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Abstract

Let G be a connected reductive subgroup of a complex semi-simple
group Ĝ. We are interested in the set of pairs (ν̂, ν) of dominant
characters for Ĝ and G such that Vν̂ ⊗Vν contains nonzero G-invariant
vectors. This set of pairs (ν̂, ν) generates a convex cone C in a finite
dimensional vector space. Using methods of variation of quotient in
Geometric Invariant Theory, we obtain a list of linear inequalities which
characterize C. This list is a generalization of the list that Belkale and
Kumar obtained in the case when Ĝ = Gs. Moreover, we prove that
this list in no far to be minimal (and really minimal in the case when
Ĝ = Gs). We also give a description of some lower faces of C; if Ĝ = Gs

these description gives an application of the Belkale-Kumar product ⊙0

on the cohomology group of all the projective G-homogeneous spaces.
Some of the results are more general than in the abstract and are
obtained in the general context of Geometric Invariant Theory.

1 Introduction

Let G be a connected reductive group acting algebraically on a projective
variety X, both defined over an algebraically closed field K of character-
istic zero. Geometric Invariant Theory (GIT) associates to any ample G-
linearized line bundle L on X the following open subset Xss(L) of X:

Xss(L) =
{

x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0
}

.

The points of Xss(L) are said to be semistable for L. The problem studied in
this paper is to characterize the set of the L’s such that Xss(L) is not empty.

Let us make the question more precise. The set of G-linearized line
bundles on X forms an abelian group denoted by PicG(X). Set PicG(X)Q =
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PicG(X)⊗Z Q. Let Λ be a freely finitely generated subgroup of PicG(X); ΛQ

be the vector subspace of PicG(X)Q spanned by Λ. Note that Λ is canonically
embedded in ΛQ. The ample G-linearized elements of Λ generate a convex
cone denoted by Λ+

Q which is open in ΛQ. Note that for all L ∈ Λ+
Q, there

exists a positive integer n such that L⊗n is an ample G-linearized line bundle
on X in Λ. Since, Xss(L⊗n) = Xss(L) for all positive integer n, one can
define Xss(L) for any L ∈ Λ+

Q. We set:

CG
Λ (X) := {L ∈ Λ+

Q : Xss(L) is not empty}.

By [DH98] (see also [Res00]), CG
Λ (X) is a closed convex polyhedral cone in

Λ+
Q; that is, is defined as a part of Λ+

Q by finitely many large linear inequal-
ities. Our aim is to study the geometry of this cone (called the G-ample
cone) and these inequalities.

Let us explain our results in this general setting. Let λ be a one pa-
rameter subgroup of G, P (λ) be the associated parabolic subgroup and C
be an irreducible component of its fixed points. Consider the set C+ of the
x ∈ X such that limt→0 λ(t)x belongs to C. The pair (C, λ) is said to be
well covering if the natural morphism G×P (λ) C+ −→ X induces an isomor-
phism onto an open subset of X intersecting C. In the classical numerical
criterion of Hilbert-Mumford, one associates a morphism PicG(X) −→ Z,
L 7−→ µL(C, λ) to the pair (C, λ) (see Sections 4.2 and 7.2).

A direct application of a result of Kirwan (see Proposition 4) about the
Hilbert-Mumford numerical criterion gives us the first description of CG

Λ (X):

Proposition 1.1 We assume that X is normal.
Then, the cone CG

Λ (X) is the set of the L ∈ Λ+
Q such that for all well

covering pair (C, λ), we have µL(C, λ) ≤ 0.

Note that, since conjugated one parameter subgroups are ”equivalent”
one can easily improve this result (see also Proposition 8). Proposition 1.1
implies that the well covering pairs parametrize the faces of codimension one
of CG

Λ (X). A natural question occur: What pairs (C, λ) give really faces of
codimension one of CG

Λ (X) ? This is one of the two main questions studied
here.

If f is a linear form on E such that f|CG
Λ (X) ≥ 0 then the set of x’s in

CG
Λ (X) such that f(x) = 0 is called a face of CG

Λ (X). Using the notion of
generic closed isotropy or generic closed orbit due to D. Luna, in Theorem 6,
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we associate two invariants to any face of CG
Λ (X).

Some particular cases are specially interesting. Indeed, assume that the
variety X equals Y × G/B, for a G-variety Y . Let L be an ample G-
linearized line bundle on Y . Let Λ be the subgroup of PicG(X) generated
by the pullback of L and the pullbacks of the G-linearized line bundles on
G/B. Then, CG

Λ (X) is a cone over the intersection of the open dominant
chamber and the moment polytope P (Y,L) defined in [Bri99]; so, the faces
of CG

Λ (X) correspond bijectively to the faces of P (Y,L) which intersect the
open chamber.

We obtain more precise results in the case X = Y ×G/B. For example,
Proposition 11 improves Proposition 1.1 by limiting the list of useful covering
pairs; that is, it adds a necessary condition for the pair (C, λ) giving a face
of codimension one.

Theorem 7 describes CG
Λ (X) if X = Y ×G/B with Y smooth and if Λ is

abundant (see Section 8.1). The first assertion of this theorem shows that
well covering pairs parametrizes all the faces of CG

Λ (X); and, not only those
of codimension one. The second one gives a inductive way to decides if a
given pair (C, λ) gives a face of CG

Λ (X) and what is its dimension.

A specially interesting case in when X = Ĝ/B̂ × G/B, where Ĝ is a
semi-simple group containing G. Now, we assume that Λ = PicG(X). Then,

the closure C
G
Λ(X) of the cone CG

Λ (X) is the cone studied by Berenstein and
Sjammar in [BS00]. This cone as a very simple interpretation in terms of
the problem of restricting the representations of Ĝ to G (see Lemma 6).

Two improvements of Theorem 7 are obtained in this case. Firstly, we
obtain a simple sufficient condition in Theorem 8 for a covering par (C, λ)
giving a face of given codimension. Moreover, the set of covering pairs is
easy to describe in terms of cohomology (see Theorem 9). These results
allows us to obtain Theorem 8: in the first assertion, we give a list of in-
equalities which determine CG

Λ (X). In the second assertion, we give a list of

faces of C
G
Λ(X) which the dimension is determined. Conversely, in the last

assertion, we prove that any face of CG
Λ (X) (that is, face of C

G
Λ(X) which

intersects Λ+
Q) is in the above list.

The case when Ĝ = Gs and G is diagonally embedded in Ĝ is particularly

interesting. Indeed, the cone C
G
Λ(X) has numerous interpretations in this

case (see [Ful00]), and its study began with Weyl (see [Wey49]). Recently
Belkale and Kumar defined in [BK06] a new product ⊙0 on the cohomology

3



groups of the flag varieties. This product allows to characterize the well
covering pairs (which is a generalization of L-movability of Belkale and Ku-
mar) in a very beautiful manner. Moreover, in [MR04], P.L. Montagard and

N.R. obtain results on the faces of C
G
Λ(X) which do not intersect Λ+

Q . These
results allow us to obtain Theorem 11 in which we prove that all the equa-
tions obtained by Belkale and Kumar are necessary. These equations are
parametrized by a condition expressed with the product ⊙0 in H∗(G/P, Z)
for the maximal parabolic subgroups P of G. The product ⊙0 in H∗(G/P, Z)
for lower parabolic subgroups P of G is used to describe the lower faces of

C
G
Λ (X) and CG

Λ (X).

2 General notation and definitions

The base field K is algebraically closed and of characteristic zero. The
multiplicative group of K will be denoted by K∗. All the varieties will be
quasiprojective.
About Groups. All the algebraic groups will be affine. Let G be an
algebraic group and H be a closed subgroup of G. We set:
G◦ the neutral component of G,
X(G) the group of characters that is the homomorphisms from G on K∗,
X∗(G) the set of one parameter subgroups of G,
NG(H) the normalizer of H in G,
GH the centralizer of H in G,
g, t . . . the Lie algebra of G, T . . .

About Varieties. Let X be a variety and x ∈ X. Let L be a line bundle
on X and Y be a locally closed subvariety of X. Let f : X −→ Z be a
morphism between varieties. We denote:
TxX the Zariski tangent of X at x,
Txf : TxX −→ TxZ the tangent map of f at x,

Y the closure of Y in X,
Lx the fiber in L over x,
L|Y the restriction of L to Y ,

H◦(X,L) the set of regular sections of the line bundle L,

If X is smooth of dimension n and Z smooth, we set:
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T (X) the tangent bundle of X,
Det(X) =

∧n T (X) the determinant bundle of X,
T (f) : T (X) −→ T (Y ) the tangent map to f ,

it is a morphism of vector bundles,
Detf : Det(Y ) −→ Det(Z) the determinant of Tf ,

it is a morphism of line bundles.

About G-Varieties. Let G be an algebraic group. A variety X endowed
with an algebraic action of G will be called a G-variety. Given a G-variety
X and a point x in X, we set:
G.x the orbit of x by G,
Gx the stabilizer of x in G,
XG the set of fixed point of X,
NG(Y ) the set of g’s in G such that g.Y ⊆ Y , where Y ⊂ X,
GY the subgroups of the g ∈ G such that g.y = y for all y ∈ Y ,
Xss(L) the set semistable points for L,
πL the quotient morphism from Xss(L) onto Xss(L)//G.

About Tori. Let T be a torus, that is an algebraic group isomorphic to
(K∗)r, for some positive integer r. For λ ∈ X∗(Γ) and χ ∈ X(Γ) there
exists a unique integer < λ,χ > such that χ ◦ λ(t) = t<λ,χ> for all t ∈ K∗.
Moreover, X∗(Γ) and X(Γ) are free abelian groups of rank r; and, < ·, · > :
X∗(Γ) × X(Γ) is a perfect paring.

If V is a T -module, StT(V) denote the set of χ ∈ X(T ) such that there
exists a non zero vector v ∈ V such that for all t ∈ T , t.v = χ(t)v. We also
set: Vχ = {v ∈ V : t.v = χ(t)v ∀χ ∈ T}. We have:

V =
⊕

χ∈StT(V)

Vχ.

About reductive groups and root systems Let G be a reductive group,
B be a Borel subgroup of G and T be a maximal torus of B. Let I be a
subset of simple roots. Let λ be a one parameter subgroup of T . We set:
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W the Weyl group of (G,T ),
R the set of roots of G for T ,
R+ the set of positive roots for B,
ρ the halt sum of the positive roots,
α∨ the coroot associated to the root α,
ωα the fundamental weight associated to the simple root α,
ωα∨ the fundamental coweight associated to the simple coroot α∨,
P (I) the standard parabolic subgroup associated to I,
W (I) the Weyl group of the standard Levi of P (I),
Rλ the set of roots of Gλ for T ,
R+

λ = R+ ∩ Rλ,
ρλ the half sum the elements of R+

λ ,
Wλ the Weyl group of Gλ,
W λ the elements of W which are of minimal length

in their class in W/Wλ,

The one parameter subgroup λ is said to be dominant if < λ,α >≥ 0, for
all simple root α. Let t+ be the convex cone generated by the tangent vectors
to the dominant one parameter subgroups of T . This cone is generated by
the ωα∨ for the simple roots α. An important property for us, is that every
conjugacy class of one parameter subgroup of G contains a unique dominant
one parameter subgroup of T .
About Convex cones. Let E be a rational finite dimensional vector space
E. Let C be a convex cone of E that is that for all v,w ∈ C and for all non
negative rational numbers α, β, αv + βw ∈ C. We set:
< C > the subspace spanned by C,
dim(C) the dimension of C that is the dimension of < C >,
C◦ the relative interior of C that its interior in < C >.

