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Introduction

Local Zeta functions play a fundamental role in the theory of global
Zeta functions, or more generally in the theory of automorphic L-functions.
More precisely, their meromorphic continuation as well as their functional
equations are often needed to prove the meromorphic continuation and the
functional equation of the L-functions. For all these aspects the reader is
refered to the book by Gelbart and Shahidi ([Ge-Sha]-1988) more specially
to what these authors call “the L-function machine” (loc. cit. section 1.7).

The most famous local Zeta function is certainly the so-called Tate local
Zeta function. This Zeta function appears in Tate’s thesis ([Ta]-1967). It is
associated to any local field and is used to prove the functional equation of
the global Zeta function for any global field. Among these, corresponding
to the field QQ, there is of course the Riemann Zeta function.

Let us briefly expose the basic results concerning this local Zeta function.
Let K be a local field. A character of K* is a morphism from K* into C*.
Any character of K* is of the form

xr
()

where s € C, and where x is a unitary character of the subgroup Uy of
elements of absolute value 1. The set of these unitary characters is denoted
by Uj.. Let S(K) be the space of Schwartz-Bruhat functions on K. The Tate
Zeta function is then defined for ¢ € S(K), x € U, and s € C by

25050 = [ f@x (%) el are

Here d*z is a suitably choosen Haar measure on K*. In fact it is easily seen
that the integral defining Z(f, s, x) is only convergent for Re(s) > 0, but
it can be proved that this holomorphic function in the s parameter extends
meromorphically to the whole complex plane. Moreover if F denotes the
(additive) Fourier transform on K, the Zeta function satisfies the following
functional equation:

(1) Z(p,8,X) = p(8,X\)Z(Fp,1 —s,x ') for p € S(K) ,

where p(s, x) is a meromorphic function in s, which is explicitely known if x
is unramified or if K = R, C. Let us say a few words about the proof by Tate
of this functional equation, in order to show below that this proof does not
extend to higher dimensions. Tate’s trick is the following. For ¢, ¢ € S(K),
the product

Z(p,8,X)Z(Fp,1 —s,x ")
5



6 INTRODUCTION

which is a convergent integral for 0 < Re(s) < 1, is shown to be symmetric
in ¢ and ¥:

(2) Z(<P7 S X)Z(fwa 1- vail) = Z(wa S X)Z(f(P7 1- S, Xﬁl) .
This remark implies the functional equation and that the Tate factor

__ 28 x)
p(s’X) B Z(]:d)a 1- 5:X71)

can be computed by using some well choosen function .

In 1966 André Weil gave a Bourbaki conference ([We]) where he in-
terpreted the functional equation (1) in terms of homogeneous distribu-
tions. He remarked that once the meromorphic continuation of Z(yp, s, x)
and of Z(Fp,1 —s,x 1) is proved, then as the two tempered distributions
o — Z(p,8,%x) and ¢ — Z(Fp,1 — s,x~!) have the same degree of ho-
mogeneity and, as the dimension of the space of such distributions is one,
there exists a “constant” p(s,x) such that (1) is satisfied.

André Weil suggested also to generalize Tate’s result, as well as the prob-
lem of the determination of dimension of homogeneous distributions to any
simple algebra. In connection with the paper by André Weil, M. Rais made
deep investigations concerning several type of homogeneous distributions on
various matrix spaces ([Rais|-1972). On the other hand the theory of Zeta
functions of simple algebras was achieved by the work of Godement-Jacquet
([G-J]-1972) in the spirit of Tate, but without using any result on homoge-
neous distributions. Previously to their work several partial (but important)
results for simple algebras were obtained by Leptin ([Lep]-1955), Fujisaki
([Fu]-1958), Stein ([St]-1967), Jacquet-Langlands ([Ja-La]-1970), Gelbart
([Ge]-1971). See also the Bourbaki Seminars on the subject by Godement
([Go]-1958, [Go]-1959). The paper by Knapp ([Kn|-1994) is also relevant to
understand how the work by Godement-Jacquet fits into the local Langlands
correspondence.

Let us here give an outline of the results obtained by Godement and
Jacquet, just for the simple algebra M, (R) of real n x n matrices. Let
8(M,(R)) denote the space of Schwartz functions on My(R). Let (m,V)
be an admisssible representation of GL,(R) and let (7*,V*) be the con-
tragredient representation. Let s € C. For any f,h € S(Mp(R)) the
(End(V') — valued) local Zeta functions are defined by

Z(f,5,7) = /G PRCILEEL OIS

Z(h, s,7%) = / £(2)| det(z)*n(z V) d*x
GLn(R)

d
where d*z = m is the Haar measure on GL,(R). Godement and
et(z

Jacquet proved that the integrals defining Z(f, s, 7) and Z(h, s, 7*) are con-
vergent for Re(s) large enough, have meromorphic continuations to C which
satisfy the following functional equation:

(3) Z(f,S+n—1,7T):")/(S,W)Z(j:f,]_—s,ﬂ'*),
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where again Ff is the Fourier transform of f, which is defined to map
S(M,(R)) onto itself

The functional equation (1) is just the functional equation (3) specialized
to n = 1. Unfortunately, and this is one of the difficulties of Godement-
Jacquet’s work, Tate’s trick does no longer work for n > 1. For example,
even for the case where 7 = 1 is the trivial one-dimensional representation,
and f,h € S(MR(R)), the two “functions” Z(f,s+mn—1,1)Z(Fh,1 —s,1)
and Z(h,s+n—1,1)Z(Ff,1—s,1) can be “formally” proved to be equal by
making the same change of variables as Tate did for n = 1, but there is no
domain in the s parameter where these products are defined by convergent
integrals, hence nothing makes sense... Therefore Godement and Jacquet’s
method uses a difficult induction on n (for a quick proof in the case # =1
(for any local field), see [Ru]- 1975).

At this point one should notice that if ¥ = Q there are basically two ways
to obtain the functional equation of the Riemann Zeta function ¢(s) from the
local Zeta function. The first one uses the local functional equation (1) on
R (the only archimedean place of Q) together with the Poisson summation
formula, the second one, due to Tate, is to use adelic analysis. Of course due
to some adelic evidence, it is well known that these two ways are basically
the same.

However, the first method was extended to obtain generalized (“global”)
Zeta functions in situations where there was no satisfactory adelic theory at
hand. This is due to Mikio Sato and is called the Theory of Prehomogeneous
Vector Spaces. Let us give a very brief and simplified overview of this Theory.
Let us start with a connected reductive algebraic group G defined over R.
We also denote by G the group of complex points . We suppose also that we
are given a finite dimensional irreducible representation p of G in a complex
vector space V. The basic assumption we make are the following:

e G has a Zariski open orbit Q in V, (then (G,p,V) is called a
prehomogeneous vector space);

e There exists on V a non trivial polynomial P which is relatively
invariant under G, and such that the Hessian of P is nonzero on Q (then
(G, p,V) is called regular).

Then it can be proved, under these assumptions, that the contragredient
representation (G, p*,V*) is again a regular prehomogeneous vector space,
whose fundamental relative invariant is denoted by P*. The polynomials P
and P* have the same degree denoted by d.

We further assume that (G, p,V) is defined over R. Then the group
Gr of real points has the same finite number of open orbits in Vg and Vf,
denoted by Qq,...,Q, and QF,..., Q% respectively. For f € S(Vr) (the
space of Schwartz functions on Vg) and h € S(Vj) one defines the local
Zeta functions by

Z;(f,S) - fQ |S d*
) = Jay BOIP* ()| "y

These Zeta functions are defined by convergent integrals (and are holomor-
phic) for Re(s) > 0, and admit meromorphic continuation to the whole

(4)
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complex plane. Then if we denote by F : S(Vg) — S(Vg) the Fourier
transform, the local functional (matrix) equation can be written as follows

(5) Z5(£,9) = D wa(9)Zy (Ff,—s = 3) .
q=1

This is the exact analogue of Tate’s local functional equation. There are at
least two proofs of the functional equation (5) (see [Sa-Sh]-1974 and [Sh]-
1972) and both of them relies on the fact that there is at most one invariant
distribution on each open Gg-orbit. Therefore one can say in some weak
sense that these proofs are related to André Weil’s suggestion. One should
also notice that in almost all published papers on the subject the v,,’s are
obtained by case by case examination.

If moreover G is supposed to be defined over Z, then M. Sato defined
global Zeta functions (7, for any Gz-stable lattice L in Vg. Very roughly
speaking, let us just say that

o) = Y 2D

)
wina, IP@I°

where pp(x) are some well defined coefficients called “local densities” (see
[Sa-Sh]-1974 and [Sh]-1972). The functional equation (5), together with the
Poisson summation formula implies a matricial functional equation for (p 1.
This is a generalization (which needs to overcome some serious technicali-
ties) of the non-adelic proof of the functional equation of the Riemann Zeta
function, starting from Tate functional equation (1).

Of course, the Godement-Jacquet Zeta function
2fs0) = [ fle) det(e) '
GLn(R)

is an example of a Zeta function associated to a prehomogeneous vector
space. On the other hand the Zeta functions of prehomogeneous vector
spaces, do not reach the generality of Godement-Jacquet’s theory, in the
sense that there is no higher dimensional representation of G involved in
the Zeta functions defined in (4). Howewer in his work [Sat]-1994, F. Sato
obtained a functional equation which can be interpreted as involving some
non scalar representations of G for some cases.

The purpose of the present paper (whose results have been announced
in [B-R]-1997) is to define local Zeta functions involving representations for
a family of prehomogeneous vector spaces, in which all open orbits Q, (and
Q;) are symmetric spaces, and to investigate their functional equations. To
be more precise we shall consider here a family of prehomogeneous vector
spaces such that if H), denotes the isotropy subgroup of a generic point
I, € Qp, then H), is a symmetric subgroup of Gg.

In such a situation we can consider a spherical representation 7 on a
Hilbert space #, that is a representation which has a non zero Hj-invariant
distribution vector a, € (™) for all p = 0,...,r (the representations in
the minimal spherical series will satisfy this condition in our cases). Then the
(H~>°)Hr-yalued function on Gg defined by g — 7(g)a, depends only on
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the class mod (Hp), and defines therefore a function 7(z)a, on G/Hy, ~ €,
Then, at least formally one can consider the following Zeta function

(6) Z (f,7,ap) = /Q f@r@ade (feSVe),

where d*z is the Gr-invariant measure on V.
Similarly, on the dual side Vi one can define

(7) Zﬂ%m%ﬂzvamﬂw%fy (h e 8(VR))-

In this paper we are dealing with representations (7, x, ) from the
minimal spherical series. Here (7,A) is the usual inducing parameter for
such representations. As we mentioned above, such representations of G are
Hp,-spherical for all p =0, ...,r. This explains why the same representation
7 occurs for each p in the definitions (6) and (7). Moreover, for generic A,
the space (H, ) *)r is finite dimensional.

We prove that the integrals defining Z;' (f, 72, ap) and Zy (h, 7: x, a;)
are convergent for Re(\) large enough. The Zeta functions ZJ (f, 7., ap)
and Z, (h, 7 x, ap) for generic A are then defined by meromorphic continua-
tion. These Zeta functions are closely related to the local Zeta functions of
the prehomogeneous vector space (P, p, Vr) where P is some parabolic sub-
group of Ggr. In this situation there are more than one fundamental relative
invariant.

Then, for a = (a,) € H;:o(%;io)H" we set

r
Z+(f7 T, a) = Z Z; (fa Tr,\s ap) )
(8) Po
Z=(h,mrn,a) = Z Z, (h, 77, ap) -
p=0

Our main Theorem asserts that these functions satisfy the following func-
tional equation:

Z_(ff, T, a) = Z+(f7 Xam X UL DY AT’)\G') 5

where F : S(Vg) — S(VR) is the Fourier transform, where xo is the char-
acter of the fundamental relative invariant of (G, p, Vr) and where A is an
element of End(H;;ZO(’HT_,‘;\O)HP). Moreover we are able to compute ex-
plicitely the matrix A in the standard basis of H;ZO(HT_KO)HP, for generic
A

We use together a Weil type argument relying on some results by Bruhat
([Bru]-1956) to prove the existence of an abstract functional equation and
an induction on the rank of our symmetric spaces (similar to Godement-
Jacquet) to obtain the explicit “gamma” factor (i.e. the explicit matrix
A™H).

From easy considerations this can be viewed as a generalization of the
“real” part of the work of Godement-Jacquet. More precisely their results
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correspond to the case of the symmetric space
GL,(R) x GL,(R)/diag (GLx(R)) ~ GL,(R) ,

where diag(GLy(R)) is the diagonal subgroup of GL,(R) x GL,(R). This
symmetric space occurs as a particular case in our paper. To be quite precise
we should say that we deal in fact with the connected group GL,(R)™ rather
than with GL,(R), this introduces slight changes with respect to Godement-
Jacquet’s result.

Another point we would like to emphasize here is that, contrary to
GL,(R), in the general case considered in this paper the representations
7, have "multiplicities”, which means that generically dim(#_ e > 1.
This is a source of technical complication.

We hope to be able in the future to associate global Zeta functions to
this family of symmetric spaces.

Content
Let us give now a brief description of this article.

In Chapter 1 we describe first a class of prehomogeneous vector spaces
related to some graded reductive Lie algebra. To be more precise we consider
a real reductive Lie algebra g for which there exists an element Hy € g such
that

=V @egoV",
where V= (resp. g, resp. V1) is the —2 (resp. 0, resp. +2) eigenspace for
ad Hy. We also assume that the adjoint representation of g on the complex-
ification of V' is irreducible and that there exist Y € V~ and X € V' such
that {Y, Hy, X} is a sly—triple. Such a data will be called a regular graded
Lie algebra in the sequel.

The class of (real) regular graded simple algebras is in bijection with the
class of simple real Jordan algebras up to “mutations” (see [Kay]-1994 for
example).

If G is the analytic subgroup of the adjoint group G of g , the pair
(G,V1) is a prehomogeneous vector space i.e. G has a finite number of
(real) Zariski-open orbits in V. Using the Killing form of g, the dual
prehomogeneous vector space is now identified whith (G,V 7).

We define a maximal sequence (g, ..., Ag) of strongly orthogonal roots
of g relatively to a maximal split abelian subalgebra a” whose corresponding
root spaces are in V1. This sequence will be of great importance in the whole
paper. The integer k+1 is called the rank of the graded Lie algebra. We give
also various decompositions of V', g and VT according to the eigenvalues
of ad H),, Hy; being the co-toot of A;.

In Chapter 2 we describe explicitly the orbit structure of V* under the
action of G. This uses the decomposition mentioned before and also some
involved constructions of Weyl group elements.
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The classification of these orbits leads us to distinguish three different
types among the regular graded Lie algebras (called Type I, II and III).
Inside a given Type the G—orbits are described in an uniform way.

At the end of the chapter a table gives the classification of the regular
graded simple Lie algebras by means of weighted SATAKE diagrams.

In Chapter 3 we develop the structure theory of the various symmet-
ric spaces occuring in our framework. The key fact is that each open G-
orbit QF (p =0,...,r) inside V* is a symmetric space G/H,. We describe
precisely the involutions o, defining the symmetric spaces as well as some
specific root systems characterizing each type.

A striking fact here is the existence of a Cartan involution § commuting
with each involution o, and of a parabolic subgroup P, minimal among
the op0-stable parabolic subgroups for all p = 0,...,r. The Langlands
decomposition of this P is given. It is well known that P has a finite number
of open orbits in each Q, = G/H,.

Then we study the irreducible polynomials A; (j = 0,...,k) which
are the fundamental relative invariant of the prehomogeneous vector space
(P, V). These polynomials are used to describe precisely the open P—orbits.
They will play an important role in the further chapters.

In Chapter 4 we establish several integral formulas which will be used
in the further chapters. To do this we have to make some delicate normal-
izations of measures on subspaces, subgroups, or symmetric spaces occuring
in graded Lie algebras.

We give also a detailed and adapted version of Weil’s formula for the
Fourier transform of a quadratic character. Finally in section 4.8. we give a
key result (due to Iris Muller ([Mu]-1986) for Type I and Type II) on some
orbital integral which will allow us to use an induction process on the rank
of the graded Lie algebra.

In Chapter 5 we give the explicit functional equation (for Type I and
Type II) for the prehomogeneous vector space (P, V1), where P is the par-
abolic subgroup defined in Chapter 3. Roughly speaking the Zeta functions
occuring in Chapter 5 are of the form

*(f,s) = z)|A(z)|°dz
2 (5) = [ f@IA@)ds

where s = (89,...,5;) € C**1 and |A(z)]* = |Ag(z)|*0 ... |Ak(z)|*. Here
the results from the previous Chapter play a crucial role.

We give also a new proof (another one can be found in [Sat]-1982)
of the existence of the functional equation which certainly extends to the
general case of any regular prehomogeneous vector space with several relative
invariants and which is based on the existence of a Bernstein identity for
several polynomials.

As a Corollary we obtain the explicit functional equation for the preho-
mogeneous vector space (G,V ™).

In Chapter 6 we similarly obtain the explicit functional equation for the
prehomogeneous (P, V1) in the Type III case. An important change here
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is that if P = M AN is the Langlands decomposition of P, then the group
M has higher dimensional irreducible (M N Hp)-spherical representations
(1,H;). Therefore we give first a complete description of these representa-
tions which are essentially tensor products of classical spherical harmonics on
the root spaces g*. The Zeta functions occuring there involve in fact these
(M N Hp)-spherical representations 7. They are #,-valued and roughly
speaking again they are of the form

27(f5,7) = [ 1@IAE)I @)ds
where b is a rational P-equivariant mapping from V' into H.,.

Chapter 7 is the heart of the paper and contains the main result.

We first define the minimal spherical series 7, ) for the symmetric spaces
G/Hp. Then we introduce some unified notation which enables us to write
the functional equations obtained in Chapter 5 and Chapter 6 in a way
which does not depend on the Type (see Theorem 7.2.6).

For each p = 0,...,r we construct a family af :} of Hy-invariant distri-

bution vectors (i.e. a? :} € (’H;;‘))HP) Here « belongs to a finite set W,

which parametrizes the open P-orbits in G/Hp, ~ Q. These vectors a2’}

(v € Wp) form a basis of (H_°)"» for generic A and can also be described
via the Poisson kernel on some subdomain of the parameter .

A part of our results is to prove that the Zeta integrals ZI",' (f,m, ap)
and Z; (h,m,ap) defined in (6) and (7) make sense for 7 = 7, ) and for
ap = a¥’]. Then, for generic A and a = (ao,...,a,) € HIT,ZO('HT_,?)HP, the
Zeta functions Z(f,m, ,a) and Z~ (h, 7, »,a) are well defined by (8). We
prove the functional equation (see Theorem 7.9.6)

Zi(ffa T, s (1) = Z+(fa Xam ® T, AT’)\(O’)) )
and compute explicitely the endomorphism A € End(][;_, (’HT_’?)HP) in the
basis (a2))p,-

Finally we give an interpretation of the Main Theorem in terms of a

modified Fourier transform F*. Such a modified Fourier transform was first
introduced by E. M. Stein ([St]-1967).

In the Appendix we treat the case of symmetric matrices in detail.



CHAPTER 1

A class of real prehomogeneous spaces

The aim of this chapter is to give the definition and to describe the
real prehomogeneous vector spaces that we will consider in the sequel. The
notion of prehomogeneous space was introduced by M. SATO in the 1970’s
(see the english version in [Sa]-1990). The class of prehomogeneous vector
spaces that we will study was introduced by H. RUBENTHALER ([Ru]-1982)
and these spaces are called regular prehomogeneous vector spaces of com-
mutative parabolic type. They are associated to a graded reductive Lie
algebra which satisfies some supplementary hypothesis. In the first part of
this chapter (1.1 to 1.7 ) we give the consequences of hypothesis (H;y) and
(H2) and in the second part (1.7 to 1.13 ) those of hypothesis (Hg) which
is equivalent to the regularity of the associated prehomogeneous space. For
the general theory of prehomogeneous vector spaces we refer the reader to
the paper by M. Sato and T. KiMmuraA ([Sa-K]-1977).

1.1. A class of graded algebras

We consider a real reductive Lie algebra g which satisfies the following
two hypothesis :

(Hy) There exists an element Hy € g such that ad Hy defines a 7Z-
gradation of the form

g=V-egaV" (VT£{0}),
0 for X € g;
where [Hyp, X] = ¢ 2X for X eVt

—2X forXeV—.

(Hg2) The representation of g on the complezification Vg of V't is irre-
ducible.

Troughout this paper a Lie algebra g satisfying these two hypothesis will be
called a graded Lie algebra.

The following relations are trivial consequences from (Hj) :

g,V cVt; gV ]cV ;lggcCce; [V, V]Cg.

Remark 1.1.1. The hypothesis (Hz) implies that there is no complex
structure on the Lie algebra g. If there is a complex structure on g then the
complexification gc of g is a complex Lie algebra isomorphic to g x g. The
complex subspace W = {(X,iX)|X € V*t} of Va' C gc is then invariant

13
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under the action of g which contradicts (Hz). The complex situation has
been studied in [R]-1982, [M-R-S]-1986 and [B-R]|-1993.

Since Hy is a semisimple element of g with real eigenvalues, there exists
a Cartan involution € of g such that §(Hy) = —Hy. Moreover there exists
a Cartan subspace a” of (g,6) such that Hy € aP i.e. a maximal abelian
subspace of the set p = {X € g | 6(X) = —X}. The Killing form of the
semisimple part of g has an extension B to g such that the quadratic form
X €3 Bp(X,X) = —B(X,6(X)) is positive definite.

We will make once and for all a choice of such 6, a® and B.

1.2. Root systems

Since §(Hy) = —Hy, 6 interchanges V* and V , stabilizes g and is a
Cartan involution of g. Moreover a” is also a Cartan subspace of the pair
(g,0). Thus we consider the (restricted) root systems ¥ and ¥ of the pair
(g, a”) and the pair (g, a?) respectively. For A € & (resp. &) we will denote
by g* (resp. g*) the corresponding root space in g (resp. g).

Theorem 1.2.1. L
(1) There exists a simple system Il in ¥ such that

vell = v(Hy) =0 or2.

(2) There exists an unique root Ao € II such that \o(Hyp) = 2.
(3) If the decomposition of a positive root A\ € X in the basis II is given
by
A= mgAo + Z myv , mog € Zt,m, € ZF
vell\{Ao}
then mg = 0 or mg = 1. Moreover X belongs to X if and only if mg = 0.

Proof. —Let S be the subset of v given by
S={NeZ|A(H)) =0o0r2}.

It is easily seen from (Hy) that S is a parabolic subset of T, ie. goVtis
a parabolic subalgebra of g. It is well known (see [Bou]-1968 chap. 6 Prop.
20) that there exists an order on ¥ such that, if a root A € ¥ is positive for
this order, then g is a subspace of g@® V*t. If II denotes the set of simple
roots of ¥ related to this order, then II satisfies (1).

There exists at least one root \g € II such that Mo(Hp) = 2 because
V+ £ {0}. Moreover the commutativity of V't which is the nilradical of the
parabolic algebra g & V' implies (3).

Let us suppose that there exists in II a root A1 # Ao such that A (Hp) =
2. Let V4 be the sum of the root spaces g* for the roots A of the form

A=A+ Z myv (m, € Z7).
I/Eﬁ,V(Ho):O
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Since V, does not contain g*°, it is a non-trivial subspace of VT which is
invariant under the action of g. This gives a contradiction with (Hs) and
the unicity of A\g such that \g(Hp) = 2 follows, hence (2) is proved.

[l

Let II be the set of roots v € II such that v(Hp) = 0. We have proved
that

ﬁ = HU{)‘O} )

where II (resp. II) is a simple system in v (resp. ). We will denote by ks
(resp. ©T) the set of positive roots of ¥ (resp. X) for the order relatively to
the basis II (resp. II).

We will make once and for all the choice of an order on Y such that
Theorem 1.2.1 1is satisfied.
Then we have the following characterization of g :

Corollary 1.2.2. The root \g is the unique root in Y such that
*  Xo(Ho) =2;
e dext—= 1 -Xr¢x.

1.3. Complexification

We will use an index C to denote the complexification of real vector
spaces or real Lie algebras. For example gc is the complexification of the
Lie algebra g.

There exists a Cartan subalgebra of g which is stable under  and which
contains a”. From now on we will choose such a Cartan subalgebra, denoted

by j. This is also a Cartan subalgebra of g. Let R and R be respectively
the root systems of the pairs (gc,jc) and (gc,jc)- There exists an order on

R such that, if RT denotes the set of positive roots for this order and p
denotes the restriction to a” of a root of R we have

p(RY) =% .

Proposition 1.3.1. There exists an unique simple root oy in R* such
that

plao) = Ao -
Proof. — Let T be the set of simple roots in R*. Tt is well known (see
[Wa]-1972 section 1.1.3) that p is a surjection from T onto II and that each

element of II is the i image of one or two elements of T. Assume that ag and
Bo are two different elements of T such that

p(ao) = p(Bo) = A

_The roots ag and f3p are not in the same irreducible connected component
of R. If this would be the case, the highest root in this component would
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be of the form
y=moao+mifo+ Y, maa,
ae\i\{ao,a1}
where mj € ZT, mj > 1 for j = 0,1 and m, € Z*. This would imply that
p(v) = (mo +m1)Xo + Z myv (m, € Z%)
vEll
which is impossible by Theorem 1.2.1 (3).

Let now wp and wy the highest roots of the (distincts) irreducible com-
ponents of R which contain respectively ag and [y. Since we have wo(Hp) =
w1(Hp) = 2, wy and wy are weights for the representation of g on Vg and
these weights are highest weights. This gives a contradiction with hypothesis

(H2) and the unicity of ag is proved.
a

Remark 1.3.2. The highest weight of the (irreducible) representation
of g in V(C+ is the highest root of the irreducible component of R which
contains ag. But hypothesis (Hz) does not imply that R is irreducible.

Remark 1.3.3. Proposition 1.3.1 implies that the complexification of g
is a complex graded algebra which satisfies (H;) and (Hz). These complex
algebras are studied in ([Ru]-1982) and in ([M-R-S]-1986).

1.4. Highest root in D

Proposition 1.4.1. There exists an unique root \° € ¥ such that
o MN(Hp)=2;
e Aext—= A4 2¢3.

Proof. — We will show that the restriction to a? of the highest weight w
of the representation of g on V<c+ is the unique root which satisfies the above

property. Let A® = p(w) be this restriction. Then X\’ is a root in ¥ such
that A0(Hy) = w(Hyp) = 2.

Let A be a positive root in X. If A + A0 is a root then there exist two
roots a and S in R such that
pla) =X and p(B) = A+ X\°.

The root space of 3 is a subspace of V(C+ . Thus 3 is a weight of the irreducible
representation of g on Vg and can be written

5:‘0—27”77 (my €Z7),
ye®

where U is the the set of simple roots in R+. If we take the restriction to
a? of the members of this equality we obtain

A== mayp(7) -

ved
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Since A and p(y) for v € T are positive roots in f], this is impossible and
we have proved that A + A? is not a root.

It remains to prove that A° is the unique root of ¥ which satisfies the
properties of the Proposition.
Let A! be a root in ¥ which satisfies these properties and

S={aeR"|pla)=A}.

An element of S is a weight for the representation of g on V(C'" . Let w! be
a maximal element of S for a (lexicographic) order induced by the basis of
Rt

For 8 € R* such that p(B) = 0, w! + B is not a root. If this would be
the case, w! + 3 would belong to S which contradicts the maximality of w?.

For 8 € R* such that p(8) # 0, w! + B is not a root. If this would

be the case, then A! + p(3) would be a root in &+ which contradicts the
assumption on A\! because p(53) is positive.

Thus w! is a highest weight of the representation of g on Vg and, by
irreducibility of this representation, is equal to w which implies that

A= p(wh) = p(w) = A°.

If jr is the real form of j¢ defined by
jr=c’®i{H €j|0(H)=H},
then the roots of R take real values on jg. On the other hand the roots of
Y take real values on a”. The form B is positive definite on a” and on jr

and induces a scalar product on the corresponding real dual spaces which
will be denoted by

(a|B) for a and B € (aP)* or j .

There exists for each root @ € & (resp. 75,) an unique element H, € df
(resp. jr) such that

(Ba)

(a]a)

B(Hy) =2 for each 8 € (aP)* (resp. B € jr*) .

The element H, is called the co-root of a.
We will apply the following classical result to the root systems ¥ and R.

Lemma 1.4.2 ([Bou]-(1968) Ch.VI §1 Prop. 9).
Let o and B be two roots in a root system (reduced or not reduced) such that
« is not proportional to B. Then the set {j € Z| B+ ja is a oot } is of the
form

(8]

(a] @)

(—=¢,—q+1,...,p) withp>0, ¢g>0andp—q=—2 = —B(H,) -
The set of roots of the form § + ja with j € Z is called the a-series of

roots containing B. The roots o and (3 are orthogonal for (. | .) if and only

if p = q i.e. the a-series of roots containing S is symmetric with respect to
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B. The roots a and (8 are strongly orthogonal if neither a4+ 8 nor a — 3 is
aroot ie p=qg=0.
We will write

a 1 B if a and B are orthogonal roots ;

a lL 3 if o and B are strongly orthogonal roots .

1.5. The first step for the descent

The aim of this section is to construct a graded subalgebra of g wich
satisfies the same properties.

Let I the Lie subalgebra of § generated by the root spaces g° and g °.
This is a f-stable semisimple real Lie algebra of split rank 1. It’s Cartan
subspace is generated by H),, the co-root of A in a®.

Proposition 1.5.1. Let g; be the reductive subalgebra of g which is the
centralizer of Iy in g. If the intersection of g1 with V' is nonzero, then g
satisfies the hypothesis (Hy) and (H2) where the gradation is defined by the
element

Hy = Hy— Hy, .

Proof. —Since H), belongs to TO the action of ad Hy and ad H; on
g1 are the same. Moreover To and g are stable under the action of ad Hy
and of ad H;. Thus the eigenvalues of ad H; acting on g; are —2,0 and 2
because V1 (g1 # {0}. It follows that the hypothesis (Hj) is satisfied and it
remains to prove that the representation of g3 = g() g1 on Vl""(c =VZ Noic
is irreducible.

We will complexify the situation as in section 1.3. Let
So={a e R" | p(a) = Ao} .

The complexification of Yo is the complex Lie algebra generated by the root
spaces g% and g~ for all & € Sy. Therefore the complexification of g; has
the following decomposition

g1,c =j1,c® (@Beﬁj{é) where
jc={H €jc|aecSy= a(H)=0},
Ri={BeR|VacS, BlLa}.

If 8 belongs to Ry then a(Hg) = 0 for each root o € Sy. It follows that Hg
belongs to j; ¢ and that the restriction of 8 to ji ¢ is non zero. Thus j; ¢ is

a Cartan subalgebra of ﬁ1,<c and 73,1 can be identified with the root system
of the pair (g1,c,j1,c)- The order on R defined by R* induces an order on
R1 and on the root system R; of the pair (gi,c,j1,c) by setting

ﬁf:ﬁlﬂi?j_ ; szklﬁﬁ+:7€1ﬂ7€+.
Let now w; be the highest weight (for this order) of one of the irreducible
components of the representation of g; ¢ on V1+<C' It is a root of R and we
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will show that it is also a highest weight for the representation of g on V<c+ .
For that purpose we take a root 8 € RT and we will prove that w; + 3 is
not a root of R.

(1) If B belongs to R, then the definition of w; implies that w; + /3 does

not belong to Ri. But Egﬂ” = fg'ﬁél,aé] is a subspace of Vl'j'(c. Therefore

§€+w1 is equal to zero, which implies that w; + 3 is not a root in R.

(2) If B does not belong to R, there is a root a € Sp such that a and
B are not strongly orthogonal. Let us prove that in this case there is a root
v € Sp such that

(x) y+BeRandy—B¢R.

(2.1) If p(B) # 0, then a — B is not a root. If it would be the case,
we would have

pla—B) = p(e) — p(B) = Ao — p(B) ,

which contradicts the fact that p(8) is a positive root different from Ag

(because p(B) € £1) and \g is a simple root in . Thus the root v = «
satisfies (x).

(2.2) If p(B) = 0, we consider the [-series of roots containing c.
These roots belong to Sy and the series contains at least two roots due to
the fact that o and 8 are not strongly orthogonal roots. Therefore there
exists a root v in this series such that () is satisfied.

In the two cases (2.1) and (2.2) we have (8 | v) < 0 (Lemma 1.4.2).

