Efficient Genetic Algorithms for Solving Hard Constrained Optimization Problems - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Magnetics Année : 2000

Efficient Genetic Algorithms for Solving Hard Constrained Optimization Problems

Résumé

This paper studies many Genetic Algorithm strategies to solve hard-constrained optimization problems. It investigates the role of various genetic operators to avoid premature convergence. In particular, an analysis of niching methods is carried out on a simple function to showadvantages and drawbacks of each of them. Comparisons are also performed on an original benchmark based on an electrode shape optimization technique coupled with a charge simulation method.
Fichier principal
Vignette du fichier
IEEE_T-Mag_36-4_07-2000_1027_Efficient_genetic.pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00135911 , version 1 (27-03-2007)

Identifiants

Citer

Bruno Sareni, Laurent Krähenbühl, Alain Nicolas. Efficient Genetic Algorithms for Solving Hard Constrained Optimization Problems. IEEE Transactions on Magnetics, 2000, 36 (4 Part 1), pp.1027-1030. ⟨10.1109/20.877616⟩. ⟨hal-00135911⟩
362 Consultations
149 Téléchargements

Altmetric

Partager

More