Let C1 be a convex cone in E. A closed convex rational and polyhedral
cone C in C1 is a part of C1 defined as a part of C1 by finitely many large
linear and rational inequalities. If f is a linear form on E such that f|C ≥ 0
then the set of x’s in C such that f(x) = 0 is called a face of C.

3 Preliminaries on parabolic fiber products

In this section we collect some useful properties of the fiber product. Let G
be a reductive group and P be a parabolic subgroup of G.
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3.1 Construction

Let Y be a P -variety. Consider over G × Y the action of G × P given by
the formula (with obvious notation):

(g, p).(g′, y) = (gg′p−1, py).

Since the quotient map G −→ G/P is a Zariski-locally trivial principal P -
bundle; one can easily construct a quotient G×P Y of G × Y by the action
of {e} × P . The action of G × {e} induces an action of G on G ×P Y .
Moreover, the first projection G × Y −→ G induces a G-equivariant map
G ×P Y −→ G/P which is a locally trivial fibration with fiber Y .

The class of a pair (g, y) ∈ G×Y in G×P Y is denoted by [g : y]. If Y is
a P -stable locally closed subvariety of a G-variety X, it is well known that
the map

G ×P Y −→ G/P × X
[g : y] 7−→ (gP, gy)

is an isomorphism onto the set of the (gP, x) ∈ G/P×X such that g−1x ∈ Y .

Let ν be a character of P . If Y is the field K endowed with the action of
P defined by p.τ = ν(p−1)τ for all τ ∈ K and p ∈ P , G×P Y is a G-linearized
line bundle on G/P . We denote by Lν this element of PicG(G/P). Actually,
the map X(P ) −→ PicG(G/P), ν 7−→ Lν is an isomorphism.

Let B be a Borel subgroup of G contained in P , and T be a maximal
torus contained in B. Then, X(P ) identifies with a subgroup of X(T ) which
contains dominant weights. For ν ∈ X(P ), Lν is generated by its sections if
and only if it has non zero sections if and only if ν is dominant. Moreover,
H0(G/P,Lν) is the simple G-module of heights weight ν. For ν dominant,
Lν is ample if and only if ν cannot be extended to a subgroup of G bigger
than P .

3.2 Line bundles

We are now interested in the G-linearized line bundles on G ×P Y .

Proposition 1 With above notation, we have:

1. The map L 7−→ G ×P L defines a morphism

e : PicP(Y) −→ PicG(G ×P Y).
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2. The map ι : Y −→ G ×P Y, y 7−→ [e : y] is a P -equivariant immer-
sion. We denote by ι∗ : PicG(G ×P Y) −→ PicP(Y) the associated
restriction homomorphism.

3. The morphisms e and ι∗ are the inverse one of each other; in partic-
ular, they are isomorphisms.

4. For any L ∈ PicG(G ×P Y), the restriction map from H0(G ×P Y,L)
to H0(Y, ι∗(L)) induces a linear isomorphism

H0(G ×P Y,L)G ≃ H0(Y, ι∗(L))P .

Proof. Let M be a P -linearized line bundle on Y . Since G×M −→ G×P M
is a categorical quotient, we have the following commutative diagram:

G ×M - G ×P M

G × Y
?

- G ×P Y.

p
?

Since G −→ G/P is locally trivial, the map p endows G ×P M with a
structure of line bundle on G×P Y . Moreover, the action of G on G×P M
endows this line bundle with a G-linearization. This proves Assertion 1.
The second one is obvious.

By construction, the restriction of G ×P M to Y is M. So, ι∗ ◦ e is the
identity map. Conversely, let L ∈ PicG(G ×P Y). Then, we have:

e ◦ ι∗(L) ≃ {(gP, l) ∈ G/P × L : g−1l ∈ L|Y }.

The second projection induces an isomorphism from e ◦ ι∗(L) onto L. This
ends the proof of Assertion 3.

The map H0(G ×P Y,L)G −→ H0(Y, ι∗(L))P is clearly well defined and
injective. Let us prove the surjectivity. Let σ ∈ H0(Y, ι∗(L))P . Consider the
morphism

σ̂ : G × Y −→ G ×P L
(g, y) 7−→ [g : σ(y)].

Since σ is P -invariant, so is σ̂; and σ̂ induces a section of G×P L over G×P Y
which is G-invariant and extends σ. �
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4 Numerical criterion of Hilbert-Mumford

In the paper, we use classical results in Geometric Invariant Theory (GIT)
about the numerical criterion of Hilbert-Mumford. In this section, we present
these results and give some useful complements. Let G be a connected re-
ductive group acting on a irreducible projective algebraic variety X.

4.1 The quotient map

As in the introduction, for any ample G-linearized line bundle L on X, we
set

Xss(L) =
{

x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0
}

.

Then, Xss(L) is open in X, and there exists a categorical quotient:

π : Xss(L) −→ Xss(L)//G,

such that Xss(L)//G is a projective variety and π is affine. A point x ∈
Xss(L) is said to be stable if Gx is finite and G.x is closed in Xss(L). Then,
for all stable point π−1(π(x)) = G.x; and the set Xs(L) of stable points is
open in X. A point x which is not semistable is said to be unstable; and,
we set Xus(L) = X − Xss(L).

4.2 The functions µ•(x, λ)

As in [MFK94], we denote by PicG(X) the group of G-linearized line bundles
on X. Let L ∈ PicG(X). Let x be a point in X and λ be a one parameter
subgroup of G. Since X is complete, limt→0 λ(t)x exists; let x0 denote this
limit. The image of λ fixes x0 and so the group k× acts via λ on the fiber
Lx0. This action defines a character of k×, that is, an element of Z denoted
by µL(x, λ). One can immediately prove that the numbers µL(x, λ) satisfy
the following properties:

1. µL(g · x, g · λ · g−1) = µL(x, λ) for any g ∈ G;

2. for fixed x and λ, the map L 7→ µL(x, λ) is a homomorphism from
PicG(X) to Z;

3. for any G-variety Y and for any G-equivariant morphism f : Y −→ X,
µf∗(L)(y, λ) = µL(f(y), λ), where y ∈ Y .
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The numbers µL(x, λ) are used in [MFK94] to give a numerical criterion
for stability with respect to an ample G−linearized line bundle L:

x ∈ Xss(L) ⇐⇒ µL(x, λ) ≤ 0 for all one parameter subgroups λ,
x ∈ Xs(L) ⇐⇒ µL(x, λ) < 0 for all non trivial λ.

4.3 Definition of the functions M•(x)

Let T be a maximal torus of G. We denote the real vector space X∗(T )⊗R

by X∗(T )R. The Weyl group W of T acts linearly on X∗(T )R. Since W is
finite, there exists a W -invariant Euclidean norm ‖ · ‖ on X∗(T )R. On the
other hand, if λ ∈ X∗(G) there exists g ∈ G such that g · λ · g−1 ∈ X∗(T ).
Moreover, if two elements of X∗(T ) are conjugate by an element of G, then
they are by an element of the normalizer of T (see Lemma 2.8 in [MFK94]).
This allows us to define the norm of λ by ‖λ‖ = ‖g · λ · g−1‖.

Let L ∈ PicG(X). We can now introduce the following notation:

µL(x, λ) = µL(x,λ)
‖λ‖ , ML(x) = sup

λ∈X∗(G)
µL(x, λ).

Actually, we will see in Corollary 1 that ML(x) is finite.

4.4 M•(x) for a torus action

In this subsection we assume that G = T is a torus. Let z be a point
of X fixed by T . The action of T on the fiber Lz over the point z in the
T -linearized line bundle L define a character χL

z of T ; we obtain a morphism

χ•
z : PicT(X) −→ X(T).

For any point x in X, we denote by PL
T the convex hull in X(T )R of the

characters −χL
z for z ∈ T.x

T
.

The following proposition is an adaptation of a result of L. Ness and
gives a pleasant interpretation of the number ML(x):

Proposition 2 Let L be an ample T -linearized line bundle on X. With the
above notation, we have:

1. The point x is unstable if and only if 0 does not belong to PL
T (x). In

this case, ML(x) is the distance from 0 to PL
T (x).

2. If x is semistable, the opposite of ML(x) is the distance from 0 to the
boundary of PL

T (x).
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3. There exists λ ∈ X∗(T ) such that µL(x, λ) = ML(x). If moreover λ is
indivisible, we call it an adapted one parameter subgroup for x.

4. If x is unstable, there exists a unique adapted one parameter subgroup
for x.

Proof. Since L is ample, there exist a positive integer n and a T -module V
such that X can be equivariantly embedded in P(V ) in such a way L⊗n is
the restriction of O(1) to X. Since χ•

z is a morphism, we have: PL⊗n

T (x) =

nPL
T (x). Moreover, µL⊗n

(x, λ) = nµL(x, λ), for all x and λ; so, ML⊗n
(x) =

nML(x). As a consequence, it is sufficient to prove the proposition for L⊗n;
in other words, we may assume that n = 1.

Let us recall that:
V =

⊕

χ ∈ StT(V)

Vχ.

Let x ∈ X and v ∈ V such that [v] = x. There exist unique vectors
vχ ∈ Vχ such that v =

∑

χ vχ. Let Q be the convex hull in X(T )R of the
χ’s such that vχ 6= 0. It is well known (see [Oda88]) that the fixed point of
T in T.x are exactly the [vχ]’s with χ vertex of Q. One easily deduces that
Q = PL

T (x).
Now, the proposition is a direct consequence of [Nes78]. �

4.5 Properties of M•(x)

The following very useful result of Ness relies the function M•(x) for G to
similar ones for a maximal torus of G.

Lemma 1 (Lemma 3.4 in [Nes78]) Let L be an ample G-linearized line
bundle and T be a maximal torus of G. We denote by rT : PicG(X) →
PicT (X) the partial forgetful map.

Then, for all x ∈ X, the set of the numbers MrT (L)(g · x) for g ∈ G is
finite and ML(x) = maxg∈G MrT (L)(g · x).

An indivisible one parameter subgroup λ of G is said to be adapted for x
and L if and only if µL(x, λ) = ML(x). Denote by ΛL(x) the set of adapted
one parameter subgroups for x.

Corollary 1 1. The numbers ML(x) are finite (even if L is not ample,
see Proposition 1.1.6 in [DH98]).

2. If L is ample, ΛL(x) is not empty.

11



Now, we can reformulate the numerical criterion for stability: if L is
ample, we have

Xss(L) = {x ∈ X : ML(x) ≤ 0}, Xs(L) = {x ∈ X : ML(x) < 0}.

The following proposition is a result of finiteness for the set of functions
M•(x). It will be used to understand how Xss(L) depends on L (see Propo-
sition 5).

Proposition 3 When x varies in X, one obtains only a finite number of
functions M•(x) : PicG(X) −→ R.

Proof. Let T be a maximal torus of G. Consider the partial forgetful
map rT : PicG(X) −→ PicT(X). Since M•(x) = maxg∈G M rT (•)(g.x), it is
sufficient to prove the proposition for the torus T .

If z and z′ belong to the same irreducible component C of XT , the
morphisms χ•

z and χ•
z′ are equal: we denote by χL

C this morphism.
By Proposition 2, ML(x) only depends on PL

T (x), which only depends
on the set of irreducible components of XT which intersects T.x. Since, XT

has finitely many irreducible components, the proposition follows. �

Remark. Proposition 3 implies that the set possible open subsets of X
which can be realized as Xss(L) for some ample G-linearized line bundle
L on X is finite. This is a result of Dolgachev and Hu (see Theorem 3.9
in [DH98]; see also [Sch03]).

4.6 Adapted one parameter subgroups

To describe ΛL(x), we need some additional notation. To the one parameter
subgroup λ of G, we associate the parabolic subgroup (see [MFK94]):

P (λ) =
{

g ∈ G such that lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.