Moreover (wy | ) = 0 since these roots are strongly orthogonal (w1 € Ry
and v € Sp). Now if wy + S is a root, we have

(wi+By)=(w |MN+B|v)=0B|7)<0.

This implies (Lemma 1.4.2) that w; + 8 + 7 is a root. This is impossible
because of (w1 + B + v)(Hp) = 4 due to wi(Hy) = 2, f(Hp) = 0 and
v(Ho) = Xo(Ho) = 2.

We have now proved, in the two cases (1) and (2), that w; is a highest
weight for the representation of g on V(C'" which is irreducible by (Hz). Thus
w1 is uniquely determined and the representation of g; on Vf,LC is irreducible.

O

Since Iy is 6-stable, @ stabilizes g; and a Cartan subspace of the pair
(g1, 0) is given by the space orthogonal to H), in a” i.e.

a'l’:apﬂglz{Hea”Mo(H):O}.

We associate to g; the same objects as to g and we will denote them by an
index 1.

Proposition 1.5.2.
(1) The root system X1 of the pair (g1,a%) can be identified with

S ={AeS AL} ={AeT|ALX}.
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(2) The order given by Theorem 1.2.1(1) on 3y is such that
S-S
(3) The simple system in f]f defined by this order is given by
M = (nmil) U{n),
where \1 1s the unique Toot in T, such that \; (Hp) =

Proof. —

(1) We will first prove that a root A € T is strongly orthogonal to Ag if
and only if it is orthogonal to A¢ . For that let A € % be a root orthogonal
to Ag. Then the Aj—series of roots containing A is symmetric with respect
to A. This implies that

A—XET <A+t eEX.

a) If A\(Hp) = 2 then (A + X\o)(Hyp) = 4 therefore A + Aq is not a root.
b) If A\(Hp) = —2 then (A — Ag)(Hp) = —4 therefore A — A is not a

root.
c) If A(Hy) = 0 then A belongs to ¥ and is a sum of elements of
the 51mple system IT (or the opposite). But A is an element of the simple

system II of 3 such that Ao ¢ II. Thus
reTt=A-X¢3;
AETT = A+ X ¢
We have proved that the roots orthogonal to A i.e. the roots A such that
A(H)y,) = 0 are the roots which are strongly orthogonal to Ag.

For such a root the associated root space belongs to the centralizer of
To, the co-root belongs to al and the restriction to al is a root of the pair
(g1,0}). Conversely a root A of the pair (g1,a}) can be extended to a? by
taking A(H),) = 0. This gives rise to a root of 5. orthogonal to Ag, hence
strongly orthogonal to Ay and thus belonging to 1.

(2) The set f]f — 5+ N 3 defines an order on ;. For \ € f]ir we have
A(H1) = MNHy) =2 or 0.
Therefore property (1) of Theorem 1.2.1 is satisfied for this order.

(3) Let II; be the set of simple roots in f]* By Theorem 1.2.1 (2) we
know that there exists an unique root \; € II; such that A1(Hy1) = 2 and
that Iy = Hl\{)\l} is a simple system in £; = {\ € 31 | M(H}) = 0}. Since
aroot A € 3y verifies A(H1) = A(Hp), E1 is also the set of roots A € Xy such

that A(Hp) = 0. Thus II(%; is a subset of II;. Let us prove the equality
of these two sets.

Let p be simple root in Zf. Since I is the set of simple roots in ¥ D 21"

we have
w= Zm,,l/ (my, € ZT) .
vell
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Since p belongs to X we have (u [ Adg) = 0. For v € I we have (v | Ag) <0
since v and )\ are simple roots in 3. Thus

m,#0= (v| M) =0=re.

Therefore p is equal to one of the roots v € II. This proves that II; C II.
O

Remark 1.5.3. There is only one root A € II such that A(Hg) = 2,
namely Ag. Therefore the root A; does not belong to the set II of simple
roots in 7.

1.6. The descent

Theorem 1.6.1. There exists a sequence of strongly orthogomnal roots
n f]"’\E denoted by {Xg,A1,..., A} and a sequence of reductive algebras
gDg1 D D g such that

(1) g; is the centralizer in g of Todh®-- -@qu where I; is the subalgebra
generated by g and g,

(2) g; satisfies the hypothesis (Hi) and (Hz) where the gradation is
defined by the element Hy — Hy, — Hx, — - — Hy,;_;.

@) vt mZﬁI;’(To oL@ &l ={0}.

Proof. — The proof of (1) , (2) and (3) is done by induction on j where
g; is the centralizer in g;_1 of [;_;. Then Proposition 1.5.1 applied to the
algebra g; gives the result . The construction ends for the index k such that

sm ) (VT ={0}.

This means that the centralizer in V' (and in V") of i@ [ @ -+ @ I, is
Zero.

O

Definition 1.6.2. The number of strongly orthogonal roots will be called
the rank of the graded algebra. It is denoted by k + 1.

Since g; satisfies the hypothesis (Hy) and (H2) we can associate to
g; the same objects as to g and we will denote them by an index j. For
example Vj+ is the set of elements in g; of weight 2 under the action of

ad(Ho — Hy, — -+ — Hy,_,), ij is the set of roots in ¥ which are strongly
orthogonal to Ag,...,\j_1 (see Proposition 1.5.2).
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1.7. Generic elements in VT

We introduce now some Lie groups G and G associated to the Lie alge-
bras g and g. We make once for all the following choices :

e G is the adjoint group of § i.e. the subgroup of GL(g) generated
by {e24X | X € §}; the group G is semisimple with trivial center; the Lie
algebra of G is ad .

e (G is the analytic subgroup of G whith Lie algebra adgg i.e. the
subgroup of G generated by {e*dX | X € g} or the identity component of
the centralizer of Hy in C~¥; the group G is connected reductive and the Lie
algebra of the center of G is isomorphic to RHj.

From now on all the Lie groups under consideration will be subgroups of
G. If X is an element of g, the two notations exp X or 24X will be used to
denote the corresponding element of G. In general 24X will be used instead
of Ad(exp X) to denote the adjoint action of the group G on g.

Definition 1.7.1. An element X € V1 is generic in VT if it satisfies
one of the two equivalent conditions :

(i) The G-orbit of X 1is open in V*;
(ii) adX maps g onto V' .

Using the analogy between g and g;, we will say that an element X in
Vj+ is generic in VjJr if ad X maps g; (the centralizer of Hy—Hy,—-- —Hy;_,
in g;) onto Vj+.

Lemma 1.7.2. Let X € VT and Y € V~ such that [Y, X] = Hy. Then
X is generic in V7.

Proof. —For v € VT we have
2v=adHyv=—ad[X,Y]v=—-adXadYw.
Thus ad X is a surjective map from g onto V' which proves the Lemma.
O

The existence of such an element X is exactly the Hypothesis (Hg) (see
the definition 1.7.8 below) which is not satisfied in general. However we
will construct generic elements in V' which, in general, do not satisfy the
Lemma 1.7.2.

Definition 1.7.3. If Y, H and X are elements of g, then {Y,H, X} is
called a slay-triple if the following relations are satisfied
[H,X]=2X; [HY]=-2Y; [Y,X|=H.

Then the Lie subalgebra of g generated by these elements is isomorphic to
sl(2,R).

The following (classical) Lemma gives a family of sla-triples.

Lemma 1.7.4. Let X be a nonzero element of a root space g* (with
€x)

) There ezists a constant ¢ > 0 such that {6(cX), Hx,cX} is a sla-triple.
) There exists an element Y € g=* such that {Y, Hy, X} is a sla-triple.

A

1
(2
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Proof. —The element H = [6(X), X| satisfies §(H) = —H and belongs
to [§7*, 8] which is a subset of the centralizer of aP. Hence H is an element
of a?. Moreover we have

B([0(X),X],Z) = —\(Z) B(6(X), X) for Z € a” .

Since (Z, Z') — —B(8(Z), Z') is positive definite on a” we obtain (using the
definition of the co-root H))

—-B(O(X), X
[0(X), X] = CH) where C = 2M >0.
B(Hx, H»)
We obtain (1) for ¢ = 1/4/C and (2) for Y = $0(X).
O
We choose now for each j € {0,1,...,k} an element X, € g*\{0} and
we denote by Y; an element in 9~ such that {Yj, Hy;, X} is a slp-triple.

Lemma 1.7.5. The element Xy is generic in Vk+.

Proof. —Lemma 1.7.2 does not give the result since gy is graded by
Hy — H), — --- — Hy,_, but not (in general) by H),. Nevertheless X
belongs to Vk+ and we will show that ad X maps gi onto Vk+.

Let A be a root occuring in Vk+ and Z an element of g*. Then we have

ad XyadYy.Z = —ad Hy,.Z = —A(H),)Z .

Since X, belongs to Vk+, the element ad Yy.Z belongs to gi. Thus it remains
to prove that A(H),) # 0 for each root A occuring in V,'.

If A = A\ then A\gy(H),) = 2. If X is different from Ap and A(H),) =0
then A is strongly orthogonal to Ag since A+ is not a root. This contradicts
the definition of Vk+.

O

Lemma 1.7.6. Let j € {1,2,...,k}. If X is a generic element in Vj+
then Xo+ X1 +---+ X;_1 + X 1is generic in V.

Proof. — We will prove this result for j = 1 and the Lemma will follow
by induction on j.

Let X be a generic element in V;" and Z an element of one of the root
spaces g* occuring in V. We will show that Z € ad(Xy + X)(g) which will
prove that Xy + X is a generic element in V.

If A= )Xp then U = ad Yy.Z is an element of gﬂ?o and commutes with
X € V™. Hence ad(Xo + X).U = ad Xo.U = —2Z and the result is proved.

If X is strongly orthogonal to \g, then Z belongs to V;©. But, by hypoth-

esis X is generic in V1. It follows that there is an element U in g; such that
ad X.U = Z. Since U and X, commute, we have also ad(Xy + X).U = Z.

If A is not strongly orthogonal to Ay and is different from Ag then y =
A — g is a root belonging to X% and U = ad Yp.Z belongs to g#. If [g¥, V1+]
is nonzero, there exists a root v such that g C V;© and p + v is a root.
But (u+ v | X)) = (i | Ao) is strictly negative due to the fact that pu + Ag
is a root and p — Ag is not a root. Hence p + v + Ag is a root which takes
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the value 4 on Hy. This is impossible, hence g and Vl+ commute. Thus we
obtain the equality ad(Xy + X).U = ad Xo.U = —2Z which gives the result.
[l

The two previous Lemmas imply

Proposition 1.7.7. The space V1 contains generic elements. For ex-
ample an element of the form Xo + -+ + Xy, where X; € g¥\{0} for
j=0,...,k is generic in VT.

Consequently there exist open G-orbits in V.

We define now the complexifications Gc and G of the groups G and G
as follows :

e (¢ is the adjoint group of g¢ i.e. the subgroup of GL(gc) generated
by {e*dX | X € gc}. Since its Lie algebra ad gc is semisimple, the group
G is an algebraic semisimple group ([O-V] p. 138).

e (¢ is the analytic subgroup of é?c whith Lie algebra adg, gc. As
centralizers of tori are connected ([Hul-1981 §22.3) the group G is also the

centralizer of Hy in Gc.

If X is a generic element in V* then the Gc-orbit of X is open in
V@L and, since G is algebraic and the adjoint action of G¢ rational, this
orbit is a Zariski open subset of V. Therefore the pair (G¢, V) is a
prehomogeneous vector space in the sense of M. Saro ([Sa]-1990), which is
irreducible by hypothesis (Ha).

The prehomogeneous spaces defined this way are called prehomogeneous
vector spaces of commutative parabolic type ([Ru]-1982) due to the fact that
gc® VC"' is a parabolic subalgebra of g¢ with a commutative nil-radical VC"' .

The pair (G,V™1) is a real form of the prehomogeneous vector space
(G, V). The infinitesimal classification of all real forms of (Gc, V) is
known from ([Ru]-1986).

We will now introduce a last hypothesis on the graded Lie algebra con-
sidered here which restricts our study to the class of regular prehomogeneous
spaces of commutative parabolic type.

Definition 1.7.8. A graded reductive Lie algebra g which satisfies (Hq)
and (Hzg) is called regular if it satisfies the following hypothesis :

(Hg) There ezists an element IT € V' and an element I~ € V™~ such
that

{I",Hy, I} is a sly—triple .

We know from lemma 1.7.2 that such an element I' is generic in VT
and we shall prove that all generic elements in VT are of this form.

Proposition 1.7.9. In a regular graded algebra an element X € VT
is generic in VT if and only if there exists an element Y € V~ such that
{Y,Hy, X} is a sla-triple. Moreover if such an'Y ezists, it is unique.

Proof. —1If {Y, Hy, X } is a slo-triple then, by lemma 1.7.2, X is generic
in V+.
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Conversely, if X is generic in VT, the G-orbit of X is open in V.
For the same reason the Gc-orbit of X is an open subset of Vg . But the
complex group G is algebraic, the action of G¢ on V(c+ is rational. Thus
the Gc—orbit of X which is a Zariski open orbit is unique and is equal to the
Gc-orbit of IT. Then there exists an element g in G¢ such that X = g.It.
It follows that {g.I~,g.Ho,g.I"} is a sl-triple equal to {g.]~, Hp, X}. A
classical lemma ([Bou]-1975 Ch.VII §11.1 lemme 1) asserts that g.I~ =Y.
The same argument implies the unicity of Y in the Proposition.

|

From now on we will assume that the graded algebra (g, Hy) is regular.

1.8. Structure of the regular graded algebra (g, Hy)

Let (Ao, A1,---,Ag) be the sequence of strongly orthogonal roots given
by Theorem 1.6.1 and let {H),, Hy,,...,Hy,} be the associated co-roots.
We define the subspace a® of a? by

o’ = @f_(RH,, Ca” .

For i,5 € {0,1,...,k} and for p,q € Z we define the subspaces E; ;(p, q)
of g by

pX ifl=1i;
Eijpa) =X e€g|[Hy\,X]=4gX ifl=j;
0 iffe i}

Theorem 1.8.1. If a graded algebra is regular i.e. satisfies (Hg) then
Hy = Hyy+ Hy, +---+ Hy, .
We have the following decompositions :
(1) 9 =35(a%) @ (®ig; Bij(1,-1)) ;
(2) vt= (@g?:oﬁ)‘j) (®icjBi(1,1)) ;
(3) V7= (&)=t V) @ (BicsBij(-1,-1)) -

Proof. —For j € {0,1,...,k} let X; be an element of g% such that
{6(X;), Hy, ,X} is a 5[2—tr1ple By Proposition 1.7.7 the element X =
Xo + X1 + --- + Xy is generic in VT and hypothesis (Hg) implies, by
Proposition1.7.9, that there exists Y € V'~ such that {Y, Hy, X} is a slp-
triple. Thus (ad X)? is one to one on V~ which is the subspace of weight
(-2) for the representation of the subalgebra generated by Y, Hy and X.
But Y/ = 6(Xy) + 0(X1) + --- + 6(Xy) is an element of V'~ such that
(ad X)2Y' = 2X = (ad X)?Y. It follows that Y = Y’ and we obtain

H)\0+H)\1 ++H)\k = [YI,X] = [Y,X] =Hy .

Let X be an element of a root space in g. There exist integers p; such
that

[H,, X] = p;X for j =0,1,....k .
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The relation Hy = Hy, + H), + --- + H), implies that

2 HXeVrT
po+pr+--+pr =140 ifX eg;
-2 ifXeV .

Let w; = 24 X ad0(X;)pad X he the nontrivial element of the Weyl group
of the algebra s((2, R) generated by the triple {6(X}), H),, X;}. The strong
orthogonality of the roots \; implies that w; and w; commute and that

Hy, fori#j;
wi.Hy, = L
—H,, fori=7j.

Therefore there exists an element w € é, depending on X, product of some
wj;’s, such that

[Hy;, w.X] = |pj|lw.X for j =0,1,...,k.

This implies that
lpo| + |p1| + -+ [pk| =0o0r 2.
Thus each p; is zero except one or two among them which take the values
0,+1 or +2. Consequently g is the direct sum of spaces of the form E; ;(p, q).
In particular X belongs to the centralizer of a® in g if and only if each pj is
zero for 7 =0,...,k.
To obtain the announced decompositions it remains to show that

E;(0,2) = g% and E;;(0,-2) = g N fori#j.

A root space g} occurs in E; ;(0,2) if A(H;) = 2 and A(H,,) = 0 for
£ # j. Tt means that each root A\, is orthogonal to A for £ # j. Since
(A+Ae)(Ho) = 4, A+ )¢ is not a root and therefore A, is strongly orthogonal
to A. In particular A belongs to the centralizer of Lhe--- @A[:j_]_. Thus A is
a root of flj. Since A is a positive root and A; belongs to the basis of flj, it
follows that A — A; is not a root. But the fact that A(Hy;) = 2 > 0 implies
that X is a multiple of A; and, therefore, that A = ;.

O

The following Corollary is a generalisation to each j € {1...,k} of the
assertion (1) of Proposition 1.5.2

Corollary 1.8.2. Let j € {0,1,...,k}. A root A € T is strongly orthog-
onal to A\j if and only if X is orthogonal to ;.

Proof. —Let X be a root orthogonal to A;.

If \(Hp) = 2 (resp. A(Hp) = —2) then A+ A; (resp. A — ;) is not a root.
It follows, using Lemma 1.4.2, that A is strongly orthogonal to A;.

If A\(Ho) = 0, then X\ belongs to 34(a’) or A belongs to some space
E, s(1,—1) with r # j and s # j . We prove that, in the two cases, A + );
is not a root.
In the first case (A + A;)(H);) = 2 which implies by Theorem 1.8.1
that A 4+ A; = A;, which is impossible.
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In the second case A + A; takes the values 2 on Hj;, 1 on H,, and
—1 on H),, which is impossible.
Hence A is strongly orthogonal to A;.
O

Remark 1.8.3. The decomposition in the spaces E; ;(p, ¢) will be much
more useful than the root space decomposition of g. In particular we will
frequently use the brackets of the spaces E; ;(p, ¢) which can be easely com-
puted using the Jacobi identity. We will prove later on (see section 3.3)
that this decomposition is in fact a root space decomposition relatively to
an other system of roots than 3.

Theorem 1.8.1 implies that the gradation of the algebra g; (see Theorem
1.6.1 (2)) is in fact given by Hy,+---+Hy,. Moreover there exists an element

I7 € V;" such that {6(I"), Hx, +- - -+ Hx,, I} is a sly-triple. It is obtained
as a sum for i = j to k of elements X; € g™ such that {8(X;), Hy,, X;} are
slo—triples. And we deduce from Theorem 1.6.1 the next result.

Corollary 1.8.4. For j =0,...,k, the graded algebra (Ej,HAj + -+
H),) satisfies the hypothesis (Hy), (Hz) and (Hgz). We have the following
decompositions :

(1) gj = (39(‘10) ﬂg]‘) ® (®T¢8;jST;jS3ET»S(1’ _1)) )
(2) Vj+ = (@f:jﬁ’\s) P (®j§r<sEr,s(1a 1)) ;
®) V= (@k5) © (@5<raBrs(-1,-1) .
It is easy to comnstruct other graded subalgebras of g satisfying the hy-
pothesis (Hy), (H2) and (Hs) as follows :

Proposition 1.8.5. Let A be a nonempty subset of {0,1,...k} and
Hy= ZjeAHAj- We denote by

ga={X €g|[[Ha X]=0};
Vi={XeV"|[HgX]=2X};
V, ={X e V" |[Hg X]=-2X};
Then the graded algebra (ga =V ©@ga®V,, Ha) satisfies (Hy), (Ha) and
(Hs).
Proof. — The hypothesis (Hy) is satisfied by construction and the hy-
pothesis (Hg) can be proved with the argument used for g;.
It remains to prove that the representation of g4 on V;C is irreducible.

For that we consider a subspace U of VA"(C invariant under the action of g4.
We will study the image of U under the action of g. From Theorem 1.8.1
the action of H4 on g decomposes as follows :

g=g(-)@gadg(l),
where g(—1) = ®i¢a jcaFij(1,—1) and g(1) = Bica,j¢aFij(1, —1).
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We will consider now subspaces of Vg which are invariant under the
action of ad H4. We remark that the only eigenvalues of ad H4 in VT are
0,1 or 2.

e U is, by definition, contained in the eigenspace of ad H4 for the
eigenvalue 2;

e Uy = [g(—1),U], the C—subspace of V@L generated by the brackets
[X,Y] with X € g(—1) and Y € U, is contained in the eigenspace of ad H 4
for the eigenvalue 1;

e Uy = [g(—1),Us] is contained in the eigenspace of ad H4 for the
eigenvalue 0;

¢ [g(—1), Up] is contained in the eigenspace of ad H 4 for the eigenvalue
—1 hence is reduced to {0}.

e [g(1),U] is contained in the eigenspace of ad H4 for the eigenvalue
3 hence is reduced to {0}.

We will prove that Uy @ Uy @ U is invariant under the action of g.
1) Since [ga, U] C U, [g(1),U] = {0} and [g(—1),U] = U1 we have

[g,UlcUaU; .
2) Since [g,9(—1)] C g and [g,U] C U @ Uy, we have

[gaUl] C [ga U] + [g(_l)a U Ul] cU®a Ul @ UO .
3) Since [g,9(—1)] C g and [g,U1] C U @ U; & Up we have,

[g,00) C[g,Ur] +[9(-1), U U1 Uy CU UL U .

Then Uy ® U1 @ U is a C-subspace of VC'" invariant under the action of g.
Since the representation of g on VC'" is irreducible, we have Uy®U1 U = VC'" .
But U is contained in the eigenspace with eigenvalue 2 of ad Hy4 i.e. in VA+7 C
and Uy and U; are contained in eigenspaces for other eigenvalues. Hence we
obtained the equality U = V;C.

|

Remark 1.8.6. For A = {j,j+1,...,k} the subalgebra g4 has a grada-
tion given by the same element than the subalgebra g;, namely H Aot
H),. But these algebras are distinct : we have g; C g4 and the inclusion
is strict; for example the subspace E, ;(1,—1) is contained in g4 for s < j
and r < j and is not contained in g;. More precisely we have the following
decompositions :

Vi= EAﬂV+ = (Gif:jﬁAs) @ (@J’SKSEW(L 1)) - VJ’+ ;
ga=34(a") ® (éBr;és;er;jssEr,s(l, —1)) @ (®rzsir<jis<iBrs(1, _1)) 29 -

In Remark 1.3.2 we have noticed that the the graded algebra g is, in
general, not simple. However the following Proposition shows that it is
possible to obtain a regular graded subalgebra of g, with the same “V*t”
and “V~” than g, which is simple.

Proposition 1.8.7. The subalgebra ® of the reqular graded algebra g
generated by V™ and V™~ is a reqular graded algebra which is simple.
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Proof. — The algebra & is also graded by ad Hy and can be written as
=V a6V,

where & is the vector subspace generated by the elements of the form [Y, X]
withY € V™ and X € V. It is clear that the hypothesis (Hy), (H2) and
(Hg) are satisfied.

Moreover & is an ideal of § since [g, V=] C V. Let & be the ideal of §
orthogonal to & for B. Then &' is contained in g and we have

=V o6ad aVT.

To prove that & is simple, we consider an ideal J of ®. The subspace
J( V™ is stabilized by ad ® and annihilated by ad &’. Since the represen-
tation of g on VI is irreducible by (Hz) we have two possibilities :

Case I: JO\Vt=VT.

In this case J contains & = [V, V*] = [V, VT J]. In particular
J contains Hy which is by (Hg) the bracket of an element of V* and an
element of V. Therefore J contains V'~ = [Hp,V~]. We conclude that
J = 6.

Case 2: JOV+ ={0}.

We consider in this case the orthogonal J L of J in & for the restriction
of B. Tt is also an ideal of ® such that J- (VT = V. Using the result of
the first case, we obtain that J- = & and therefore that J = {0}.

O

1.9. Properties of the spaces E; ;(p, q)

Proposition 1.9.1. Let X be a root in ¥ such that g* C E;;(1,-1).
Then X is a positive root if and only if i > j.

Proof. —Let A be a root in ¥ such that A\(H);) = 1 and A\(H),) = —1.
By Theorem 1.8.1 we have A(H),) =0 for s # ¢ and s # j. If ¢ > j, then A
is orthogonal, hence (by Corollary 1.8.2 ) strongly orthogonal, to each root
As for s < j. Thus A is a root belonging to f]j.

Since (A | A;) is strictly negative, X + A; is a root in 3;. But the root A
belongs in fact to X; and the Corollary 1.2.2 applied to flj implies that A is
necessarily positive. It is thus a positive root in z (Proposition 1.5.2) and
in ¥ (Theorem 1.2.1).

The equivalence in the Proposition can be deduced from the following
remark :

g’\ C Ei,j(]-7 —1) < gi)‘ C Ej,i(]-7 —1) .
O

Let W and W be the Weyl groups of the root systems ¥ and . The
group W is the subgroup of W which is generated by the reflections along
the roots A € X. In particular Hy is fixed by each element of W.
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Proposition 1.9.2. Let sy be the element of W which interchanges X+
and ¥~. Then we have

80-A\j = Ag—j for 5 =0,1,... k.

Moreover the roots \; and \; are W-conjugate for each i and each j in

{0,1,...,k}.

Proof. — We first prove that sg.\g = Ag.
We know from Corollary 1.2.2 that the root Ag is characterized by the
properties :
n { Xo(Ho) =2 ; 3
o AeXt= XN —-A¢X.

Therefore sy.Ag is the unique root p such that :

o p(Ho)=2;
@) {. AESt = p+A¢gS.

Proposition 1.4.1 implies that sg.)\q is the root A which is the restriction to
aP of the highest weight w of the representation of g on Vg .

We know from the proof of Proposition 1.5.1 that w is the highest weight
of the representation of g; on Vf;c. We obtain by induction that w is also
the highest weight of the (irreducible) representation of gz on Vl:,—(C' Hence
the restriction of w to a” is a root occuring in Vk+. It is a root strongly
orthogonal to the roots Ao, A1,...,A\;_1. The decomposition of V' shows
that there is a unique root occuring in Vk"', namely A\;. We have proved that
)\k = )\0 == 30.)\0.

We will now prove t~hat 80-A1 = Ap—1. If we take the set so.i*' as
set of positive roots on 3, we obtain an order such that the condition (1)
of Theorem 1.2.1 is satisfied and we obtain also a sequence g, p1,... of
strongly orthogonal roots by the method of descent. By Corollary 1.2.2 the
root pg is characterized by the relations (2) and is therefore equal to Ag.

The centralizer of Iy, satisfies the hypothesis (Hj) and (Hz) by Proposition
1.5.2. Then Corollary 1.2.2 applied to this graded algebra implies that the
root up is characterized by

o pi(Ho)=2;
(3) qe w1l B
e deXtand AL \y= 1+ ¢X.
But the root \; is characterized by the Corollary 1.2.2 applied in g; i.e.
e A\i(Ho)=2;
e Al)g;
e AeXtand AL =X\ -A¢ 3.
Since sg.A\g = Ay it follows that pu; = s¢.A1.
On the other hand the root A\;_; occurs in V* and is strongly orthogonal

to A\p. Let A € T be a root strongly orthogonal to Ag. If A\(H),_,) = 0 then
A is strongly orthogonal to Ag—; by Corollary 1.8.2 and A 4+ Ax_1 is not a
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root. If A(H),_,) # 0 there exists by Proposition 1.9.1 an element j < k—1
such that g* C Ey_1 (1, —1). Since (A+ Ag—1)(Hx,_,) =3, A+ Ag_1 is not
a root. We have proved that Ay ; satisfies the properties (3) which implies
that )\k—l = M1 = 30.>\1.

An induction on j concludes the proof of the first part of the Proposition.

To obtain the second part we apply the previous result to the graded
algebras g; and g; with A; or \; taking the place of A\g. There exists an
element s; € W; such that s;.\; = A; and an element s; € W, such that
sj.A\j = Ag. Since W; and W; are subgroups of W, s = SjS,i_l is an element
of W such that s.\; = A;.

O

Proposition 1.9.3.

(1) For j =0,...,k the root spaces g have the same dimension.

(2) For i # j, the spaces E;j(1,1),E; j(—1,—1) and E;;(1,—1) have
the same dimension which is different from 0 and independent of the pair
{i,5} € {0,1... Kk}

Proof. —
(1) By Propositionl.9.2 there exists an element s € W such that s.\; =
Aj. Thus the root spaces of A\; and ); are isomorphic.

(2) Let ¢ # j be fixed in {0,1...,k}. We choose an element X; (resp. X;)
in g (resp. g™) such that {6(X;), H,, X;} (resp. {8(X;), Hy,, X;}) is a sly-
triple. Then ad X; is an isomorphism from E;;(—1,—1) onto E;;(1,-1)
with inverse -ad 6(X;) and ad X is an isomorphism from FE;;(1,—1) onto
E;;(1,1) with inverse —ad6(X;). It follows that the spaces F;;j(£1,+1)
are isomorphic for 7 # j fixed.

To prove that the spaces E; j(1,1) are isomorphic for the different pairs
{%,j} where i # j, we will use Weyl group elements which permute the roots
Aj.

More precisely we first prove that E; ;(1,1) and Ej j(1,1) are isomorphic
if 7 <1 < k. We apply Proposition 1.9.2 to the graded algebra g;. There
exists an element s; of W;, the Weyl group of ¥;, which permutes A; and Ag.
The group W; is generated by the reflections along the roots A which are
strongly orthogonal to Ag,...,Aj,...,A;_1. Since j < 4, A; is invariant under
the action of the elements of W;. Hence s; gives rise to an isomorphism from
E,"j(l, 1) onto EkJ'(l, 1).

On the other hand the action of sy gives rise to an isomorphism from
E} ;(1,1) (for j < k) onto Ej_;0(1,1) which is, due to the action of s;_,
isomorphic to Ej(1,1). Thus all the spaces F; j(1,1) are isomorphic for
i#j.

If these spaces were reduced to {0} then the decomposition of V' would
be of the form
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But in this case g*° would be invariant under the action of E; ;(1,—1) for
1 # j, hence under the action of g. This is impossible since the representation
of g on V' is irreducible by (Hz). This concludes the proof.

[l

Notation 1.9.4. We will use in the sequel the following notations

£=dimgy forj=0,...,k;
d = dim By j(£1,+1) fori # j € {0,...,k} .

We deduce from the decomposition of V* (Theorem 1.8.1) the following
relation between the dimensions of the subspaces :

Proposition 1.9.5.

dimV™* = (k+1) (£+ %) i

1.10. Normalization of the Killing form

Let us recall from section 1.1 that B is an extension to g of the restriction
of the Killing form to the semisimple part of g such that the form By defined
by

Bo(Xa Y) = _B(X7 Q(Y)) )
is positive definite on g.

Definition 1.10.1. We define for X andY in g

kE+1 =~

The first consequence of this normalization of B is the following Lemma.
Lemma 1.10.2. For j € {0,...,k} we have b(Hy;, Hy;) = —2. If X;
is an element of g% such that [6(X;), X,] = H),; then b(X;,0(X;)) =1.

Proof. — Since the elements Hy; are conjugate (Proposition 1.9.2) and
orthogonal for the Killing form, we have

dimV+
k+1 "’

( Ajo )\J) k+1 ( 0, 0)
which implies that b(Hy;, Hy;) = —2.
Since {6(X;), Hy;, X;} is a sla—triple we get

~ 1~ 1~ dimV+
B(6(X;), X;j) = 5B(0(X;), [Hy,;, Xj]) = =5 B(Hy;, Hy;) = 4 — 1

trz(ad Ho)® = 8

1
k+1

O

The second consequence of this normalization concerns the family of
graded algebras g4 where A is a subset of {Ag, A1, ..., A\x}, which are defined
in Proposition 1.8.5. These algebras satisfy the hypothesis (H;), (H2) and
(Hg) and we can define the bilinear form by on g4 the same way as b is
defined on g.
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Lemma 1.10.3. If X and Y belong to the subalgebra of g4 generated
by VX and V, then
ba(X,Y)=0b(X,Y) .

Proof. — The proof relies on the fact that the subalgebra ® 4 of g4 gen-
erated by VA+ and V, is simple (Proposition 1.8.7). Therefore, up to scalar
multiplication, the restrictions of b and b4 to ® 4 are the same. Lemma, 1.10.2
applied to g4, implies that for \; € A and X such that {0(X;), Hy,, X;} is
a slp—triple, we have b4 (6(X;), X;) = 1. This concludes the proof.

