Geometric Invariant Theory and Generalized Eigenvalue Problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Geometric Invariant Theory and Generalized Eigenvalue Problem

Résumé

Let $H$ be a connected reductive subgroup of a complex semi-simple group $G$. We are interested in the set of pairs $(\mu,\nu)$ of dominant characters for $G$ and $H$ such that $V_\mu \otimes V_\nu$ contains nonzero $H$-invariant vectors. This set of pairs $(\mu,\nu)$ generates a convex cone $C$ in a finite dimensional vector space. Using methods of variation of quotient in Geometric Invariant Theory, we obtain a list of linear inequalities which characterize $C$. This list is a generalization of the list that Belkale and Kumar obtained in the case when $G=H^s$. Moreover, we prove that this list in no far to be minimal (and really minimal in the case when $G=H^s$). We also give a description of some lower faces of $C$; if $G=H^s$ these description gives an application of the Belkale-Kumar product on the cohomology group of all the projective $G$-homogeneous spaces. Some of the results are more general than in the abstract and are obtained in the general context of Geometric Invariant Theory.
Fichier principal
Vignette du fichier
kb.pdf (393.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00142075 , version 1 (17-04-2007)
hal-00142075 , version 2 (07-11-2007)
hal-00142075 , version 3 (02-03-2009)

Identifiants

Citer

Nicolas Ressayre. Geometric Invariant Theory and Generalized Eigenvalue Problem. 2007. ⟨hal-00142075v1⟩
168 Consultations
379 Téléchargements

Altmetric

Partager

More