The unipotent radical of P (λ) is

U(λ) =
{

g ∈ G such that lim
t→0

λ(t).g.λ(t)−1 = e
}

.

Moreover, the centralizer Gλ of the image of λ in G is a Levi subgroup of
P (λ). For p ∈ P (λ), we set p = limt→0 λ(t).p.λ(t)−1. Then, we have the
following short exact sequence:

1 - U(λ) - P (λ)
p 7→ p- Gλ - 1.

12



For g ∈ P (λ), we have µL(x, λ) = µL(x, g·λ·g−1). The following theorem
due to G. Kempf is a generalization of the last assertion of Proposition 2.

Theorem 1 (see [Kem78]) Let x be an unstable point for an ample G-
linearized line bundle L. Then:

1. All the P (λ) for λ ∈ ΛL(x) are equal. We denote by PL(x) this sub-
group.

2. Any two elements of ΛL(x) are conjugate by an element of PL(x).

We will also use the following theorem of L. Ness.

Theorem 2 (Theorem 9.3 in [Nes84]) Let x and L be as in the above theo-
rem. Let λ be an adapted one parameter subgroup for x and L. We consider
y = limt→0 λ(t) · x. Then, λ ∈ ΛL(y) and ML(x) = ML(y).

4.7 Stratification of X induced from L

If d > 0 and < τ > is a conjugacy class of one parameter subgroups of G,
we set:

SL
d,<τ> =

{

x ∈ X such that ML(x) = d and ΛL(x)∩ < τ > 6= ∅
}

.

If T is the set of conjugacy classes of one parameter subgroups, the previous
section gives us the following decomposition of X:

X = Xss(L) ∪
⋃

d>0, <τ>∈T

SL
d,<τ>.

W. Hesselink showed in [Hes79] that this union is a finite stratification by
G-stable locally closed subvarieties of X. We will call it the stratification
induced from L.

To describe the geometry of these stratum, we need additional notation:

ZL
d,<τ> := {x ∈ SL

d,<τ> : λ(K∗) fixes x for some λ ∈< τ >}.

For λ ∈< τ >, we set:

SL
d,λ := {x ∈ SL

d,<τ> : λ ∈ ΛL(x)},

and
ZL

d,λ := {x ∈ SL
d,λ : λ(k∗) fixes x}.
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We have the map

pλ : SL
d,λ −→ ZL

d,λ, x 7−→ lim
t→0

λ(t).x.

The proof of the following result can be found in [Kir84], Section 1.3.

Proposition 4 1. SL
d,λ = {x ∈ X : limt→0 λ(t).x ∈ ZL

d,λ}.

2. for each connected component ZL
d,λ,i of ZL

d,λ the restriction of the map

pλ over ZL
d,λ,i is a vector bundle with zero section equal to ZL

d,λ,i, as-
suming in addition that X is smooth;

3. SL
d,λ is P (λ)-invariant, ZL

d,λ,i is Gλ-invariant; moreover, for p ∈ P (λ)

and x ∈ SL
d,λ we have pλ(p.x) = p.pλ(x);

4. there is a surjective finite morphism G ×P (λ) SL
d,λ −→ SL

d,<τ>. It is

bijective if d > 0 and an isomorphism if SL
d,<τ> is normal.

4.8 Some technical results

Let L be an ample G-linearized line bundle on X. A point x ∈ Xss(L) is
said to be semisimple for L if its G-orbit is closed in Xss(L). The following
lemma is easy and well known:

Lemma 2 Let L be an ample G-linearized line bundle on X and x ∈ X be
a point semisimple for L.

Then, the restriction of L to G.x is of finite order.

Proof. Let us recall that for any L ∈ PicG(G.x), the action of Gx on the
fiber over x in L determines a character χL

x of Gx. Moreover, the map
L 7→ χL

x is an injective homomorphism.
Now, let L be an ample G-linearized line bundle on X such that the

character χL
x is of infinite order. To obtain the lemma, it is sufficient to

prove that x is unstable for L. Let σ be a G-invariant section of L⊗n for
some n > 0. Then σ(x) is a Gx fix point of the fiber in L⊗n over x. Since,
n.χL

x is non trivial, σ(x) must be zero. So, x is unstable. �

The following result is Lemma 3.1 in [Res00]. We recall its statement
because it will be often used.
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Lemma 3 Let L be an ample G-linearized line bundle on X and x ∈ X
be a point semistable for L. Let λ be a one parameter subgroup of G. Set
z = limt→0 λ(t).x.

If µL(x, λ) = 0 then z is semistable for L.

The first using of Lemma 3 is the

Lemma 4 Let L be an ample G-linearized line bundle on X. Let T be a
maximal torus of G and x be a semistable point for L.

If 0 belongs to a face of PL
T (x) of codimension c in X(T )R then there

exists a point z in T.x ∩ Xss(L) such that the dimension of Tz is c.

Proof. Let F be a face of PL
T (x) of codimension c and containing 0. There

exists a one parameter subgroup λ of T such that z = limt→0 λ(t).x satisfies
PL

T (z) = F . Since F has codimension c the stabilizer Tz has dimension c.
Since F contains 0, µL(z, λ) = 0. So, Lemma 3 shows that z is semistable

for L. �

Proposition 5 Let L0 be an ample G-linearized line bundle on X in Λ and
x be a point semisimple for L0. Set

Kx := {L ∈ ΛQ | L|G.x is of finite order}.

Then, there exists an open neighborhood Ω of L0 in Kx such that x is
semistable for any L ∈ Ω.

Proof. Let T be a maximal torus of G. We have to prove that there exists
an open neighborhood Ω of L0 in Kx such that for all g ∈ G, M rT (•)(g.x) ≤ 0
on Ω.

Using Proposition 3, one easily checks that there exists an open neigh-
borhood Ω′ of L0 in ΛQ such that M rT (•)(g.x) < 0 on Ω′ if M rT (L0)(g.x) < 0.

Let us now fix g ∈ G such that M rT (L0)(g.x) = 0. Let F be the face
of PL0

T (g.x) containing 0 in its relative interior. Let λ be a one parameter

subgroup of T such that the point z = limt→0 λ(t).g.x satisfies PL0
T (z) = F .

By Lemma 3, z is semistable for L0; and, since x is semisimple z ∈ G.x.
Let L ∈ Kx. The group T ◦

z acts trivially on the fiber Lz, and so on
all the fibers over T.z, and so on all the fibers over T.z. Therefore, PL

T (z)
is contained in the linear subspace F of X(T )R spanned by the characters
χ ∈ X(T ) trivial in restriction to T ◦

z .
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On the other hand, since 0 belongs to F , F is the linear subspace spanned
by F . Since 0 belongs to the relative interior of F , there exists an open
neighborhood Ωz of L0 in Kx such that

∀L ∈ Ωz M rT (L)(z) = 0 = M rT (L)(x).

We conclude by using again Proposition 3. �

5 Bialynicki-Birula cells

5.1 Bialynicki-Birula’s theorem

Let X be a complete G-variety. Let λ be a one parameter subgroup of G.
Let C be an irreducible component of Xλ. Since Gλ is connected, C is a Gλ

closed subvariety of X. We set:

C+ := {x ∈ X : lim
t→0

λ(t)x ∈ C}.

Then, C+ is a locally closed subvariety of X stable by P (λ). Moreover, the
map pλ : C+ −→ C, x 7−→ limt→0 λ(t)x is a morphism satisfying:

∀(l, u) ∈ Gλ × U(λ) pλ(lu.x) = lpλ(x).

Let x ∈ Xλ. We consider the natural action of K∗ induced by λ on
the Zariski tangent space TxX of X at x. We consider the following K∗-
submodules of TxX:

TxX>0 = {ξ ∈ TxX : limt→0 λ(t)ξ = 0},
TxX<0 = {ξ ∈ TxX : limt→0 λ(t−1)ξ = 0},
TxX0 = (TxX)λ, TxX≥0 = TxX>0 ⊕ TxX0 and TxX≤0 = TxX<0 ⊕ TxX0.

A classical result of Bialynicki-Birula (see [BB73]) is

Theorem 3 Assuming in addition that X is smooth, we have:

1. C is smooth and for all x ∈ C we have TxC = TxX0;

2. C+ is smooth and irreducible and for all x ∈ C we have TxC+ =
TxX≥0;

3. the morphism pλ : C+ −→ C induces a structure of vector bundle on
C with fibers isomorphic to TxX>0.
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5.2 Line bundles on C+

We will need some results about the line bundles on C+. Let L be a P (λ)-
linearized line bundle on C+. Since C is irreducible, the number µL(x, λ)
does not depend on x ∈ C+; we denote by µL(C, λ) this integer.

Proposition 6 We assume that X is smooth. Then, we have:

1. The restriction map PicP(λ)(C+) −→ PicGλ
(C) is an isomorphism.

Let L ∈ PicP(λ)(C+).

2. If µL(C, λ) 6= 0, H0(C,L|C)λ = {0}.

3. If µL(C, λ) = 0, the restriction map induces an isomorphism from

H0(C+,L)P (λ) onto H0(C,L|C)G
λ

. Moreover, for any σ ∈ H0(C+,L)P (λ),
we have:

{x ∈ C+ : σ(x) = 0} = pλ
−1({x ∈ C : σ(x) = 0}).

Proof. Since pλ is P (λ)-equivariant, for any M ∈ PicGλ

(C), p∗λ(M) is
P (λ)-linearized. Since pλ is a vector bundle, p∗λ(L|C) and L are isomorphic

as line bundles without linearization. But, X(P (λ)) ≃ X(Gλ), so the P (λ)-
linearizations must coincide; and p∗λ(L|C) and L are isomorphic as P (λ)-
linearized line bundles. Assertion 1 follows.

Assertion 2 is a direct application of Lemma 2.
Let us fix L ∈ PicP(λ)(C+) and denote by p : L −→ C+ the projection.

We assume that µL(C, λ) = 0. Let σ ∈ H0(C+,L)P (λ). We just proved that

L ≃ p∗λ(L|C) = {(x, l) ∈ C+ × L|C : pλ(x) = p(l)}.

Let p2 denote the projection of p∗λ(L|C) onto L|C .
For all x ∈ C+ and t ∈ K∗, we have:

σ(λ(t).x) =

(

λ(t).x, p2(σ(λ(t).x))

)

= λ(t).

(

x, p2(σ(x))

)

since σ is invariant,

=

(

λ(t).x, p2(σ(x))

)

since µL(C, λ) = 0.

We deduce that for all x ∈ C+, σ(x) = (x, σ(pλ(x))). Assertion 3 follows.
�
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6 Slice Etale Theorem

In this section, we fix an ample G-linearized line bundle L on the irreducible
projective G-variety X.

6.1 Semistability for normalizer and the centralizer of a sub-
group

We will use the following interpretation of a result of Luna:

Proposition 7 Let H be a reductive subgroup of G. Let C be an irreducible
component of XH . Then, the reductive groups (GH)◦ and NG(H)◦ act on
C.

Let x be a point in C. Then, the following are equivalent:

1. x is semistable for L.

2. x is semistable for the action of (GH)◦ on C and the restriction of L.

3. x is semistable for the action of NG(H)◦ on C and the restriction of
L.

Proof. Lemma 1.1. of [LR79] shows that (GH)◦ and NG(H)◦ are reductive.
Changing L by a positive power if necessary, one may assume that X in
contained in P(V ) where V is a G-module and L = O(1)|X . Let v ∈ V such

that [v] = x. Let us recall that in this case x ∈ Xus(L) if and only if G.v
contains 0.

Let χ be the character of H such that hv = χ(h)v for all h ∈ H.
If χ is of infinite order, so is its restriction to the connected center Z

of H. Then, Z.v = K∗v and 0 ∈ (GH)◦.v. In this case, x belongs to no
semistable set of the statement of the proposition.