O

1.11. The relative invariant A

Definition 1.11.1. A polynomial function P on V' is a relative invari-
ant under the action of the group G if there exists a nontrivial character x
of G such that

P(g.X) = x(g)P(X) for each g€ G and X € VT .

The extension to V<c+ of such a P is a relative invariant under the action
of G¢.

Theorem 1.11.2.

(1) There exists an unique (up to scalar multiplication) relative invari-
ant Ag on V' under the action of G which is a homogeneous irreducible
polynomial over C.

(2) Every relative invariant under the action of G is (up to scalar mul-
tiplication) a power of Ag.

(3) An element X is generic in V™ if and only if Ao(X) # 0.

Proof. — We first give a construction of some relative invariant P. We
identify V' and V'~ by making a choice of basis (for example using ). Then
the determinant of a linear map from V= to VT is well defined and we set

P(X) = det(y- y+(ad X)* for X e VT .
For g € G we obtain
P(g.X) = dety+ Ad(g)dety - Ad(g *)P(X) ,
which implies that P is a relative invariant.

Let X be a generic element in V. The regularity of (g, Hy) implies by
Proposition 1.7.9 that (ad X)? is injective on V~. This proves that P(X)
is nonzero. For g = ¢!2dHo (with ¢ € R) we have P(g.X) = e dmV" p(X).
Thus P is non constant and the character nontrivial.

We deduce from the results of SATO and KiMuraA ([Sa-K]-1977) the ex-
istence of an irreducible relative invariant on V& (denoted by Ag) which is
unique due to the irreducibility of the representation of G¢ on V@L . More-
over each relative invariant is a power of Aj and, up to scalar multiplication,

A takes real values on VT (see for example [Ru]-1992 Proposition 1.2.11
and Lemme 2.1.1). This proves (1) and (2).
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We deduce from (2) the following equivalence for X € V'
Ay(X)#0<—= P(X)#0.

We have proved that if X is generic in V™ then P(X) # 0. Conversely if
P(X) # 0, then (ad X)? is surjective from V™~ onto V1, which implies that
ad X is surjective from g onto VT i.e. X is generic in V*. This proves (3).

[l

1.12. The case £ =0

Theorem 1.12.1. The graded algebra (lo, Hy,) is regular and the Z-
gradation defined by ad Hy, can be written

To = T B @ where [y = [gv_)‘o,ﬁ)‘ -

Let Ly (resp. Loc) be the analytic subgroup of G (resp. Ge ) generated by
{€24X} for X € Iy (resp. X € loc). Denote by &y the corresponding irre-
ducible relative invariant.
o If dimg*® =1, then &g is of degree 1.
The number of Lo-orbits in g is 3 : the orbit of 0 and two open orbits.
The number of Lo c-orbits in ﬁ()éo is 2 : the orbit of 0 and Eéo\{O}.
o If iim gt > 1 then &y is of degree 2.
The number of Lg-orbit in g*° is 2, the orbit of 0 and g'°\{0}.
The number of Lo c-orbits in ﬁé" is 3, the orbit of 0, one orbit of codi-
mension 1 and one open orbit.

Remark 1.12.2. This Theorem can be applied to the regular graded

algebra (I;, Hy;) where

=g MeLegy (=[G N,v).
In particular this gives the number of orbits in g% under the action of the
analytic subgroup L; of G generated by {e*X | X € [;}.

Proof. —

1) We will first study the real situation.

Each element X € g*°\{0} is generic since there exists an element Y €
9% such that {Y,Hy,, X} is a sly-triple. It follows that (TO,H,\O) is a
regular graded algebra. Moreover the orbit under the action of Ly of such
an element X is a connected open subset of g*o\{0}. Tt follows that g*o\{0}
is the disjoint union of open orbits.

If the dimension of g0 is 1, g*\{0} has two connected components
and the result is proved. The action of Ly on g*° is scalar and, if X is a
nonzero element in g0, the polynomial dq : X ~ t is an irreducible relative
invariant.

If the dimension of g is strictly greater than 1, then g*o\{0} is con-
nected and there is only one nonzero orbit. Let §y be the polynomial of
degree 2 defined by

6o(X) = b(X,0(X)) for X € gro .
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We want to prove that Jg is a relative invariant. The Cartan decomposition
of Iy is given by

lop = mo @ RH), where my :{X €l | 0(X) :X} .

It follows that the group Lg is of the form Lg = Mpe®2dHxg where M is the
subgroup of elements invariant under . For an element [ = mge’ adHy, ¢ 1,
we have

So(1.X) = b(mg.€** X, moe?(X)) = e*6y(X) ,

which implies that Jg is a relative invariant. If dg is not irreducible , it is the
square of a relative invariant P of degree 1. Then there exists a character
of the connected group Ly such that P(I.X) = x(I)P(X). But there exists
an element ¢ € Ly such that £.X = —X. Since P is homogeneous of degree
1, this implies that P(£.X) = —P(X). And, as character of a connected
group, x is positive which is impossible. Thus § is irreducible.

2) We will consider now the complex situation. If dim g*® = 1 the result
is trivial. If it is not the case we will apply the results of ([M-R-S]-1986)
which describe the structure of the complex regular graded algebras i.e. the
complex Lie algebras which satisfy the hypothesis (H;), (Hz2) and (Hg).
Let jo,c = jc[)lo,c be a Cartan subalgebra of ~[0,@ and 75,0 be the associated
system of roots with the order induced by RT. By the method of descent
a maximal sequence of strongly orthogonal roots ag, a1, ..., a, is obtained
among the roots occuring in gé". But Proposition 2.16 in [M-R-S] asserts
that the number of these roots is equal to the degree of the irreducible in-
variant, which is here of degree 2. Hence the sequence of strongly orthogonal
roots is reduced to two roots ag and a; in Rg such that o;(H),) = 2 and
such that p(ag) = p(a1) = Ao where p is the restriction to a” (see section
1.3). If X,, and X,, denote nonzero elements in the complex root spaces
g¢° and g¢', then Theorem 2.12 in [M-R-S] asserts that the number of orbits
of Ly c in ﬁéo is 3 with 0, X, Xo, + X, as representatives. Moreover the
orbit of X4, + X4, is open and the orbit of X, is of codimension 1 in ﬁé"
by Lemma 2.15 in [M-R-S].

O

Notation 1.12.3. We will denote by k the degree of 6. The previous
theorem implies that

l=1=—= k=1
>1=—=kr=2.

We will now study in the general case (k > 0) the codimension of the

G-orbit of an element of the form

X'=X1+Xo+-+ X, (X; €39\{0}),

X'+ X wh _
where {XGg)‘O .

Lemma 1.12.4. For each X € g™ we have
Vvt =1[g, X'+ X]+ 7.
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The codimension in V1 of the G-orbit of X + X' is given by

R
codim[g, X' + x] = 4 L X =05
0 X#0.

Proof. —
If X # 0, we know from Proposition 1.7.7 that X + X! is generic in V7.
Consequently we have

Vvt =g, X+ X1,
and therefore the codimension of the G-orbit of X! + X is 0.

If X = 0 we study the tangent space of the G—orbit of X'. The decom-
positions given in Corollary 1.8.4 imply that

V=Vt e (ehFo(1,1) &5 .
Since X! is generic in V1+ by Proposition 1.7.7 applied to g1, we have
Vim =g, X' C [g, X7].
On the other hand let A be an element of Eq ;(1,1) and Y; € g~ such that
{Yj, Hy,, X;} is a slp-triple. Then B = [V}, A] is an element of Ep;(1,—1)
and we have
[B,X']=[B,X;] = [[Y;, X;], A] = 4.
It follows that
®?:1E0,j(1a 1) C[g, X'] .
And we deduce from the given decomposition of V' that
V=g, X+
The relations
[3g(a0)>-X1] C ®§:1§Aj C 1/1+ ’

i,j(1,1) if j # 0,
imply that
6, X' C Vi @ (ea;?:lEO,j(L 1)) .
It follows that
[0, X' =V" & (@leEo,j(l,l)) ,
and consequently that
V=g Xep.

Therefore the codimension of the G-orbit of X! is equal to dimg*® = £.
O

If we consider the complex situation, the situation is quite different in
the case £ > 1 and we deduce from Theorem 1.12.1 the following result.
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Corollary 1.12.5. Let X; be a sequence of nonzero elements in g% for
j=1,...,k and X' = X1 + Xo + -+ + Xy. For X € §3° we have

Ve = o, X+ X+ 52 .

Moreover there ezists a non generic element X € 'gvéo such that the codimen-
sion of the Gc-orbit of X + X' in Vg is 1.

Proof. —The decomposition of V<c+ is a direct consequence of the real
decomposition given in the previous Lemma. Since X' centralizes [y, we
have

[oc, X + X' D [loc, X] -
It follows that the codimension of the Gc-orbit of X + X1 is less or equal
to the codimension of the Lg c-orbit of X in ﬁé‘:". We know from Theorem
1.12.1 that there exists an element X € ﬁé" such that the codimension in ﬁéo
of its Lo c-orbit is 1 (if £ = 1, we take X = 0). Therefore, for this element
X, the codimension of the Gc-orbit of X + X! is 1 or 0.

Since X is not generic in ﬁé" the polynomial ﬁé" 35U = Ag(U + X1,
which is a nontrivial relative invariant for the action of Lo ¢, takes the value
0 on X. But Ag(X + X') = 0 implies that X + X' is not generic in V.
Thus the G¢-orbit is not open and consequently of codimension 1 in V<C+ .

O

1.13. Properties of A

Let Ap be an irreducible relative invariant which takes real values on
V1 and g the associated character of G. We will later on make a choice to
normalize Ag.

Theorem 1.13.1.
(1) Ag is a homogeneous polynomial of degree x(k + 1).
(2) For j =0,...,k, let X; be an element of g*\{0} and z; a real number.

Then we have
k k k
j=0 j=0 Jj=0

(3) For each H € o we have

xo(e*dH) = Ao (H)+A1L(H)+-+ A (H))

Proof. —For j =0,...,k,let X; € g%\{0} and Y; € g~%\{0} such that
{Y;,Hy,,X,} is a slp—triple. If I" (resp. I~) denotes the element X+ X7 +
-+ -+ Xy (resp. Yo+ - -+Yy) then {I~, Hy, I} is a sly-triple and Lemma 1.7.2
implies that I is generic in V. Therefore, by Theorem 1.11.2, Ag(I") # 0.

Let dg be the degree of the homogeneous polynomial Ay. For ¢t € R, the
action of et2dH0 is scalar on VT and we have

Ag(ef®dHo I) = Ag(e®T) = XA (TT) ;
Ao(etadHO.I+) = Xo(eXptHo)Ao(I+) .
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Since Ag(I™) # 0, it follows that
xo(exp tHy) = €29 and 2dy = dyo(Hp) -

Since two roots of the family {A\g, A1,..., A} are conjugate by an element
of W which has a realization as a subgroup of G, the character ygo takes the
same values on the elements exp tH), (1 =0,...,k). Therefore

Xo(exp tHy) = xo(exp tH,\O)"’""1 and 2dp = (k + 1)dxo(H)y,) -

Consider the polynomial function on g given by
§:X — Ag(X + X') where X' = X3 + Xo+ -+ + Xj, .

It is a relative invariant under the action of Lg. It is not a constant since
we have, for t € R,

2td,
§(et 2 Xg) = Ag(e® ™0 IT) = yo(exp tHy,)Ag(IT) = eFHl Ag(I™) .
Therefore there exists p € N* and C; € R* such that
8(X) = Ag(X! + X) = C18o(X)P for X € gho .

If p = 1 we obtain, using the degre of dy which is denoted by k,
Xo(exptHy,) = €**(t € R) and dyo(H),) = 2~ .

From the last relation we deduce (1).

We have also for (to,...,t) € RFt! the relation
k k
Xo (exp Z th,\j) = H etir
Jj=0 Jj=0

It follows that \ i
AO (Z e2tJ'Xj) = H e2tjn A0(1+) 5
j=0 Jj=0

and, therefore that assertion (2) is satisfied for z; = €?% Since the function
(zo,,...,7x) € REFL s Ag(29Xp+ -+ Xy) is polynomial, (2) is true for
T eR (] :0,...,k).

For H € a? we have e®df [+ = Z?:o ANj(H)X;. It follows that (3) is a
consequence of (2).

To conclude the proof, we will prove that the irreducibility of Ay im-
plies that p = 1. This result relies on the study of the singularities of the
hypersurface S = {X € Vg | Ag(X) =0}. We suppose that p > 1.

Let X € ﬁéo such that

Ao(X'+X)=0,

which is equivalent to do(X) = 0. Then we will prove that the differential
Al(X +X1) of Ag at the point X + X1 is zero i.e. that X + X! is a singular
point of S.

For X' € 'g%“ and t € C we have

Aot X'+ X + X)) = Cr(t X' + X)P .
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As p > 1, derivation with respect to ¢ at the point 0 implies
(AH(X +X1), X"y =0 for X' € G0 .

On the other hand, for Z € gc and t € C we have Ag(e*dt4(X + X)) =
Xo(exptZ)A¢(X + X1) = 0. Again by derivation, it follows that

(AG(X +XY),[Z, X+ X)) =0for Z € gc .

But from Corollary 1.12.5 we know that Va' = Eéo + [gc, X + X1]. Thus,
for p > 1, we have

AyX+XhH=0.
Moreover for g € G¢ we have

(A (g(X +X1),U) = xo(9)(Ah(X + X1), g U) =0 for U € V7 .

In other words, if X is a non generic point of Eéo, the Gc—orbit of X+ X!
is contained in the singular set of S and is therefore of codimension > 2 in
V& ([Hul-1981, §3.2). But this gives a contradiction with Corollary 1.12.5
which asserts that there exists an non generic element in Eé" with a Ge—orbit
of codimension 1.

O

Remark 1.13.2. In the case £ > 1, the existence of an element X € E{é"
such that the Lo c-orbit of X is of codimension 1 (Theorem 1.12.1) is deduced
from the study of the complex regular graded algebras in [M-R-S]. The proof
of Theorem 1.13.1 given here relies, for the case £ = 1, on the same arguments
than the proof given in [M-R-S] for the complex case.

1.14. The polynomials A;

Let j be an element of {1,2,...,k}. From Theorem 1.11.2 applied to the
regular graded algebras (g, H. A HHN o+ H ) We deduce the existence
of an irreducible polynomial P; on Vj+ which is relatively invariant under
the action of G; (the analytic subgroup of G generated by {2 | X € 9;})-
Let x; be the associated character of G;. We will define an extension of this
polynomials to V' using the following decomposition

V=V eVl wheeV;"=( & E.(L1)e(oF").
r<s,r<j r<j

Definition 1.14.1. We denote by A; the unique (up to scalar multipli-
cation) polynomial such that

Aj(X+Y)=Pi(X) for X e V'Y e V-,
where P; is an irreducible relative invariant on Vj"" under the action of G;.

In the following Theorem X (s =0,1,..., k) denotes a nonzero element
of ghs .
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Theorem 1.14.2. Let j € {0,1,...,k}.
(1) A is a homogeneous polynomial of degree k(k + 1 — j).
(2) For X € VT we have
Aj(g-X) = x;(9)Aj(X) for g € Gj ;
Aj(9.X) = Aj(X) for g =expZ where Z € @ E,4(1,-1) .

r<s
(3) Let zs € R for s =0,...,k. Then
k k k
Aj(z :chs) = Hx? A (ZXS) .
s=0 s=j s=j

(4) Let H € a®. Then

x;(e24H) = ef N (H)+Xj 41 (H)+- 42k (H))

(5) The polynomial X € Vj+ = Ao(Xo+ X1+ -+ X1 + X) is equal (up

to scalar multiplication) to the restriction of A; to Vj"".

Proof. —From Corollary 1.8.4 the Lie algebra g; can be written as

0
=3 (a @( ® E, 1,—1) .
8 = 3g;(@) r#s;T>5;8>] ral )

Thus the space VjJ- is invariant under the action of G; and the definition of
A; implies the first part of (2). For s < j the root spaces g are subsets of
VjL and {Aj,..., Az} is the maximal sequence of strongly orthogonal roots
for the graded algebra (gj, Hy;). Then Theorem 1.13.1 applied to the graded
algebra g; implies (1), (3) and (4).

To prove (5) we remark that the polynomial @; defined on Vj+ by
Qj(X) = Ao(Xo+ -+ Xj1 + X) for X e VT,
is relatively invariant under the action of GG; because this group centralizes
Xo,...,Xj 1. If g = exp(t(Hy, + --- + Hy,)) (t € R) we have
g.X =e¥X for X ¢ Vj+ 1 9.Xs =X for s < j; xo(g9) = 2tlk+1=j)
hence
Q;(e?X) = 1R Q (X)) for X € VT .

It follows that de degree of Q; is equal to k(k + 1 — j) hence to the degree
of the irreducible invariant on Vj+ under the action of G;. Therefore Q; is
(up to a constant) the restriction of A; to Vj+.

It remains to prove that A; is invariant under the action of expn where
n= @ E,41,-1).
r<s

From Proposition 1.9.1, n is the sum of the root spaces related to the negative
roots of ¥ whose restrictions to a® are nonzero. In particular n is contained
in the semisimple part of g which implies that the character yq is trivial on



1.14. THE POLYNOMIALS A; 41

n. Therefore the result is proved for j = 0. By the same argument A; is
invariant under the action of expn; which is defined by
n; = D Er,s(l,—l) .
I<r<s
We consider the decomposition
1L

n:nj@nj_ where nj = & Eps(1,-1).
rs;r<j

Since [nj,n]*] C njL,
with Z' € nj and Z € nj-. It is therefore sufficient to prove that A; is
invariant under the action of exp nj-. Since [E, 4(1,—1),V ] is a subset of

@®s'—0,...k Brs(1,1), then [nj‘, V1] is a subset of VjJ‘. It follows that

each element of expn can be written as exp Z' exp Z

XeVtandZenf =M’ XeX+V;",
which implies that A;(e?4Z.X) = A;(X).






CHAPTER 2

The orbits of G in VT

The aim of this chapter is the description of the G-orbits in VT for
the real prehomogeneous spaces related to a graded algebra (g, Hy) which
satisfies the hypothesis (Hy),(H2) and (Hs).

The result is given and proved by I. MULLER ([Mu]-1998) in a more
general situation. She studies graded algebras over a field of characteristic
0 and also some cases where the gradation is longer, in fact g = @?:_2'93-
with [g;,8i] C gi+;j- On the other hand S. KANEYUKI ([Ka]-1998) gives also
a description of the G—orbits for the real prehomogeneous spaces associated
to a simple graded algebra (g, Hp) which satisfies only the hypothesis (Hy)
and (Hg2). His proof needs some explicit case by case calculations on root
systems.

For completeness we will give here the details of a proof which is mostly
inspired by ([Mu]-1998) and which is analogous to the proof in the complex
case ([Ru]-1982, [M-R-S]-1986). This proof leads us naturally to distin-
guish three types among the prehomogeneous spaces under consideration.
This partition is known in the setting of Jordan algebras ([Kay]-1994, [Sah]-
1995). It is obtained from the study of the types of some root system. We
will consider these root systems in section 3.3.

The Type I case (Definition 2.7.4) corresponds, in the setting of Jordan
algebras, to the case of euclidean Jordan algebras. In this case the descrip-
tion of the open orbits is given by SATAKE ([S]-1984) and the description
of all the orbits by KANEYUKI ([Ka]-1991). The last argument of our proof
(section 2.10) in the Type I case is the argument used by these two authors.

In this chapter we will use some basic properties of representations of
s[(2,C) which we now recall (see for example [Bou]-1975 ch.VIII §1).

2.1. Representations of s((2,C)

Let {Y, H, X'} be a s[(2)-triple (Notation 1.7.3 ) in g and E a subspace
of g invariant under the action of this s{(2)-triple. Then FE is a sum of finite
dimensional irreducible sly-modules.

If an irreducible sly—module is of dimension m+1 (m € N), it is generated
by a primitive element eg (i.e. such that X.eq = 0) of integer weight m under
the action of H. A basis of this module is given by the elements
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which are elements of weight m — 2p under the action of H.

The action on E of the nontrivial element w of the Weyl group of SL3(R)
is given by :

w = 6X€Y€X = 6Y€X€Y .

Each irreducible submodule F' of E is invariant under the action of w.
If the dimension of F' is m + 1 then the restriction of w to the subspace
of weight m — 2p is a bijection onto the subspace of weight 2p — m. More
precisely the action on the basis defined above is given by
w.ep, =(—1)""Pep_, .

If E, is the set of elements of E of weight p (p € Z) under the action of
H then the action of w? on Z € E, is given by

w2 7 — Z ?fp%seven,
—7 ifpisodd.

Moreover if j is a positive integer, the application

one to one for j < -—p,
(X)! : Ep — Epiaj is { bijective for  j=—p,
onto for j>-p,
and the application

one toone for j<p,
(Y)j : B, — Ep_9j is { bijective for j=p,
onto for Jj=>p.

2.2. First reduction

We recall the definition of V; :
Vit =0 [V ={X eV |[H),X]=0}.
The eigenspaces decomposition of VT relatively to ad H,, is given by
V=V o o W] where W;" = {X € VT | [H),, X] = X} .

Proposition 2.2.1. Let X be an element of V.
(1) If Ag(X) = 0, then X is conjugate under G to an element of V;'.
(2) If AL (X) # 0, then X is conjugate under G to an element of g*° @ V;'.

Proof. — (see [M-R-S]-1986 p. 102)

(1) Let X be a non generic element of V1. An element X of V' belongs
to the semisimple part [g, ] of g and satisfies (ad X)? = 0. Thus the theo-
rem of JACOBSON-MOROSOV implies the existence of a sls-triple of the form
{Y, H, X}. Writing down the decomposition of these elements according to
the decomposition V- @ g®V T, we see easily that it is possible to take Y in
V'~ and H in g. The eigenvalues of ad H are the weights of the representa-
tion of this slo-triple on g. Thus H is semi-simple in g with real eigenvalues
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and there exists therefore an element g € G such that g.H belongs to aP.
We can choose an element w in Ng(aP) (which is a representative of an ele-
ment of the Weyl group of X) such that wg.H belongs to the Weyl chamber
defined by X7 i.e. such that

Mwg.H) >0 forall A € 7 .

Let {Y',H', X'} be the sly-triple wg.{Y,H,X}. We will show that
Mo(H') =0.

Each element of §*0\ {0} is a primitive element (of weight A\g(H’)) under
the action of this sly-triple, which implies that Ag(H') > 0. Moreover we
have, by definition, A\(H') > 0 for A € ¥7. B

If we suppose A\g(H') > 0, then for any root A € ¥7\X we have \(H') > 0
because A = Ao + >, miAi  (m; € NJA; € £F). But in this case, for any
Z € g* C V*t we have

1
Z=———adX'(adY'.2) .
i) ad X'(ad )
This implies that ad X' : g — V' is onto , 4.e. that X' is generic in V* and
therefore that X is generic in V. Hence we should have A¢(X) # 0. Thus
we have proved that A\g(H') = 0.

It remains to show that X’ belongs to V1+. The slo—module generated by
an element Yy € g7\ {0} under the action of {Y”’, H', X'} has lowest weight
0 (which is the weight of Yj) and therefore is the trivial module. Hence we
have ad X'.Yp = 0. But X' is also commuting with §*°, hence with H), and
so belongs to V.

(2) Let now X be an element of VT such that A;(X) # 0. If we write
X = Xo + X1 + Xo with Xo € g, X; e W, Xo € V[T,
then the definition (1.14.1) of A; implies that
A(X) = A(Xo) .

The hypothesis implies that X, is generic in V;* and Proposition 1.7.9 ap-
plied to the graded algebra g; implies the existence of Y € V|~ such that
{Yé, H)\l + -4 H)\k,Xz} is a sly-triple.

The weights for the action of this sly-triple on V* are 2 on V;, 1 on
W, and 0 on g*. Define g_; by

9—1:{X€g|[H/\1+"'+H/\k’X]:_X}'

Then the map ad X5 is a bijection from g_; onto W;". Thus there exists
an element Z € g_; such that [X5, Z] = X;. Writing the decomposition of
e2dZ X with respect to the weight spaces of V1, we obtain

1
VX =Xy +[Z, X1] + 512, (2, %) + X1 + [2, Xa] + X
1
:Xo + [Z, Xl] + i(a,d Z)2.X2 + X2 .

Thus €242 X belongs to X2 @ g*° i.e. to V;" @ §*° which proves (2).
O
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Theorem 2.2.2. Each element of VT belongs to the G-orbit of an ele-
ment of g0 @ --- @ k.

Proof. —Each element X of V1 is conjugate under G to an element of
o V1+. If X is not generic, it is the first part of Proposition 2.2.1. If X
is generic in VT, the G-orbit of X in VT is open and intersects the open
dense set {Y € VT | A1(Y) # 0}. Then the second part of Proposition 2.2.1
gives the result.

The proof is finished by induction. In fact the same proof applied in g;
shows that if X belongs to V;r (j =1,...,k —1), it is conjugate under an

element of G; to some element of gV & V]il

stabilizes the set g*° @ .- @ gh-1. By Corollary 1.8.4 we have the equality
V,;L = g*. This gives the result after k steps.

Moreover each element of G

O

2.3. An involution which permutes the roots in F; ;(+1,+1)

We introduce now the compact groups K and K which are respectively
the subgroups of G and G whose points are fixed by the Cartan involution
6 (which is well defined on the adjoint group of g). The action on a” of
the Weyl group W (resp. W) of the root system X (resp. f]) is given by the
elements of the normalizer Nk (aP) (resp. Nz (aP)) of aP in K (resp. K).

Let X; be an element of g* such that {6(X;), Hy,, X;} is a sla-triple.
The action of the nontrivial element of the Weyl group of this triple is given
by

w; = eadXieadG(Xi)eadXi )

The equality 6 o w; = e249(Xi) o 2d Xi 5 £ad0(Xi) 5 § = 1); 0 § implies that w;

belongs to K.

Lemma 2.3.1. Let j #i € {0,...,k} and p = 1.

a) If H belongs to aP then w;.H = H — X\;(H)H),;

b) If X belongs to E; ;(1,p) then w;. X =ad@(X;)X € E; j(—1,p);
c¢) If X belongs to E; j(—1,p) then w;. X = ad(X;)X € E; ;(1,p);
d) If X belongs to E; j(£1,p) then w?. X = —X.

Proof. — The element w; is a representative in Nz (aP) of the reflexion
of af along the root \; and the assertion a) follows.

Since each FE; j(£1,p) is contained in a weight space for the action of
the slo—triple on g, the assertions b), c) and d) are easy consequences of the
elementary properties of sla—modules listed in section 2.1.

O

The previous Lemma implies that the element
w,-,j = wiwj = ij,' 5

satisfies the following properties :
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Proposition 2.3.2. Fori # j € {0,...,k} and p,q € {£1}, w;; is an
element of Nz (aP)such that

(1) w;; is an isomorphism from E; j(p,q) onto E; ;(—p, —q) ;

(2) The restriction of wi]- to E; j(p, q) is the identity.

Notation 2.3.3. The involution w;jo 0 = 6 o w;j of E; j(+1,+1) will
be denoted by T; ;.

This involution permutes the roots A such that g* C E; ;(£1,41). More
precisely we have
E)‘CE,']'( ):>Tz]()__)\+)\i_)\j,
P CE;(1,1) = 7ij(\) = A+ N+ A,
ﬁ C Ei,j(—l, —1) — Ti,j()\) =—-A— )\ - )\j .

It follows that a root A such that §* C E; ;(1,—1) satisfies ; j(A) = A
A=)
2

if and only if A = . In some cases )‘ig)‘j is not a root. It will appear
that the situation is quite different if 7; ; does or does not admit a non fixed
point among the roots occuring in F; ;(1,—1).

2.4. Construction of elements interchanging \; and );

We suppose in this section that ¢ and j are distinct elements of {0, ..., k}.
We know from Proposition 1.9.2 that the roots A; and A; are W-conjugate.
We want to obtain explicitly an element in K which interchanges A; and
A; and to know how it acts on g. The element we are looking for will be a
representative of the nontrivial element of the Weyl group of the sl(2)—triple
given in the following Lemma.

Lemma 2.4.1. There ezists an element X € E; j(1,—1) such that
{Q(X)7 H)\i - H)\j)X}

is a sl(2)-triple. More precisely we can choose for X a multiple of any
nonzero element of E; j(1,—1) such that 7; ;(X) = X or 1, ;(X) = - X.

Proof. — Since 7; ; is an involution of F; j(1,—1), there exists an element
X € E; j(1,-1) such that X # 0 and 7 j(X) = +£X. It is clear that

[Hx, — Hy;, X] =2X and [Hy, — Hy;,0(X)] = —26(X) .

It remains to study the element ¥ = [#(X), X] which belongs to 34(a’) and
can be written as

Y=2Z+ Z Yy where Yy € g* and Z € 34(aP) .

AET,A 0=0
Since 8(Y) = —Y, we have 6(Z) = —Z which implies that Z belongs to
a? and 0(Y,) = —Y_,. By Corollary 1.8.2 the roots A occuring in the
decomposition of Y are strongly orthogonal to all the roots As; (s =0,..., k).

Thus the action of w; ; on Y} is trivial and we obtain

Ti’j(Y —TZ] —|—Z -Y_ ,\
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But the choice of X implies that 7; ;(Y) =Y and consequently that ¥y =0
for each A\. Thus

Y=Zcd and7;(Y)=Y.
Lemma 2.3.1 implies that 7, j(YV) = —(Y — \i(Y)Hy, — Aj(Y)H),), hence Y
belongs to RH); & RH);. Now a classical calculus shows that for H € a°

A,-(H); M) Bocx), x) |

B(H,Y) = —

which proves that there exists a strictly positive constants C; such that
~ N(H)— N (H
B(H,Y):Cl Z( )2 .7( )
Furthermore the roots A; and A; are W-conjugate (Proposition 1.9.2). Then
we have B(H),, Hy,) = B(H),, H),;). This implies that there exists a strictly
positive constant Cs such that

for H € a° .

~ N(H) — N;(H
B(H,H)\i — H/\j) = Cz% for H € CIO .
Since B is non-degenerate on a°, we have
Cy
Y = —(H), — Hy,
02( Ai )\])7

and if we replace X by g—iX , we obtain now that

[6(X), X] = Hy, — H)\j .
]

Remark 2.4.2. The previous construction is exactly the starting point
of the proof by RossMANN ([Ro]-1979) of the following result : if 7 and
are commuting involutions on a semisimple algebra g (6 being the Cartan
involution) and b is a maximal abelian subspace of the set

{Xeg|r(X)=-X}[{X €g]6(X)=-X},
then the set of roots ¥(g,b) is a root system.

Proposition 2.4.3. For i # j € {0,...,k} there exists v;; € Nk(a®)
such that
H)\i fo’r s = .] ’
(i) vij(Hx,) = Hy, fors=i,
Hy, fors¢{i,j} .
(ii) The action of ~y; ; is trivial on each root space g™ for s ¢ {i,j}
and is an involutive isomorphism from g onto g .
Proof. —Let {6(X), H), — Hy;, X} be the sl(2)-triple obtained in the
previous Lemma . The action of the nontrivial element of the Weyl group
of this s[(2)-triple is given by

Yij = eadXeadG(X)eadX — eadG(X)eadXeadG(X) cK.

Since X belongs to E; j(1,—1), we have for H € a°
Ai(H) — A (H)

¥ij(H) = H — 5

(Hx, — Hyj)
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which proves (7).

For {s,}{i,7} = 0, we have [E;(p,q),Ei;j(p,q)] = 0. Thus the
action of 4; ; is trivial on the spaces Ej ¢(p,¢) and in particular on gt for
s ¢ {i,j}. Moreover (i) implies that v;; is an isomorphism from g* onto
g%. It is involutive since the action of 47, is trivial on the spaces of even

weight for Hy, — H), (see section 2.1).
a

The action of %,2’ ; is not trivial on g- In fact for X in a odd weight space
for Hy, — Hy; we have yzj(X) = —X. It is the case for X € E; 4(+1,+1)
and X € E; (£1,+1) if s ¢ {7,7}. We will modify slightly ~; ; by setting

~ _ o2
717] - ,Yza]wi I

where w; is defined in section 2.3. We obtain now an element of K and not
of K with the following properties.

Proposition 2.4.4. For i # j € {0,...,k} there exists v;; € NK_(QO)
such that
Hy  fors=j,
(i) Yij(Hxr) = { Hy,  fors=i,
Hy, fors¢{i,j} .
(i) iy = 1ds.

