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Efficient Genetic Algorithms for Solving Hard 
Constrained Optimization Problems 

B. Sareni, L. Krahenbiihl, and A. Nicolas 

Abstracb-This paper studies many Genetic Algorithm strats 
gies to solve hard-constrained optimization problems. It investi- 
gates the role of various genetic operators to avoid premature con  
vergence. In particular, an analysis of niching methods is carried 
out on a simple function to show advantages and drawbacks of each 
of them. Comparisons are also performed on an original bench 
mark based on an electrode shape optimization technique coupled 
with a charge simulation method. 

Index Terms-Constrained optimization methods, genetic algcs 
rithms, niching methods, shape optimization methods. 

0 NE of the key features to find the optimum of hard selec- 
tive functions or difficult constrained optimization prob- 

lems with a Genetic Algorithm (GA) approach is the preser- 
vation of the population diversity during the search. Diversity 
prevents GA's to be trapped by local optima or to converge pre- 
maturely. Therefore, various procedures have been developed 
to avoid GA's to rapidly concentrate their population to a single 
point of the search space. The first way to preserve diversity 
consists in protecting individuals from the loss of genetic mate- 
rials by using specific mutation operators with various control 
schemes of mutation rates [I],  [2]. On the other hand one can 
also associate GA's with a niching method to avoid premature 
convergence [3]. 

This paper investigates many GA's strategies using a strong 
mutation operator or a niching method to solve hard-constrained 
optimization problems. Comparisons are carried out on an orig- 
inal benchmark based on an electrode shape optimization tech- 
nique coupled with a charge simulation method. 

Real parameter encoded Genetic Algorithms (RGA's) are 
rahcally different from binary encoded GA's. The main struc- 
ture and the selection operator are similar in both cases but 
crossover and mutation of RGA's directly use the parameter 
values of individuals to create the offspring. For example, two 
descendants x' and y' are obtained from two parents ;r and y 
by recombining each corresponding parameter i as follows: 

where a; denotes a uniform random number in the interval [O,  11. 
Mutation consists generally in adding a perturbation to a design 
variable with a probability of 11-n where 11 is the number of pa- 
rameters to ensure that at least one design variable is mutated for 
each inhvidual. A mutated variable zi can be written according 
to (2): 

where Axt is the magnitude of the perturbation on the parameter 
zl. Typically Ax, is a gaussian or a Cauchy noise such as in 
Evolutionary Programming or in Evolution Strategies [4], [5]. 
We employ another interesting mutation scheme similar to that 
reported in the Breeder Genetic Algorithm @GA) [6]: 

where nn;n and z i  ,,, denote the extreme values of the param- 
eter z.( in the search space, k is the precision constant (typically 
set to 16) and a is a uniform random number in the interval [0, 11. 

11. REAL PARAMETER ENCODED GA's WITH STRONG 111. NICHING GA's 
MUTATION OPERATORS 

A. Overview qf niching GA S - 
A Standard binary encoded Genetic works Niching methods have been developed to reduce the effect of 

with a character string (chromosome) which repre- genetic drift resulting from the selection operator in the 
sents the set parameters of the problem the chro- GA, They maintain the population dhersity and pernit t h  GA 
mosome of individuals is coded into a binary string. In that case, to investigate many peaks in parallel. On the other hand, they 
mutation is usually represented as an operation in whch one of prevent the GA from being trapped in local optima of the search 
the bits on the string is flipped. For binary encoded GA's muta- space. 
tion rates often take small values lying between 0.001 and 0 . 1  Niching GA's can be classed in two different The 

first one involves GA's which are characterized by an explicit 
neighborhood since they need an explicit &stance cutoff (also 
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TABLE I 
EWLE OF NICHING GA' s 

neighborhood niching GA's 
explicit Rtness Sharing, Clearing 
implicit Deterministic Crowding, Restricted Tournament Selection 

information about the search space and can be easily applied 
to various problems without restrictions. Table I presents four 
niching methods reviewed in [3] according to the previous clas- 
sification. 

B. Convergence Analysis o f  Niching GA S 

In this section, an analysis on the behavior of various niching 
schemes is carried out. For that purpose, we consider the one- 
dimensional multimodal function defined by (4). 

F ( z )  is defined on [O,1] and consists of five unequally spaced 
peaks of nonuniform height. Maximums are located at approx- 
imate z values of 0.080, 0.247, 0.451, 0.681, and 0.934. Maxi- 
mums are of approximate height 1.000,0.948,0.770,0.503 and 
0.250 respectively. 

To assess the efficiency of niching GA's on k s  simple func- 
tion, we exami~le the "chi-square like" perfor~lla~lce statistic as 
a function of the generation number for each algorithm. 