Let us now assume that χ is of finite order. Changing L by a positive
power if necessary, one may assume that χ is trivial, that is H fixes v. In
this case, Corollary 2 and Remark 1 of [Lun75] show that

0 ∈ G.v ⇐⇒ 0 ∈ NG(H)◦.v ⇐⇒ 0 ∈ GH .v.

The proposition follows. �
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6.2 Closed orbits in General position

Consider the quotient π : Xss(L) −→ Xss(L)//G. For all ξ ∈ Xss(L)//G,
we denote by T (ξ) the unique closed orbit of G in π−1(ξ). We denote by
(Xss(L)//G)pr the set of ξ such that there exists an open neighborhood V
of ξ in Xss(L)//G such that the orbits T (ξ′) are isomorphic to T (ξ), for all
ξ′ ∈ V .

Since π is a gluing of affine quotients, some results on the actions of G on
affine variety remains true for Xss(L). For example, the following theorem
is a result of Luna and Richardson (see Section 3 of [LR79] and Corollary 4
of [Lun75] or Section 7 of [PV91]):

Theorem 4 With above notation, if X is normal, we have:

1. The set (Xss(L)//G)pr is a non empty open subset of Xss(L)//G. Let
H be the isotropy of a point in T (ξ) with ξ ∈ (Xss(L)//G)pr. The
group H has fixed points in T (ξ) for any ξ ∈ Xss(L)//G.

2. Let Y be the closure of π−1 ((Xss(L)//G)pr)
H in X. It is the union

of some components of XH . Then, H acts trivially on some positive
power L⊗n

|YF
of L|YF

. Moreover, the natural map

Y ss
F (L⊗n

|YF
)//(NG(H)/H) −→ Xss(L)//G

is an isomorphism.

A subgroup H as in Theorem 4 will be called a generic closed isotropy
of Xss(L). The conjugacy class of H which is obviously unique is called the
generic closed isotropy of Xss(L).

6.3 The principal Luna stratum

When X is smooth, the open subset (Xss(L)//G)pr is called the principal
Lana stratum and has very useful properties (see [Lun73] or [PV91]):

Theorem 5 (Luna) We assume that X is smooth. Let H be a generic
closed isotropy of Xss(L).

Then, there exists a H-module L such that for any ξ ∈ (Xss(L)//G)pr,
there exists point x in T (ξ) satisfying:

1. Gx = H;

2. the H-module TxX/Tx(G.x) is isomorphic to the sum of L and its fix
points, in particular, it is independent of ξ and x;
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3. for any v ∈ L, 0 belongs to the closure of H.v;

4. the fiber π−1(ξ) is isomorphic to G ×H L.

7 First properties of the G-ample cone

7.1 Definitions

Let us recall from the introduction that Λ is a freely finitely generated
subgroup of PicG(X) and ΛQ is the Q-vector space containing Λ as a lattice.
Moreover, the convex cone Λ+

Q generated by the ample elements of Λ is open

in ΛQ and for all L ∈ Λ+
Q, there exists a positive integer n such that L⊗n

is an ample G-linearized line bundle on X in Λ. Using this property, we
defined Xss(L) for any L ∈ Λ+

Q. The central object of this article is the
following G-ample cone:

CG
Λ (X) := {L ∈ Λ+

Q : Xss(L) is not empty}.

By [DH98] (see also [Res00]), CG
Λ (X) is a closed convex rational polyhedral

cone in Λ+
Q .

Two points L and L′ in CG
Λ (X) are said to be GIT-equivalent if Xss(L) =

Xss(L′). An equivalence class is simply called a GIT-class.
For x ∈ X, the stability set of x is the set of L ∈ Λ+

Q such that Xss(L)
contains x; it is denoted by ΩΛ(x). In [Res00], we have studied the geometry
of the GIT-classes and the stability sets with lightly different assumptions
(no Λ for example). However all the results and proofs of [Res00] remain
valuable here. In particular, there are only finitely many GIT-classes (see
also the remark in Section 4.5); and each GIT-class is the relative interior
of a closed convex polyhedral cone of Λ+

Q.

7.2 A first description of the G-ample cone

Here comes a central definition in this work:
Definition. Let λ be a one parameter subgroup of G and C be an irreducible
component of its fix points. Set C+ := {x ∈ X | limt→0 λ(t)x ∈ C}.

The pair (C, λ) is said to be well covering if the natural G-equivariant
map η : G ×P (λ) C+ −→ X induces an isomorphism from G ×P (λ) Ω onto
an open subset of X for an open subset Ω of C+ intersecting C.

Let us recall that µ•(C, λ) denote the common value of the µ•(x, λ), for
x ∈ C. Proposition 4 allows us to give a first description of the cone CG

Λ (X):
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Proposition 8 We assume that X is normal. Let T be a maximal torus of
G and B be a Borel subgroup containing T .

Then, the cone CG
Λ (X) is the set of the L ∈ Λ+

Q such that for all well
covering pair (C, λ) with a dominant one parameter subgroup λ of T we
have µL(C, λ) ≤ 0.

Proof. Let λ be a one parameter subgroup of G and C be an irreducible
component of its fix points such that the morphism η : G×P (λ)C

+ −→ X is

dominant. Let L ∈ CG
Λ (X). Since Xss(L) is a G-stable open subset of X and

η is dominant, Xss(L) intersects C+. Let x be a point in this intersection
and y = limt→0 λ(t).x. By the Mumford numerical criterion, µL(x, λ) ≤ 0.
But, µL(x, λ) = µL(y, λ) = µL(C, λ). We deduce that CG(X) is contained is
the part of Λ+

Q defined by the inequalities µL(C, λ) ≤ 0 of the proposition.

Conversely, let L ∈ Λ+
Q such that Xss(L) is empty.

When λ runs over the dominant one parameter subgroups of T , we obtain
only finitely many locally closed subvarieties of X of the form C+. Moreover,
we obtain finitely many parabolic subgroups P (λ). In particular, we can
chose a point x in X contained in no image of a non dominant morphism
G ×P (λ) C+ −→ X.

Moreover, we may assume that x belongs to the open stratum SL
d,<τ>

of Xus(L) = X. Let λ ∈ ΛL(x). Eventually, changing x by another point
of G.x, we may assume that λ is a dominant one parameter subgroup of
T . Let C denote the irreducible component of Xλ containing x. Since X is
normal, so is SL

d,<τ>; thus Assertion 4 of Proposition 4 shows that the pair

(C, λ) is well covering. But, µL(C, λ) = µL(x, λ) = d > 0. �

Remark. Proposition 8 asserts that any facet of CG
Λ (X) is obtained by in-

tersecting CG
Λ (X) with an hyperplane µ•(C, λ) = 0 for a well covering pair

(C, λ). In the sequence of this article, we will precise (with more assump-
tions) this result in two directions. Firstly, we will give a description of
the smaller faces of CG

Λ (X). Secondly, we are interested in kind of converse:
given (C, λ), what is the dimension of the intersection of the hyperplane
µ•(C, λ) = 0 and CG

Λ (X).

7.3 Faces of CG
Λ (X)

In this section we associate two invariants to a face F of CG
Λ (X).
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Theorem 6 Let F be a face of CG
Λ (X). Then, we have:

1. The generic closed isotropy of Xss(L) does not depends on the point L
in the relative interior of F . We call this isotropy the generic closed
isotropy of F .

Let us fix a generic closed isotropy H of F .

2. For any L ∈ F , H fixes points in any closed orbit of G in Xss(L).

3. The closure Y of

(

π−1
L ((Xss(L)//G)pr)

)H

in X does not depends on

a choice of a point L in the relative interior of F . Let YF denotes this
subvariety of XH ; it is the union of some components of XH .

4. Let L in the relative interior of F . Then, H acts trivially on some
positive power L⊗n

|YF
of L|YF

. Moreover, the natural map

Y ss
F (L⊗n

|YF
)//(NG(H)/H) −→ Xss(L)//G

is an isomorphism.

5. Set Y +
F := {x ∈ X : H.x ∩ YF 6= ∅}. Then G.Y +

F contains an open
subset of X.

6. For all L in the relative interior of F , YF contains stable points for
the action of NG(H)/H and the line bundle L⊗n

|YF
.

Proof. Let F be a GIT-class in F which has the same dimension as F . Let
L ∈ F . Let us fix a point x in π−1

F ((Xss(F )//G)pr) ∩ π−1
L ((Xss(L)//G)pr) .

Let O1 (resp. O2) be the unique closed orbit of G in G.x ∩ Xss(F ) (resp.
G.x ∩ Xss(L)). By Proposition 3.6 of [Res00] and since O1 is closed in
Xss(F ), ΩΛ(O1) is the face of ΩΛ(x) which contains F in its relative inte-
rior. So, our assumption on F implies that ΩΛ(O1) contains F ∩ ΩΛ(x). In
particular, O1 ⊂ Xss(L), and O2 ⊂ O1. It follows that the generic closed
isotropy of Xss(F ) is contained in those of Xss(L).

Let M be a point in the relative interior of F . Then, there exists F
and L as above such that M belongs to the convex hull of F ∪ L. With
the notation of the last paragraph, M belongs to the relative interior of
ΩΛ(O1). Now, Proposition 3.6 of [Res00] shows that O1 is closed in Xss(L).
Remembering that x is generic this prove that the generic closed isotropy of
Xss(L) and Xss(F ) coincide. Assertion 1 is proved.
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Moreover, we had that for any L ∈ F , the generic closed isotropy of L
contains H. Now, Assertion 2 follows from Theorem 4.

Let Y be the subvariety of XH of Assertion 3 for M. By Theorem 4, Y
satisfies Assertion 4. Moreover, G.Y + contains π−1

M ((Xss(M)//G)pr); and,
Assertion 5 is proved for Y .

Since π1 is affine Corollary 1 of [Lun75] shows that the NG(H)-orbit of

any element of

(

π−1
M ((Xss(M)//G)pr)

)H

is closed in Xss(M). By Propo-

sition 7, we can deduce Assertion 6 for Y and M.

Let ΩF (Y ) denote the set of L in F such that Y ss(L) is not empty. By
the numerical criterion of semistability ΩF (Y ) is closed in F . Moreover, by
Assertion 5, for all L ∈ ΩF(Y ), πL(Y ss(L)) is dense in Xss(L)//G. In par-
ticular, Y intersects π−1

L ((Xss(L)//G)pr). This ends the proof of Assertion 3
and of the proposition. �

8 Abundance

8.1 Definition and examples

We call a subgroup Γ′ of an abelian group Γ cofinite if Γ/Γ′ is finite. The fol-
lowing definition is an adaptation of those of Dolgachev and Hu (see [DH98]).

Definition. The subgroup Λ is said to be abundant if for any x in X such
that Gx is reductive, the image of the restriction Λ −→ PicG(G.x) is cofinite.

The main example of abundant subgroups comes from the case when
X = Y × G/B.

Proposition 9 Let X = Y ×G/B for a G-variety Y . Let π : X −→ G/B
denote the projection map and π∗ : PicG(G/B) −→ PicG(X) the associated
homomorphism.

Then, any subgroup Λ of PicG(X) containing the image of π∗ is abundant.

Proof. Let x = (y, gB/B) ∈ Y × G/B. Changing x by g−1x, we assume
that g = e. Let χ ∈ X(Gx). Note that Gx = By. Since the restriction map
X(B) −→ X(By) is surjective, there exists ν ∈ X(B) such that ν|By

= χ.
The restriction of π∗(Lν) to G.x equals Lχ; the proposition follows. �
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8.2 Rank of isotropies and dimension of GIT-classes

If Λ is abundant, then we can control the dimension of the closed isotropies
of Xss(L) for L ∈ F by the dimension of F . More precisely, we have:

Proposition 10 We assume that Λ is abundant. Let F be a GIT-class of
CG

Λ (X).
Then, we have:

1. For any point x semisimple for F , the rank of the character group of
Gx is less than rk(Λ) − dim(F ). Moreover, Gx is reductive.