Proof. —We know (section 2.1) that the action of w? on the spaces
E; s(+1,£1) for s # i is given by the product by (—1) and that this action
is trivial on the orthogonal of these subspaces. On the other hand the
action of ~y; ; is trivial on the spaces Es(p,q) for {s,¢}({i,7} = 0 and is
an isomorphism from E; 4(p, q) onto E; 4(p,q). Then

2x) = LX) for X € gy (Bis (1, 1) @ B (21, 41)
I 71-2’]-(X) for X in the other E 4(p, q) -

But the subspace @,¢(; 3(Bis(£1,£1) @ Ej(£1,+1)) is exactly the
sum of the odd weight spaces for Hy;, — Hj; which implies (7).
O

The following Proposition will show that the situation is more easy to

handle if the involution 7;; admits a non fixed root among the roots of

E; j(1,-1) i.e. a root distinct from @L

Proposition 2.4.5. We assume that there exists a root u distinct of
@ such that g* C E;;(1,—1). Then there exists an element m;; €

Zx(a%) such that for Z € g we have

B VA for s ¢ {i,j} ,
mz’,j(Z) - {—Z for s € {i,j} :

Proof. —Let Y # 0 be an element of g#. Then 7;;(Y) belongs to
g #tAi=Ai Since the roots p and —p + \; — Aj are distinct by hypothesis,
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we have
X' = Y—FT,',]'(Y) 7'5 0 R
X"=Y - 1,5 (Y)#0 .

Thus there exist (see the proof of Lemma 2.4.1) C' > 0 and C” > 0 such
that {8(C'X"), Hy, — Hy,, C'X"} and {8(C"X"), Hy, - Hy,, C" X"} are sl(2)-
triple. Let us denote by 7; ; and v;; the Weyl group elements associated to
these slp—triples as in Proposition 2.4.3. We define m; ; by

mij; = '71{,1'%{:]' :
Proposition 2.4.3 implies that m; ; is an element of K which centralizes al
and which acts trivially on g*s for s ¢ {i,j}. It remains to study the action
of m;; on g* and on g.
An element Z in ghi is a primitive element of weight 2 for these s(2)-
triples. Thus we have (see section 2.1)

12 2

vi.;(Z) = %(ad C'0(X")Z = 07 (ad(Y + Ti]-(Y))) Z,
"2
V(2) = S (ad 0022 = S (ad(Y —75(Y))) 2

Since Y belongs to g#, then (ad@(Y))?Z belongs to gl 2“. Since g is
a subset of E; j(1,—1), then (ad#(Y))2Z belongs to E;;(0,2) = g. As
p# )"';)‘j we have (ad6(Y))%2.Z = 0. Using the same argument, we show
that (ad(w;;Y))%.Z = 0. Therefore we obtain

1.1(2) = C?adY ad 7 j(Y)Z

’y{fj(Z) — " adYadr;(Y)Z,

which implies that
"2

71{,j(Z> = _W%{:j(z) .
But v;; and v;; are isometries for the product (X,Y) — —E(B(X),Y).
Thus C' = C" and therefore 7] ;v;;(Z) = —%57]-2(2) . Proposition 2.4.3 ()
implies that v; ;v;';(Z) = —Z.

The same argument gives the result for Z € gh.

2.5. Quadratic forms

To each element X € VT, we associate the quadratic form Qx on V'~
defined by

Qx(Y)=beXY,Y) for Y e V™ .
For g € G, the quadratic forms Qx and Qg x are equivalent. Therefore we
will study these forms for X € @;?:05)‘1 (see Theorem 2.2.2). More precisely
we will determine the rank of these forms because it is sufficient, in some
cases, to separate the G-orbits of the elements X € V.
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Using the gradation of g which is an orthogonal decomposition for B
and b we obtain

Qx(Y) = %b((adX)2Y,Y) for X eVt YeV™ .

Let X be an element of V' of the form
k
X = ZX]- where X; € gV .
j=0

There is only one subspace of the form E; ¢(p,q) of V~ where ad X; ad X;
is nonzero, namely F; ;(—1,—1) for i # j and g~ for i = j. Therefore we
introduce the quadratic forms gx, x, defined on E;;(—1,—1) (resp. g=)
for i # j (resp.i=j) by

1 s
ax:,x;(Y) = —5b(ad X;.Y,ad X;.Y)  for Y € Ejj(~1,-1) (resp. ) .

Then, for an element X of the given form, the quadratic form @Qx is equiv-
alent to

k
X 2ax.x,) -
(& 2x,.%,) © (2 24x,x;)

Theorem 2.5.1. Let X = E?:o X; where X; € g% and m the number
of indices j such that X; #0. Then

-1
rank Qx = mf + %d .

We recall (Notation 1.9.4) that £ = dimg" and d = dim E; ;(—1,—1) for
i1#].

Proof. — The decomposition of the quadratic form @Qx given above
shows that it is sufficient to prove that the forms gx; x, are non-degenerate
on E; j(—1,—1) for i # j (resp. g~ for i = j).

The bilinear form associated to ¢x; x; is given for u,v € E; ;(—1,-1)
(resp. §%) by

1
LXi,Xj(u,v) = —Eb(adXi.u,ade.v) .

In the case i = j, we know from section 2.1 that (ad X;)? is an isomor-

phism from g~ onto g% and it is well known that B is non-degenerate on
g vxXgu.

In the case i # j, let A and p be two roots in the decomposition of
E;j(—=1,-1). The only case where Ly, x; is nonzero on o x g* occurs
when the roots A + A; and A + \; are opposite roots, i.e. p = 7; () (7; is
defined in section 2.3). It remains to show that L X, X is non-degenerate on

g x gred (N, For that purpose let Y be an element of g* such that
blad X;ad X;.Y,Z) =0 for all Z € grii (N

In particular the element Z = 6(ad X;ad X;.Y)) belongs to g7, which
implies that ad X;ad X;.Y = 0. From section 2.1 we know that ad X; is
an isomorphism from FE;;(—1,—1) onto E;;(1,—1) and that ad X; is an
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isomorphism from FE;;(1,—1) onto E;;(1,1). Therefore Y = 0 and the
Theorem is proved. |

The study of the G-orbits in V't induces a classification of the regular
real graded algebras into three types that we will call Type I, Type II and
Type III . The description of the G-orbits is easy to obtain in Type II and
Type III cases and will be done in sections 2.6 and 2.7.

2.6. The G-orbits for Type III

We recall that all the spaces g% (j = 0,...,k) have the same dimension,
denoted by 4.

Definition 2.6.1 (Type III). We say that the regular graded algebra
(9, Ho) is of Type III if the dimension of the root spaces g% is different from
liefd>1.

Theorem 2.6.2 (Type III). If £ > 1, the number of G-orbits in V™ is
k + 2 with only one open orbit. Assume that X; (j =0,...,k) are nonzero
elements in gi. Then the G-orbits in VT are the orbits of the elements

0and Xo+ -4+ X form=0,1,....k .
The open orbit is the orbit of the element Xg + X1+ --- + Xy,

Proof. — Theorem 2.2.2 shows that each element of VT is conjugate
under G to an element of the form

Y=Yy+YV1+---4+Y; whereYje’gv)‘j.

IfY # 0, let m > 0 be the number of indices j such that Y; # 0. Then Y is
G-conjugate to an element of the form

Zo+ Z1 + -+ + Zp, where Z; € g¥\{0} .

To prove this assertion, it is sufficient to use the element +; ; obtained in
Proposition 2.4.3 which interchanges the spaces g* and g whereas the
spaces g’ are fixed for s ¢ {i,j}.

Furthermore, we proved (Theorem 1.12.1) that, in case £ > 1, two
nonzero elements of g are Lj-conjugate with L; C G. Moreover the action
of L; on the spaces g is trivial for s # j. Therefore Zg + -+ + Zy, is
G-conjugate to Xg + -+ + Xp,.

It only remains to prove that for m # m' the elements X = Xg+---+X,,
and X' = X¢+---+ X, are not G-conjugate. If they were G-conjugate, the

quadratic forms @) x and Q) x» would have the same rank. But from Theorem
2.5.1 we have

rank Qx — rank Qxr = (m — m/) (€+ w> |

2

which is nonzero for m' # m.
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2.7. The G-orbits for Type II

Definition 2.7.1 (Type II). We say that the regular graded algebra
(9, Hy) is of Type II if the dimension of each root spaces g is equal to 1
i.e. £ =1 and if, for any pair {i,j} with i # j, there exists a root u # @
such that g* C E; ;(1,1).

Remark 2.7.2. Using the elements v; ; € Nk(a®), we can prove that
if the assumption is verified for one pair {ig, jo} it is also verified for each
pair {i,j} C {0,...,k}2. Therefore the graded algebra (g, Hp) is of Type II
if and only if

Eo1(1,1) # EAO;M :

It may happen that ’\Og’\l is not a root and then the assumption is auto-

matically verified.

Moreover by Lemma 2.3.1 there exist isomorphisms from F; ;(1,1) onto
E; j(—1,1) and from E; j(—1,1) onto E;;j(—1,—1) which stabilize a’. The
assumption is also equivalent to

L TAitAy ~ Vi
E’i,j(_la 1) ?ég 2 or E’i,j(_la_l) 759 2 ’
for one or each pair {i,j} C {0,...,k}>.

)\0+A

Theorem 2.7.3 (TypeIl). If{ =1 and Eg:1(1,1) #g 2 " the number
of G-orbits in V' is k + 3 with ezactly two open orbits. Assume that X

(j =0,...,k) are nonzero elements in gi. Then the G-orbits in V* are
the orbits of the elements
Xo+--+Xp and —Xog+ X1+ -+ X for the open orbits ,

Oand Xo+---+Xm (m=0,...,k—1) for the non open orbits .

Let ¢, ; € {0,1,—1}. Then the elements Z?:o e; X; and Z?:o e; X are
G—conjugate if and only if

k k
[Tei =11 and #{j|e; #0} = #{j | & # 0}
7=0

j=0
(where # A denotes the number of elements of the set A).

Proof. — The same proof as in Theorem 2.6.2 shows that each nonzero
element X of VT is conjugate under G to an element of the form

Zo+ -+ + Zm with Z; € §9\{0} and m € {0,...,k} .
But, now the dimension of g% is one and Zj is conjugate by an element of

the form e *#% (t € R) to X; or —X;. Moreover the action of et 2Hy g
trivial on the spaces g*s for s # j. Thus X is G-conjugate to an element of
the form

€0 Xo + -+ + emXm with €j = +1.
We are here (Type II) in a situation where the hypothesis of Proposition
2.4.5 is satisfied. It is then possible to replace simultaneously e; by —¢;
and e by —ep whereas the other ¢;’s are fixed using the conjugation by
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the element m;; from Proposition 2.4.5. Consequently, if m < k then X
is G-conjugate to Xog + --- + X, and if m = k, then X is G-conjugate to
+Xo+ - + Xpg-

It remains to prove that the elements given in the Theorem are not G-
conjugate. If m and m/' are distinct, the calculus of the rank (as in Theorem
2.6.2) of the quadratic form @ x shows that Xo+---+X,, and Xo+-- -+ X,
are not conjugate. To prove that there exist effectively two open orbits
i.e. that Xg 4+ --- + X} and —Xo + X7 + -+ + X are not conjugate, we
will use the relative invariant Ag (see section 1.11). Since G is a connected
group, the character yo takes only strictly positive values and the sign of
A is constant on an open orbit of G. Since the dimension of g* equals 1,
Theorem 1.13.1 (2) shows that

A()(&()XO + X1+ +Xk) = 60A0(X0 + - +Xk) .

Thus Aq takes different sign on the orbits of Xy + X7 + --- + X}, and of
—Xo+ X1 + -+ 4+ X. This implies the result.
O

It remains to study the G-orbits in the following case :

Definition 2.7.4 (Type I). We say that the regular graded algebra
(8, Ho) is of Type I if the dimension of the root spaces g% is equal to 1
i.e. £ =1 and if, for any pair {i,j} with i # j, there is only one root p such
that g* C E; j(1,1) namely p = #’-

If there is only one root p occuring in E;;(1,1), we have necessarily
7ij(#) = p which implies that p = #1

2.8. Signature of the quadratic forms gx; x;

The aim of this section is the determination of the signature of the
quadratic forms gx; x, defined in section 2.5 on FEj;(—1,—1) for i # j and
on g% for i = j. This result will be used in section 2.9 and 2.10 to determine

the G-orbit in Type I case. It will be also used later on in the other cases
(see Lemma 5.3.9 and Lemma 6.6.5).

Notation 2.8.1 (Condition C). We say that a sequence of elements
(Xj)j=0,..k satisfies the condition (C) if, for j = 0,...,k, X; belongs to
g%\{0} and {6(X;), Hy;, X;} is a slo—triple.

In this section we choose once for all such a sequence.

Proposition 2.8.2. The signature of the quadratic form qx; x; on g

is (1,£ —1).

Proof. —From the proof of Theorem 2.5.1 we know that this quadratic
form is non-degenerate. The root space g—%i is contained in the subspace
of weight -2 for the action of the sl-triple {6(X}), Hy,, X;}. It follows that
ad X; is one to one on this subspace and that gx; x; is equivalent to the

restriction of the form u +— —b(u,u) to the space U; = ad X;.g~.
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If the dimension of g% is one, then we have U. j = RH); and the quadratic
form is positive definite.

In general U, is a subspace of dimension £ in 34(a?). Since (ad X;)?
is an isomorphism from g~ onto g% it is easily seen that we also have
U; = ad(X;)g. It follows that U, is invariant under the action of 6.
If u € U; satisfies §(u) = —u then we have u € a® and u = [X;,Y] with
Y € g~V. Therefore for each H € a we have

B(H,u) = \;(H)B(X,,Y) ,
which implies that u belongs to RH);. It follows that
Uj = (Uj ﬂE) @RH)\]. R

where ¢ = {X € g | (X) = X}. Since the Killing form is negative definite
on &, the signature of the restriction of —b to Uj is (1,£ —1).
O

We suppose now that £ > 0. Let 7 and j be distinct elements of
{0,1,...,k}.

(a®) such that mX; =

Lemma 2.8.3. If there exists an element m € Zg(a
d
2)-

—X; and mX; = X; then the signature of qx, x; is (

[\UIISW =

)

Proof. — An element m of the centralizer of a® induces an automor-
phism of E;;(—1,—1). The hypothesis implies that the quadratic form
gx;,-X; = —4x,,x; 1s equivalent to gx, x;. This proves the result since d
is the dimension of E; j(—1,—1).

O

Corollary 2.8.4. If (g, Hy) is a reqular graded algebra of Type II with
k > 1 or of Type III with k > 0 then the signature of the quadratic form

gx;,X; 18 (4,9).

Proof. —
In Type III case we know from Theorem 1.12.1 the existence of an ele-
ment m € L; such that m.X; = —Xj;. Since L; centralizes g, the previous

Lemma implies the result.

In Type II case with & > 1 let s € {0,1,...,k} be such that s ¢ {i,5}.
We know from Proposition 2.4.5 the existence of an element m € Zg(a®)
such that

me = —Xs y ij = —Xj N sz :Xz .

And the result is a consequence of the previous Lemma.
O

We know from the proof of Theorem 2.5.1 that gx;, X; is the direct sum
of its restriction to the subspaces g¢ + g7 (#) where p is a root such that
gt C E;j(—1,—1) and 7;; is defined in section 2.3. Moreover 7; ;(u) = p if
and only if y = —@1
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Lemma 2.8.5. Let (g, Hy) be a regular graded algebra of Type I or II
i.e. such that £ = 1. .~

(1) If —@ is a root, the restriction of qx; x; to g~ 2 is a positive
definite or negative definite quadratic form.

(it) Let p be a root such that g C E; ;(—1,—1) and 7; () # p. The
restriction of gx; x; to ¢ @ g is a quadratic form of signature (p,p)
where p = dim g*.

Proof. —

(i) Since gx; x, is a non-degenerate quadratic form it is sufficient to

- }‘i+}‘i
prove that we have gx, x;(Y) # 0 for each Y € g7 2~ \{0} i.e. that
b((adY)2X;, X;) #0 .
Up to scalar multiplication we can suppose that {Y, H Aty ,0(Y)} is a slo-

triple. Let p be the root @L Since [Ai+p|(Hy;) = 3 (resp. [\i—3p](H)y,) =
—3), A +p (resp. A\; — 3p) is not a root. It follows that the p-series of roots
containing )\; is the set {\;,\; — p = )‘ig)‘j,/\i —2u = —\;}. Then, by
Lemma 1.4.2, we have

Ni(Hy) =2
Thus X; is primitive element of weight 2 for the sls-triple defined above
and consequently (adY)? is one to one on g*. In particular (adY)2X; is

a nonzero element of g~%. Since the dimension of g~ is 1, there exists
z € R* such that (ad Y)?X; = 26(X;). It follows that

b((ad Y)*X;, X;) = 2b(6(X;), X;) # 0 .

(i) If 7; j(u) is distinct from p then the subspaces g#t% and ght* are
orthogonal for the form b. Then for Y € g# and Y’ € §7i(#) we have
ax;,x;(Y +Y') = Lx, x;(Y,Y") where Lx; x; is the bilinear form associated
to ¢x;x;. Since Y +Y' + Y — Y’ is an automorphism of g* @ g7 (1)
the quadratic form gx; x; is equivalent to —gx; x, on G4 @ g4 hence of
signature (p, p) where p = dim g~.

O

Notation 2.8.6 (Definition of €). For i # j, the dimension of the root

>‘z+>‘j

space g 2 will be denoted by e (e > 0).
The definitions 2.7.1 and 2.7.4 imply that

(g,Ho) isof Typel < /¢=1ande=4d,
(g,Hp) isof Typell <= /{¢=1ande<d.

Corollary 2.8.7. If (g, Hy) is a regular graded algebra of

(i) Type I, then the signature of gx; x; is (d,0) or (0,d).

(i) Type II, then the signature of gx; x; is (%,%) or (%, %)
Moreover in this case

k>1—e=0.
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Proof. —In Type I case we have e = d and the result follows from (%) of
the previous Lemma . In Type II case we have e < d and the result follows
from (i) and eventually (if e # 0) (i) of the same Lemma. If k is strictly
greater than 1, the Corollary 2.8.4 implies that e = 0.

O

We will prove that it is possible to choose the elements X; in gV such
that the signature of the quadratic forms gx; x; is well defined. By Corollary

2.8.7 there is some indetermination only in the case where e # 0.
=X

Since 7;; is an involution of g~z there exists by Lemma 2.4.1 an
A=A
element U € g~z \{0} with 7,;(U) = U or 7;;(U) = —U such that

{0(U),Hy, — Hy,;,U} is a sly-triple. Let v;; € Ng(a®) be the non triv-
ial element of the Weyl group of this sls—triple. This element satisfies the
conditions of Proposition 2.4.3.

Lemma 2.8.8. If £ = 1 and if 2t s a root d.e. e # 0, then the

2
Aj+As
quadratic form 4X; v ;(X;) 5 positive definite on g~ 2 !
Proof. —Since X; is a primitive element of weight 2 for the sly-triple
{6(U), Hx, — H),;,U} we have (section 2.1)
1
%i,i(Xi) = 5 (ad O(U))*X; .

Ait+A;

Let now V = [6(X;), U] which is an element of 9~z . Since we have by
hypothesis [6(X;), X;] = H), we obtain

(adV)X; = U ,

(ad V)’ X; = (ad U)*0(X;) = 20(7i,4(Xy)) -

Thus we have
ax; v (x:) (V) = %b((ad V)2X,-,7i,j(Xi))
= b@(%j(Xi))a%,j(Xi)) >0.
Together with Lemma 2.8.5 (7) this implies that ¢ X ,;(X;) 18 positive definite

o itAj
ong 2

O

Notation 2.8.9 (Condition (D)). We will say that a sequence of ele-
ments (X;)j—o,. x satisfies the condition (D) if

X; €9V and {6(X;), Hy;, X;} is a sla-triple
forj=0,...,k;
in the case £ =1 and e # 0 the restriction of gx; x; to
ity

g~ 2 is positive definite for each pair {i,j} (i # j) .

(©)
(D)

Proposition 2.8.10. There exists a sequence (X;);j—o,. 1 which satisfies
the condition (D).
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Proof. —If £ # 1 or e = 0 the condition (D) is reduced to (C) and the
result is proved by Lemma 1.7.4.

If =1 and e # 0 we will apply the Lemma 2.8.8 as follows.

First we choose Xy € g*° such that {8(Xy), Hy,, Xo} is a slo-triple. Then
we choose elements ~g ; such that Proposition 2.4.3 and Lemma 2.8.8 are
satisfied for i = 0 and j = 1,...,k. We set X; = 7,(Xo). It is clear by
conjugation that {6(X;), Hy;, X;} is a sla-triple.

. . .. ~_RitAj

It remains to prove that, if k& > 1, the restriction of gx; x; to g~ 2
is positive definite for 7 # j, ¢ # 0 and j # 0. The element ¢ ; is an
isomorphism from FEy ;(—1, —1) onto E; ;(—1,—1) and X is invariant under
the action of g ;. It follows that for Y € E; ;(—1, —1) we have

ax,%,(¥) = ~ 5b(130:(X0), Y1, [X;,Y))
= 2 8([X0, 70} (V) X570 (V) = @03, (36,1 (V))

Hence gx;,x; is equivalent to gx,, x; which proves the result.
a

Remark 2.8.11. The situation where £ > 1 and e # 0 appears only
A+,

in Type I case by Corollary 2.8.7 namely in the case where g~ 2 t =
E;j(—1,-1).

We summarize now the results obtained in this section.

Theorem 2.8.12. Let (X;) o, . be a sequence which satisfies the con-
dition (D). The signature of the quadratic form gx, x; is given for i # j by

(d,0) for Type I (£=1;e=4d),

(d;—e,dge) for Type I (£L=1;0<e<d),
(g,g) for Type IIT (£>1).

Remark 2.8.13. If / = 1 (Type I and IT) X is determined up to the sign
by the condition (C). If e # 0, there are only two sequences (X;),—o,...x which
satisfy the condition (D). It is a consequence of the equality ge;x;.e;x; =
€i€jqx;,x; for &g = 1 and ¢; = +1.

2.9. Action of Zg(I") for Type I

In this section we assume that the regular graded algebra is of Type I and
that (X;) o,k satisfies the condition (D). We have seen (Remark 2.8.13)
that there are only two choices for such sequences namely (X;);—o,.. x and
(—X;)j=0,....k- Moreover we will prove that two elements of such a sequence
are conjugate.
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Lemma 2.9.1. If the sequence (X;)j—o,..x satisfies the condition (D),
then for i # j there exists an element ;; € Ni(a%) which satisfies the
conditions (i) and (i) of Proposition 2.4.3 and such that ~; ;(X;) = X;.

Proof. — The sequence (X;) (or (—X;)) has been obtained in Propo-
sition 2.8.10 by setting X; = 7,(Xo) where o ; satisfies (i) and (i) of
Proposition 2.4.3. For 7 and j distinct from 0 let v; ; be defined by

Yi,j = 70,i70,570,i -
Then +;; is an element of Ng(a®) which interchanges Hy;, and Hy; and
which interchanges X; and X;.

The action of «; ; is trivial on each root space g* where s ¢ {0,i,;}
since it is the case for vyo; and 7p,;. The action of ; ; is trivial on g0 since
the action of 'yg,z- is trivial on g*. Moreover the action of 71-2, ; 18 trivial on
&) j:(]’___,ka)‘j since it is the case for 'yg’ ;j and 'yg’i. This proves that -; ; satisfies
(#4) of Proposition 2.4.3

|

As in Theorem 2.7.3 it is easy to show that each nonzero element of V'
is G—conjugate to an element of the form

k
X = Zanj where ¢; € {-1,0,1} .
=0

Let p be the number of j such that ¢; = 1 and ¢ the number of j such
that e; = —1. The decomposition of @x into a sum of gx, x; , Proposition
2.8.2 and Theorem 2.8.12 prove that the signature of the quadratic form Qx
is (P, Q) where

P=p+Q+g(p(P—1)+Q(q—1)),
Q = dpq .

But this result is not sufficient to separate the orbits of G in V. If X =

> ¢jX; and X' = — X then, from the above formula, @x and @ x have the
same signature. However we will show that, if p # ¢, these elements are not
in the same G-orbit.

We set
I'™ = Xo+ X1 + -+ + Xy, where (X);—o,. satisfies (D) .

Then the quadratic form @+ is positive definite. This result is the main
tool to study the G-orbits in Type I case.

Lemma 2.9.2. The centralizer Zg(IT) of I in G is a compact group.
Moreover we have
Za(I*) = Za(B(I*)) .
Proof. — The definition of @ x implies that
Rx(9.Y) = Q41 x(Y) for X € VT YeV andge@G.
In particular, for X = It and g € Zg(I") we have

Qr+(9.Y)=Q+(Y) .
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Since @+ is positive definite , the group Zg(I") is compact.

Moreover {6(I1),Hy, I} is a slo-triple due to the choice of I (see
condition (C)). If g belongs to Zg(I™) then {g.0(I"), Hy, I} is a slo-triple
and the unicity in Proposition 1.7.9 implies that

g-8(IT)=06(I").

This concludes the proof.
O

We will give now a more precise version of Theorem 2.2.2 in Type I case.

Theorem 2.9.3 (Type I).
If the graded algebra is of Type I, each element of V' is conjugate under
Za(It) to an element of 69] 0 8.

Proof. —Let X and X' be nonzero elements of VT, X being fixed during
the proof and X’ € @g. More precisely we take

k
X'=) "t;X; with t; # t; for all i # j .
j=0
We denote by Z (resp. Z') the element [§(I1), X] (resp. [0(I1), X']) of g.

We first prove that [Z, Z'] centralizes IT. We have ad IT.Z = —2X and
adI*t.Z' = —2X'. Thus we obtain

adI*[Z,2'] = —2([X, ad O(I*).X"] + [ad 6(I*).X, X'])
= 2adf(I)[X,X]=0.

Since Zg(IT) is compact the map k € Zg(I') — B(Z',k.Z) reaches a
minimum, say for ky. Using derivation we obtain
B(U,[Z',ko.Z]) =0 forall U € 34(I7) .

Since ko belongs to Zg(IT) = Zg(8(I")), we have ky.Z = ad(I).koX.
It follows that [Z’, ko.Z] belongs to 34(I"). Then, by the previous Lemma,
U =6([Z', ko.Z]) is also an element of 34(I"). Therefore we have

B(6([Z', ko.Z)), |2, ko.Z]) = 0 , hence [Z',ko.Z] =0 .
If we write the decomposition of k¢.X as

ZxJX + Z X;j wherez; € Rand X;; € E;;(1,1),
0<i<j<k

then we have
ko.Z = ad 0(I")ko. X Zx]HA] + ) (X)), Xig) + 0(X;), Xig] -
0<i<j<k

Since Z' = ijo tjHy; we thus obtain

0=[Z' ko.Z] = Y (t: — t;) ([0(X), Xi ] — [6(X;), Xij]) -

1<J
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Since the real numbers t; are distincts, the equality [Z’, k¢.Z] = 0 implies
that
adO(X,-).X,-,j =0 and ad Q(Xj).XiJ' =0.
But ad 6(X;) is one to one on the space E; ;(1,—1). This proves that X ;
equals zero for each {i,j} with i # j which means that k;.X belongs to
egh.
|

Remark 2.9.4. We recognize here the starting point of the classical
proof of the following result : if K expp is the Cartan decomposition of a
semisimple Lie group and a is a maximal abelian subspace of p then each
element of p is K-conjugate to an element of a. We will see in section 3.4
that we are effectively in this situation (with ¢ = a and K = Zg(I1)).

2.10. The G—orbits for Type I

Theorem 2.10.1 (Type I).

If£=1 and Ep1(1,1) = E% then the number of G-orbits in V71 is
(k+2)(k+3) with k+2 open orbits. Assume that (X;);=o, .. is a sequence of
elements in gV which satisfies condition (D). Then a set of representatives
of the G-orbits is given by the elements

k gj =1 forj=0,...p—1
Zerj where Sej=—-1 forj=p,...p+q—1 with0<p+qg<k+1
7=0 gj=0  forj=p+gq,...,k

The corresponding orbit is open if and only if p+q =k + 1.
Let ¢j, ¢; € {0,1,—1}. Then the elements Z?:o e;X; and Z?:o ;X
are G—conjugate if and only

#{jlej =0 =#{j =0} and #{jle;=1}=#{j|j=1}.

Proof. — The same proof as in Theorem 2.7.3 shows that each nonzero
element of VT is G—conjugate to an element of the form

goXo + - - + ex Xy where ¢; € {1,-1,0} .

Using the elements +; ; which interchanges X; and X; (Lemma 2.9.1), we
conclude that each element of VT is G-conjugate to one of the representative
elements given in the Theorem.

It remains to prove that these elements are not G—conjugate. Let X and
X' given by

X=YegXiand X' =) X,

where the p (resp. p') first ¢; (resp. 59) are equal to 1, the following ¢
(resp. q') €; (resp. a;) are equal to —1 and the last are equal to 0. If p + ¢
is different from p’ + ¢’ then the rank of Q@ x and Qx- are distinct (Theorem
2.5.1) and therefore X and X' are not G—conjugate. It remains to prove
that if (p,q) and (p’, ¢') are distinct with p+ ¢ = p’ + ¢’ then X and X' are

not G—conjugate.
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To each element Z € V' we associate the polynomial P with real coef-
ficients defined by
Pz(A) = Ag(MT - Z),
where I = X+ -+ Xj. If Z belongs to the diagonal &g» i.e. Z =3 z; X;
(2j € R) then, by Theorem 1.13.1 (2), we have

k
Pz(N) = (A = 2))A0(IF) .
3=0
Hence the roots of Pz are real. We know from Theorem 2.9.3 that, for Type
I, each element of V' is conjugate by an element g € Zg(I™") to an element
of the diagonal. But for g € Zg(I') we have

Pyz(N) = Do(9-(M [T = Z)) = x0(9)Pz() -
This proves that the roots of Pz are real for each element Z € V.
We will prove now that the set
Qn = {Z € V' | Pz has exactly n roots # 0} .

is G-invariant. Let Z be an element of Q,, and Z’' be G—conjugate to Z. Then
there exist Y and Y’ belonging to the diagonal and respectively Zg(I™)-
conjugate to Z and Z' such that Py and Pz (resp. Py and Pz/) have the
same roots. However Y and Y’ are G—conjugate, hence the quadratic forms
Qy and Q) have the same rank. It follows that the polynomials Py and Py,
have the same number of nonzero roots. But Py has n nonzero roots (as
Pz), hence P;, too, which implies that Z’ belongs to Q.

Now we consider the set
Qpq={Z € V' | Pz has exactly p roots > 0 and ¢ roots < 0} .

Then €, 4 is contained in €, and, moreover, €2, , is an open subset of 2, .
Indeed, as a consequence of Rouché’s Theorem, there exists for Zy € Q4
an open neighborhood U of Zy in VT such that for Z € U the polynomial
Pz, which has only real roots, admits at less p strictly positive roots and ¢
strictly negative roots. Therefore U N Q4 is a subset of {2, ; and an open
neighboroud of Zy in Q.

Since (p,q) # (p',q') and p+q = p'+¢/, X and X' belong to two disjoints
open subsets of (4. If they were G-conjugate the connectivity of G would
imply the existence of a path in €, (which is G-invariant) with starting
point in €, , and ending point in Q, o which is impossible. This concludes

the proof of the Theorem.
O

Corollary 2.10.2 (Type I).
(1) The centralizer Zx(a®) of a® in K acts trivially on GB;?:O oM.
(2) Let ;; (i # j) be an element of Nk (a®) such that
Yij(Hy;) = Hy;; %ij(Hy;) = Hy; vij(Hy,) = Hy, if s ¢ {,5} .
If (X;)j=o0,..k s a sequence which satisfies condition (D) then we have
Yii(Xi) = Xj ;5 7 (Xj) = Xi 5 vij(Xs) = Xs if s ¢ {3, 5} -
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Proof. —

(1) If m belongs to the centralizer of a® then m stabilizes each space ghi.
Moreover if m belongs to K, then m is an element of the orthogonal group
for the positive definite form X — —B(X,6(X)). Hence the action of m
on the 1-dimensional space g% is either the identity or the product by —1.
But, we know from the previous Theorem that a nonzero element X in g*i
is not G—conjugate to —X which proves that m acts trivially on ®&g™.

