfamily of k test funtions (fj)
k
j=1, suh as eah fj has ontroled Rayleigh quotient. Inthe sequel, we onstrut test funtions with disjoint support related to the sets A1, ..., Akarising from Corollary 2.3, so that it immediately implies orthogonality in H1(Ω).3.1. Lemma. Let A ⊂ M a subset as in Corollary 2.3. Let Ar := {x ∈ M : d(x,A) ≤ r},

r > 0. There exists a funtion f supported in Ar whose restrition to Ω is of Rayleighquotient
R(f) ≤

1

r2

µ(Ar \ A)

µ(A)
.Proof. Let us de�ne a plateau funtion

f(p) =







1 if p ∈ A

1 − d(p,A)
r if p ∈ (Ar \ A)

0 if p ∈ (Ar)c .In Corollary 2.3, the domain A is a �nite union of metri balls and intersetion with om-plement of balls. The boundary is not smooth, but the funtion d(∂A, ·) "distane to theboundary of A" is well known to be 1�Lipshitz on M . Aording to Rademaher's theo-rem (see Setion 3.1.2, page 81�84 in [8℄), d(∂A, ·) is di�erentiable L n almost everywhere(sine dVolg is absolutely ontinuous with respet to Lebesgue's measure L n), and its g�gradient satis�es |∇d(∂A, ·)|g ≤ 1, L n almost everywhere. It omes out that the gradientof f satis�es L n almost everywhere
|∇f(p)|g ≤

{
1
r if p ∈ (Ar \ A)
0 if p ∈ (Ar \ A)c .We immediately dedue

R(f) =

∫

Ω |∇f |2g dVolg
∫

Ω f2 dVolg
≤

1

r2

µ(Ar \ A)

µ(A)
.

�



8 BRUNO COLBOIS AND DANIEL MAERTENProof of Theorem 1.3. As already said, we apply Corollary 2.3: let k ∈ N
∗ and set

N = 2k. As the volume of the r�balls uniformly tends to 0 (see assumption (H2)), thereexist r > 0 with r small enough so that(3.1) 2C(r)µ(B(x, r)) ≤ α :=
V

4C(r)k
,holds for every x ∈ M . Corollary 2.3 gives the existene of 2k measurable subsets A1, ...A2kof measure µ(Ai) ≥ V

4C(r)k with d(Ai, Aj) ≥ 3r if i 6= j. In partiular, the orrespondingsets Ar
i and Ar

j are also disjoint.We an now apply the onstrution of Lemma 3.1 and we get an H1(Ω)-orthogonal familyof 2k test funtions (fj)
2k
j=1, of disjoint supports and whose Rayleigh quotient satis�es

R(fi) ≤
1

r2

µ(Ar
i \ Ai)

µ(Ai)
.At this point, Corollary 2.3 does not give any ontrol on µ(Ar

i ). Let
Q = ♯

{

i ∈ {1, ..., 2k} : µ(Ar
i ) ≥

V

k

}

.As Vol(Ω, g) = V , we already see that Q ≤ k, so that for at least k of these 2k subsets
A1, ..., A2k , we have µ(Ar

i ) ≤
V
k . We hoose the orresponding funtions as test funtions.For suh a funtion f , we have, as µ(Ar

i \ Ai) ≤
V
k and µ(Ai) ≥ α = V

4C(r)k , that(3.2) R(f) ≤
1

r2

V/k

V/4C(r)k
=

4C(r)

r2
.Our aim is now to prove an upper bound of the kind

λk(g) ≤ An + Bn

(
k

V

)2/n

.Let ω′
n > 0 the positive onstant suh that µ (B(x, r)) ≤ ω′

nrn for radius r ≤ 1 in thehyperboli spae of urvature −1. We then de�ne the integer k0 =
[

V
8C(1)2ω′

n

]

+ 1 (remarkthat it strongly depends on the volume) and for every k ≥ k0, we set
rk =

(
V

k

1

8C(1)2ω′
n

)1/n

.Clearly, rk ≤ 1 and (3.1) holds, sine by de�nition 8C(rk)
2µ(B(x, rk)) ≤ 8C(1)2ω′

nrn
k = V

k .Our Inequality (3.2) now reads as
∀k ≥ k0 λk ≤

4C(1)

r2
k

= 4C(1)
(

8C(1)2ω′
n

)2/n
(

k

V

)2/n

.Now if k < k0, then we obviously have λk ≤ λk0
, so that we straightly obtain(3.3) ∀k ∈ N

∗ λk ≤ λk0
+ Bn

(
k

V

)2/n

,where we have set Bn := 4C(1)
(

8C(1)2ω′
n

)2/n. The last thing to do is to estimate thepartiular eigenvalue λk0
.1) If k0 = 1, then λk0

= λ1 = 0 and we get Inequality (1.2), with An = 0.



EIGENVALUES ESTIMATES FOR NEUMANN 92) On the ontrary, if k0 ≥ 2, then we dedue V
8C(1)2ω′

n
< k0 ≤ 2 V

8C(1)2ω′

n
. We anapply Inequality (3.3) with k = k0, whih implies

λk0
≤

4C(1)

r2
k0

= 4C(1)22/n ,and then Inequality (3.3) is nothing but Inequality (1.2) with An = 4C(1)22/n,
Bn = 4C(1)

(

8C(1)2ω′
n

)2/n and a = 1.
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