2. There exists a point x semisimple for F such that the rank of the
character group of Gx equals dim(CG

Λ (X)) − dimF .

3. We assume that dim(CG
Λ (X)) = dim(ΛQ). If F is contained in a face F

of CG
Λ (X) of the same dimension than F then for any point x semisim-

ple for F the rank of the character group of Gx equals dim(ΛQ)−dim F .

Proof. Let x be a semisimple point for F . Since π is affine and x is
semisimple, G.x is affine. By the theorem of Matsushima (see [Mat60] or
[Lun73]), Gx is reductive. Since Pic(G.x) ≃ X(Gx) and Λ is abundant, the
restriction map induces a surjective linear map ρQ : ΛQ −→ X(Gx)Q. By
Lemma 2, F is contained in the kernel of ρQ whose the dimension is equal
to dim(ΛQ) − rk(X(Gx)). The first assertion of the proposition follows.

For any x ∈ X, we consider the stability set ΩΛ(x) = {L ∈ Λ+
Q :

x is semistable for L}. By Lemma 4.2 of [Res00], the closure of F in ΛQ is
the intersection of the ΩΛ(x) over all the points x semisimple for F . By
Corollary 3.3 and Proposition 3.2 of [Res00], this intersection is a finite in-
tersection of convex cones. We deduce that there exists a point x semisimple
for F such that dim(Ω(x)) = dim(F ). But, Proposition 6.5 of [Res00] shows
that the rank of X(Gx) is more than dim(CG

Λ (X))− dim(Ω(x)). Assertion 2
of the proposition is proved.

Let x be a semisimple point for F . Let L0 be a point in F . By Proposi-
tion 5, there exists an open neighborhood Ω of L0 in the kernel of ρQ such
that x is semisimple for all L in Ω. In particular, Ω is contained in CG

Λ (X).
Since F is contained in a face of CG

Λ (X) of the same dimension as F , this
implies that the interior of F is not empty in the kernel of ρQ. The last
assertion of the proposition follows. �

Let F be a face of CG
Λ (X). Let HF be a generic closed isotropy of F

and CF be an irreducible component of YF with the notation of Theorem 6.
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There exists a well defined morphism:

rHF ,CF
Λ : Λ −→ X(H)

such that for all L ∈ Λ, for all v ∈ L over a point x of CF , and for all h ∈ H
we have: h.v = rHF ,CF

Λ (L)(h)v.

Corollary 2 We use above notation and assume that Λ is abundant.
The subspace spanned by a face F of CG

Λ (X) and by the kernel of rHF ,CF
Λ

coincide.

Proof. By Lemma 2, F is contained in the subspace spanned by the kernel
of rHF ,CF

Λ . Now, the equality of the corollary is a consequence of the last
assertion of Proposition 10. �

9 The case X = Y × G/B

Let B be a Borel subgroup of G. From now on, we assume that X = Y ×G/B
(except in Assertion 4 of Proposition 12), with a normal G-variety Y . As
explained in the introduction, this case is particularly interesting. Moreover,
any reductive isotropy of a point of x is a diagonalizable subgroup of G; this
remark will simplify a lot the description of the G-ample cone.

9.1 Equations defining CG
Λ (Y × G/B)

In the situation of this section, one can make Proposition 8 more precise:

Proposition 11 Let T be a maximal torus of G and B be a Borel subgroup
containing T . Let X = Y × G/B for a normal G-variety Y . Let Λ be an
abundant subgroup of PicG(X).

Then, a point L of Λ+
Q belongs to CG

Λ (X) if and only if for any dominant

one parameter subgroup λ of T and for any irreducible component C of Xλ

such that (C, λ) is well covering and G◦
C equals the image of λ, we have

µL(C, λ) ≤ 0.

Proof. By Proposition 8, it is sufficient to prove that any face F of codimen-
sion one of CG

Λ (X) is contained in the set of L’s such that µL(C, λ) = 0 for a
dominant one parameter subgroup λ of T and for an irreducible component
C of Xλ such that (C, λ) is well covering and G◦

C = Im(λ) is one.
Let F be a GIT-class contained in F and of the same dimension as F .

By Proposition 8, there exists a well covering pair (C, λ) such that the points
L of F satisfy µL(C, λ) = 0. It is sufficient to show that G◦

C = Im(λ).
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On one hand, since X = Y × G/B, GC is contained in the center of a
Levi subgroup of G; in particular, it is diagonalizable. So, for a generic point
z in C, we have Gz = GC . On the other hand, since Xss(F ) is open in X
and G-stable and (C, λ) is well covering, Xss(F ) intersects C+. Finally, one
can chose a point x ∈ C+ ∩ Xss(F ) such that the point z = limt→0 λ(t).x
satisfies Gz = GC .

By Lemma 3, z is semistable for F . Since Λ is abundant, Proposition 10
shows that the rank of X(Gz) is less that one. Since Gz is diagonalizable
and contains the image of λ, it follows that Im(λ) = G◦

z = Gλ
C . �

9.2 The principal Luna stratum

Let us fix an ample G-linearized line bundle L on X. Let H be a generic
closed isotropy of Xss(L). Note that H◦ is a torus. Let L be the H-module
satisfying Theorem 5. We assume that X is smooth.

Set hR := X∗(H
◦) ⊗ R. Consider the set h+

X of the ξ ∈ hR such that:

1. for all x ∈ XH◦
and for all non trivial character χ of H◦ in StH◦(TxX),

we have < ξ, χ > 6= 0;

2. for all non trivial α ∈ StH◦(g), we have < ξ,α > 6= 0; and,

3. for all χ ∈ StH◦(L), we have < ξ, χ > > 0.

This set h+
X is an open convex cone of hR; in particular, their images

generate H◦. Moreover, for all λ ∈ X∗(H
◦) ∩ h+

X , we have:

1. Xλ = XH◦
,

2. Gλ = GH◦
,

3. for all v ∈ L, limt→0 λ(t).v = 0.

Let us fix such a one parameter subgroup λ and C an irreducible component
of Xλ which intersects π−1((Xss(L)//G)pr). We consider the associated
Bialynicki-Birula cell C+. Since C+ is stable by the action of P (λ), we can
consider the fiber product G ×P (λ) C+ and the natural G-equivariant map

η : G ×P (λ) C+ −→ X.

The following properties of η will play a central rule in the sequence:

Proposition 12 The G-equivariant map η satisfies:
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1. η is dominant

2. Txη is an isomorphism for any x in a G-invariant open subset of
G ×P (λ) C+ which intersects C.

3. If X = Y × G/B, then η is birational.

4. If H◦ ≃ K∗ and there exists points in X with finite isotropy then η is
birational, even without the assumption X = Y × G/B.

Proof. To prove the two first assertions, it is sufficient to prove that for all
x ∈ C ∩ Xss(L) such that Gx = H the linear map

T[e:x]η : T[e:x]

(

G ×P (λ) C+
)

−→ TxX

is an isomorphism.
Let Nx be a Gx-stable supplementary subspace to Tx(G.x) in TxX. Let

Lx be a Gx-stable supplementary subspace to NGx
x in Nx. We have

Tx(G.x) ≃ g/h ≃ Lie(U(λ−1)) ⊕ gλ/h ⊕ Lie(U(λ)),

and
TxX = Tx(G.x) ⊕ NH

x ⊕ Lx.

But, with the notation of Section 5 for the action of λ, TxC+ = TxX≥0, so

TxC+ ≃ gλ/h ⊕ NGx
x ⊕ Lie(U(λ)) ⊕ Lx.

On the other hand, we have the exact sequence

0 −→ TxC+ −→ T[e:x](G ×P (λ) C+) −→ Te(G/P (λ)) ≃ Lie(U(λ−1)) −→ 0.

In particular, TxX and T[e:x](G ×P (λ) C+) have the same dimension. More-

over, the image of T[e:x]η contains TxC+ and so, NGx
x ⊕Lx. Since the image

of T[e:x]η contains Tx(G.x), we deduce that T[e:x]η is surjective. Finally,
T[e:x]η is a linear isomorphism.

It remains to prove that with one of the additional assumption of Asser-
tions 3 and 4, η is generically injective. Let z ∈ C∩π−1 ((Xss(L)//G)pr). Let
y ∈ C+ such that limt→0 λ(t)y = z. Since η is G-equivariant, it is sufficient
to prove that η−1(η(y)) = {y}. Let g ∈ G such that g.y ∈ C+; we have to
prove that g ∈ P (λ).
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Let T be a maximal torus of G contained in the intersection P (λ) ∩
P (g−1.λ.g). Since maximal tori of P (λ) are P (λ)-conjugated there exists
u1 ∈ P (λ) such that λ1 := u1λu−1

1 is one parameter subgroup of T . More-
over, P (λ) = U(λ)Gλ, and we may assume that u1 belongs to U(λ). In the
same way, there exists u2 ∈ U(g−1.λ.g) such that λ2 := u2g

−1λgu−1
2 is a one

parameter subgroup of T .
We have:

λ1(t).y = u1(λ(t)u−1
1 λ(t−1))λ(t).x −→t→0 u1z =: z1, and

λ2(t).y = u2

[

(g−1λ(t)g)u−1
2 (g−1λ(t−1)g)]g−1λ(t)gy −→t→0 u2g

−1z′ =: z2,

where z′ = limt→0 λ(t)gy ∈ C.

We claim that z1 = z2. Before proving the claim we prove the following
properties of the orbits and the isotropies of z1 and z2: G.z1 = G.z2, G◦

z1

and G◦
z2

are contained in T .
Since limt→0 λ(t)y = z, z belongs to the closure of G.y. But Xus(L)

is closed in X and z 6∈ Xss(L); so, y is semistable for L. Since gy ∈
C+, µL(gy, λ) = 0; so, Lemma 3 shows that z′ is semistable for L. Since
z′ ∈ C the dimension of G.z′ is less that the dimension of G.z. But, G.z
is the only closed orbit in Xss(L) ∩ G.y; we deduce that G.z = G.z′ and
G.z1 = G.z2.

By assumption, G◦
z = H◦ is contained in the center of Gλ. Making u1

acting, we obtain that G◦
z1

is contained in the center of Gλ1 and in particular
in T .

Since λ1 are λ2 are one parameter subgroups of T conjugated in G,
Lemma 2.8 in [MFK94] shows that there exists w in the normalizer of
T in G such that λ2 = wλ1w

−1. Since Xλ = XH◦
, Xλ1 = XG◦

z1 and

Xλ2 = XwG◦
z1

w−1

. In particular, z2 is fixed by wG◦
z1

w−1 which is a subtorus
of T . Because of dimension, G◦

z2
= wG◦

z1
w−1; and so is contained in T .

Now, we will prove that PL
T (z1) = PL

T (z2). Since, z1 is semisimple for L
and G◦

z1
is contained in T , Lemma 4 shows that 0 belongs to the relative

interior of PL
T (z1).

On the other hand, PL
T (z2) is a face of PL

T (StT(y)) containing 0 since z2

is semistable. Since G◦
z2

is a subtorus of T conjugated to G◦
z1

, PL
T (z1) and

PL
T (z2) have the same dimension.
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We can deduce that PL
T (z1) = PL

T (z2).