(2) By the same argument we have
Yij (Xs) = £X55 7i5(X;) = £ X5 7i(Xs) = X5 if s ¢ {i, 5} .

By Lemma, 2.9.1 the element X; and X; are G-conjugate and the previous
Theorem implies that X; and —X,; are not G—conjugate for s = 0,...,k.
The result follows.

O

Remark 2.10.3. The first part of the previous Corollary shows that
the situation in Type I case is, in some sense, the opposite of the situation
in Type II case where Proposition 2.4.5 is satisfied. The second part shows
that if v;; € Nk (a®) satisfies only condition (i) of Proposition 2.4.3 then it
satisfies automatically the second condition of the same Proposition.

2.11. The classification

We will now describe all the real regular graded algebras when g is a
simple Lie algebra and determine the constants k, d, £, e in the different
cases.

We know from Proposition 1.3.1 and Proposition 1.7.7 that the complex-
ified graded algebra is a regular complex prehomogeneous space of commu-
tative parabolic type. The classification of these spaces together with the
degree of Ag (it is the same polynomial in the complexified situation) and
the dimension of V' is given in ([M-R-S]-1986).

H. RUBENTHALER ([Ru]-1986) classified all real forms of the irreducible
prehomogeneous vector spaces of parabolic type, not necessarily commuta-
tive. As a consequence of this classification, the simple graded Lie algebras
considered in this paper are in one to one correspondance with the SATAKE
diagrams of real simple Lie algebras with a single simple root o which is
circled. This root ag is a white root which has coefficient 1 in the highest
root and which is not related by an arrow to another simple root. The cor-
responding simple Lie algebra is g (or its simple part) and ag is the unique
(complex) simple root whose restriction to aP is Ay (see Proposition 1.3.1).

The dimension of g is given in ([Wa]-1972 p. 30) or in ([O-V]-1990
p. 312). However dimg* is strictly greater than 1 (and therefore the
corresponding graded Lie algebra of Type III) if and only if there is a black
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root related to ap. We can now obtain k£ and d from the formulas

degree Ap if dimgto =
1= {ldegree Ag if dimgh > 1
5 0 g° >
g 2 (dim vt
k k+1
The determination of the Type of (g, Hy) goes as follows. The graded Lie
algebra, (g, Hy) is of Type III (Definition 2.6.1) if and only if dimg*® > 1.
If dimg* = 1, then (g, Hp) is of Type I (Definition 2.7.4) if and only if
Y= {Lj)‘i} i.e. if the restricted root system 3 is of type Cpy1. As the

type of 3 is available from the classical tables ([Wa]-1972, [0-V]-1990) it is
easy to determine the Type of (g, Hyp).

( Theorem 1.13.1)

- dimﬁ)‘0> (Proposition 1.9.5)

In the Type I case we have e = d (see Notation 2.8.6). It remains to
determine e for Type II and III. In section 2.3 we defined an involution 7; ;
which interchanges the root spaces contained in E; j(1,1). Consequently if
d is odd, then 7; ; has a fixed point and e is strictly positive. Moreover if g
is the split real form of g¢ i.e. all the roots of the §A’§‘AKE diagram are white

itAj

and there is no arrows between roots, then dimg~ 2~ is equal to 0 or 1. In
this case e = 1 if and only if d is odd. For the remaining cases we have to
use the explicit decomposition of the positive roots in the basis~of RT given
in ([Bou]-1968). If p denotes the restriction to a® of a root in R, then A¢ is
equal to p(ag) where ay is the circled root. For two simple roots o and 3 we
have p(a) = 0 if and only if « is a black root and p(a) = p(B) if and only if
there is an arrow relating a and 3. Moreover fﬁ'\Z is the set of restrictions
of the roots which contain ag in the decomposition in the basis. It is then
easy to determine the set {\ € Zt\X | A 1L \g} and the lowest root of this
set which is A\;. Then we can determine the number e of roots a € R such
that p(a) = dedAr,

The results are given in table I where the type of the complex root

system R and the type of the restricted root ¥ are given with the notations
of ([Bou]-1968).

Remark 2.11.1. We will explain in section 3.1 (see remark 3.1.2) that
the regular graded algebras are in one to one correspondance with simple
Jordan algebras. Modulo this correspondance our classification in Type I, IT
and III is coherent with the Type I, IT and III partition of the classification of
simple real Jordan algebras as given by J. FARAUT and S. GINDIKIN ([F-G]-
1996). Except in the case where g is of type By, or D,,, they give (p. 153)
the description of g, V* | g, and of h (see section 3.1 for these notations)
which they denote respectively by g, V, [, and a and which we reproduce in
table L.
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SIMPLE REGULAR GRADED LIE ALGEBRAS
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CHAPTER 3

The symmetric spaces G/H

Let (g, Hp) be a regular graded algebra. The open orbits of G in VT,
which are described in Chapter 2, are realizations of some homegeneous
spaces of the group G. We will show that these spaces are symmetric spaces
and we will describe their structure.

3.1. The involutions

Let I be a generic element in V. Proposition 1.7.9 implies the exis-
tence of some element I~ in V'~ such that {I ", Hy,I"} is a sly—triple. The
action on g of the nontrivial element of the Weyl group of this sly-triple is
given by the element w € G (or wr+) where

+ - + - + -
w:eadI eadI eadI :eadl eadI eadI .

It will be proved in the following Theorem that this action is an involution
and in order to use a standard notation we will denote it by ¢ (or o7+) :

oX)=wXfor X €9.
As usual we denote also by ¢ the automorphism of G induced by o i.e.
o(9) = wgw ™ for g € G or o(e2X) =24 X)) for X €3 .

Theorem 3.1.1. The automorphism o is an involution of g which sat-
isfies the following properties:
(1) o(Ho) = —Ho and o(g) = g;
o(X)=X+adl adItX for X €g.
(2)o(IT)=1 ando(Vt)=V";
o(X)=4%(dI")?X for X e V+;
o(X)=3(adI*)’X for X e V™.
(3) Leth ={X € g|o(X) = X};
then b = 34(IT) = 34(17).
(4) Letq={X € g|o(X) = -X};
then ad I'™ is an isomorphism from q onto VT,
and ad I~ is an isomorphism from q onto V.

(5) If I— = 6O(I") then o and 8 commute.

Proof. — The proof relies on the properties of the representation of the
sly-triple {I~,Hp,I"} on g (see section 2.1). The irreducible components
of this slp-module are subspaces of dimension 3 or 1 since the primitive
elements are of weight 2 or 0. In the case of odd dimensions the action of
w? is trivial on these irreducible components, hence ¢ is an involution.
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Moreover g is the sum of the 0—weight spaces of these irreducible com-
ponents, hence invariant under the action of w. If the dimension of the
component is 1 (resp. 3), then the action of w is trivial (resp. the product
by (—1)). It follows that b is the sum of the irreducible components of di-
mension 1 which implies (3) and that q is the sum of the 0—weight spaces of
the irreducible components of dimension 3 which implies (4).

The action of w on V7 is given by (2) since V' is the sum of subspaces
of primitive elements in irreducible modules of dimension 3 (see section 2.1)
and therefore o(I1t) = 1.

If X belongs to V~, then Y = (ad I")2X belongs to V' and we have
oY) = (ado(I1))?0(X) = (adI")%0(X). But we know that w.Y =
1(ad I7)?Y which implies, since (ad I7)? is one to one on V7, that

o(X) = %(ad I"32x .

If X belongs to h we have ad I X = 0 and ad I~ X = 0. It follows that
wX=0(X)=X=X+adl adl*X .

If X belongs to q\{0} then ad I*X is a nonzero element of V* i.e. a
primitive element of an irreducible component of dimension 3. It follows
that ad/tadl adI*X = —2adI*X. Since adI* is one to one on q we
obtain ad I~ ad It X = —2X, hence we have

wX=-X=X+adl adl"X .
This proves (1) and (2).

If we assume that §(I1) = I~ then it is easily seen from (1) that o and

# commute on g since ad It ad I~ =ad I~ adI' on g. Moreover (2) implies
that o and # commute on V* and on V™.

O

Remark 3.1.2. The proof of this Theorem relies uniquely on the hy-
pothesis (Hj) and (Hs) i.e. on the existence of a slo-triple {I~, Ho, 1}
associated to the gradation of §. The product defined on VT by

Vixvt —v*
1
(X,¥) = S2d Xad V1~

endows V' with a structure of real Jordan algebra (this structure depends
on the choice of It which becomes the unit element). The proof of this
result is easily obtained by an adaptation of the proof of Theorem III.3.1
([F-K]-(1994)) where the scalar product used by FARAUT and KORANYI is
replaced by the bilinear form given on V™ x V* by

B(X,Y)=-B(X,0(Y)) for X eVT,Y eVt.

Conversely each real simple Jordan algebra is the part VT of some regular
graded algebra by the KANTOR-T1TS-KOECHER construction (see [F-K]|-1994
p. 218 for references)
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Let (X;)j—o,....x be a sequence of elements in 9% which satisfies the con-
dition (C) (Notation 2.8.1). If e = (&;);=o,... is a sequence such that ¢; = £1
for j =0,...k, we set

I:_ =¢goXo+ - - +ex Xy and I, = 9(I6+) = 609(X0) + -+ ‘Eke(Xk) .

It should be noticed that the sequence (¢;X;) =o,...x satisfies also the condi-
tion (C). We know from Proposition 1.7.7 that I} is generic in V' and we

. . . . . + - +
may therefore associate to it the involution o, given by e2dfe gadle gad I

Proposition 3.1.3. If 0. and o are the involutions associated with
two sequences € and &' then o, and oo commute on g.

Proof. — Since the roots A; are strongly orthogonal, we deduce from
Theorem 3.1.1(2) that

It follows that
o(IF) =1, .
Thus the commutativity of o, and o, relies on the same arguments as the
commutativity of o and € (Theorem 3.1.1 (5)).
O

Let now It = X+ - -+ X}, where the sequence (X),=o,.. r satisfies the
condition (C) and let o be the involution associated to I". We recall that
a® is the subspace of a? defined by

o Kk
a =& RH,\J. .
Jj=0
We have a® C q since o(H ;) = —H),;. We recall also that aP is a maximal
abelian subspace of p = {X € g | 6(X) = —X}.

Proposition 3.1.4. The space a° is mazimal abelian in p()q for any
choice of o. Moreover the Cartan subspace a® of (g,6) can be decomposed
as a? = a? (b D a® where

@ (Vo={H e | X(H)=0forj=0,....k}.

Proof. — The choice of I implies (Theorem 3.1.1(1)) that for H € o
we have

k
o(H)=H - N(H)H,, .
=0

It follows that ¢f is invariant under the action of ¢ and we obtain the
decomposition given in the Proposition.

It remains to prove that a is maximal abelian in p()q. Let X be an
element of p () q which centralizes a’. Using the root space decomposition
relatively to the root system ¥ we obtain

X=U+ ZX,\ where U € 34(aP) and X c€gt.
AED

Since X centralizes a°, each root \ takes the value 0 on a® if X is nonzero.
It follows by Corollary 1.8.2 that such a A is strongly orthogonal to each
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root A; which implies that ad It X, = 0. Thus X, is an element of h. But
o(U) belongs to 34(a?) and o(X) = —X. Hence X equals U and belongs to
3g(a?) (N p which is by definition equal to aP. It follows that X is an element
of a® (N q i.e. of a®.

O

3.2. In Type I case @ is one of the ¢’s

In this section we suppose that (g, Hy) is a regular graded algebra of
Type 1. The choice of the Cartan involution 6 in section 1.1 is arbitrary
on the center 3 of g. In Type I case we will choose € trivial on 3 and the
following Lemma proves that this choice is coherent with the descent (see
section 1.5).

Lemma 3.2.1. If the action of 6 on the center of § is trivial, then the
action of 6 on the center of g1 is trivial.

Proof. — Recall from section 1.5 that g is the centralizer of g*° and
g0, Tt is therefore f-stable and the center 3; of this reductive algebra is
also f—stable. We will prove that an element X € 37 such that (X) = —X
is equal to zero.

Since X centralizes TO andAfj for j € {1,...,k}, X belongs to the cen-
tralizer in g of a®. The decomposition of X in the root system ¥ can be
written

X=H+ ZX,\ (H € 34(aP), Xx € "),
AEX
where each root A occuring in this decomposition is strongly orthogonal to
Ao by Corollary 1.8.2, hence is a root of ¥; by Proposition 1.5.2. Since X
belongs to the center of g, each X occuring in the decomposition is zero
which implies that X belongs to 34(a”). Then §(X) = —X implies that X
belongs to a”.

We will prove now that X centralizes g. Let A be a root in 3.
o If A\(H),) = 0, then X is a root of ¥; and A(X) = 0 since X
centralizes g;.
o If \(H),) = £2, then A\ = £X¢ and A\o(X) = 0 since X centralizes

g

e If \(H),) = +1 then there exists j # 0 such that A\(H;) = £1. But
in Type I case this implies that A = % and, therefore, that A(X) =0
since X centralizes g0 and gV.

It follows that X is an element of the center of g such that (X) = —X.

The hypothesis implies that X = 0.
O

Proposition 3.2.2 (Type I). If the Cartan involution 6 is trivial on the
center 3 of g and if o is the involution associated to IT™ = Xo + -+ + Xy,
where (X;)j—o,. i satisfies the condition (D) then we have

=0 anda’ =d" .
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Proof. — The choice of I implies that the quadratic form Q;+is positive
definite (section 2.9). Let us prove that the bilinear form defined by

B,(X,Y)=-B(X,o(Y)) for X €§,Y €3,

is positive definite. For that we will study the restriction of this form to
each space of the decomposition

g=V ebhnjehnfggeqev’,
which is an orthogonal decomposition for B,.

e For X € V7\{0} we have

~ 1 4di +
By(X,X) = ~B(X,5(ad I")2X) = %QH(X) >0.

e For X € V\{0} we have, since o(X) € V",

~ ~ imV+
By(X,X) = By (0(X),0(X)) = %

e For X € q\{0} there exists by Theorem 3.1.1 an element Y € V~\{0}
such that X = [I",Y]. Therefore

~ ~ 8dim V™
B,(X,X) =B(X,X) = THQH(Y) >0.

e For X € (hN3)\{0} we have §(X) = X due to the choice of . Therefore

Qr+(o(X)) > 0.

B,(X,X)=—B(X,X)=—B(X,0(X)) >0,

since B is the extension of the Killing form such that X — —B(X,8(X)) is
positive definite.
e For X € (hNg,g]) \{0} we have

B,(X,X)=-B(X,X) = —tr(adg X)? .

Since X centralizes I, the closed subgroup of G generated by {ef2dX |t ¢

R} is a closed subgroup of the centralizer in G of I". Since @+ is positive
definite, this group is compact (Lemma 2.9.2). By a classical method (see for
example ([H]-1978) Ch.II Prop. 6.8) it is easy to prove that —tr(ad X)?2 is
strictly positive, which ends the proof of the fact that B, is positive definite.

It follows that B is negative definite on the set {X € g | o(X) = X}
and positive definite on the set {X € § | o(X) = —X}. By definition B is
negative definite on the set {X € g | (X) = X} and positive definite on
the set {X € g| 08(X) = —X}. Therefore, since o and § commute, we have
p=pNg=gqand &t =EtNh = b, which implies that o and 8 are the same
involutions. Moreover a® which is maximal abelian in p()q is equal to aP
which is maximal abelian in p.

O

Remark 3.2.3. If the Jordan Algebra structure associated to IT is
defined on VT (remark 3.1.2) then, in Type I case, this Jordan algebra is
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euclidean. To prove this we denote, as in [F-K|-1994, by L(Z) the Jordan
product by the element Z € V* which is given by

1 1
L(Z)X = ZX = 5ad Zad X.I” = ad(E[I_,Z]).X for X € V*,
-

where I~ = 6(I"). Since [I7, Z] is an element of q for Z € V' we have

B, (L(Z)X,Y) = Bo(X,L(Z)Y) for X,Y,Z € V™ .
And the fact that the bilinear form EU is positive definite implies that the
Jordan algebra is euclidean ( [F-K] p. 42).

Remark 3.2.4. If £ # 0, the Cartan involution # and an involution
o associated to a sequence (Xj)j—o,.x satisfying the condition (C) never
coincide, except under the hypothesis of the previous Proposition.

The equality 8 = o would imply that the quadratic form B, is positive
definite, in particular on F; ;j(—1,-1) for ¢ # j. But for X € E; j(—1,-1)
we obtain o(X) = 1(adI7)? X = (ad X;ad X;) X and therefore
4dimV™*
k1
The quadratic form gx; x; is not positive definite in Type III case by Corol-
lary 2.8.4 and in Type II case by Corollary 2.8.7. In Type I case, if the

sequence (X;) does not satisfy the condition (D), there exists i # j such
that gx; x; is not positive definite (see Notation 2.8.9).

B,(X,X) = B(ad X;.X,ad X;.X) = ax;,x;(X) -

3.3. Root systems and Types I, IT and III

In this section we will give a new characterisation, in terms of some
restricted root systems, of the Type of a regular graded algebra.

Let o be the involution associated as in section 3.1 to some generic
element I™ = Xg + -+ + X}, where (X;);=0,. r satisfies the condition (C).
We consider a new involution ¢ defined on g by

o(X) forXeg,
X) =
o(X) {—a(X) for XeVtav-,

The involution ¢ commutes with o and . The decomposition of g relatively
to o will be written as

~ -~ ~ R = X v
g =0 & q where g { €E|g
- q ={Xe€gla

(X) =X},
(X)=-X} .

0

Lemma 3.3.1. For each choice of an involution o, the space a° is maz-

imal abelian in p(q where p = {X €3 | 6(X) = —X}.

Proof. —Let X be an element of p()q which centralizes a®. Since Hy
belongs to a°, X is an element of g and therefore of (pNg)Ng which is p g.

Hence, by Proposition 3.1.4, X belongs to a°.
O
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From a Theorem of RossMANN ([Ro]-1979), the previous Lemma implies
that the set of roots (g, a®) is a root system and we set

20 =%(g,a%) .
On the other hand we may consider the reductive Lie algebra
909 ={X €g|af(X) =X} .
0

Since a? is a Cartan subspace of (§,9,6), the set of roots X(gyg, a®) is a root
system and we set

EOQ = 2(§gg, aO) .

Theorem 3.3.2. The root systems 30 and %2 are reduced and irre-
ducible. More precisely we obtain, using the notations of ([Bou/-1968) :

(1) The root system 30 s always of type Cr1 .
(2) The root system $07 s of type Ay, if (g, Ho) is of Type I ;
Dy11 if (g, Ho) is of Type I ;
Cr+1 if (9, Ho) is of Type III .
Proof. — We will denote by 7;(j =0,...,k) the linear forms defined on
a® by
1 ifi=j;
0 ifitj.
(1) The decomposition of g given in section 1.8 by

§=3," 0 ( & B+l il)) o (é aﬁﬂ)
g o<icj<k T j=0 ’

ni(Hy;) = 6ij = {

is the root space decomposition associated to the root system f]o. Then we
have

30 = {m ;0 <i<j<k);£2n;(0<j<k)}.
Therefore 0 is a root system of type Cx41.

(2) The root system 392 is the set of roots IS 0 such that the intersection
of g" with gy¢ is nonzero. Using (1) and (2) of Theorem 3.1.1 we obtain
that for ¢ # j

X € Eij(1,1) = o(X) = ad §(X;)ad 6(X;).X ;
- 1
X €34 = o(X) = 5(ad0(X;))*X ;
X e Ei,j(l, —1) — O‘(X) = adO(X,)adX]X .

We will use this calculus to study in the different cases the intersection of
E; j(£1,%1) with gs9. Since E; j(p,q) is invariant under the action of ¢6,
this intersection will be nonzero if and only if there exists an element X in
E; j(p, q) such that ¢6(X) # —X.

Type I. — There exists a sequence (¢;);—o,...x With ¢; = £1 such that the
sequence (€;X;) o,k satisfies the condition (D). Let o, be the involution
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defined by I = g9 Xg + - - + e Xg. It follows from Proposition 3.2.2 that 6
and o, are equal on the semisimple part of g. Hence we obtain

X €FE;j(1,1) =0o00g(X)=—0:.00(X) = —¢gig; X fori <j;
X €E;j(l,-1)=60o00(X)=0.00(X) =cie;X fori # j .
It follows that
gigj =1 = E; j(1,—1) C ggp and E; j(1,1) N gee = {0} ;
giej = —1 = E; j(1,1) C gp¢ and E; j(1,—1) NGee = {0} .
Therefore the root system $0¢ is of the form
20 = {eimi —ejmy |0 <i<k; 0<j<kji#j},
hence of type Ay.

Type II. — Since each element of g is a multiple of X j we obtain, as
in Type I case, that

Xegh =0(X)=60(X)=00b(X)=-X,
which implies that g% gz = {0}. On the other hand for i # j there exists
)\i+/\j

in E; ;(1,1) a nonzero element X € g\(\ € %)) such that A # =572, From

the previous calculus we get that ¢ o #(X) is an element of g~***% which
is distinct from g*. Then we have

X+006(X)#0,
and consequently E; ;(1,1) () geo 7# {0}. For the same reasons the intersec-
tion of gy with E; ;(1,—1) and with E; j(—1,-1) is nonzero for i # j. It
follows that the root system %92 is of the form
207 = {dmi £ | 0<i <j <k},
hence of type Dy1.

Type III. — We will prove that each root space of the system ¥ has a
nonzero intersection with gy¢

a’) a)\j ﬂago 7é {0}
The Lie algebra generated by g% and g—% is a semisimple algebra of
split rank one and the Cartan subspace is generated by Hy;. Therefore, if

X is an element of g%, there exists a real ¢ such that
[0(X;), X] —tH), € ¢,
which implies that
[0(X;), X] — [X;,0(X)] = 2tH,, .
If we apply % ad §(X;) to this equality we obtain
—o(X) +0(X) = 2t6(Xj) .

Therefore 06(X) = —X if and only if X = tX;. Since the dimension of gl
is strictly greater than one, this implies that there exists an nonzero element

X in g () goo-
b) E;j(1,—1) Ngee # {0} for i # j.
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If X is a nonzero element of g% then ad X is an isomorphism from
E; j(1,—-1) onto Ej;(1,1). Moreover if 06(X) = X (resp. 00(X) = —X),
then ad X is an isomorphism from E;;(1,—1)()gs¢ onto E;;(1,1)()gs6
(resp. onto {X € F;j(1,1) | c6(X) = —X}). We know that for X = X; we
have g8(X) = —X and that there exists an element X € g*\{0} such that
08(X) = X. Therefore if we have E; ;(1,—1) Ngy9 = {0} then E; ;(1,1) is
also reduced to zero. This is impossible by Proposition 1.9.3.

¢) B ;j(1,1) Ngge # {0} -

Let X be a nonzero element of g% such that ¢8(X) = X. Then ad X is
an isomorphism from E; ;(1, —1) N gye onto E; j(1,1) Ngse. Thus the result
is a consequence of b).

In conclusion, the root systems 320 and % are the same in this case.
O

Let us now go back to the involution ¢ and to the root systems and Weyl
groups which are related to the structure of the symmetric space associated
to the pair (g,0).

Since a° is maximal abelian in p () q (Proposition 3.1.4) we consider the
root systems
2% =3(g,0") and % = %(gsp,0")
where gop = {X € g | 06(X) = X}. We denote by W% and W% the
corresponding Weyl groups.

The restrictions to g of the involutions o and o are the same. Therefore
it is easy to describe X and E(f using Theorem 3.3.2. One only has to
determine which root spaces of X0 and X% are contained in g. The Weyl
group of irreducible root systems are given in ([Bou]-1968). Consequently
we obtain the following result.

Theorem 3.3.3.
(1) The root system %0 is always of type Ay and the Weyl group WO is
tsomorphic to the group Gyi10f permutations of k + 1 elements.
(2) In Type II and Type III cases, the root system £ is also of type Ay
and the group W% is isomorphic to W° ~ G, .
(3) In Type I case we consider the involution o associated to an element
I = Z?:o ¢;X; where the sequence (X;)j=o,. r satisfies the condition (D)
and e; = x1. If p (resp. ¢ = k+1—p) denotes the number of indices j such
that ¢; = 1 (resp. ¢j = —1), then $% is a system of type Ap_1 X Ag_1 and
W is isomorphic to S, x 6.

3.4. The groups K, H and G°.

In this section we will study the connectedness of some subgroups of G.
Let us recall from section 1.7 that G is the adjoint group of g and that G is
the identity component of the centralizer of Hy in G.

In this section o is again an involution associated as in section 3.1 to a
generic element I = X+ - - -+ X}, where (X});-o,..r satisfies the condition
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(C). The involutions # and o are well defined on the adjoint group G. More
precisely o is given by the conjugation by the element

+ - +
w:eadI eadI eadI )

Since §(Hy) = o(Hy) = —Hj the group G is invariant under the action of 8
and o and we define
K=G"={geG|6(g)=g}and G" ={g€ G |o(g) = g} .

The Lie algebra of G is equal to h = 34(I") (Theorem 3.1.1 (3)). The
centralizer of I in G has the same Lie algebra and is therefore an open
subgroup of G°.

Definition 3.4.1. The group H is the open subgroup of G° given by
H=ZgI")={geG|gIT=TI"}.

This group is in general neither connected (see Appendix ), nor equal to G?
(see the next Theorem).

Theorem 3.4.2.
(1) The group K is connected. It is a mazimal compact subgroup of G.

(2) The group H is also the centralizer of I~ in G. If H® denotes the identity
component of H we have
H = Zgni(a®)HO .
(3) The following properties are equivalent :
(i) H is strictly contained in G°;
(i1) There ezists g € G such that g.IT = —I7;
(i3i) The graded regular algebra is of one of the following form :
o Type III;
o Type IT with k+ 1 even;
o Type I with k + 1(= 2p) even and with I* belonging to the
G-orbit of Eg;éXj - E?Q;IXj where the sequence (X;)j—o,. 1 satisfies the
condition (D) (Notation 2.8.9).

Remark 3.4.3. Property (2) means that H is essentially connected in
the sense of the definition given by van den BAN ([vdB]-1988)

Proof. — A Cartan decomposition of the Lie algebra g is given by

- = t={X €3|0(X) =X},
87 t@Rwhee {5={Xea|0<x>=—X}.

Since the group G is semisimple, connected, with a trivial center, the sub-
group GY of elements in G fixed under 6 is maximal compact and connected
([H]-1978). Moreover the Cartan decomposition of G is defined by the ap-
plication

P 60 X ad§§—> é
(k,ad X) — k 24X |

which is an diffeomorphism.
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In the sequel we consider some reductive, not always connected, closed
subgroups of G. Let us denote by L such a subgroup and by [ its Lie algebra.
If the group L is stable under the action of 6 we say that (G N L)e2d("P) g
a Cartan decomposition of L if the restriction of ® to (G® N L) x ad(INp)
is a diffeomorphism onto L. In order to obtain such a decomposition it is
sufficient to verify that this restriction is surjective ¢.e. that we can write

L = (G® N L)e2d(NP)

(1) We will prove that
G = Ke?

is the Cartan decomposition of G. Let g be an element of G and &~ !(g) =
(k,ad X) with k € G® and X € p. Since G is stable under the action of 6,
the element 224X = g(g)~!g belongs to G and thus centralizes Hy. Since
X belongs to p, the map ad X : g — g is symmetric for the positive
definite form §g, hence diagonalisable with real eigenvalues. It follows that
X centralizes Hy hence belongs to g. Thus X belongs to gNp = p and k to
G'NG=K , which proves the result.

The group K is compact since G is compact. It is connected since it is
the projection on the first component of ®1(G) which is connected as G.
Moreover it is easy to deduce from the Cartan decomposition of G that K
is maximal compact.

(2) We will first prove that Zg(IT) and Zg(I~) are the same groups.
Let h be an element of G which centralizes I™. Then {I~, Hy,I*} and
{h.I=,Hy, I} are sly-triples. The unicity in Proposition 1.7.9 implies that
h centralizes I~. The same argument shows that, if & centralizes I—, then
it centralizes 1.

This result, together with the relation 6(I") = I, implies that the
group H is invariant under the action of 8. Moreover, by definition, H is
the centralizer of some element in g. The same argument as for G shows
that the Cartan decomposition of H is given by H = (H N K)e2d(®Mh),

In order to prove that the (eventual) non connectedness of H is located
in the subgroup Zgnx (a°) we proceed by steps.

We deduce from the Cartan decomposition that
H=(HNK)H",
where HO is the identity component of H.

Let G4 be the analytic subgroup of G with Lie algebra g, = hNEtdpNg.
Since the involutions € and o commute, the group K is invariant under the
action of o and it is easy to prove , using the involution o6, that the Cartan
decomposition of G is given by

G_|_ = (G+ N K)ead(pmq) .

The same argument as for K shows that G, N K is connected. Since it has
the same Lie algebra as H N K we obtain

G.NK=(HNK)?,
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where (H N K)? is the identity component of H N K.

If k is an element of H N K, then k.a° is still maximal abelian in p N g.
By a classical result ([Kn]-1996 Prop.7.29) there exists an element k; in
G4 N K such that k;.a° = k.a®. Thus k] 'k belongs to Ngnx(a®). Since we
have proved that G, N K is a subgroup of HY, it follows that k belongs to
Nk (a®)HC. Therefore H N K is a subset of Nynx (a®)H® | which implies
that

H = Nyng(a®)HO .

It remains to study Ngnx(a).

For that purpose we will use the determination of the Weyl groups W° of
¥(g,a%) and W% of %(g,g,a’) obtained in Theorem 3.3.3. It is well known
([H]-1978 Ch.VII §2) that, since G is connected, the Weyl group W% is
given by

W = N, nx)(a")/Z(c, i) (a°) -
On the other hand RossmANN ([Ro]-1979) proved that
WO = Nk (a®)/Zk (a%) .
Let k € Ngnx(a®). Then there is an element s € W0 such that s.H = k.H
for each H € a°.

Let us now suppose first that we are in Type I case. There exists a
sequence (Yj);=o,.. x satisfying the condition (D) and a sequence (&;);=o,...k
with €; = &1 such that X; =¢;Y; for j =0,...,k.

By Theorem 3.3.3 (1) there exists a permutation 7 of {0,1,...,k} such
that s.Hy, = k.Hy; = Hy . As the dimension of gV is equal to 1, we have
k‘Y] = thT(j) where t; € Rfor j=0,...,k.

We have proved (Proposition 3.2.2) that € is the involution associated to the
generic element J* = Zj:o,...,k Y;. Therefore an element of the connected
group K centralizes J*. It follows that

k k
kJV =Y =) Y.,
j=0 §=0

and that, therefore, the constants ¢; are equal to 1. On the other hand & is
also an element of H, hence centralizes I which implies that

k k
D oeiYep =D &Y
j=0 =0

Therefore for each j € {0,...,k} we have

ET(]') = 6]' .
This proves that 7 is a product of a permutation of the indices j for which
¢j = 1 and of a permutation of the indices j for which ¢; = —1. Hence

Theorem 3.3.3 (3) implies that k acts on a® as an element of W%. As
G, NK = (HNK)° there exists an element ko € N(ank)o (a%) ¢ H? such

that ko.H = k.H for each H € a®. Thus k, 'k belongs to Zgnx (a°) and we
have proved that

Nunk(a°) C Zank (a®)HO.
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which concludes the proof in Type I case.

In Type II or Type III cases we know from Theorem 3.3.3 (2) that the
groups W9 and W9 are equal. Therefore we obtain directly the existence of
an element kg € Ngngy(a®) C H such that ko.H = k.H for each H € a°.
And the result follows.

(3) The description of the G-orbits in VT given in sections 2.6 , 2.7 and 2.10
shows that (4i) and (%ii) are equivalent.
(1) = (1)

Let g be an element of G such that g.IT = —It. Such an element
does not belong to H and we will prove that it belongs to G?. Considering
the slo—triples {—1 ,Ho,—I"} and {g.I , Hp,g9.I"}, we deduce from the
unicity in Proposition 1.7.9 that g.I” = —I . Since w = ead IT gad I~ ead1+,

it follows that

gwg_1 —w !,

1

As o is an involution we have w~ — w and we obtain

o(g) =wgw ' =g.

(1) = (4)

We assume that we are not in the situation described in (i) and we will
prove that G° = H. In particular the graded algebra is necessarily of Type
I or IT in this situation.

