Local zeta functions attached to the minimal spherical series for a class of symmetric spaces - Archive ouverte HAL
Article Dans Une Revue Memoirs of the American Mathematical Society Année : 2005

Local zeta functions attached to the minimal spherical series for a class of symmetric spaces

Résumé

The aim of this paper is to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces. These symmetric spaces are obtained as follows. We consider a graded simple real Lie algebra $\widetilde{\mathfrak g}$ of the form $\widetilde{\mathfrak g}=V^-\oplus \mathfrak g\oplus V^+$, where $[\mathfrak g,V^+]\subset V^+$, $[\mathfrak g,V^-]\subset V^-$ and $[V^-,V^+]\subset \mathfrak g$. If the graded algebra is regular, then a suitable group $G$ with Lie algebra $\mathfrak g$ has a finite number of open orbits in $V^+$, each of them is a realization of a symmetric space $G\slash H_p$. The functional equation gives a matrix relation between the local zeta functions associated to $H_p$-invariant distributions vectors for the same minimal spherical representation of $G$. This is a generalization of the functional equation obtained by Godement} and Jacquet for the local zeta function attached to a coefficient of a representation of $GL(n,\mathbb R)$.
Fichier principal
Vignette du fichier
IRMA-03002.pdf (1.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00112926 , version 1 (02-02-2007)

Identifiants

Citer

Nicole Bopp, Hubert Rubenthaler. Local zeta functions attached to the minimal spherical series for a class of symmetric spaces. Memoirs of the American Mathematical Society, 2005, vol. 174, num. 821, pp.233. ⟨10.1090/memo/0821⟩. ⟨hal-00112926⟩
212 Consultations
386 Téléchargements

Altmetric

Partager

More