Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees.

Résumé

We establish an unusual second-order almost sure limit theorem for the minimal position in a one-dimensional super-critical branching random walk, and also prove a martingale convergence theorem which answers a question of Biggins and Kyprianou [7]. Our method applies furthermore to the study of directed polymers on a disordered tree. In particular, we give a rigorous proof of a phase transition phenomenon for the partition function (from the point of view of convergence in probability), already described by Derrida and Spohn [14]. Surprisingly, this phase transition phenomenon disappears in the sense of upper almost sure limits.
Fichier principal
Vignette du fichier
yzpolymer.pdf (432.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00133596 , version 1 (26-02-2007)
hal-00133596 , version 2 (05-04-2007)
hal-00133596 , version 3 (03-03-2008)
hal-00133596 , version 4 (22-06-2009)

Identifiants

Citer

Yueyun Hu, Zhan Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees.. 2007. ⟨hal-00133596v2⟩
300 Consultations
273 Téléchargements

Altmetric

Partager

More