The same argument as the one used for H in (2) shows that

G° = Ngong (a®)H? |

since H? is also the identity component of G?. It is therefore sufficient to
prove that an element Ngonx (a®) centralizes I.

Let k € Ngonk(a®). Since k normalizes a’, we obtain, using the same
arguments as in (2), a permutation 7 of {0,...,k} such that

k.H)\j :H)‘T(j) fOI‘jZO,...,k .

The dimension of each g is one. Therefore there exist some real numbers
tj such that
k.Xj = thT(j) for _] = 0, cee ,k‘ .
Moreover, as k belongs to K, we have §(k.X;) = k.0(X;). It follows that
2
Hy, ;) = k0(X;), k- Xj] = [£;6(X7(3)), 8 X)) = G H) ) »

which implies that ¢; = +1. We recall (see the proof of Theorem 3.3.2)
that, if X is an element of E; j(—1,—1), then o(X) = ad X; ad X;.X, which
implies that
k.o(X) =tt;ad Xy ad Xo(j)-kX .
On the other hand k.X belongs to E ;) r(;)(—1, —1) which implies that
o(k.X) = ad X; ;) ad X, (j).kX .

But k belongs to G, hence ko(X) = o(kX) and the previous equalities
imply that the real ¢; are all equal to 1 or all equal to -1. In the first case k&
centralizes I, hence belongs to H. In the second case we have k.IT = —I
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which is impossible since (i) and (753) are equivalent . Therefore we have
proved that G° = H.
O

Remark 3.4.4. In Type I case, if the sequence (X;),=o, ., satisfies
the condition (D), then we have ¢ = 0, a® = o® (Proposition 3.2.2) and
K = Zg(I). Moreover ad I is an isomorphism from q = p onto V* and
from a” onto the diagonal 69;?:0 @Y of V. Therefore, in that case, the fact
that each element of VT is Zg(I1)—conjugate to an element of the diagonal
(Theorem 2.9.3) is equivalent to the classical following result : each element
of p is K—conjugate to an element of aP.

3.5. A parabolic subgroup of G

A symmetric space G/H 1is associated to each sly—triple of the form
{6(I"), Hy,I"}. This symmetric space is either realized as the open G-
orbit of I'" or of §(I). We choose a representative for each open G-orbit in
V* of the form I = Z§:0 X; where (X;),—o,.. satisfies the condition (C).
Thus we obtain a family of symmetric spaces (which reduces to one element
in Type III case and two elements in Type II case).

In this section we will construct a parabolic subgroup of G, which will
be the same for each of these symmetric spaces, such that PH is an open
subset of G. This parabolic subgroup will be a minimal c6—stable parabolic
subgroup in the sense of van den BAN ([vdB]-1988). The description of the
open P-orbits in G/H i.e. the IwAsawA decomposition of these symmetric
spaces will be given in section 3.6.

The Lie algebra of P will be the subalgebra 3 of g defined by
P =35(") @ (@ Ei(1,-1)) .
1<J

Let again o be the involution associated to some generic element I+ =
Z?:o X; where (X;);=o,...r satisfies the condition (C).

Proposition 3.5.1. For each such o, the subspace B is a minimal 06—
stable parabolic subalgebra of g. It’s LANGLANDS decomposition is given by

PBP=mPadn,
where
n=®ic;Ei;(1,-1) ;
M@ a = 5(a”) ;
¢ a={Hea| (A€, A =0) = \H) =0}
=pnN (center of m® a) ;
m is the orthogonal of a in m® a .
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Proof. —Proposition 1.9.1 implies that 3 contains all the root-spaces
of the negative roots, hence contains a minimal parabolic subalgebra. More-
over each element of a? is invariant under the action of o8, hence each space
E; j(1,-1) is invariant under this action. Therefore P is a of—stable para-
bolic subalgebra of g.

Let T be the set of roots A in ¥ such that g* (| # 0 (or equivalently
g* C B). Then, from the definition of 9, we have

r=x"u{xezt|xa =0},
B =34(a") @ ( @ g’\> .
AeT
Therefore we have

rN-T={AeX|Aa% =0} .

Since B is a parabolic subalgebra, there exists an unique subset II' of the
set II of simple roots in X1 such that

r=%"Uu(Il),

where (II') is the set of roots in ¥ linearly generated by II (see [Kn]-1996
Prop. 7.76). We will say that P is the standard parabolic subalgebra asso-
ciated to IT'. The definition of I" implies that, here, we have

m={AeTl|Aa) =0}.

By a result of van den BAN ([VdB]-1988 Cor.2.7) such a standard parabolic
subalgebra associated to the subset II' of simple roots taking the value 0 on
a maximal abelian subspace of p N q is minimal of—stable. Therefore P is
minimal o6-stable.

In the LANGLANDS decomposition 8 = m @ a & n, n is given by the sum
of root-spaces related to the roots A € I'\(I' N —TI'), a by the intersection of
the kernels of the roots A € I' N1 —I' and m @ a by the centralizer in g of
a (see [Kn]-1996 p. 415-417). Moreover this decomposition is orthogonal
with respect to By. It follows that n is the sum of the spaces E; j(1,-1) for
i < j and that a is the intersection of the kernels of the roots A such that
A(a%) = 0. Since the decomposition P = 34(a’) @ n is also orthogonal with
respect to Eo we obtain that

m® 0 =34(a) = 34(a”) -

To conclude the proof it remains to notice that a is also given by the inter-
section of the center of m @ a with p (see [Kn]-1996 Prop. 7.82(a)).
O

Remark 3.5.2. The inclusions a® C a C a can be strict. For example
in Type II case we have
o if 3 = Ayp,q then o = g, dima = 2k + 1 and dima® = k+ 1. In
this case ‘3 is a minimal parabolic subalgebra.
o if X = D,, then a = a°, dima = 2 and dima? = m. In this case P
is not a minimal parabolic subalgebra.
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Let N = €™ and A = 249 be the analytic subgroups of G wich have
respectively n and a for Lie algebras. Using the Cartan decomposition of G it
can be proved that the multiplication is a diffeomorphism from the product
Zk(a) x e2d(mP) » A onto Zg(a). The parabolic subgroup P associated to
B is defined by it’s LANGLANDS decomposition P = M AN where

MA = Zg(a) and M = Zg(a)e*dmP)

Moreover, since Zg.(a) and Zg.(a®) are connected groups with the same
Lie algebras, namely 3q.(a) = 34.(a’), they are equal. Thus we have the
equalities

Zg(a) = Zg(a®) and Zg(a) = Zg(a?) .

Van den BAN proved that this group P is a minimal g6—stable parabolic
subgroup of G ([vdB]-1988, Cor. 2.7). Moreover he proved in the same
paper (Prop. B.1) that there is a strictly positive finite number of open
P-orbits in G/H (where H is the centralizer in G of I") and that they are
parametrised by WO /WY, . , where WY ;; denotes the image of Ngxng(a®)
in WO, Tt follows from Lemma 1.4 in ([vdB]-1988) and from the fact that H
is essentially connected (Theorem 3.4.2) that W5 = W% . Thus the open
P-orbits in G/H are parametrized by W°/W?% . Using the description of
the groups W° and W9 given in Theorem 3.3.3 we deduce from this result
the following Theorem.

Theorem 3.5.3. The number of open P-orbits in G/H is equal to
e 1 in Type II and Type III cases;
° (kzl) in Type I case,
where p is the number of €; such that ¢; = 1 if IT = ?:0 ;Y with
(Yj)j=o0,...k satisfying the condition (D).

We will in the next section describe the open orbits of P in V™ and
obtain a direct proof of the previous Theorem. Let us first study the action
of M on 69;?:0 Y.

Theorem 3.5.4. For any Type and any o, the space M/M N H is com-
pact.
e For Type I, the action of M on @?:0 9% is trivial and M = M N H.

e For Type II, the action of M N H on @;?:0 Y s trivial and M/M N H is
isomorphic to the group

{(mo,my,...,my) € {1} | mgmy - -my, =1} .

e For Type III, the action of M is transitive on the product for j =0,...,k
of spheres of same radius in g (for the metric defined by b). Moreover
M/M N H is homeomorphic to the product of these spheres.

Proof. — Since M is 6-stable, the Cartan decomposition of M is of the
form

M = (M N K)e2d(m)
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Furthermore m centralizes a° which is maximal abelian in p N q. Hence we
have

mNpNgcCa.
Since m is orthogonal to a D a® we obtain
mNpCmNpNh.

Therefore M /M N H is homeomorphic to (M N K)/(M N K N H) which
implies that M /M N H is compact.

The root-spaces gV are stable under the action of M which is a subgroup
of Zg(a%). We will study this action in the different cases.

Type I and Type II : Each root-space g% is of the form RX; where IT =
Z;?:o X;. An element of M N H centralizes I and stabilizes RX;, hence
centralizes g% . Since M/M N H is compact we have for j € {0,...,k} and
meM

m.X; = m;jX; where m; = %1 .

In Type I case we have X; = ¢;Y;(e; = +1) where (Y});—o, 1 satisfies
the condition (D). Thus m.Y; = m;Y; for each j € {0,...,k} which implies
that Z?:oyj and Z?:o m,;Y; are G-conjugate. By Theorem 2.10.1 this is
possible only if m; = 1 for each j. Therefore the action of M is trivial on
®h_og% and M =M NH.

In Type II case we consider the morphism ¢ from M to the group
{£1}**1 which associates to m € M the sequence (my, ..., my) defined
above. The kernel of ¢ is M N H. From Proposition 2.4.5 we know the exis-
tence of elements of Zx(a®) C M which act trivially on each g except on

two of them whose sign is changed. Therefore each sequence (my,...,my)
such that mgmgi---m; = 1 belongs to the image of ¢. If a sequence
(mg, ..., mg) with mgmy ---myg = —1 belongs to the image of ¢, then I

is conjugate under M to the element — Xy + X1 + - -+ + X}, which is im-
possible by Theorem 2.7.3. Therefore the image of ¢ is the set of sequences
(mo, ..., mg) such that m; = +1 and momy --- my = 1. It follows, in par-
ticular, that M is not connected.

Type III : Let ¢ be the application from M to EB;?:OE)‘J’ which associates to
m € M the element m.JT = m.Xy + --- + m.X},. As the stabilizer of IT in
M is M N H, the image of ¢ is homeomorphic to M /M N H. Moreover we
have (M) = (M N K).

If m belongs to M N K it follows from Lemma 1.10.2 that for j € {0,...,k}
b(mX],G(mX])) = b(X],O(X])) =1.

Therefore the image of ¢ is contained in the product for j = 0 to k of the
spheres

S; = {X T | b(X,0(X)) = 1} .
It remains to prove that the image of ¢ is equal to this product.

Let us recall that L; is the analytic subgroup of G with Lie algebra [; =
[g7%,g%]. This is a subgroup of Zg(a°) since an element of L; centralizes
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Hy and each H,, for s # j , hence H),. It follows that L; N K is a subgroup
of M. The Cartan decomposition of L; is given by

Lj = (L; N K)e“ M
We have proved (Theorem 1.12.1) that the action of L; is transitive on
9%\{0}. Thus the action of L; N K is transitive on the sphere S;. Since
L; centralizes the spheres S for s # j, the action of M is transitive on the

product of the spheres Sj.
O

3.6. The prehomogeneous vector space (P,V ™)

There is a finite number of open orbits of P in V' by Proposition 3.5.3
We will prove in this section that the polynomials A; (defined in 1.14.1) are
relatively invariant under the action of P (Theorem 3.6.1) and moreover that
they are the fundamental invariants (Theorem 3.6.3) for the prehomogeneous
vector space (P, V).

We will now normalize the polynomials A; as follows.

We will make once and for all the choice of a sequence (X;);j—o,. ..k which
satisfies the condition (D) and we denote by I the generic element IT =
Z?:o X;. Welet

AjIT)y=1forj=0,...,k.
We recall (Notation 1.12.3) that x = 1 in Type I and Type II cases and
k = 2 in Type III case.

Theorem 3.6.1. The polynomials A; are irreducible relatively invariant
under the action of the parabolic group P. More precisely we have for j =
0,...,k

Aj(p.X) = xj(0)Aj(X) for X eVT,pe P,
where x; is a character of P = MAN. Forn € N, H € a and m € M we
have

e xj(n)=1;
. Xj(eadH) _ en()\j(H)—I—---—l—)\k(H)) .

Y

(m) 1 in Type I and Type III cases ;
[ ] q =
Xi mj---my  if m.X; =m;X; (m; = £1) in Type II case .

Proof. — We have proved (Theorem 1.14.2) that A; is invariant under
the action of N and relatively invariant under the action of expa?. The
formula for x;(a) if a € expa is a consequence of (4) in Theorem 1.14.2
It remains to prove that A; is relatively invariant under the action of M,
which is not a consequence of Theorem 1.14.2 (2) since M is not a subset of
G;.
’ But the definition of A, Theorem 1.14.2 (5) and the normalization done
above imply that, if we write an element of V' as X + Y where X € Vj+

andY € VjJ‘, then we have
Aj(X+Y)=0p(Xo+---+X; 1+ X) .
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An element of the centralizer of a® (which contains M) stabilizes Vj+, VjL
and each root-space ghi. As Ay is G relatively invariant, it follows that, for
m € M we have

= Xo(m)Aj(m_l.Xo + -4 m_l.X]’_l + X) .
Since m~! stabilizes the spaces g*¢, we know from Theorem 1.14.2 (5) that
the polynomial X +Y — A;j(m 1. Xo+ - +m 1L.X; 4 + X) is a multiple
of the polynomial X — A;(X +Y) = Aj(X). Therefore A; is relatively

invariant under the action of M and the calculus of Aj(m.IT) gives the
value of x;(m). Using Theorem 3.5.4 we obtain :

Type I : M centralizes I'", thus x;(m) = 1.

Type II : m.I*T = E;’:O m;X; and by Theorem 1.14.2 (3) we have

k
Aj (stXs> =mj-mpA;(IT)=m;---my .
s=0

Type III : Since x; is trivial on M N H and since M /M N H is compact, the
character x; takes only the values 1. But in this case the space M /M N H

is connected as product of spheres, hence y; is trivial.
O

We denote by OF the open dense subset of V* given by
OF = {X €V | Ag(X)A1(X) - Ag(X) # 0} .

We will prove that O is the union of the open orbits of P in V*. Therefore,
since the polynomials A; are irreducible on C, they are the fundamental
invariants of the prehomogeneous vector space (P, V).

We start the proof with the following Lemma which proves that an
element of O is not only G-conjugate to an element of the “diagonal”
(Theorem 2.2.2) but also N—conjugate to such an element.

Lemma 3.6.2. Each element of O is N—conjugate to an element of
®k_ gh.
7=0

Proof. —Let X be an element in OF. Since A;(X) # 0, we know from
the proof of Proposition 2.2.1(2) that there exists an element Z € g such
that

[Hy,, Z) = Z and 12X c V" @ g .
Tt was proved that the element Z belongs to g_1 = @leEo,j(l, —1) hence
to n. If X! denotes the element of V] such that X € X! @ g, we have for
j>1
Aj(XY) = Aj(X)
Since X belongs to O™, it follows that
Aj(XY)#0 forj=1,...,k.

The proof is finished by induction. In fact the same proof applied to g;
shows that if X belongs to Vj+ with Ag(X) # 0 for s > j then X is N-
conjugate to an element of the form XJ/+1 4 Y; where Xitl ¢ V]ﬁ_l and
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Y; € g%. Moreover we have Az(X7*t!) = Ay (X) # 0 for s > j and the
induction follows.
O

Theorem 3.6.3. The open dense subset O of VT is the union of the
open orbits of P in V1.
Type I. — The number of open P—orbits in VT is 28T1. Representatives of
these orbits are given by the elements I = Z?:o ejX; (ej = £1). Moreover
we have

PI}={XeV"|Aj(X)ej- ex>0forj=0,...,k}.
Type II. — There are two open P-orbits in V. Representatives of these
orbits are given by the elements IT = Z?:o X; and I = (Z?;& X;) — X
Moreover we have
PIT={X € O"| A¢o(X) >0} and PI;7 = {X € OF | Ao(X) < 0} .
Type III. — There is only one open P—orbit in V. Moreover we have
X €Ot < Aj(X)>0forj=0,...,k.

Proof. — The relative invariance of the A; under the action of P implies
that O7 is a union of P—orbits. Let now X be an element of O". By Lemma
3.6.2 it is P—conjugate to an element of the form Z?:o Y; where Y; € 9.

Since X is generic, the element Z?:o Y; is also generic which implies that
each Y; is nonzero. Then there exists an element a = eXP(Z?:o tjHy,) € A
such that a. Z?:o Y; belongs to the product of spheres S; given by

S; = {X e | b(X,0(X)) = 1} .

Type I : Since the dimension of g% is one, it follows that each element of
O7 is P—conjugate to one of the elements I* where ¢ = (gq,...,e) with
¢j = +1. By Theorem 1.14.2 (3) we have for j =0,...,k

Aj(IE_F) =E&j- € .
On the other hand the character x; is strictly positive on P (Theorem 3.6.1).

Therefore the elements I et I;,r are not P-conjugate for ¢ # ¢’ and the result
follows.

Type II : For the same reasons each element of O is in fact AN—conjugate
to an element of the form I'. But in this case each I is M-conjugate
(Proposition 2.4.5) to I* or I;”. These two elements are not G-conjugate
thus a fortiori not P—conjugate. Therefore we obtain two P-orbits which
are distinguished by the sign of Ay. This is a consequence of the connect-
edness of G which implies that xo takes positive values on G and that (by
Theorem1.14.2 (3))

Ao(I+) =1 and Ao(If) =-1.
Type III : Since the action of M is transitive on the product of spheres of

@®g%, each element of Ot is P—conjugate to the element I1. Therefore OF
is the unique open P-orbit. Since in this case x; takes only positive values
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on P (Theorem 3.6.1) the sign of A; is constant on OF, namely strictly
positive due to the choice of the normalization.
O

Remark 3.6.4. Using the description of the G-orbits in VT given in
chapter 2 it is easy to obtain here Theorem 3.5.3 as a consequence of Theo-
rem 3.6.3.

The group M is not so easy to handle (for example, as we have seen in
Theorem 3.5.4, M is not connected in Type II case) so we will in the sequel
use the AN-orbits in V' which are described for Type I and Type II cases
in the following Corollary.

Corollary 3.6.5 (Type I and Type II).
The number of open orbits of AN in V't is 2571 Representatives of these
orbits are given by the elements I = Z;?:o ejX; (ej = £1). The corre-
sponding orbits are described as follows :

Of =ANIf ={X eV |Aj(X)ej x>0 for j=0,...k}.
Notice that for Type I the P—orbits and the AN-orbits are the same.
Proof. —The Corollary is an easy consequence of the identity

Aj(anI) = xj(an)ej -+ ex

which is a consequence of Theorem 1.14.2 and Theorem 3.6.1.
O

Remark 3.6.6. For Type III, it may be noticed that the action of AN
on V' has no open orbits.

3.7. The involution v of g

In order to characterize the open orbits of P in V'~ by using some poly-
nomials analogous to the polynomials A;, we are looking for an element

~ € G such that
(i) v stabilizes g and interchanges V* and V™ ;
(i3) -y normalizes P i.e. yPy 1 = P .
It would be nice if moreover
(#4%) v normalizes a® ,

which means that 7 is a representative of an element of the Weyl group of
%0, By Theorem 3.3.2 the set %0 is a root system of type Cj,1 with a basis
given by the forms +n; £ 7; and £2n; where

ni(Hy;) = bij -
From the description of the Weyl group for a root system of type Ci41 in

([Bou]-1968 Planche IIT), we know that, if such a «y exists, then there is a
permutation 7 of {0, ...,k} such that

Y-Mi = €iMr(;) Where ¢; = £1 for i =0,...,k .
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Since v interchanges V' and V'~ we must have

V(i +15) = —Ne(i) — e (j) 5
which implies that each ¢; is be equal to —1. Moreover if vy normalizes P, it
normalizes n. Therefore, since n is the sum of the root spaces for the roots
ni —n; (i < j) we necessarily have
i1<j=7(1) >7(j) .
It follows that, if such a «y exists, it must satisfy
(iv) y.mi = —ng—; for i =0,...,k .

But, from ([Bou]-1968), it is known that the Weyl group of Cj41 con-
tains an element 7 satisfying (7). Since this group is isomorphic with
N7z(a%)/Z7(a%), the existence of an element v € Nz(a®) which satisfies
(i) to (iv) is proved.

In the following Theorem we construct explicitely such an element which,
moreover, will be an involution of g.

Theorem 3.7.1. There ezists an element v € Nz(a®) such that
(a) v.Hy; = —Hy,_; for j=0,...,k ;
(b) ’)/X] :0(Xk,]) fO’l"]ZO,,k N
(c) S Idg .

Such an element v stabilizes g, interchanges V' and V~ and normalizes G,

P, M, A and N.

Proof. —
Step 1 : We first construct an element 7 defined as follows if £ > 0. We
recall (Proposition 2.4.4) the existence of elements 7;; € Nz(a®) such that

H,, fors=j,
;}‘/;;2:1(1‘6 and %(H)\s): H}\] fors:i’
HAs fOI' S ¢ {Z)]} °

Let n be the integer defined by k = 2n+2 if k even and k = 2n+ 1 if k odd.
Then we define

—_

&':mo'yl,kflo"'o'Yn,kfn .
Thus we have
’i(H)\j) = H)\k—j fOI‘j = 0,...,k .

On the other hand the elements 7; ;_; (i = 0,...,n) which are associated to
strongly orthogonal slo—triples commute. It follows that 7 is an involution
of g. We will now prove that in the different cases it is possible to choose 5
such that

(It =1

More precisely we will prove that we can choose ¥ such that

(X)) = Xp—j -
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The elements ~;; were defined as the product y;;w? where 7; ; () = g
and w; is the nontrivial Weyl group element associated to the sly—triple
{6(X;), Hy;, X;}. The action of w? is trivial on @?Zoﬁ’\j (section 2.1).

Type I : Since the sequence (X;),o,..  satisfies the condition (D) we have
by Corollary 2.10.2

%ij(Xi) = Xj for i # 7,
and the result follows.

Type II : In this case the choice of the sign of X; is arbitrary and we have
7 (Xi) = £X; (Proposition 2.4.3). But we proved (Proposition 2.4.5) that
there exists m;; € Zx(a®) such that m;(Z) = —Z for Z € g* @& g and
mij(Z) = Z for Z € G}sgé{,-,j}’gv}‘s. Therefore if v; j—i(X;) = —Xp—; it is
sufficient to replace v; x—; by m; g Vi i- Since again the action of w? is
trivial on EB;?:OE;)‘J' , we obtain the result for such a 7.

Type III : In this case two nonzero elements of g% are conjugate by an
element of L; (Theorem 1.12.1). More precisely two elements of the same
sphere S; are conjugate under an element of L; VK C Z(a®) (see the proof
of Theorem 3.5.4). Therefore there exists my_; € Li_; N K such that we
have
Yir—i(Xi) = mp_i Xp—i and Y p_i(mp—i Xp—i) = Xi -

The action of my,_; is trivial on & #k,iﬁ)‘i. Therefore if we replace, for each
1 < n, *7,,7[_/1 by m;ii'y/,\-,k__/,-mk_,- we obtain again an element 5 of Nl?(ao)
which is an involution of g and interchanges X; and Xj_;. This implies the
result.

Remark. — The element % centralizes Hy but does not belong to G
in general. As shown in Appendix , this is the case in Type I case with
R=Cki1and nevenie. k=1 (4) or k=2 (4).

It remains to choose 7 if £ = 0 and we take for 74 the identity.

Step 2 : Let now w = ead " gad ™ cadI* 16 the element of G which defines
o and let v be given by

y=Fw=uwyeK .
It is clear that 7 commutes with w since 7y centralizes I *and I~ = 6(IM)
(7 € K). It follows that v is an involution of g and that

’Y(H)\j) = U(H)\k—j) = _H)\k—j fOI‘j = 0,...,]{; y
’}/(X]) = O'(Xk_j) = G(Xk_]) for ] = 0,. .. ,k‘ .

We deduce from (a) that y(Hy) = —Hj. This implies that « interchanges
VT and V ans stabilizes g. Moreover, since G is connected, it follows that
~ normalizes G.

It remains to prove that y normalizes P, M, A and N. From (a) it fol-
lows that v stabilizes a® and interchanges E; j(1,—1) and Eg_;—_;j(—1,1).
Therefore v stabilizes n, a® and consequently m @ a = 34(a®) , a = p N
(center of me a) and m. It follows that v normalizes N, A and the identity
component M° of M. Since M = Zg(a®)e2d(™W¥) = Zr(a°)M°, v normal-
izes M. This gives the result. (]
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Remark 3.7.2. It may be noticed that v does not stabilize the graded
algebras g; for j = 1,...,k since y(V;") # V;~ (see in Corollary 1.8.4 the
decomposition of V]i)

3.8. The orbits of P in V™~ and the polynomials V;

Definition 3.8.1. For j = 0,...,k we denote by V; the polynomial
defined on V— by

Vi(Y)=A;(y(Y)) forY e V.

Theorem 3.8.2. The polynomials V; are irreducible polynomials of de-
gree k(k +1— j).
(1) Vo is a relative invariant on V'~ under the action of G.
(2) Vj(j =0,...,k) is a relative invariant on V'~ under the action of the
parabolic group P. More precisely we have

Vi(p-Y) =x; (pP)Vi(Y) forpe P,

where x; is the character of P = M AN described below. Forn € N, H € a
and m € M we have

ex;(n)=1;
. Xj—(eadH) — e ROo(H)++X—j (H))

*x; (m) ={

1 in Type I and Type III cases ;
mg---mg_; if m.X; =m;X; (m; = £1) in Type II case .

Proof. — The relative invariance is a direct consequence of the relative
invariance of the polynomials A; (Theorem 1.14.2 and Theorem 3.6.1) and
of the fact that v (Theorem 3.7.1) normalizes G and P.

To describe the character X; we first remark that the choice of the

normalization of A; implies that V;(I7) = 1 since y(I~) = I". Then we
have for p € P
X; () = Vi(pI7) = Aj(ypy 1.TH) = x; (oY) -
Using the description of the character x; given in Theorem 3.6.1 and

the fact that v normalizes M, A and N we obtain the value of the character
X; - More precisely X; is then trivial on N and the action of v on a° gives

the value of x; on A. Moreover X; is trivial on M in Type I and Type III
cases. To obtain the result in Type II case we consider an element m € M.
Then we have m.X; = m;X; (m; = 1) and we obtain

Vi(m.I ) =A; (Zk: ms’Y-e(Xs)) =A, (Zk: mSXk—s)
s=0 s=0

k
=[Ime s=mo---mi ;,
s=jJ

which gives the result.
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Remark 3.8.3. The proof of the previous Theorem relies only on the
properties of v described in Theorem 3.7.1 and gives the value of V; on
the P—orbit of I~ in V. This P-orbit is equal to y(P.IT) hence open by
Theorem 3.6.3. Therefore the polynomials V; do not depend on the choice
of the element 7 satisfying the properties of Theorem 3.7.1. They are the
fundamental relative invariants of the prehomogeneous space (P, V 7).

We deduce from the previous Theorem a relation between A; and V;
on the open orbits of G respectively in V+ and V~. For this purpose let us
define for € = (g9, €1,...,€x) where g; = &1 :

k k

IF = "eiX; and I; =6(I7) = ;6(X;) .
=0 §=0

The sets G.I} (resp. G.I7) are open in V't (resp. V) and their union is

an open dense set. Nevertheless some of these sets are the same (see the

classification of the open orbits of G in chapter 2).

Corollary 3.8.4. For ¢ = (e, ...,ex) with e; = *1 and g € G we have

1
VolgI7) = ——;
€ Ao(ng)
_y Apa(g L) ,
VilgI )= "8 2 forj=1,...,k.
.7( € ) AO (gI5+)
Proof. —1t is sufficient to prove these equalities of analytic functions

on an open subset of G and we will do it on the open subset PH, where
H. = Zg(I]) = Zg(I; ). For p € P we have

Vi(p-I7) = x; (P)A;(v-I7) = x; (P)eo - €k—j ;
Aj(p-I7) = xj(p)A;(IF) = xj(p)ej -+~ ex -
But we deduce from Theorems 3.6.1 and Theorem 3.8.2 that

I
Xo (P) = xo(p) ’
—oy _ Xkt1-(p)
X; (p) = xo(p)

which implies the result.
O

We deduce from this result that the relation between x, and yx, is in
fact true on G' and not only on P. We summarize the relations between yx;
and X; as follows.

Corollary 3.8.5. Forge G,pe P and j=1,...,k we have
1
Xo(9) = —F5 forgeG;
0( ) XO(g)

x; (p) = 7Xk;(g)(p) forpe P,
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Let us denote by O~ the open dense subset of V'~ given by
O ={Y e V7 [ Vo(Y)Vi(Y) - Vi(Y) # 0} .
Using again the involution v we deduce from Theorem 3.6.3 a description of

the open P—-orbits in V.

Theorem 3.8.6. The open dense subset O~ of V™~ is the union of the
open P—orbits in V.

Type I. — The number of open P—orbits in V'~ is 2¥*1. Representatives

of these orbits are given by the elements I = Zf:o £;0(X;) (ej = £1).

Moreover we have
PI; ={Y eV~ |Vi(Y)eo: e ;>0 forj=0,...,k} .
Type II. — There are two open P—orbits in V. Representatives of these

orbits are given by the elements I~ = Z?:o 0(X;) and I] = (Zf;& 0(X;)) -

0(Xy). Moreover we have
PI"={Y €O |Vo(Y)>0} and PI; ={X € O” | Vo(Y) <0} .
Type III. — There is only one open P-orbit in V— . Moreover we have
YeO <= ViY)>0forj=0,...,k.

As in Corollary 3.6.5 we can also describe the open AN-orbits in V™~ in
Type I and Type II cases.

Corollary 3.8.7 (Type I and Type II).
There are 281 open AN —orbits in V—. Representatives of these orbits are
given by the elements I, = Z?:o €;j0(X;) (ej = £1). The corresponding
orbits are described as follows :

O, =AN.I; ={Y €V |V;j(Y)eo---ex—; >0 for j=0,...k} .
Proof. —The Corollary is an easy consequence of the identity
Vj(anI7) = xj (an)eo -~ €k

given in the proof of Corollary 3.8.4.
O

A way to write more globally the relations between A; and V; is given
below using the following definitions :

Definition 3.8.8. Let s = (sq,51,-..,5;) € C**1. We denote by |AJ®
and |V|* the functions defined respectively on O and O~ by

[AP(X) = [Ao(X)]* - [AR(X)[** for X € OT ;
IVIP(Y) = [Vo(Y)[** -+ [Vr(Y)[** for Y € OT .

Definition 3.8.9. We will denote by t the involution on C**1 given by

t(s) =(—s0 — 81— - — Sk, Sks Sk—1,---,51)
for s = (sq,...,s) € CFHL |
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Corollary 3.8.4 implies the relation
|V|*(p.I7) = |A[MS) (p.IF) for p € P,s € CFFHL .

Therefore the functions |A|* and |V|* have the same A-character if and
only if s = t(s).

3.9. A G-equivariant map from Q" onto Q™

Until now we have defined several maps which interchange V™ and V
namely the involutions 6, o and ~ of the Lie algebra g. None of them is
G—equivariant. It is possible to define a G—equivariant map but only on the
set of generic elements of V. Using Theorem 1.11.2 we set the following
Definition.

Definition 3.9.1. We denote by Q" and Q™ the sets of generic elements
respectively in V't and V~ which are given by

QF={X eV |AX)£0} and Q ={Y €V |Vo(Y)#0}.

Recall from Definition 1.7.1 that QF (resp. ) is the union of the open
G-orbits in VT (resp. V7).

From Proposition 1.7.9 we know that, if X is a generic element in VT,
there exists an unique element Y € V'~ such that {Y, Hy, X} is a sla—triple.
It follows that the map X —— Y is G—-invariant since {gY, Hp,gX} is also a
slo—triple for g € G. We will give an equivalent definition of this map which
shows that this is the “grad log” map from SATO and KiMuraA ([Sa-K]-1977,
p. 62).

For X € V7 let Aj(X) be the differential of the polynomial function A
at the point X which is an element of the dual of V. Using the identification
between V~ and the dual of V' given by the normalized Killing form b, this
differential defines an element of V.

