Geometric Invariant Theory and Generalized Eigenvalue Problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Geometric Invariant Theory and Generalized Eigenvalue Problem

Résumé

Let $H$ be a connected reductive subgroup of a complex connected reductive group $G$. Fix maximal tori and Borel subgroups of $H$ and $G$. Consider the pairs $(V,V')$ of irreducible representations of $H$ and $G$ such that $V$ is a submodule of $V'$. We are interested in the cone $LR(G,H)$ generated by the pairs of dominant weights of such a pair of representations. Our main result gives a minimal set of inequalities describing $LR(G,H)$ as a part of the dominant chamber. In way, we obtain results about the faces of the Dolgachev-Hu's $G$-ample cone and variations of this cone.
Fichier principal
Vignette du fichier
eigen.pdf (451.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00142075 , version 1 (17-04-2007)
hal-00142075 , version 2 (07-11-2007)
hal-00142075 , version 3 (02-03-2009)

Identifiants

Citer

Nicolas Ressayre. Geometric Invariant Theory and Generalized Eigenvalue Problem. 2007. ⟨hal-00142075v2⟩
168 Consultations
379 Téléchargements

Altmetric

Partager

More