The chi-square-like performance statistics measures the de- 
viation between the population distribution and an ideal propor- 
tionally populated distribution [9]. This criterion is computed 
using the actual distribution of individuals Xi and an ideal &s- 
tribution mean pi in all the i niches (q peak niches plus the non- 
peak niche). 

chi-square like deviation = jg (?I2 (5) 

whcrc 

,r = N f i  /k f k  and ai = ~ ( l  - pi /N)  

for the i peak niches and, 

pq+l = o and aq+l = C a: 

for the nonpeak niche. N denotes the population size and f ;  cor- 
responds to the fitness value of the peak i .  The variable Xi rep- 
resents the observed number of individuals in a niche i, pi rep- 
resents the expected ideal number and a; represents the standard 
deviation of the number of indviduals in the ideal distribution. 

The chi-square-like performance statistic characterizes the 
ability of the niching technique to proportionally populate the 
niches of the search space (the smaller the measure, the better 
the method). When k s  criterion is computed as a function of 
generations, it also shows how individuals evolve in the niches 
of the search space. 

Sharing + matching sort 
Restricted Tournament Selection (CF=30) 

-. Deterministic Crow ding 

Clearing (k=10) 

Generation 

Fig. 1. Chi-square-like deviation of the niching GA's investigated on function 
F(.r) .  The population size is N = 100. 

TABLE I1 
NWER OF PEAKS MAINTAINED AFTER 200 GENERATIONS (AVERAGE 

VALUE OVER 100 TESTS) 

SB CL RTS DC 
Nb of Peaks c 

We examine the chi-square like deviation on the functionF(x) 
for niching GA's reported in [3]: 

- Fitness Sharing (SH) with stochastic universal selection, 
matching sort and a niche radius a, = 0.1. 

- Clearing (CL) with stochastic universal selection, a 
clearing radius a, = 0.1 and a niche capacity k = 10. 

- Restricted Tournament Selection (RTS) with a crowding 
factor CF = 30. 

- Restricted Tournament Selection (RTS) with a crowding 
factor CF = 30. 

- Deterministic Crowding (DC) 
All GA's are run with a crossover probability p, = 1, a mu- 

tation rate p,, = 0.001 and a population size N = 100. The 
Euclidean distance is used in each case to evaluate the dissimi- 
larity between individuals. 

Typical chi-square deviations are displayed in Fig. 1. Table 
I1 shows the corresponding number of peaks maintained at the 
end of the search. 

Thanks to its proporbonal selection operator, clearing gives 
a very low chi-square like deviation. It rapidly concentrates its 
population on the peaks of the search space and succeeds in 
maintaining niches. The behavior of fitness sharing is rather 
similar but the population is subject to noisy fluctuations that 
lead to an unsteady chi-square distribution. 

Crow&ng schemes are unable to maintain low chi-square dis- 
tribution during the search. The first reason for this is mentioned 
in [9]. Crowding methods use a replacement strategy which 
minimizes the changes in the population. The distribution of the 
population in the different niches strongly depends on the initial 
distribution. This explains the higher chi-square like deviations 
and the lower convergence noted for RTS and DC incomparison 
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(b) 

Fig. 2. Capacitor benchmark. (a) Imrestigatedprofile. @)Equivalent template 
with discretized boundaries. 

with those corresponding to the sharing and clearing methods. 
On the other hand, replacement errors can occur for individ- 
uals located at the edge of the niches [3]. For example, DC 
detects the five peaks of the function F(x)  in the first gener- 
ations. However, in the following generations, it appears that 
individuals located on the third peak progressively migrate to 
the next peak because of replacement emom. At the two-hun- 
dredth generation, all indmiduals are discarded from the third 
peak yieldmg a poor chi-square distribution. Ths  can be an im- 
portant drawback because crowding methods might have &El- 
culties to concentrate their population in the feasible domain for 
hard-constrained optimization problems. 

We will verify these predictions in the next section. 

AN ORIGINAL BENCHMARK BASED ON THE OPTIMIZATION 
OF A CAPACITOR PROFILE 

A. Principle 

The problem consists in finding the optimal electrode shape 
so that the electric field is unlfom on the capacitor profile from 
the point B to the point C [see Fig. 2(a)]. The electrode is infinite 
in the perpenmcular direction to the Oxy plane and to the left of 
the point B. 

This benchmark is rather interesting because an exact solu- 
tion can be obtained analytically from a conformal mapping [7]. 

The optimal electrode profile from the point B to the point C is 
given as follows: 

1 x = 2 in cos(p/2) - cos(p) 
y = - p + s i n p  p : O i n  (8) 

The problem is solved using the electrode shape optimiza- 
tion method described in [S]. A geometric template has been de- 
signed to find an equivalent equipotential to the electrode shape 
[see Fig. 2@)]. Eleven fictitious point charges are placed in the 
region limited by the internal boundary to simulate the equipo- 
tential. The optimization procedure consists in finding the op- 
timal position and value for all charges in order to obtain an 
uniform electric field on the equipotential line. Consequently, 
the problem to be solved has 33 parameters (3 unknowns per 
charge). Moreover, two constraints must be fulfilled: 

The first constraint is relative to the fulfillment of the geo- 
metric template (the equipotential must be located inside 
the template i.e. between the internal and external bound- 
aries). This constraint is expressed by (9) 

vat < vi?t 
m a  - mm (9) 

where Vm! and V$k denote the maximum potentialvalue 
on the external boundary and the minimum potential value 
on the internal boundaq respectively. 
The second constraint requires the equipotential to be hor- 
izontal at the point B. It is represented by (10). 

where E(B)  and E,(B) represent the electric field value 
at the point B and the 3: component of the electric field at 
that point respectively. Ths  constraint ensure a horizontal 
profile with a maximum error of 5 degrees. 