Definition 3.9.2. For X € Q7, let (X) € V~ be defined by the relation
Ay(X), X')
b(p(x), x7) = LX),
Proposition 3.9.3. For X € QT {¢(X), Hy, X} is a slo—triple and the
map X — (X)) is G-equivariant on Q.

Proof. —Let X € Q1 and g € G. As A¢(9X) = xo0(g9)Ao(X) we easily
get

orall X' e VT .
f

(Ap(9X),9X") = xo(9)(Ap(X), X") .
It follows that

b(p(gX), x7) = X060 9 XY

which implies that ¢ is G—equivariant i.e.

P(9X) = gp(X) for X €QF, g€ G.
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Let A € g. Derivation of the identity Ag(e?234X) = yo(exptA)Ag(X)
with respect to ¢ at the point 0 implies

where e is the neutral element of G. It follows that
1
(A, [X, 9(X)]) = b($(X), [4,X]) = - {xhe), 4) -
From Theorem 1.8.1 and Proposition 3.5.1 we get the following orthogonal
decomposition of g.

g=m&ad (ix;Fi;(1,-1)) .
From Proposition 3.1.4 we have a’? Nq = a°. Thus the inclusion a® C a C a?
and the invariance of a under ¢ imply that
a=anh@a’.

The character xp is trivial on H and on the connected component of M (by
Theorem 3.6.1). Hence for A € m @ an b we have (xg(e), A) = 0. Moreover
for A € E; j(1,—1) we have also (xg(e), A) = 0 since E; ;(1,—1) C [g,g]. It
follows that [X,4(X)] is an element of a°.

From Theorem 3.6.1 we get (xg(e), Hy;) = 2+ and, therefore, we have

b (H)\ja [X”QL'(X)]) =2.
On the other hand, as b (HA].,HO) =b (H)\j,H)\j) = —2 from Lemma 1.10.2,
we get
[X,9(X)] = —Ho .
Hence {(X), Hy, X} is a sla—triple.
O

Remark 3.9.4. From Definition 3.9.2 it follows that there exists a poly-
nomial map @ : V* — V~ of degree x(k + 1) — 1 such that

PY(X) = AQ((XX)) for X € Q" .
0
Proposition 3.9.5. For X € Q1 we have
1
Vo(¥(X)) = Ao(X)
Api1-i(X
Vi(9(X)) = %‘;{()) forj=1,...,k.

Then for s € C*t1 we have
IV° (¥(X)) = 1A (X) .
Proof. — Since 1 is P-equivariant the fonction X +—— V;(4(X)) is
relatively invariant under the action of P with character X; - Therefore, up

to scalar multiplication, these relations are implied by Corollary 3.8.5. Since
{I_ =6(I}),Hy, I} is a sly—triple, we have

Y(IS) =1, =0() .

Therefore
Vi($(IF) = Vi) =eo--epj -
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As Apy1—;(IF) = €g—jy1--- €k, we obtain the result.

3.10. Intersection of N—orbits with the diagonal

From Lemma 3.6.2 we know that each element X of O is N—conjugate
to an element of the diagonal @fZOEAf . It is easy to see that X is conjugate
to an unique element f(X) of the diagonal (see Lemma 3.10.1 below). The
aim of this section is to describe more precisely this map f in terms of the
map v defined in the previous section.

Lemma 3.10.1. Each element of OT is N—conjugate to an unique ele-

ment of EB;?:OE)‘J' )

Proof. — It remains to prove that two distinct points of (GB;?:OE)‘J' yno+
are not N—conjugate.

Let X and X' be N—conjugate elements of Ot N (EB;‘-’:OE)‘J'). Then we
have

Aj(X):Aj(XI)#O fOI‘jZO,...,k.

Let IT = Z?:o X, be the generic element of @fzoﬁ)‘i (choosen in section
3.6) such that A;(I*t) =1 for all j € {0,...,k}.

Type I and II : In these cases we have

k k

X =) x;X; and X' =) z}X; withz; € R\{0}, =} € R\{0} .

It follows from Theorem 1.14.2 (3) that for all j € {0,...,k} we have

I .

!/
j ..xk,

ZTj- T =1
which implies that X = X'.
Type III : In this case there exist (Theorem 3.5.4) elements m and m' in
M such that
k k

X=m) z;X; and X'=m'> 2}X; withz; >0, 2} >0.
It follows from Theorem 1.14.2 (3) and Theorem 3.6.1 that for all j €

{0,...,k} we have
2 2 12 72
xj"'xk—$j T,

which implies that X = X'.

We may now define the map
f 0t — ek _gh
X — f(X),
where f(X) is the intersection of the N—orbit of X with GB;?:OE)‘J'.

In order to describe the map f, we will first give a more precise version
of Proposition 2.2.1 (2). Let us recall that g1 = V;” @ g1 ® V' is a regular
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graded algebra whose gradation is given by Hy, +--- Hy, = Ho — H),. Let
11 be the map defined as in Definition 3.9.2 on the set of generic elements
in V;" i.e. the set of X € V| such that A;(X) # 0.

Lemma 3.10.2. Let X be an element of V' such that Aq(X) # 0. Let
X =Xo+ X1+ Xo where [Hy— Hy,, Xs] =sX; (s=0,1,2)
be the eigenspaces decomposition of X for ad(Ho— H),) and let Z be defined
b
' Z = [X1,91(X2)] -
Then Z belongs to n and e242X = fo(X) + Xy where fo(X) € g and
Xy € V1+. More precisely we have

Z € ®f_1Ey;(1,-1) ,

1
foX) = Xo — 5 (ad X1) "9 (Xa) |
A1(X2) = A1(X) #0.

Proof. —Let us first note that Xs belongs to V1+ which is by Corollary
1.8.4 the set {X € VT | [Hy,,X] = 0}. Moreover it follows from the
definition of A; (Definition 1.14.1) that A{(X2) = Aq(X) which implies
that X» is generic in V;" and that 1 (X2) is well defined.

It follows easily from the definition of X; and the fact that ¢;(Xs)

belongs to V| that
Zeg and [Hy),Z|=7Z.
Hence we have
Ze@f By ;(1,-1) Cn.
From the relation [11(X2), X2] = Ho — H), we deduce that
(X2, 2] = X1 .
Then, writing the decomposition of €24 X with respect to the eigenspaces

of ad(Hy — H),), we obtain, as in the proof of Proposition 2.2.1, that

1
VX = Xo+[Z, X1] + 5 (ad Z) Xy + Xo .
Using again the relation [X2, Z] = X7 we obtain
1
fo(X) = Xo +[2,X1] + 5(ad Z)*X,

1
= XO + E[Z:Xl]

1 ~
= XO — E(adX1)2¢1(X2) S gAO .

Remark 3.10.3. It follows from Remark 3.9.4 that the map
fo :AX eV A(X) #0} —  F°
1
X — fo(X) = Xo — 5(ad)(l)%pl(xz) :

P ~
is of the form fy = A_O where P, is a polynomial map from V7 into ghe.
1
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Theorem 3.10.4. The N-orbit of an element X € OV intersects the
diagonal g @ --- ® g in an unique point
F(X) = fo(X) + -+ fu(X) where f;(X) € gV .

More precisely fr(X) is the orthogonal projection of X on § and, for
j=0,....,k—1, we have

Pi(X)
f' X) = : )
0= R
where Pj is a polynomial map from V* into 9.

Proof. — The maps f; are defined by induction using Lemma 3.10.2
on the graded algebras g; (see Corollary 1.8.4). To be more precise, let us
introduce some notations. Recall that the decomposition

V*t = Bo<icj<kFij(1,1)
= (@f:oﬁ’\j) ® (@0§i<j§kEi,j(1: 1)) .

is orthogonal for the bilinear form b. For j € {0,...,k—1} and X € VT we
denote by
Xg the orthogonal projection of X on V;_"_l = ®jt1<r<s<iBrs(1,1) ,
X{ the orthogonal projection of X on @®,<s Fj4(1,1) ,
Xg the orthogonal projection of X on g .

Then we have X = X0 + X? + X2 (which is the decomposition used in the
previous lemma) and for j =0,...,k — 2,

XJ = x3 4 xIt e xgtt
From the definition of A; we obtain
Aj1(X) = Bja(X3) -
Let ;11 be the map defined on the set of generic points in V]'j_l as in

Definition 3.9.2. If X belongs to O, then X7 is a generic element of Vit
and v;11(X]) is well defined.

Lemma, 3.10.2 implies the existence of an element Z° € @leEo,s(l, -1)
such that

1 -
42°X = £4(X) + X0 where fo(X) = X0 — §(adX{’)2zp1(X§) egro.

Applying now the same Lemma to the element XJ € V" we get the existence
of an element Z! € ®*_,F; 4(1,—1) such that

47 X9 = fi(X) + X3
where f1(X) = fu(X§) = X§ — 3 (ad X} Pun(X3) € 7
The relation [Z!,g*] = 0 implies that
72X = fo(X) + fi(X) + X3 .
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By induction on j we obtain the existence of elements Z7 € n such that
7 TN = fo(X) e+ fa(X) + X5
where X5~! belongs to V.l =g and
. , L
£i(X) = X3 — S (ad X{)*9;11(X3) €Y .
The Theorem is proved since it follows from Remark 3.9.4 that

_Qin(X)) _ Qin(X))
Aj+1(Xg) Aj+1(X) ’

where Q;1 is a polynomial map from V7+! into gh.

bir1(X3)



CHAPTER 4

Integral formulas

The purpose of this chapter is the computation of some integrals on V'
which will be used in Chapter 5 and Chapter 6.

This computation is done by using a so called method of descent. This
means that, starting with a graded regular Lie algebra of rank k + 1 (Defi-
nition 1.6.2), we obtain a relation between the Lebesgue integral on V' and
the Lebesgue integrals on the subspaces of weight 2 of two graded regular
Lie algebras of rank strictly less than £+ 1. The aim of sections 4.4, 4.5 and
4.6 is to obtain a good normalization of the Lebesgue measures on these
vector spaces such that there is no constant in the integral formulas. In
fact all the measures satisfying the normalizing conditions will be uniquely
determined.

Moreover the integral formula contains an orbital integral for the action
of some nilpotent subgroup of G on VT (Definition 4.6.3). We obtain in
section 4.8 a relation between the orbital integral of the Fourier transform
of some function and the Fourier transform of its orbital integral. This
relation will be essential in the sequel.

Let us recall that we choose in section 3.6 a sequence (X;);j—o,...,x sat-
isfying condition (D). In this chapter we will denote by o the involution
defined by I'™ = Xy + X1 + --- + X} and by o, the involution defined by
If =e0Xo+ -+ e Xy, where ¢; = £1. We recall that the polynomials A;
(resp. V) are normalized by A;(IT) =1 (resp. V;(6(I1)) =1).

4.1. Integrals on V™ and V~

We consider Lebesgue measures on V* and V™ respectively denoted by
dX and dY. Each of these measure is defined up to scalar multiplication.
Using the fact that the Cartan involution 6 interchanges V* and V~ we will
normalize the pair of measures (dX,dY") such that

(Ny) - f(X)dX = o f(6(Y)dYy for fe L} (V™).

Proposition 4.1.1. If the pair of measures (dX,dY) is normalized by
(N1) and if T is an involution of § commuting with 6 such that (V") =V™*
then we have

f(X)dX = f(r(Y)dY for f e LY(VT).
v+ V-

Proof. —The unicity, up to scalar multiplication, of the Lebesgue
measure on V7T implies the existence of a constant C' > 0 such that for

101
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f € LY(V1) we have
/ fx)dx =c [ fr(v))dy
v+

=C f(r(6(X))) dX (using N;) .
v+
But the hypothesis on 7 implies that the restriction of (76)% to V1 is the

identity, hence the constant C is equal to 1.
O

Remark 4.1.2. This Proposition can be applied to any involution de-
fined by a generic element J* in VT such that {6(J "), Hy, J*} is a sly—triple
(see Theorem 3.1.1(5)). In particular it can be applied to the involutions
O¢.

The involution 7 defined in Theorem 3.7.1 is given by an element of K.
Therefore v commutes with 8 and Proposition 4.1.1 can also be applied to
the involution 7.

It may also be noticed that the relation v(I™) = 6(I*) implies, as in
Theorem 3.1.1(5), that v and o commute.

After the first normalization (V1) the pair of measures (dX,dY) on
VT x V= is defined up to scalar multiplication. They will be uniquely
determined after a second normalization using the Fourier transform.

We will once and for all make the choice of the character ¢ of R given
by
c(z) =e*™® forzcR.

Using the duality between V+ and V™ given by the normalized Killing
form b (Definition 1.10.1), we define the Fourier transform as follows.
Definition 4.1.3. The Fourier transform F of a function f in the
Schwartz space S(V) of V' is the function Ff € S(V ) given by
(F(Y) :/ fX) e(b(X,Y))dX , Y eV .
v+

The inverse Fourier transform of a function g € S(V ™) is given by

Fo)0) = [ o) pxT) av , X eVt

We will also normalize the pair of measures (dX,dY’) by the condition
(N2) F o F is the identity on S(V') .
In this case the measures are called dual for the Fourier transform.

We will once and for all normalize the pair of measures (dX,dY) by the
conditions (N1) and (N3).

We will now determine G-invariant measures on V*t and V—. Let us
first introduce some notation.
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Notation 4.1.4. We will use in the sequel the following parameter
_dimV*t 1 kd

m= w(k+1) ;(ﬁ + 7) (using Proposition 1.9.5) .

Lemma 4.1.5. If g is an element of G we have for f € LY(V™') and
he LY V™)

£(9.X) dX = xolg) ™ / F(X) dx

v+ v+

[ maxyar = oo [ wv)av.

Proof. — We have to prove that the determinant of the adjoint action
of g € Gon V' (resp. V™) is given by xo(g)™™ (resp. xo(g)™). Since the
Killing form induces a duality betwen V™ and V'~ and is invariant under
the action of G we have

det v+ (Ad(g)) = det - (Ad(g) ") -
Moreover we know (see the proof of Theorem 1.11.2) that the function
Vt s X~ P(X) = det (y+y-)(ad X)?,

is a relative invariant under the action of G for any choice of basis in V1 and
V' ~, hence a power of Ag. Therefore the character of this invariant which
is given by g + dety+(g)? is a power of the character xo of Ay. Taking
g = et Ho an explicit computation leads to the result.

O

Recall from Definition 3.9.1 that Q* and 2~ denote the set of generic
elements in V™ and V™ i.e.

QF ={X V' |Ag(X)#0} and Q™ ={X € V™ | Vo(X) # 0} .

Definition 4.1.6. Let d*X and d*Y be the measures defined respectively
on QF and Q~ by
dX dy
X =" and d'Y = ——— .
|Ag(X)|™ Vo (Y)|™

It follows from Lemma 4.1.5 that these measures are G-invariant.

Proposition 4.1.7. Let 7 be an involution of g commuting with 6 such
that T(V") =V ™' and 7(I ") = I'*. Then for a continuous function f with
compact support in Qt i.e. f € C.(QT) we have

F(X) d*X:/ Fr(Y)) &Y .
v+ V-

Proof. —From the normalization (N7) of the pair (dX,dY’) and from
Proposition 4.1.1 we have for f € C.(Q27)

F(X)dX = / FrY))AY
v+ V-
Then we also have

FEOEX = f ()] Ag(r(Y))[mdY .
v+ %
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The map Y — Ag(7(Y)) is a relative invariant polynomial under the action
of G on V', has the same degree as Vo and takes the value 1 on I~ since
7(I7) = I'*. Thus we have

Ao(r(Y)) = Vo(Y) forY eV,

which implies the result.
O

For ¢ € {£1}**+! let H, be the centralizer in G of I (Definition 3.4.1)
which is also the centralizer in G of I7 = 6(I}) . Then G.I (resp. G.I7),
which is a connected component of Q% (resp. Q7), is an open G—orbit in V'
(resp. V7). It is a realization of the symmetric space G/H, :

GI ~G/H,~GI] .

Proposition 4.1.8. The restriction of d*X to G.I} and the restriction
of &*Y to G.I; induce the same G-invariant measure dg on G/H.. More
precisely we have

f(X) "X = flgIF)dg for feC(G.IF),
v+ G/H.

/ h(Y) d'Y = flg-I7)dg for heC(GI;).
- G/H.

Proof. —Let d*g (resp. d”g) be the G—invariant measures on G/H,
defined by d*X (resp. d*Y). This means that for f € C.(G.I}) and for
h € C.(G.I7) we have

gty — “X an & — xy
/ L Hera = |, 100ax wa [ LG [ _wyary

Since o.(I) = I_, the function f o o belongs to C.(G.I;) if f belongs to
C.(G.I}). Moreover the involution o, satisfies the hypothesis of Proposition
4.1.7. Therefore we get

[ sariti= [ fedetai= [ fleand .
G/H: G/H: G/H:
As o, is an involution on G, we finally obtain
[ sarhiti= [ s,
G/H. G/H.

which implies that d*g = dg.
O

Let us consider the action of the G—equivariant map v defined in section
3.9 on the G-invariant measures d*X and d*Y.

Proposition 4.1.9. For a function h € C.(2~) we have

/ Mo(X) & X = [ h(Y)dY .
v+ (%



4.1. INTEGRALS ON V+ AND VvV~ 105
Proof. —The map
h [ h(p(X) &'X

v+

is a G-invariant measure on §2~. Thus there exists a positive constant C
such that for h € C.(27) we have

| ey ax=c [ wyyay.

It follows from Proposition 4.1.7 applied to the involution o that for a func-
tion f € C.(Q") we have

Floop(X) d*X =C | f(X)d*X .
v+ vt

In order to prove that the constant C'is 1, we need an explicit computa-
tion of the differential of o0 0 at a point X € Q. Derivation of the identity
[¥(X), X] = Hp implies the following equality between linear maps from V'
tog:

adX o¢(X) =ady(X) for X € QT .
Since (ad¥(X)oad X).Y = —2Y for Y € V~ we obtain

Y(X) =~

But QT is the union of the open G-orbits in V*, which are of the form
G.I}. Then we may chose X = g.I" where g € G. As {I;,Hy, I} is a
slo—triple, we have ¢(I) = I7. Moreover it follows from Theorem 3.1.1
that 0. (U) = 3(ad I7)%(U) for U € V*. Thus we get

(ad9(X))fy+  for X € QF .

W(g.I3) = 5 Ad(g) o (ad I, Y 0 Ad(g) * = — Ad(g) o 0 0 Ad(g) ",
which implies that
(009)(9.I.) = o 0 Ad(g) 0 0. 0 Ad(g) ' v+ -
We have seen during the proof of Lemma 4.1.5 that
det - Ad(g) = xo(9) ™ and det y+ Ad(g) = xo(9)™ -

Since o and o, are involutions which commute (Proposition 3.1.3) we have
also |det(o o o¢)| = 1. It follows that

| det v+ ((0 0 9)'(9-11))| = x0(9) ™,
which implies that for X € QF
| det v+ ((o09)'(X))| = |Ao(X)|7>™ .

The map Y — Ag(o(Y)) is a relative invariant on V'~ under the action of
G, has the same degree as Vj and takes the value 1 on I~ = ¢(I1). Thus
we have Ag(o(Y)) = Vo(Y) for Y € V~ and it follows from Proposition
3.9.5 that for X € QT we have

Ag(ooy(X)) =

Ao(X)



106 4. INTEGRAL FORMULAS

Finally we obtain

/ Floop(X)) d'X = / £ (0 0 9(X)) |80 (0 0 H(X)) ™ dX
v+ v+

_ 1280(O)™

/ T A, epm %

/f £)de

which gives the result. O

4.2. Two diffeomorphisms

In this section we consider two graded regular subalgebras of g which
are of the form g4 with A C {Ag, A1,...,Ax} (see Proposition 1.8.5). The
first one is defined for A = {)\;}, is hence of rank 1 and is denoted by
9{x.}- The second one is defined for A = {Ag, A1, ..., Ag—1}, is hence of rank
k = rank(g) — 1 and is denoted by g. Recall from Remark 1.8.6 that the two
graded algebras g;y,} and g may be distinct.

A way to describe these algebras is to use the decomposition of g given
by the eigenspaces of ad H}, .

Definition 4.2.1. We denote for q € Z
Vi(g) ={X € V" | [Hy,, X] = ¢X} ;
9(g) ={X € g | [Hx,, X] = ¢X} ;
V(g ={X € V" [[H\, X] = qX} .
From the definition of g4 we get
fon =V (D@0 @ V) ;
g=V"(0)®g(0)® V().

Moreover the decomposition of g in joint eigenspaces for ad Hy, and for
ad Hy,(j # k) (Theorem 1.8.1) implies that

Vi=vt2 e V1) ®V*t0) whereV*(Q2) =g";
g=9(1)®g(0) ®g(—1) whereg(-1)Cmn
Vo =V (-2)@V (-1)®V~(0) where V" (-2) =g * .

Let G(0) be the subgroup of G generated by the set {e2dX | X € g(0)}.
Since the graded Lie algebra gyy,) (resp. g) is regular (Proposition 1.8.5)
there exists a unique (up to scalar multiplication) irreducible polynomial
on V*(2) (resp. V~(0)) which is relatively invariant under the action of the
group G(0).

Lemma 4.2.2.
(1) The set of generic elements in V1 (2) under the action of G(0) is

VI(2) ={veVT(2)] Ax(v) # 0} .
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(2) The set of generic elements in V—(0) under the action of G(0) is
V(0) = {u' € V7(0) | Vi(u) # 0} .

Proof. —
(1) From Definition 1.14.1 the restriction of A to V*(2) is the unique (up
to scalar multiplication) irreducible relative invariant on V' (2) under the
action of the group Gj. Since Gy, is a subgroup of G(0) (see Remark 1.8.6) it
follows that the restriction of Ay to V' (2) is also relatively invariant under
the action of G(0). And the result follows from Theorem 1.11.2 applied to
the graded regular algebra gy, ;-

(2) Similarly the restriction of Aq to V;" is the unique (up to scalar multi-
plication) irreducible relative invariant on V;" under the action of the group
G1 (Definition 1.14.1). The involution 7 (see Theorem 3.7.1) is an isomor-
phism from V' ~(0), eigenspace in V'~ of ad Hy, for the eigenvalue 0, onto
the eigenspace in V* of ad(—H),) for the eigenvalue 0, which is V;". From

the definition of g1 (g1 = 34(lo) C 34(H),)) we deduce that y(g1) is a subal-
gebra of g(0) hence yG1y ! a subgroup of G(0). Therefore the restriction of
Vi = Aj o9 to V(0) is also relatively invariant under the action of G(0).
And the result follows from Theorem 1.11.2 applied to the graded regular
algebra g.

- O

Proposition 4.2.3. Let VT (2) (resp. V—(0)') be the set of generic el-
ements in V1 (2) (resp. V(0)) under the action of G(0).
(1) The map ® defined by

O: VT0) xg(-1)x VT (2) — VT
(u, A, v) — e 4(y + v)
s a diffeomorphism onto the set
Ox = {X € V* | Ay(X) # 0} .
(2) The map ¥ defined by
T: V7(0) xg(-1)x V7 (-2) — V™
(W, A, V) — Ay )
s a diffeomorphism onto the set
{Y eV |Vi(Y)#0}.

Proof. —
(1) Using the gradations given by the eigenspaces of ad Hy and ad H), we
obtain

1
(*) ®(u,A,v) =u+ §(ad A?v+adAv+ov,
where u + 3(ad A)?v € V(0), ad A.v € V¥(1) and v € V(2).

If v is a generic element of V1 (2) i.e. if Agx(v) # 0, there exists (Propo-
sition 1.7.9) an element v’ in V'~ (—2) such that {v', H),,v} is a slp-triple.
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Then ad v is an isomorphism from V'~ (—1) & g(—1) onto g(1) ® V*(1), hence
from g(—1) onto V(1) since v € V. We have
B(u,A,v) =B, A',v') = v =vand adv.A =adv'. A" .
It follows that A’ = A and, therefore, that v’ = u. Hence @ is one to one.
To prove that ® is onto, we decompose an element X € Oy in

X=X 4 xO 4+ X where X@ c V*(q) .

The definition of Ay, (Definition 1.14.1) implies the equality
AR(X) = Ap(X@) .

Since X belongs to Ok, X is generic in V(2). By the argument used
above, it follows that ad X(® is an isomorphism from g(—1) onto V*(1).
Therefore there exists an element A € g(—1) such that ad X(®).4 = X1, If
we define u € V1(0) by

u=X — Z(ad 4)2X? |

DO | =

we obtain the equality ®(u, 4, X(®)) = X.

It follows from the equality (x), that the differential of ® at the point
(u,A,v) as a linear morphism from V*(0) ® g(—1) & V*(2) on V*+(0) &
V*(1)®V ™ (2) has the following matrix (according to theses decompositions)

1d * *
0 —adv =«
0 0 Id

Since ad v is an isomorphism from g(—1) onto V*(1), ® is a diffeomorphism.

(2) The proof is the same modulo the following remarks.

If the decomposition of an element Y € V~ is written as Y = Y(©) +
YW +Y®@ with Y®) € V=(—p), then V1 (Y) = V(Y (?). This is due to the
fact that V1(Y) = A;(y.Y) and v(V~(0)) = V;". The result obtained in 1)
can be rewritten using the decomposition in eigenspaces of ad H), instead
of ad Hy, and the properties of v imply the result.

O

Remark 4.2.4. The formula () and the definition of Ay imply that
Ap(®(u, 4,0)) = Ag(v) .

4.3. Isomorphisms between g(1), g(—1), V(1) and V~(-1)

The aim of the next sections is to show that it is possible to normalize
the measures such that there is no constant in the integral formula using
the change of variables ® (or ¥). The final result is given in section 4.6.

Let v (resp. u') be a generic element in V7 (2) (resp. V=(0)). As [v,u] =
0, the following diagram commutes and it follows from the proof of Propo-
sition 4.2.3 that the arrows ad v and ad v’ are isomorphisms.
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(1)
adv adu'
V(l/ \W(l)
s

Proposition 4.3.1. There exist positive constants o, 3,7y and & which
depend on the choice of the Lebesgue measures dA on g(—1), dB on g(1),
dw on V*(1) and dw' on V~(—1) such that the following assertions hold.
(1) Let v be a generic element in V*(2) i.e. such that Ag(v) # 0. Then we
have for f € LY(V*(1)) and g € L'(g(1))

dk
/ F(w) dw = a |Ay(v)] % / F([A, o)) dA ;
V+(1)

o(-1)

dk
[ aBraB=plawls [ glw o) d'.
8(1)

V-(-1)

(2) Let u' be a generic element in V~(0) i.e. such that V1(u') # 0. Then we
have for f € LY(V~=(-1)) and g € L*(g(1))

d
/ Fw') du' = |V (u)] / (AW dA ;
V-(-1)

9(—-1)

d
[ aByan=s1vils [ glw))du.
9(1) V+(1)

Proof. — We only give the proof of the first formula.
If v is a generic element in V1 (2), then ad v is an isomorphism from g(—1)
onto V(1) and, therefore, there exists a nonzero function a defined on
VT (2)" such that for f € L1(V+(1)) we have

(%) /V+(1) Fw) dw = a(v)/g(l) F([A,0]) dA .

This function is in fact the absolute value of a polynomial function on V*(2).

The subspace g(—1) is invariant under the action of G(0) and there exists
a character y; of G(0) such that for F € L!(g(—1)) and g € G(0) we have

/ F(gA) dA = x1(g) / F(A) dA |
g(—1) g(-1)

On the other hand V*(2)’ and V*(1) are also invariant under the action of
G(0) and we obtain

/ f(w) dw = a(g) / F([4,gv]) dA
V() g(-1)

= o(go)xa(e™Y) / £(glA,v]) dA .

8(-1)
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Using again formula (*) we obtain
o) [ fw)dv=algona™) [ flaw) du.
V+(1) V(1)

But there exists a character y2 of G(0) such that

[, fow) dw=salo) [ s aw

Consequently we obtain that for g € G(0) and v € V(2)

a(gv) = x1(g)x2(9) te(v) -

In other words the function « is a relative invariant under the action of G(0).
Every relative invariant polynomial on V*(2) under the action of G(0) is a
power of Ay hence there exists a positive constant o and an integer m such
that

a(v) = o |Ag(0)|™ .

To determine m, we take g = e'®*3H . with ¢t € R. Since g.v = e?*v for
v € V1(2) we deduce from formula (*) that

o) [ f(ia]) dA=a(@) [ f((eA])dd.
8(-1) a(—1)
Therefore for every ¢t € R we have

a(eZtU) — e2t dim g(—1) a(U) )

The dimension of g(—1) is the sum of the dimensions of the spaces E; (1, —1)
for j = 0,1,...,k — 1, hence we have dimg(—1) = kd. The polynomial
function Ay has degree k and, therefore, we have proved that

dk
a(v) = alAyw)| s .

The formulas of the second part of the Proposition are due to the fact
that the relative invariant polynomials on V'~ (0) under the action of G(0)
are the powers of V1 which is a polynomial of degree xk.

O

4.4. A first normalization and its consequence

We consider now v = X}, which is a generic element in V*(2) and v’ =
6(Xo + --- + Xj_1) which is a generic element in V"~ (0).
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Lemma 4.4.1. For such a choice of v and u', the following diagram is
commutative :

In other words, we have

VA € g(-1), adu'adv.A =advadu’.A = o(4) .
Moreover we have
Yw € VT(1), (adu' oo oadv)w = —a(w) ,
Vw' € V= (=1), (advoooadv)w = —c(w') .

Proof. —
1) Since [u/,v] = 0, the operators ad v’ and adv commute. On the other
hand since I — v = X + --- X_1 belongs to V*1(0), [IT —v,g(-1)] is a
subset of V*t(—1) = {0}. Therefore

VA€ g(-1), adu'adv.A=adu'adl™.A.
But [u/,I"] is equal to Hy, +--- + Hy,_,, so that
VA€ g(-1), adu'adv.A=A+adltadu'.A.

Since I~ — u' = 6(Xj) belongs to V—(-2), [I~ — u/,g(—1)] is a subset of
V= (-3) = {0}. Therefore

VA€ g(-1), advadv.A=A+adlTadl .A.
From Theorem 3.1.1 (1), we obtain
VAeg(-1), Aadv'adv.A=A+adl adl".A=o(A).

2) The definition of o implies that o(X;) = 6(X;) for j € {0,...,k}, hence
o(u') = Xo+- - -+ Xk_1. Then the relation [o(u'), u'] = —(Hx,+---+Hx,_,)
implies that

Vwe V*T(1), ado(v)adv'.w=-w+advu'ado(v)w=—-w.
Then we obtain
Vw e V*T(1), (adu'ocoadu’)w = (coado(u)oadu’)w = —c(w) .

The last result is proved with the same method.
O

The involution € interchanges V~(—1) and V*(1), g(—1) and g(1). It
is then possible to normalize the pairs of measures (dw,dw’) on V(1) x
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V~(—1) and the pair of measures (dA,dB) on g(—1) x g(1) such that

/ fw) dw = / F0(') du' for f € IMVH(1))
V+Q) V-(~1)
(4-4-1)
/ 9(B) dB = / g(6(A))dA for g € Ll(g(l)) ]
a(1) g(—1)

Since o is also an involution interchanging V= (—1) and V*(1), g(—1) and
g(1) which commutes with 8, we have also (see Proposition 4.1.1)

/ flw)dw = / flo(w') ' for f € L'(V*(1))
V+(1) V- (=1)
(4-4-2)

/ g(B) dB = / g(a(A)) dA for g € Ll(g(l)) )

g(1)

o(-1)

Proposition 4.4.2. If the measures are normalised by (4-4-1), then the
strictly positive constants obtained in Proposition 4.3.1 satisfy the relations

ad=py=af=v6=1.

Proof. — The choice of the normalizations of the polynomials Ay and
V1 implies that

A(IT)=Ag(v)=1land Vi(I" )=V (u)=1.
Using Proposition 4.3.1, we obtain for g € L(g(1))

/E(l)g(B) dB = 5/ o(— ad 'w) dw

V+(1)
1)
Then we deduce from Lemma 4.4.1 that
/ 9(B) dB = a&/ g(o(A4)) dA .
9(1) o(-1)

Then (4-4-2) implies the equality ad = 1.