Replacing L by L⊗n if necessary, we assume that there exists a T -module
V such that X ⊂ P(V ) and L = O(1)|X . Then, Conv(StT(•)) = PL

T(•)
by the proof of Proposition 2. Recall that λ1 and λ2 are two one pa-
rameters subgroups of T such that zi = limt→0 λi(t)y, for i = 1, 2. A
classical fact about toric varieties (see [Oda88]) applied to T.y shows that
PL

T (z1) = Conv(StT(z1)) = Conv(StT(z2)) = PL
T(z2) implies that z1 = z2.

Now, we claim that λ1 = λ2 if Gy is finite and H◦ is a one dimensional
torus. Since Gy is finite, the interior of PL

T (y) is non empty in X(T )R. Since
H◦ has dimension one, so has Gz1 and so PL

T (z1) is a face of codimension
one of PL

T (y). It follows that λ1 and λ2 are orthogonal to PL
T (z1) and ex-

iting from PL
T (y). So, there exists positives integers n1 and n2 such that

n1λ1 = n2λ2. But, λ1 and λ2 are conjugated in G, so n1 = n2.

We now claim that λ1 = λ2 if X = Y × G/B.
We have:

λ2 = wλ1w
−1

= u2g
−1λgu−1

2 = u2g
−1u−1

1 λ1u1gu−1
2 .

So, w−1u2g
−1u−1

1 ∈ Gλ1 .
Set C1 = u1.C; it is an irreducible component of Xλ1 . Recall that

z′ = gu−1
2 .z2 = gu−1

2 .z1 ∈ C; and so, u1gu−1
2 .z1 ∈ C1 which is stable by Gλ1 .

We deduce that w−1u2g
−1u−1.ugu−1

2 .z1 = w−1.z1 ∈ C1.
Write C1 = CY × C ′ with CY (resp. C ′) an irreducible component of

Y λ1 (resp. (G/B)λ1). Since w−1.z1 and z1 belong to C1, C ′ ∩ w−1.C ′ is
not empty. But this intersection is closed and T -stable; and so contains a
fix point w0B/B of T (with w0 ∈ NG(T )). So, ww0B/B and w0B/B are
fix points of T in C ′. It follows that there exists w′ ∈ NGλ

1
(T ) such that

ww0 = w′w0 modulo T ; and so, w = w′ modulo T . Since λ1 is a one param-
eter subgroup of T , if follows that λ2 = wλ1w

−1 = w′λ1w
′−1 = λ1.

Now, we can prove that g ∈ P (λ) in the two last assertions of the theo-
rem:

λ(t)gλ(t−1) = g.(g−1λ(t)g)λ(t−1)

= g (u−1
2 λ2(t)u2) . (u−1

1 λ1(t
−1)u1)

= gu−1
2 (λ1(t)(u2u

−1
1 )λ1(t

−1))u1 since λ1 = λ2,
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which tends to gu−1
2 u when t tends to 0 since u2u

−1
1 ∈ U(λ1) = U(λ2). In

particular, λ(t)gλ(t−1) has a limit when t tends to 0; so, g belongs to P (λ).
This ends the proof of the theorem. �

9.3 Application

Using Proposition 12, one can make Proposition 11 more precise in the case
when X = Y × G/B.

Theorem 7 Let us fix a maximal torus T of G and a Borel subgroup B
containing T . Let X = Y × G/B where Y is a smooth G-variety. Let Λ be
an abundant subgroup of PicG(X). We assume that dim(CG

Λ (X)) = dim(ΛQ).

1. Let F be a face of codimension d of CG
Λ (X).

Then, there exists a generic closed isotropy H of F such that:

(a) H is a diagonalizable subgroup of T of dimension d,

(b) the interior of h+
X ∩ t+ in hR is not empty,

Moreover, if C is an irreducible components of YF , we have:

(c) H = GC .

(d) for all λ ∈ X∗(H) ∩ h+
X the pair (C, λ) is well covering,

(e) The face F is the intersection of CG
Λ (X) and the linear subspace

of ΛQ spanned by the kernel of rC,H
Λ .

(f) For all L in the relative interior of F , C contains stables points
for the action of the group GH◦

/H and the GH◦
/H-linearized line

bundle L|C on C.

2. Conversely, let (C, λ) be a well covering pair with a dominant one
parameter subgroup λ of T such that H := G◦

C is a torus of dimension
d. We assume that there exists L ∈ Λ+

Q such that H acts trivially on

L|C and L|C belongs to the interior of CGH◦
/H(C) in PicGH◦

/H(C)Q.

Then, the intersection of CG
Λ (X) and the subspace spanned by the kernel

of rC,H
Λ is a face of CG

Λ (X) of codimension d.

Proof. Let F be a face of codimension d of CG
Λ (X). Let H be a generic

closed isotropy of F . Since H is reductive and contained in a Borel subgroup
of G, it is diagonalizable; so, changing H be a conjugate if necessary, we may
assume that H is contained in T . But, t+ is a fundamental domain of the
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action of W on t. So, conjugating H by an element of W if necessary, we
obtain a H which satisfies Assertions 1a and 1b.

Let L be a point in the relative interior of F . By construction and by
Proposition 7, each irreducible component of YF contains semistable points
for the action of NG(H). But, by Theorem 6, Y ss(L)//NG(H) is irreducible.
We deduce that NG(H) acts transitively on the set irreducible component
of YF . Now, Assertions 1c, 1e and 1f follow immediately from Theorem 6.

Proposition 12 implies Assertion 1d and ends the proof of the first part
of the theorem.

Conversely, let (C, λ) be a well covering pair and L ∈ Λ+
Q as in Assertion 2

of the theorem. Consider the restriction morphism r : Λ −→ PicGλ
(C) and

the morphism χ•
C : PicGλ

(C) −→ X(H) given by the action of H on the fibers

of the line bundles. The kernel of χ•
C canonically identifies with PicGλ/H(C).

Let K denote the kernel of rC,H and KQ the subspace spanned by K. So, r
induces a morphism:

r : Λ ∩ K −→ PicGλ

(C).

Moreover, by Lemma 2, the cone CGλ

r(Λ)(C) is contained in the subspace
generated by the kernel of χ•

C . So, the Q-linear map rQ induced by r maps

CG
Λ (X) on C

Gλ/H
r(Λ) (C).

Since L|C belongs to the interior of C
Gλ/H
r(Λ) (C), there exists an open neigh-

borhood Ω of L in the intersection of CG
Λ (X) and KQ such that Css(M|C)

for the action of Gλ is not empty for all M ∈ Ω. By Proposition 7, this
implies that Ω ⊂ CG

Λ (X). In particular, the intersection of CG
Λ (X) and KQ

has codimension d.
For any (rational) one parameter subgroup λ′ of H closed to λ, C is

again an irreducible component of Xλ′
and C+ = {x ∈ X : limt→0 λ(t)x ∈

C}. Since G.C+ is dense in X, this implies that CG
Λ (X) is contained in

µ•(C, λ′) ≤ 0. Since the images of such λ′ generate Gλ
C , we deduce that the

intersection of CG
Λ (X) and KQ is a face of CG

Λ (X). �

10 The case X = Ĝ/B̂ × G/B

10.1 Notation

From now on, we assume that G is a reductive subgroup of a semisimple
group Ĝ. Let us fix maximal tori T (resp. T̂ ) and Borel subgroups B (resp.
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B̂) of G (resp. Ĝ) such that T ⊂ B ⊂ B̂ ⊃ T̂ ⊃ T .
From now on, X denote the variety Ĝ/B̂×G/B endowed with the diago-

nal action of G. We will apply Theorem 7 in this case and with Λ = PicG(X).
The cone CG

Λ (X) is simply denoted by CG(X). Let us introduce some nota-
tion before.

The homomorphism X(T̂ ) × X(T ) −→ PicG(X), (ν̂, ν) 7−→ Lν̂ ⊗ Lν

induces an isomorphism X(T̂ )Q × X(T )Q −→ PicG(X)Q. Let λ be a one
parameter subgroup of T and so of T̂ . We denote with a ˆ the objects
associated to Ĝ; Ŵ is the Weyl group of Ĝ, R̂ ⊂ X(T̂ ) is the set of roots of
Ĝ, etc. . .

10.2 Fix points of one parameter subgroups

Let λ be a one parameter subgroup of T and so of T̂ . We can describe the
fix point set Xλ:

Xλ =
⋃

ŵ ∈ Ŵλ\
Ŵ

w ∈ Wλ\W

ĜλŵB̂/B̂ × GλwB/B.

We will denote by C(ŵ, w) the component ĜλŵB̂/B̂ × GλwB/B of Xλ.
Let Zλ denote the connected center of Gλ; it is a subtorus of T and it

acts trivially on each C(ŵ, w). So, the action of Zλ on the fibers define a
morphism

χ•
C : PicGλ

(C(ŵ,w)) −→ X(Zλ)

of cofinite image. On the other hand, we have the following exact sequence:

1 −→ X(Gλ) −→ PicGλ

(C(ŵ,w)) −→ Pic(C(ŵ,w)),

where the last map is of cofinite image (see [FHT84]). Since the restriction
map X(Gλ)Q −→ X(Zλ)Q is an isomorphism, we deduce that the preceding
morphism induces a linear isomorphism:

PicGλ

(C(ŵ,w))Q −→ X(Zλ)Q × Pic(C(ŵ,w))Q. (1)

Lemma 5 For any (ŵ, w), the restriction morphism induces a surjective

linear map PicG(X)Q −→ PicGλ

(C(ŵ,w))Q.

Moreover, for χ
(Lν̂⊗Lν)|C(ŵ,w)

C = (ŵν̂ + wν)|Zλ
.
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Proof. The torus T̂ ×T acts on the fiber (ŵB̂/B̂, wB/B) in Lν̂ ⊗Lν by the

character (ŵ, w). The second assertion follows. Let M ∈ PicGλ

(C(ŵ,w)).
changing M by a power if necessary, on can obtains a (Ĝλ×Gλ)-linearization
M̃ on M. Since the restriction to the diagonal X(Ĝλ) × X(Gλ) −→
X(Gλ) is surjective, changing this linearization necessary, on can assume

that it extends those of Gλ. But, we have: X(B̂) × X(B) ≃ PicĜ×G(X) ≃

PicĜλ×Gλ
(C(ŵ,w)) ≃ X(B̂λ)×X(B̂λ). So, M̃ can be extended to an element

L of PicĜ×G(X). By restricting the action on L to G we obtain an element
of PicG(X) which maps on M. The lemma is proved. �

10.3 Closure of the ample cone

We denote by C
G
(X) the closure in PicG(X)Q of CG(X). The convex cone

C
G
(X) has a simple representation theoretic interpretation:

Lemma 6 Assume that CG(X) is not empty.

A point (ν̂, ν) ∈ X(T̂ )Q × X(T )Q ≃ PicG(X)Q belongs to C
G
(X) if and

only if ν̂ and ν are dominant and for n big enough Vnν̂ ⊗ Vnν contains non
zero G-invariant vectors.

Proof. Let E denote the set of points (ν̂, ν) in the dominant chamber of
X(T̂ )Q × X(T )Q such that there exists n such that Vnν̂ ⊗ Vnν contains non
zero G-invariant vectors. For any dominant weight ν̂ (resp. ν), let P (ν̂)
(resp. P (ν)) denote the maximal standard parabolic subgroup of G such
that ν̂ (resp. ν) can be extended to P (ν̂) (resp. P (ν)). The line bundle
Lν̂ ⊗Lν is the pullback of an ample line bundle (also denoted by Lν̂ ⊗Lν) by
the G-equivariant map π : Ĝ/B̂ ×G/B −→ Ĝ/P (ν̂)×G/P (ν). We denote
by Xss(Lν̂ ⊗ Lν) the set of the points in X such that π(x) is semistable
for Lν̂ ⊗ Lν . Notice that Xss(Lν̂ ⊗ Lν) is the open subset of the points
x ∈ X such that µLν̂⊗Lν (x, λ) ≤ 0 for all one parameter subgroup λ of
G. Moreover, E is the set of the points (ν̂, ν) in the dominant chamber of
X(T̂ )Q × X(T )Q such that there exists n such that Xss(Lnν̂ ⊗ Lnν) is non
empty.