When the geometric template is violated i.e. (9) is false, the 
objective function to be maximized is computed by tahng into 
account both constraints as shown in (1 1) at the bottom of the 
page where XI, Xz and XQ are penalty coeff~cients. 

It should be noted that Xz >> XQ since the fulfillment of the 
first constraint has a higher order of priority in relation to the 
fulfillment of the second constraint. 

XI must be sufficiently large to prevent convergence on the 
external boundaq of the feasible domain but not to high to avoid 
great mscontinuity between feasible and unfeasible domains. In 
our simulations, we have set XI = & = 10 and Xz = lo4. 

When the geometric constraint is fulfilled, the objective func- 
tion is expressed as follows: 
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TABLE 111 
COMP~WSON OF VAR~OUS GA SCHEMES ON THE C A P A ~ O R  BEN- 

(4 INDEPENDENT RUNS--100 INDTVDUALS--200 GENERAnoNs) 

Genetic Algorithm TI (%) TI? (%) Objective function 
mtegy (mean) (mean) (mean) (stddev) 
SG A 91.35 90 04 0.948 0.078 

RGA+BGA mutation 83.94 771.48 0.953 0.024 
Standard BGA 76.37 65.97 0.981 0.005 

SQA+Fitrress Sharing 36.59 16.33 0.876 0.016 
Deterministic Crowding 8.36 0.52 0.888 0.004 

Restricted Tournament Selection 14.45 3.17 0.9 18 0.020 
SGA+Clearing 81.98 64.58 0.953 0.020 

RGA+RTrA mutation+Qm&g 72.74 44.98 0.961 0.005 
Standard BGA+Cl&ng 72.73 61.82 a983 0.002 

- Theoretical - Oplimiaed 

0.1 0 

0.05 

0.00 
0 0  0.2 0.4 0.6 0 8  1 .O 

Normnliml C n ~ i l i n e a r  Cwrdinare 

(c) 

Fig. 3. Optimal solution of the capacitor benchmark (a) Charge and electric 
field distributions. (b) Optimal profile found. (c) Electric field stress on the 
contoun. 

where p~ denotes the mean of the electric field on the equipo- 
tential and 4~ is the corresponding standard deviation. 

The maximum value of l7 gving the optimal profile defined 
by (8) is F* = 1. 

R. Sitnulatiom, Results and Discussion 

Table TI summari7~s the efficiency of various GA schemes 
on the capacitor benchmark. All GA's are run during 200 

generations with a crossover probability pc = 1, a mutation 
rate p,,,,, = 0.001 and a population size N = 100. Clearing is 
computed with a niche capacity of 1 and a clearing radius of 
0.05 (as for the niche radius in the sharing method). RTS uses 
a crowding factor CF = 30. Results in Table III are averaged on 
four independent runs. TI and T12 indicate the percentage of 
individuals that fulfill the first constraint and both constraints 
simultaneously during a run of a GA. 

We can notice that real-encoded GA's (RGA and BGA) sur- 
pass the standard binary encoded GA (SGA). Niching methods 
are not very efficient on this unimodal problem except clearing, 
whlc h ~ m p m e s  convergence m all cases. In accordance w ~ t h  the 
predictions made in Section 11, we see that crowding schemes 
are unable to rapidly concentrate their population in the feasible 
domain. In effect, RTS and DC do not create a suficient number 
of individuals that fulfill both constraints simultaneously (this 
explains low values noted for for the Tl and T12 indicators). A 
standard GA coupled with fitness sharingis capable ofexploring 
the feasible domain but fails to differentiate good solutions from 
bad configurations in it. 

The best solution of objective F = 0.987 was found by the 
BGA coupled with the clearing method. Its characteristics are 
depicted in Fig. 3. 

In thls paper, an original benchmark consisting in finding an 
optimal capacitor profile with a charge simulation method has 
been proposed to test optimization algorithms. An analysis of' 
nichng GA's behavior has been carried out on t h s  problem 
and on a simple multimodal function to point out the conver- 
gence chatacteristics of each algorithm. In particular, crowding 
methods were unable to concentrate individuals in the feasible 
domain. Explicit niching GA's such as clearing seems to be 
more reliable for hardxonstrained problems if the niche radius 
can be suitably estimated. 
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