Since Ĝ × G contains only a finite number of parabolic subgroup up to
conjugacy, and by Theorem 1.3.9 of [DH98] there exists x in the intersection
of the non empty subsets of the form Xss(Lν̂ ⊗Lν). One easily checks that E
is the set of points (ν̂, ν) in the dominant chamber of X(T̂ )Q ×X(T )Q such
that µLν̂⊗Lν (x, λ) ≤ 0 for all one parameter subgroup λ of G. In particular,

E is a closed convex cone. Since, CG(X) is contained in E , so is C
G
(X).
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Let p ∈ E and q ∈ CG(X). Each point of the segment [p, q] except
eventually p belongs to the strictly dominant chamber. Since, E is convex
theses points belong to CG(X). Then, p belongs to the closure of CG(X). �

10.4 Faces of the ample cone

Now, we can prove a kind of converse of Theorem 7:

Theorem 8 Let X = Ĝ/B̂ × G/B with above notation. Let H be subtorus
of T and C be an irreducible component of XH such that H = G◦

C , and for
a λ ∈ X∗(T ) ∩ h+

X the pair (C, λ) is well covering. Denote by d the rank of
H.

We assume that the interior in PicGλ/H(C) of the cone CGλ/H(C) is non
empty.

Then, the intersection of C
G
(X) and the subspace spanned by the kernel

of rC,H
Λ is a face of codimension d of C

G
(X).

Proof. Let us consider the restriction map:

r : PicG(X) −→ PicGλ

(C), L 7−→ L|C.

The cone CGλ

(C) is contained in the kernel of rC,H and spans this linear

subspace by assumption on CGλ/H(C).

We claim that there exists L ∈ C
G
(X) such that r(L) belongs to the

relative interior of CGλ

(C).
Let M be a Gλ-linearized ample line bundle on C belonging to the

relative interior of CGλ

(C). Let σ be a non zero Gλ-invariant section of M.
By Lemma 5, changing M by a power if necessary, we may assume that
there exists L ∈ PicG(X) such that r(L) = M.

Let us recall that pλ : C+ −→ C is a vector bundle. Consider also the
G-linearized line bundle G ×P (λ) pλ

∗(M) on G ×P (λ) C+. Since η∗(L) and
G ×P (λ) pλ

∗(M) have the same restriction to C, Propositions 1 and 6 show

that η∗(L) = G×P (λ) pλ
∗(M). Moreover, since µM(C, λ) = 0, Proposition 6

shows that σ admits a unique P (λ)-invariant extension to a section σ′ of
pλ

∗(M). On the other hand, Proposition 1 shows that σ′ admits a unique
G-invariant extension σ̃ from C+ to G×P (λ)C

+. So, we obtain the following
commutative diagram:
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L � η∗(L) = G ×P (λ) pλ
∗(M) � pλ

∗(M) - M

X
?

� η
G ×P (λ) C+

?

σ̃

6

� C+
?

σ′

6

pλ - C
?

σ

6

Since η is birational, σ̃ descends to a rational G-invariant section τ of L.
Write div(τ) =

∑

niDi −
∑

miEi, where Di and Ei are prime G-invariant
divisors of X and ni and mi are positive integers. Consider the G-linearized
line bundle O(

∑

miEi) associated to the divisor
∑

miEi. The section τ in-
duces a regular G-invariant section τ ′ of L′ = L⊗O(

∑

miEi). By Lemma 6,

the claim will be proved if r(L′) belongs to the relative interior of CGλ

(C).
The G-linearized line bundle O(

∑

miEi) has a regular G-invariant sec-
tion which is non zero at any point of X − ∪iEi. Since (C, λ) is well cov-
ering no Ei contains C. It follows that r(O(

∑

miEi)) contains non zero
Gλ-invariant sections; and by Lemma 6, that r(O(

∑

miEi)) belongs to the

closure of CGλ

(C). By an obvious argument of convexity it follows that

r(L′) = M⊗ r(O(
∑

miEi)) belongs to the relative interior of CGλ

(C).

The claim proves that C
G
(X) intersects the kernel of rC,H . An analogous

proof shows that the intersection of C
G
(X) and the kernel of rC,H spans this

kernel. Indeed, since r(L′) belongs to the relative interior of CGλ

(C), there

exists G-linearized line bundles Lj on X which span r−1(CGλ
(C)) and such

that the Mj := r(Lj) belong to the relative interior of CGλ

(C). As above, we
prove that there exists a G-stable divisor

∑

miEi such that no Ei contains

C, and L′
j := Lj ⊗ O(

∑

miEi) belongs to C
G
(X) for all j. Moreover, the

L′
j ’s belong to the kernel of rC,H . Finally, the intersection of C

G
(X) and the

kernel of rC,H is of codimension d. �

10.5 Well covering pairs

In this subsection, we explain how to find the well covering pairs in the case
when X = Ĝ/B̂ × G/B.

10.5.1 Birationality of η

Let λ be a dominant one parameter subgroup of T . We consider the coho-
mology ring H∗(G/P (λ), Z) of G/P (λ). Here, we use simplicial cohomology
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with integers coefficients. If w ∈ W/Wλ, we set Λw = BwP (λ)/P (λ) and
denote by [Λw] the class in H∗(G/P (λ), Z) of the closure in G/P (λ) of Λw.
Let us recall that

H∗(G/P (λ), Z) =
⊕

w∈W/Wλ

Z[Λw].

We use similar notation for Ĝ/P̂ (λ). Since P (λ) = G ∩ P̂ (λ), G/P (λ)
identifies with the orbit by G of P̂ (λ)/P̂ (λ) in Ĝ/P̂ (λ); let ι : G/P (λ) −→
Ĝ/P̂ (λ) denote this closed immersion. The map ι induces a map ι∗ in
cohomology:

ι∗ : H∗(Ĝ/P̂ (λ), Z) −→ H∗(G/P (λ), Z).

Let ŵ ∈ Ŵ and w ∈ W . Consider the map:

η : G ×P (λ) C+(ŵ, w) −→ X.

The following proposition gives a criterion in terms of cohomology for η
being birational.

Proposition 13 With above notation, the following are equivalent:

1. the map η is birational,

2. ι∗([Λŵ−1 ]).[Λw−1 ] = [Λe].

Proof. Set P = P (λ) and P̂ = P̂ (λ). Since the characteristic of K is zero,
η is birational if and only if for x in an open subset of X, η−1(x) is reduced
to a point. Consider the projection π : G ×P C+(ŵ, w) −→ G/P . For any
x in X, π induces an isomorphism from η−1(x) onto the following locally
closed subvariety of G/P : Fx := {gP ∈ G/P : g−1x ∈ C+(ŵ, w)}.

Let (ĝ, g) ∈ Ĝ × G and set x = (ĝB̂/B̂, gB/B) ∈ X. We have:

Fx = {hP/P ∈ G/P : h−1gB/B ∈ PwB/B and h−1ĝB̂/B̂ ∈ P̂ ŵB̂/B̂}

= {hP/P ∈ G/P : h−1 ∈ PwBg−1 and h−1 ∈ P̂ ŵB̂ĝ−1}

= {hP/P ∈ G/P : h ∈ (gBw−1P ) ∩ (ĝB̂ŵ−1P̂ )}

= g.Λw−1 ∩ ĝΛ̂ŵ−1 ,

where g.Λw−1 is identified to a part of Ĝ/P̂ using ι.
Let us fix g arbitrarily. By Kleiman’s Theorem (see [Kle74]), there ex-

ists an open subset of ĝ’s in Ĝ such that the intersection g.Λw−1 ∩ ĝΛ̂ŵ−1

is transversal. Moreover (see for example [BK06]), one may assume that

g.Λw−1 ∩ ĝΛ̂ŵ−1is dense in g.Λw−1 ∩ ĝΛ̂ŵ−1. We deduce that the following
are equivalent:
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1. for generic ĝ, Fx is reduced to a point,

2. ι∗([Λŵ−1 ]).[Λw−1 ] = [Λe].

Since η is G-equivariant, the above Condition 1 is clearly equivalent to
the fact that η is birational. �

10.5.2 The rank of GC(ŵ,w)

As above, λ is a dominant one parameter subgroup of T , ŵ ∈ Ŵ and
w ∈ W . By Theorem 7, the subgroup GC(ŵ,w) play an important role in the

description of the faces of CG
Λ (X). In Lemma 7 bellow, we will describe the

Lie algebra of this group.
Let rT : X(T̂ ) −→ X(T ) denote the restriction morphism. We have the

following:

Lemma 7 With above notation, the Lie algebra of GC(ŵ,w) is the intersec-

tion in t of the Kernels of the rT (α̂) for α̂ ∈ R̂ such that < λ, rT (α̂) >= 0.
In particular, it only depends on λ; this Lie subalgebra of t will be denoted
by tλ.

Proof. Since C(ŵ, w) = ĜλŵB̂/B̂ × GλwB/B, GC(ŵ,w) is the intersection

of the centers of Gλ and Ĝλ. In particular, it is contained in the torus T .
Moreover, its Lie algebra equals

⋂

α ∈ R
< λ,α >= 0

ker(α) ∩
⋂

α̂ ∈ R
< λ, α̂ >= 0

ker(α̂),

where ker(α) (resp. ker(α̂)) is the Lie subalgebra of t (resp. t̂) of the Kernel
of α (resp. α̂). Since rT (R̂) contains R, this intersection equals those of the
lemma. �

10.5.3 The tangent map to η

Let us fix again a dominant one parameter subgroup λ of T and ŵ ∈ Ŵ and
w ∈ W .

To simplify notation, we set P = P (λ), C = C(ŵ, w) and C+ =
C+(ŵ, w). Consider

η : G ×P C+ −→ X = Ĝ/B̂ × G/B.
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Consider the restriction of Tη to C+:

Tη|C+ : T (G ×P C+)|C+ −→ T (X)|C+ ,

and the restriction of Detη to C+:

Detη|C+ : Det(G ×P C+)|C+ −→ Det(X)|C+ .

Since η is G-equivariant, the morphism Detη|C+ is P -equivariant; it can
be thought as a P -invariant section of the line bundle Det(G ×P C+)∗|C+ ⊗

Det(X)|C+ over C+. We denote by LP,ŵ,w this last P -linearized line bundle
on C+.

To study the line bundle LP,ŵ,w, we need to introduce notation:

χw−1 = ρ − wρ + 2ρλ and χŵ−1 = ρ̂ − ŵρ̂ + 2ρ̂λ.

Lemma 8 With above notation, we have:

1. If η is birational then Detη|C+ is a non zero P -invariant section of
LP,ŵ,w.

2. We assume that (ŵ, w) ∈ Ŵ λ × W λ. The torus T acts on the fiber
over the point (ŵB̂/B̂, wB/B) in LP,ŵ,w by the character ρ − wρ +
rT (ρ̂ − ŵρ̂ + 2ρ̂λ) = rT (χŵ−1) + χw−1 − χ1.

Proof. If η is birational, Detη is G-equivariant and non zero. It follows
that Detη|C+ is P -equivariant and non zero. This proves the first assertion.

We claim that

∑

α∈StT(p/wb)

α = ρ − wρ − 2ρλ. (2)

Indeed,

γw :=
∑

α∈StT(p/wb) α =
∑

α∈(R+∪−R+
λ

)∩(−wR+) α

=
∑

α∈R+∩(−wR+) α −
∑

α∈R+
λ
∩(wR+) α.

But, by Lemma 1.3.2.2 of [Kum02] we have
∑

α∈R+∩(−wR+) α = ρ − wρ.

Moreover, our assumption about w implies that R+
λ ⊂ wR+, and

∑

α∈R+
λ
∩(wR+) α =

∑

α∈R+
λ

α = 2ρλ. Formula (2) follows.

Set x = (ŵB̂/B̂, wB/B). Let χ denote the character of the action of T
on the fiber over x in LP,ŵ,w. As a T -module, the tangent space Tx(G×P C+)
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is isomorphic to g/p⊕TxC+; and TxX is isomorphic to TxX/TxC+⊕TxC
+.

Thus, χ equal the sum of the weights of T on g/p minus the sum of the
weights of T on TxX/TxC+. So, we obtain that:

χ =
∑

α∈StT(TxX) α −
∑

α∈StT(TxC+) α −
∑

α∈R+ α +
∑

α∈R+
λ

α

=
∑

α∈wR+ α + rT

(

∑

α̂∈ŵR̂+ α −
∑

α̂∈StT(p̂/ŵb̂) α̂
)

−
∑

α∈StT(p/wb) α − 2ρ + 2ρλ.

Now, Assertion 2 follows immediately from Formula (2). �

10.5.4 Well covering pairs

The following theorem describes the well covering pairs:

Theorem 9 Let λ be a dominant one parameter subgroup of T . Let (ŵ, w) ∈
Ŵ λ × W λ.

The following are equivalent:

1. The pair (C(ŵ, w), λ) is well covering.

2. ι∗([Λŵ−1 ]).[Λw−1 ]−[Λe] = 0 and the restriction of rT (χŵ−1)+χw−1−χ1

to tλ is trivial.

Proof. Let us assume that (C(ŵ, w), λ) is well covering. Since η is bi-
rational, Proposition 13 shows that ι∗([Λŵ−1 ]).[Λw−1 ] = [Λe]. Moreover,
Detη|C is a non zero Gλ-invariant section of the restriction of LP,ŵ,w to C.
By Lemmas 2 and 8, the restriction of rT (χŵ−1)+χw−1 −χ1 to G◦

C must be
trivial.

Conversely, let us assume that Condition 2 is fulfilled. By Proposition 13,
η is birational and G-invariant. In particular, Detη|C+ is a non-zero P -
invariant section of LP,ŵ,w. With the assumption about rT (χŵ−1) + χw−1 −
χ1, Lemma 8 implies that µLP,ŵ,w(C, λ) = 0. So, Proposition 6 shows that
Detη|C is a non-zero section of LP,ŵ,w. Since X is smooth, this implies that
(C(ŵ, w), λ) is well covering. �

10.6 Description of C
G
(Ĝ/B̂ × G/B)

In this section, we apply our results to the description of C
G
(Ĝ/B̂ × G/B).

Theorem 10 We assume that the interior of CG
Λ (X) in PicG(X)Q is not

empty.
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1. A dominant weight (ν̂, ν) belongs to C
G
(Ĝ/B̂ × G/B) if and only if

< λ, ŵν̂ + wν >≥ 0,

for all dominant one parameter subgroup of T and for all (ŵ, w) ∈
Ŵ λ × W λ such that

(a) Im(λ) = tλ,

(b) ι∗([Λŵ−1 ]).[Λw−1 ] = [Λe] ∈ H∗(G/P (λ), Z), and

(c) < λ, rT (χŵ−1) + χw−1 − χ1 >= 0.

2. Let λ be a dominant one parameter subgroup of T and (ŵ, w) ∈ Ŵ λ ×
W λ such that:

(a) ι∗([Λŵ−1 ]).[Λw−1 ] = [Λe] ∈ H∗(G/P (λ), Z),

(b) the restriction of rT (χŵ−1) + χw−1 − χ1 to tλ is trivial, and

(c) the interior of CGλ/Zλ(Ĝλ/B̂λ × Gλ/Bλ) in PicGλ/Zλ(Ĝλ/B̂λ ×
Gλ/Bλ)Q is non empty.

The set of (ν̂, ν) ∈ ΛQ such that the restriction of ŵν̂ + wν to tλ is
trivial is a linear subspace F (λ, ŵ, w) of the same dimension d as tλ.

Moreover, the intersection of F (λ, ŵ, w) and C
G
Λ(X) is a face of C

G
Λ(X)

of dimension d.

3. Conversely, for any face F of CG(Ĝ/B̂ × G/B) there exists λ and
(ŵ, w) ∈ Ŵ λ × W λ as in Assertion 2 such that the subspace spanned
by F is F (λ, ŵ, w).

Proof. The first assertion is a simple rephrasing of Proposition 11 using
Lemmas 5 and 7 and Theorem 9. The last one is a rephrasing of the first
assertion of Theorem 7 using the same results as above. The second asser-
tion is a consequence of Theorem 8. �

Remark. In [BS00], Berenstein and Sjamaar gives the linear inequalities
of Assertion 1 of Theorem 10 among a lot of others inequalities of the form
µ•(x, λ) ≤ 0. In other words, Assertion 1 of Theorem 10 selects some of the
inequalities of Berenstein and Sjamaar.
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11 Application to the tensor product

In this section, we fix a integer s ≥ 2 and set Ĝ = Gs, T̂ = T s and B̂ = Bs.

We embed G diagonally in Ĝ. Then C
G
(X) identifies with the (s + 1)-uple

(ν1, · · · , νs+1) ∈ X(T )s+1 such that the νi’s are dominant and Vnν1 ⊗ · · · ⊗
Vnνs+1 contains a non zero G-invariant vector for n big enough.

We will apply Theorem 10 at this situation. Let us start by studding
the objects used in this statement in this particular case.

Let λ be a dominant one parameter subgroup of T . For (ŵ, ws+1) =
(w1, · · · , ws+1) ∈ Ŵ ×W = W s+1, and (ν̂, ν) = (ν1, · · · , νs+1) ∈ PicG(X)Q =
X(T)s+1

Q we have:

• Zλ is the connected center of Gλ,

• rT (ŵν̂) =
∑s

i=1 wiνi, and rT (χŵ−1) =
∑s

i=1 χw−1
i

,

• ι∗([Λŵ−1 ]) = [Λw−1
1

]· · · · ·[Λw−1
s

],

In [BK06], Belkale and Kumar defined a new product denoted ⊙0 on
the cohomology groups H∗(G/P, Z) for any parabolic subgroup P of G. By
Proposition 17 of [BK06], this product ⊙0 has the following very interesting
property:

For wi ∈ W λ, the following are equivalent:

1. [Λw−1
1

]. · · · .[Λw−1
s+1

]−[Λe] = 0 and the restriction of χw−1
1

+· · ·+χw−1
s+1

−

χ1 to Z(Gλ)◦ is trivial;

2. [Λw−1
1

] ⊙0 · · · ⊙0 [Λw−1
s+1

] = [Λe].

Using this result of Belkale and Kumar our Theorem 10 gives the follow-
ing

Theorem 11 1. A point (ν1, · · · , νs+1) ∈ X(T )s+1
Q belongs to the cone

C
G
((G/B)s+1) if and only if

(a) each νi is dominant; that is < α∨, νi >≥ 0 for all simple root α.

(b) for all simple root α; for all (w1, · · · , ws+1) ∈ (W/Wωα∨ )s+1 such
that [Λw−1

1
] ⊙0 · · · ⊙0 [Λw−1

s+1
] = [Λe] ∈ H∗(G/P (α), Z), we have:

∑

i

< ωα∨ , wiνi >≥ 0.
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2. In the above description of C
G
((G/B)s+1), one can omit no linear

inequality in this list (neither in 1a nor 1b).

3. Let F be a face of CG((G/B)s+1) of codimension d. There exists a
subset I of d simple roots and and (w1, · · · , ws+1) ∈ (W/W (I))s+1

such that:

(a) [Λw−1
1

] ⊙0 · · · ⊙0 [Λw−1
s+1

] = [Λe] ∈ H∗(G/P (I), Z),

(b) the subspace spanned by F is the set (ν1, · · · , νs+1) ∈ X(T )s+1
Q

such that:
∀α ∈ I

∑

i

< ωα∨ , wiνi >= 0.

4. Conversely, let I be a subset of d simple roots and (w1, · · · , ws+1) ∈
(W/WI)

s+1 such that [Λw−1
1

]⊙0 · · ·⊙0 [Λw−1
s+1

] = [Λe] ∈ H∗(G/P (I), Z).

Then, the set of (ν1, · · · , νs+1) ∈ C
G
((G/B)s+1) such that

∀α ∈ I
∑

i

< ωα∨ , wiνi >= 0,

is a face of codimension d of C
G
((G/B)s+1).

Proof. Let λ be a dominant one parameter subgroup of T such that Im(λ)
is the connected center of Gλ. Then there exists a positive integer n and
a simple root α such that nωα∨ = λ. Now, the first assertion is a simple
rephrasing of the first assertion of Theorem 10.

By for example Corollary 1 of [MR04], the interior of CG(X) is not empty
in PicG(X). Equations 1a are all different and are not repeated in Equa-
tions 1b. Moreover, by Proposition 7 of [MR04] they define codimension one

faces of C
G
(X).

Let λ be any dominant one parameter subgroup. All the irreducible
components C of Xλ are isomorphic to (Gλ/Bλ)s+1. In particular, Corol-

lary 1 of [MR04] shows that the interior of CGλ/Zλ(C) in PicGλ/Zλ(C) is non
empty. Now, the rest of Theorem 11 is a direct consequence of Theorem 10.
�

Remark.

1. The equations of Assertion 1 of Theorem 11 are the same as those ob-
tained by Belkale and Kumar in their Theorem 22. The fact that no
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equation is irredundant seems to be new in general, whereas some par-
ticular cases are known. Indeed, Knutson, Tao and Woodward shown
in [KTW04] the case when s = 2 and G = SLn by combinatorial tools.
Using explicit calculation with the help of a computer, Kapovich,
Kumar and Millson proves the case when s = 2 and G = SO(8) in
[KKM06].

2. The description of the other faces of CG((G/B)s+1) gives an applica-
tion of the Belkale-Kumar product ⊙0 for all the complete homoge-
neous spaces.
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1984, pp. 77–87.

[Ful00] William Fulton, Eigenvalues, invariant factors, highest weights,
and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000),
no. 3, 209–249 (electronic).

43



[Hes79] W. Hesselink, Desingularization of varieties of null forms, Inven.
Math. 55 (1979), 141–163.

[Kem78] G. Kempf, Instability in invariant theory, Ann. of Math. 108
(1978), 2607–2617.

[Kir84] F. Kirwan, Cohomology of quotients in symplectic and algebraic
geometry, Princeton University Press, Princeton, N.J., 1984.

[KKM06] Michael Kapovich, Shrawan Kumar, and John J. Millson, Satu-
ration and Irredundancy for Spin(8), arXiv:math.RT/0607454,
2006.

[Kle74] Steven L. Kleiman, The transversality of a general translate, Com-
positio Math. 28 (1974), 287–297.

[KTW04] Allen Knutson, Terence Tao, and Christopher Woodward, The
honeycomb model of GLn(C) tensor products. II. Puzzles deter-
mine facets of the Littlewood-Richardson cone, J. Amer. Math.
Soc. 17 (2004), no. 1, 19–48 (electronic).

[Kum02] Shrawan Kumar, Kac-Moody groups, their flag varieties and rep-
resentation theory, Progress in Mathematics, vol. 204, Birkhäuser
Boston Inc., Boston, MA, 2002.

[LR79] D. Luna and R. W. Richardson, A generalization of the Chevalley
restriction theorem, Duke Math. J. 46 (1979), no. 3, 487–496.

[Lun73] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc.
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Université Montpellier II
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