= a5/ g(adu' adv.4) dA .
(=

We prove with the same argument that

e the relation ad v o ad u'|g(,1) = o implies the equality 8y = 1;

o the relation adv o 0 o ad |y (_1) = —o implies the equality o = 1;

o the relation adu' 0 0 0 ad u/|y+(;) = —o implies the equality v = 1.
O

4.5. A second normalization and its consequence

The form b induces a duality between the spaces V(1) and V~(-1),
and between the spaces g(—1) and g(1). We define as in Definition 4.1.3 the
Fourier transform and its inverse on the Schwarz functions on these spaces.
Unless a specific notation is needed these Fourier transforms will also be

denoted by F and F.
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After the first normalization (4-4-1) the pairs of measures (dw,dw') on
V*(1) x V7(-1) and (dA,dB) on g(—1) x g(1) are defined up to scalar
multiplication. We normalize moreover these pairs of measures by the con-
ditions

F o F is the identity on S(V1(1)) ;
(4-5-1)
F o F is the identity on S(g(—1)) .

These measures are now uniquely determined by (4-4-1) and (4-5-1) and we
obtain the following result.

Proposition 4.5.1. If the pairs of measures (dw,dw') on V(1) x
V7= (-1) and (dA,dB) on g(—1) x g(1) are normalized by the two conditions
(4-4-1) and (4-5-1), then the constant «, B3, v and & obtained in Proposition
4.3.1 are equal to 1.

Proof. — We will prove that ay = 1. Then Proposition 4.4.2 will imply
the result.

Let f be a Schwartz function on V*(1). We recall that v’ = 6(X, +
-+ 4+ Xp_1) satisfies Vi(u') = 1. From (4-5-1) and Proposition 4.3.1(2) we
obtain for w € V(1)

() flw) = (FoFf)(w) =~ / (F1)([4,w) e(b(w, [4,w7)) dA .

8(-1)
On the other hand, the element v = X, satisfies Ag(v) = 1. From (4-5-1)
and Proposition 4.3.1 (1) we obtain for w' € V~(-1)

Ff)(w') =a A,v]) ¢b([4,v],w")) dA .

FRE)=a [ | #aD e(s4,0)w)

If we define the function ¢ on g(—1) by ¢(A) = f([4,v]), we obtain that
(Ffw') = a(Fe)([v,w'])

where, here, F' denotes the Fourier transform from S(g(—1)) onto S(g(1)).
Then we have

(Ff([Av]) = a(Fp)(—advoadu'A) .

Lemma 4.4.1 implies that for A € g(—1) we have adv o adu’.A = o(4A).
Then equality (%) may be written as

flw) =ay /g(l) (Fp)(—0o(A)) c(b(ad u’.w,A)) dA .

Using now the normalizations (4-4-2) and (4-5-1) for the measures (dA, dB)
we obtain

fw) = ayp(—o(adv'.w)) = ay f(advoooadu'.w) .
Writing w = adv.A with A € g(—1), which is possible since adv is an
isomorphism from g(—1) onto V*(1), we deduce from Lemma 4.4.1 that
advoooadu' .w=advoooadu cadv.A=advoo?A=w.

This proves that for every f € S(V (1)) we have f = ayf, and therefore
ay =1
O
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4.6. Integral formulas on V™ and V~

Recall that the pair of measures (dX,dY) on V' x V™ is determined
by conditions (V1) and (N2). We will also normalize the pairs of measures
(du,du’) on VT(0) x V—(0), (dw,dw') on V(1) x V= (-1), and (dv,dv') on
V*(2) x V= (—2) by conditions similar to (N;) and (N2). Then we get

dX = dudwdv and dY = du' dw'dv' .
In particular (dw, dw') is now normalized by (4-4-1) and (4-5-1).

Moreover we also choose a pair of measures (d4,dB) on g(—1) x g(1)
normalized by conditions (4-4-1) and (4-5-1).

Remark 4.6.1. The pair of measures (du,du’) (resp. (dv,dv')) is then
normalized by conditions (N7) and (N3) written for the regular graded Lie
algebra g (resp. gq,})-

Theorem 4.6.2. These normalizations of the measures imply that for
feL}(V*) and g € LY(V™) we have

/f dX_/ / / adAu-l—v))|Ak(v)|%dudAdv;

ueV+(0) Acg(—1) veV+(2

/ / / / A (u +U'))|V1(U')I%du'dAdv’ :

u'€V—(0) Acg(—1) v' €V —(-2)

Proof. — We will prove the first equality (the proof of the second one is
similar). Let us start with the right hand side of the formula which is equal
to

/ / / f(u—l—%(adA)?v—kadA.v—kv) |Ak(v)|%du dA dv .

ueV+t(0) Aeg(—1) veV+(2)

Using the change of variable u + l(ad A)2v = u we get

/ / / u+[A,v]+v) |Ak(’0)‘%du dA dv .

ueV+(0) Acg(—1) veV+(2

Using Proposition 4.3.1 (1) and the equality o = 1 from Proposition 4.5.1,
we obtain that this last integral is equal to

/ / / flu+w+v) dudw dv .

ueV+(0) weV+(1) veV+(2

Since dX = du dw dv, this gives the result.
O

Let us now introduce the orbital integral of a function f for the action
of the unipotent subgroup of G with Lie algebra g(—1).

Definition 4.6.3.
(1) For f € LY(V™T), the function T;' is defined on V1(0) x V1(2) by

kd ad A
T (u,v) = | Ag(v)| 2% /Aeg(l)f(ed (u+v)) dd .
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(2) For g € LY(V™), the function T, is defined on V=(0) x V7(-2) by

7, (') = V2 ) [

g(eadA(u' + v')) dA .
Acg(-1)

The integral formulas of Theorem 4.6.2 may rewritten as follows.

Proposition 4.6.4. With the previous normalizations of the measures
we have for f € LY(VT) and g € L} (V™)

dk
F(X) dX = / / T} (u,0) | Ag(v)] 3 du do ;
v+ ueV+(0) JueV+(2)

d
/ 9(Y)dY = / / T, (u',v") [V1(u)| 26 du’ dv' .
V- w'eV—(0) Jv'eV—(-2)

We list now some properties of the orbital integral T;’ .

Proposition 4.6.5.
(1) For f € L*(V™) the orbital integral T;' s defined almost everywhere

and the product of T;'(u,v) by |Ak(v)|l2c_g is integrable over V1 (0) x V1 (2).
(2) For f € S(VT), u € VT(0) and v € VT (2) (i.e. Ag(v) # 0) the
function A — f(eadA(u + v)) belongs to S(g(—1)) and T]j'(u,v) is every-
where defined on V1(0) x V*(2)".
(3) If f is a C*™ function with compact support in O = {X € VT |
A(X) # 0}, then T;' is a C*® function with compact support in V+(0) x
VT(2).

Proof. —
Assertion (1) is an immediate consequence, via Fubini’s Theorem, of the
integration formula of Theorem 4.6.2.

For (2), let us consider the map ¢ from g(—1) into V' given by
1
o(A) = e A (u+v) =u+ E(adA)% +adAv+v (Aeg(-1)),

where u € V*1(0) and v generic in V*(2)". The map A +— ad A.v is a linear
isomorphism from g(—1) onto V(1). Hence for some choice of norms on
g(—1) and on V' there exists a constant a such that

llp(A)ll = |lad A-v|| = al|A]] -

Moreover the map A +— e244(u+v) is polynomial. Therefore, for f € S(V+),
the function A — (f o ¢)(A) belongs to the Schwartz space of g(—1) and
the result follows.

Assertion (3) is an immediate consequence of Proposition 4.2.3.
0

Similar results for the orbital integral 7, are given in the following
Proposition.
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Proposition 4.6.6.
(1) For g € LY (V™) the orbital integral T, is defined almost every-
d
where and the product of T, (u',v") by |[V1(u')|2x is integrable over V~(0) x
V—(-2).
(2) For g € S(V7), v € V(=2) and v’ € V—(0) (i.e. Vi(u') # 0)
the function A — f(eadA(u' + UI)) belongs to S(g(—1)) and T, (u',v') is

everywhere defined on V—(0)' x V—(-2).
(3) If g is a C™ function with compact support in {Y € V— | V1(Y') # 0},
then T, is a C* function with compact support in V—(0)' x V—(-2).

4.7. Fourier transform of a quadratic character

We give in this section the so-called WEIL formula on R ([We]-1964) for
the Fourier transform of a quadratic character using the details given by
RALLIS and SCHIFFMANN in ([Ra-S]-1975).

Let E be a real vector space and E* his dual. Using the character
c : x> €™ of R, we define the Fourier transform of a function f in the
Schwartz space S(E) by the formula

f(y*)Z/Ef(:C) c(<y*,z>)dx fory* € E*.

We take dual measures dx and dy* on F and E* i.e. measures such that

~

flz) = o fy") e(<y*,z>) dy*  for f € S(E) .

On the other hand, let @ be a non degenerate quadratic form on £ and
be the bilinear symmetric form defined by

B(z,2") = Q(z +2') - Q(z) — Q(z') forz,a' € E.
This form induces a linear isomorphism 3 between F and E* given by
< ¢g(z),z’ >=B(z,2'), forz,z' € E.
Thus there exists a constant C > 0 such that for every f* € S(E*)
Py =0 [ Fs) da.
E* E
Remark 4.7.1. If dx is replaced by Adz, then dy* is replaced by %dy*

and C by %C’.

Theorem 4.7.2 (A. WEIL).
If the signature of the quadratic form Q is (p,q) then, for f € S(E), we
have

£ z)) c(Q(z :E:Le’%(pfq) z) c(Q(x)) dx
[ F65(@) e(@(e) do = =500 [ 1) Q@) da.
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This theorem means that the Fourier transform of the quadratic charac-
ter co Q) is equal, as a tempered distribution on E (identified to E* by 1g),

to the product of co Q by %e’%(pﬂ). This is exactly a rewriting (with
our choice of measures) of the formula (1-4) in [Ra-S]-1975 p. 500. The
coefficient €% (P~9) is given in [Ra-S]-1975 p. 504 (case of the field R).

We will apply this formula to the following situation :
We take E = g(—1) and we identify E* with g(+1) using the bilinear form
b. The Fourier transform F defined in section 4.5 and the Fourier transform
f — f defined here are the same. More precisely, if y* € E* is given for all
A€ g(-1) by
<y*;A>= b(B,A) where B € g(1) ,

then we have for f € S(E)
Afy* = f(A) c|\b(A,B)) dA = (Ff)(B) .

Recall that the measures dA and dB were choosen to be dual for this Fourier
transform (Condition (4-5-1)).

Let v’ and v be elements of respectively V~(0) and V*(2) which are
generic and let @, , be the quadratic form defined on g(—1) by

Qu w(4) = % b((adA)2u',v) for Ac E=g(-1).

The fact that adu’adv = advadu' implies that the associated symmetric
bilinear form is given by

Bur w(A,A") = b(adu’ adv.4, A") .

Thus we obtain
¥g,, (A) =adu'adv.A .

Moreover the fact that v’ and v are generic implies that the quadratic form
Qu v is non degenerate.

To calculate the constant C' we use Proposition 4.3.1 (where a = 1 and
0 =1 due to the choice of measures). For f € S(g(1))we have

/E (s, (4)) da = /g _ fdvadv.) as
_ |Ak(u)|’2"/v fad ' -w) dw

+(1)
_kd I
— AW Vi) E [ (BB
9(1)
Therefore the constant C' is given by

Wt d
C = |Ak()] » [Vi(u)]* .
Definition 4.7.3. Let (p,q) be the signature of the quadratic form

Qup:Acg(-1)— %b((adA)2u',v) .
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We denote by v the function defined on V~(0) x V*(2) by
y(u',v) =3P for o' € V7(0),v € VT(2) .
Theorem 4.7.2 can now be written as follows.

Corollary 4.7.4. Let (u',v) be an element of V—(0)' x V*(2)'. Then,
for f € §(g(—1)), we have

/ (ff)(adu'adv.A) c(Qu »(4)) dA
9(-1)

— W VAR 3 V1) F [ F(4) c(QualA) d4-
g

4.8. A relation between T, and Tf

In this section we give the proof of a formula given by I. MULLER for the
case £ =1 in ([Mu]-1986 - Théoréme de décomposition (3)).

We normalize the Lebesgue measures by (V1) and (N2) and we de-
note by F (resp. Fy, resp. F,) the Fourier transform on V*t (resp. V*(0),
resp. V1(2)).

Theorem 4.8.1 (I. MULLER for £ = 1).

If f is a Schwartz function on V' then, for (u',v') € V7(0) x V™ (=2), we
have the equality

(T; )(u', V') = F, (’y(u', v)(}'uTJj')(u', v)) (') .

Remark 4.8.2. We know from Proposition 4.6.6 (2) that Tz((u',v') is

everywhere defined for v/ in V'~ (—2) and ' generic in V~(0) since Ff is a
Schwartz function on V.
Similarly we know from Proposition 4.6.5 (2) that T}" (u,v) is everywhere

defined for u in V*(0) and v generic in V*(2). Moreover we know from
Proposition 4.6.5 (1) that T]ﬂ' (u,v) is almost everywhere defined on V' (0) x

V*(2) and that the function u — T)j' (u,v) is integrable on V(0) for almost
all v € V1(2). We will prove that this function is in fact integrable for v
generic in V1 (2) which implies that (fuT}?L ) (u',v) is everywhere defined
on V7(0) x V*(2)". The key point of the proof of the Theorem will be
the fact that, for u’ generic in V'~ (0), the Fourier transform of the function
v y(u',v) (.’FUT}") (u',v) is well defined.

Proof. —During this proof we will omit the spaces where the integra-
tions are performed, making the following convention : the integrations in

the variables A and A’ will be on g(—1), in w on V*(0), in v on V1 (2), in
u' on V(0), in v on V" (—2) and in w on V' (1).

Let v be a fized generic element in VT (2).
We recall (Definition 4.6.3) that

T} (u,0) = | Ax(v) 2% /Af(u+ %(adA)Qv 1 [A,v] +v) dA .
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Let us make an arbitrary choice of norms || || on each spaces under consider-
ation. Since f is a Schwartz function on VT, for any integers m and n there
exists a positive constant Cp, ,, such that, for u € V(0) and w € V7 (1), we
have

(1 + [ul )™ (@ + [[w] )] f(u +w +v)| < Cmpn -

And we obtain
(1) / ‘f(u + %(adA)% +[A,v] + v)‘ dA du <
u,A

1 1

C, / X du dA .
" Jua (L |lu+ $(ad A)20|2)m (14 [|[4,9]|2)"

By the change of variable u + 3(ad A)>v — u, the integral in u is finite
for m large enough. Moreover, since v is generic in V' (2), the application
A+ [A,v] is an isomorphism from g(—1) to V1(1). It follows that there
exists a constant C, such that ||[4,v]|| > Cy||A||. Thus the integral in A is
finite for n large enough. From Fubini’s Theorem we deduce that

u T}"(u,v) erL! (V+(0)) for v e VH(2) .

Let us now compute the Fourier transform in u of T]ﬂ' which is given by
(2) (FuTf) (' 0) =

|Ak(v)|l2€_: / flu+ %(adA)Qv + [4,v] +v) ¢(b(u,u))dA du .

I

Due to (1) the order of integration does not matter.
Making the change of variable u + %(ad A)2v — u we obtain

(3) (FuTf) (', v) =

|Ak(v)\%/ Fu+[A,0] +v) c(b(u— %(adA)%,u'))dA du .

)

Let us define the function J; by

Ji(u, Av) = /uf(u + [A,v] +v) c(b(u,u')) du
= (Fuf) (ulv [4,],v) .

Then, using the definition of @, , (section 4.7), formula (3) may be written
as

@ (AT = 185 [ T A,0) c(Qua(A)] dA

We suppose now that u' is generic in V~(0).

As v generic in V1(2), the function (u, A) — f(u + [4,v] + v) belongs to
the Schwartz space of V1 (0) x g(—1) and the function A — Ji(u', 4,v)
belongs to the Schwartz space of g(—1). As ' is generic too, the quadratic
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form Q. , is non degenerate. Hence we may apply the WEIL formula as in
Corollary 4.7.4 and we obtain

6) [ AW A0) (Quald) dA =, 0) Ak V2] 5

X / (fAJl) (v',ad ' advA, v') c(Qu »(A")) dA',
where F4 denotes the Fourier transform on g(—1). More precisely we have
(.7:AJ1) (u',ad v’ advA’,v) :/(fuf) (W, [4,v],v) c(b(A, adu’ ad UA')) dA .

A

Now we make the change of variable w = [A,v]. Using the equality
b(A,adu advA") = b([4,v],[u/, A"]) , the integral formula in Proposition
4.3.1 (and the fact that the constant appearing there is equal to 1, accord-
ing to Proposition 4.5.1) we obtain

_kd
|~

6 (Fah) @ ade advd’ v) = (M) ¥ (FuFuf) (o, [, A 0)

Then it follows from (4), (5) and (6) that, for u' generic in V~(0) and v
generic in V1 (2), we have

(7) 'y(u',v)(TuT}")(u',v) =

Ve ()| 5% /A (FoFut) @ [, A,0)) €(Quo(4)) dA' .

From now on we suppose only u' generic in V—(0).

The Fourier transform F,,F, f is a Schwartz function on the space V~(0) x
V=(—1) x V*(2). Then we can prove, as before, that since u’ is generic, we

have
/v,A’

Using (7), it follows that the function v — y(u', v) (fuT}")(u', v) belongs to

LY(V*(2)) for u' generic and this allows, by Fubini’s Theorem, to exchange
the integrations in A’ and in v for the computation of the Fourier transform
of this function. Thus we have

Fo (’7(’(1,/, v) (fuTJ?L) (, v)) (v")

— |V1(u')|% / (Tw}'uf)(u', [u',A'],U)c(b(%(ad AN ) + b(v',v))dA'dv
v, A’

= |V1()|3 / (]-'U}'w}'u f) (u', [, A'], o' + %(adA')Qu') dA' .
AI

Since we have u' + [u/, A'] + v/ + L (ad A')%u/ = €244 (4! + 0'), we recognize
the orbital integral T~ (Definition 4.6.3). Moreover F,F,F,f is the Fourier
transform of f on V' and we conclude that

Fo (’y(u', v) (fuTJj') (', U)) (v') = T;f (u',0') .

for ' generic in V~(0).

(FuFuf ) (' 1!, A),0))| dA" dv < +oo
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CHAPTER 5

Functional equation of the Zeta function
for Type I and 11

Throughout this chapter we suppose that g is of Type I or of Type II
(except for Lemma 4.1.5, 5.3.6 and 5.3.7 which are general results). The aim
of the chapter is to give an explicit functional equation for the local Zeta
function of the prehomogeneous space (P, V™) which is defined in section
5.5.

5.1. Definition of the local Zeta functions

Let (X;) (j = 0,1,..., k) be the sequence satisfying condition (D) chosen
in section 3.6. For each ¢ = (eq,€1,...,61) € {£1}*! we consider the
elements

I =

€ij evt ,

M-

<
Il
)

I-

&€

M-

<
Il
)

€;Y; €V~ whereY; = 6(X;) .

Recall from Corollary 3.6.5 and Corollary 3.8.7 that for Type I and Type
IT the representations (AN, V™) and (AN, V ™) are prehomogeneous vector
spaces. More precisely there are 2571 open orbits in V' and in V'~ under
the action of the connected group AN. These orbits are parametrized by
the elements & = (eg,¢€1,...,6x) € {£1}**! and are given respectively by

Of =AN.IF ={X € V" | Aj(X)ej---e, >0 for j=0,1,...,k}
and O, =AN.I, ={Y €V |V;(Y)eo - -ex—; >0 forj=0,1,...,k}.

The fundamental relative invariants of the prehomogeneous vector space
(AN, V™) are the polynomials A; (j =0,...,k) and the fundamental rela-
tive invariants of (AN, V™) are the polynomials V; (j = 0,...,k). There-
fore, according to F. Saro ([Sat]-1982), the definition of the local Zeta
functions of these prehomogeneous vector spaces is as follows:

Definition 5.1.1. Let s = (sg,...,s;) € C**L. For f € S(VT) and
g € S(V7), the local Zeta functions of the prehomogeneous vector spaces

123
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(AN,V ™) and (AN,V ™) are defined by
ZX () = [ S0IAG)) ax

Z:(9,5) = / gV Y .

€

The notations |A|* and |V|* are defined in 3.8.8. The two previous in-
tegrals defining the Zeta functions converge for Re(s) > 0 (i.e. Res; > 0
for j = 0,...,k) and define an holomorphic function in this open subset
of Ck*1. By the result of BERNSHTEIN and GELFAND ([B-G]-1969) these
integrals have meromorphic continuations in C**! which are tempered dis-
tributions.

5.2. Existence of a functional equation for (AN,V ™)

Recall from Definition 3.8.9 that the involution ¢ on the parameter
s € Ck1 is defined by
t(s) =(—80 — 81—+ — Sk, SkySk_1y---,51)-
We will also make the convention that in Ck+1
(20,215 --,28) —m = (20 —m, 21,...,2;,) formeZ.
If f e S(VY) (resp. g € S(V™)) the Fourier transform Ff (resp. Fg) is
defined as in 4.1.3.

We first prove the existence of a relation between the Zeta functions
ZF(f,.) and Z, (Ff, .) in the case where f is a C* function with compact
support in @7, the union of the open AN—-orbits in VT :

0% = (X e V* [ M)A (X) - A(X) 20} = |J OF
ec{£1}k+1

It should be noticed that, if f € C(OT), then s — Z1(f,s) is an entire
function for each ¢.

Proposition 5.2.1. For each n € {£1}**1 there ezist meromorphic
functions s — v(s,n,e) on CF1 such that for any f € C°(OF) we have

Zi(Ffe) = Y wsme)ZE(fus) —m)

ee{£1}k+1

Proof. —1It will be enough to prove the Proposition on an open subset
of C*¥*+! where Z, (Ff,s) and the various Z. (f,t(s) —m) are holomorphic.
Since f has compact support in OT and Ff is a Schwartz function on V—,
this is the case on the set Res > 0.

We first determine how the distributions f — Z(Ff,s) and f
ZF(f,t(s) — m) transform under the action of the group AN on f. Let
us suppose that Res > 0.

Define for p € AN and f € C(O7):

fp(X)=fp'X) (XeVT).
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Since the characters x; of the relative invariant A; under the action of P
are positive on the subgroup AN (Theorem 3.6.1) we deduce from Lemma
4.1.5 that for p € AN we have

(5-2-1) ZF (fp t(s) = m) = X" (p) Z (£, t(s) —m) ,
where the character y*®) of P is given by

t(s) — Xg 0T stSkX;k 1 X

On the other hand Lemma 4.1.5 implies also that
(522 Ff) = xolp)"(Ff)p
An easy computation using (5-2-2) and the relations

_ 1 N A

=— X, =—= (j=1,...,k),
X =% I X0 ( )

which were proved in Corollary 3.8.5 imply that for p € AN we have
(5-2-3) Zy (F(fp),8) = X" (p) 2, (F f,5) -

If f € C(OT), let us write
f=2 flor
€

where 1+ denotes the characteristic function of OF. We get

(5-2-4) T (Ff,s) Z Zy (F(flps),s) -

A well known result by Bruhat ([Bru]-1956, Th 3.1 p. 124) implies that
there exists at most one distribution (up to scalar multiplication) on each
O7F which transforms under the action of AN as in (5-2-1) or in (5-2-3). The
fact that the maps f — Z[(f,s) and g — Z, (g, s) are distributions was
first proved by BERNSHTEIN and GELFAND ([B-G]-1969). This is also proved
below (see Lemma 5.2.5). Therefore there exists, for Res > 0, a constant
v(s,n,¢) such that

Zn_(j:(fl(gj‘)as) = V(S,U,ﬁ)Z:(f,t(s) - m) :
Then from (5-2-4) we deduce that, for Re s > 0,

(5-2-5) Zy (Ff8) =Y v(s,n,e) 23 (f,t(s) —m).

&€

As the functions Z, (Ff,s) and Z(f,t(s) — m) are meromorphic, the
functions v(s,n,¢) have a meromorphic continuation in C**! such that re-
lation (5-2-5) is satisfied.

O

The end of this section will be devoted to prove that (5-2-5) is also
satisfied for functions f in the Schwartz space of V. For this purpose we
need a more precise study of the distributions f — ZI(f, s) and we will use
the existence of generalized Bernstein operators and polynomials in several
variables which is due to C. SABBAH ([Sab]-1987, Prop. 1.2).
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For m € Nand i € {0,...,k}, let m[i] € N**! be defined by
ml[i] = (0,...,0,m,0,...,0) ,
where m is at the i—th place. Then for s = (sq, ..., sg) we have
s—1[i] = (s0y---,8i-1,% — 1,, 841, ,Sk) -

Proposition 5.2.2 (C. SABBAH).
Fori=0,...,k, there exists a differential operator P;(X,s,0x) on V™, with

polynomial coefficients in X € VT and in s = (sg, $1,...,Sk) such that
(5-2-6) Pi(X,s,0x)A% = B;(s)As~
where:

Bi(s) = [lser, cie(s)7
I; is a finite set, '
a;(s) = a?,ls() + a},lsl +...+ af,zsk + b ¢, with af,e e N, b4 € QF,
Yie €N .
More precisely relation (5-2-6) is true locally for any determination of A® =
ASCA . ATF

0 1 ... k .

Let §; = ¢;...¢x be the sign of Aj on O As an easy consequence of
(5-2-6) the following identity is true on O :

(5-2-7) Pi(X, ,0x)|Al" = 6;Bi(s)| A" .
For ¢ e Nand i € {0,1,...,k}, we set

Di(9,s) = Pi(X,s — (g — 1)[i],0x) - -- Py(X, s — 1[i], 0x) Pi(X, 5, 0x) -
By iteration of formula (5-2-7) we get on O

q—1
(528)  Di®,s) |Al* = of (] Bi(s - ml]) ) 1Al .
m=0

Performing integration by parts, the proof of the following Lemma is
then straightforward.

Lemma 5.2.3. Let f € S(V"). The function s — ZI(f,s) has a
meromorphic continuation in C*t1 which is holomorphic in the open set

U={seC"|B;(s—mli]) #0,Vi =0,...,k, ¥m € N}.

Moreover if tD;(f), s) denotes the transpose of the operator Dfl(a, s), then for
i €{0,...,k}, and m € N, the Zeta function Z7 (f,s) satisfies the following
functional equation

g—1

(529)  ZI('Dy(8,9)f,5) = ¢ ([] Bi(s —mli)) ) 2 (.5 — ali]) -
m=0
Let us choose a basis (;)i=1,...» of VT, and let || || be a norm on V¥,
for example we can take || X|| = —b(X,0X). For a = (a1,a2,...,a,) € N,
let D, be the differential operator on V' given by
o o

D, = — .. —__
TToxy axpr



5.2. EXISTENCE OF A FUNCTIONAL EQUATION FOR (AN,V™) 127

where X; are the coordinates in the basis (e;). For M, N € N, let vy n be
the classical semi-norms on S(V ) given by
v (f) = max (sup (1+ | XIP)M|Daf(X)])
Nixev+

la|<
where || = a1 + a2 + -+ + .

As the operator Dz(B, s) has polynomial coefficients in the V' variables
and in s, we get easily the following Lemma.

Lemma 5.2.4. Let K be a compact subset of C¥T1. There exist three
constants C € R, My € N, Ng € N (each one depending on K ) such that
Vfes(vt), sup  |*Di(9,8)f(X)| < Cvag,mo(f)-

XeV+, seK

Lemma 5.2.5. Let U, be the open subset of C**1 on which ZF(f,s) is
holomorphic for all f € S(V*'). Let K be a compact subset of (75. There
exist three constants C € Ry, M € N, N € N (each one depending on K)
such that, for s € K

(5-2-10) VEeS(VT), 12](f,5)] < Cvmn(f).

This implies in particular that f — ZF(f,s) is a tempered distribution of
order < N for s € K.

Proof. — We first prove the Lemma on the open set U defined in Lemma
5.2.3.
For q = (qo,q1,---,qx) € N¥*1, let Dy(8, s) be the differential operator
defined by
‘D‘l(aa 3) = Dtl;k(av S)Dk_l (6, 3) e Dgo(av ’3) .

k-1
Note that the various DZj (0, s) commute if they are applied to |A|®. Let
B¢(s,q) be the polynomial defined by
Dq(8,s)|Al* = Be(s,q) |A]*™® on O .

Note that the explicit computation of B.(s,q) as product of B;’s could be
easily derived from (5-2-8) but we only need the fact that this polynomial
is nonzero on U.

Let 'Dqy(d, s) be the transpose of Dq(8, s). We get the following formula,
similar to (5-2-9),
1

Be(s+q,q)

Let K C U be a compact set and let q be choosen such that, for s € K,
we have Re(s +q) > 0. If s € K then Z; (*Dq(0,s +q)f, s+ q) is defined
by the converging integral

/(9+ 'Dq(0, s +q)f(X)|A(X)|T9dX

(5'2'11) Zj(fvs) = Z;_ (th(a,S + q)fa s+ q) .

and therefore we obtain

2 (Da(0.5+ @) .5+ @)| < [ D05+ O] |AG)[M+ ax

€
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Since each A; is a polynomial of degree less or equal to k + 1, there exists a
constant C7 > 0 such that

|A(X)| < C1(1+ || X2 fori=0,1,... k.
Let us define R(s) = ) Re(s;) and R(q) = )_ ¢;. Then we have
123 ('Dq(0,s +q)f,s +q)| <
/<9+ 'Da(d, s + @) (X)] O D (14 || x2) RO TR@) gx

This implies that

|25 ('Dq(8, 5 + Q) f, s + q)| < CFTRE@ /+(1 + [ X|2)~ dX

€

X sup ((1 + ”X||2)(k+1)(R(8)+R(Q))+a‘th(a,S + q)f(X)|) R
Xevt

where o is an integer sufficiently large such that [j,, (1+]|X]*)"*dX < 4oc.
Therefore, for s € K, there are constants Co € Ry and My € N such that
|25 ('Dq(9, 5 + Q) f, s + Q)| < Co vary,0(Dq (0,5 + q)f).-
1

—— is
B(s +4q,q)
bounded on K imply the existence of C, M and N such that the inequality

(5-2-10) is true on U.

Lemma 5.2.4 and the fact that in (5-2-11) the fonction

It remains to prove that the same inequality is true if K C (7'5. Therefore
it is sufficient to prove (5-2-10) on a compact neighbourhood of a point s°
where Z;(f,s) is holomorphic and which does not belong to U. Then s°
belongs to a finite union of hyperplanes given by «; ¢(s+q) = 0 (q € N¢+1).
As compact neighbourhood, we can choose a polydisc of center s® such
that its boundary does not intersect the previous hyperplanes. Classical
estimates, using the Cauchy formula in several variables relatively to this
polydisc, lead to the result.

O

In order to extend the functional equation of Proposition 5.2.1 to func-
tions f € S(VT), we define the distribution T§ by

(5_2_12) < Tsna f >= Z'q_(]:fas) - Z V(sanae)Z;—(fat(s) - m) :

€
The aim is to prove that this is the zero distribution. We first prove the
following result.

Lemma 5.2.6. There exists an integer p € N such that
Vs € CHL . APAD L APTT =0
Proof. —Proposition 5.2.1 implies that the support of the distribution
T¢ is inside VT \ OF = {X € VT |Ag(X)A1(X)...Ax(X) = 0}. A well
known result (see for example [Sh|-1972, Lemma 1.3) implies that, if this
distribution is of finite order r, then, for p = r + 1, we have

(5-2-13) APAP NPT = .



5.2. EXISTENCE OF A FUNCTIONAL EQUATION FOR (AN,V™) 129

Let K be a compact set (with K # () such that Z(Ff,s) and each

ZX(f,t(s) — m) (¢ € {£1}**1) are holomorphic in a neighborhood of K.
From Lemma 5.2.5 there exists an integer r; such that the distributions
ZX(f,t(s) — m) are of order < ry for s € K and all ¢ € {£1}f*!. Again
Lemma 5.2.5 and the fact that f — Ff is a topological isomorphism from
S(VT) onto S(V ) imply that there exists an integer ro such that the distri-
bution Z, (Ff, s) is of order < rg for s € K. Then, if s € K, the distribution
Ts is of order < r = max(ry,72).

It follows that (5-2-13) is satisfied for s € K. By analytic continua-
tion the same equality is true everywhere since the distribution T has a

meromorphic continuation in C**! by Lemma 5.2.3.
O

For i =0,1,...,k, let A;(9) be the differential operator (with constant
coefficients) on V'~ defined by

(5-2-14) A(0)PY) = AYX)PXY) X eVt YevT.

Lemma 5.2.7. Let n € {£1}**1. There exist polynomials bg,b],. .. ,bz
in the variable s = (s, $1,...,3k) such that on O, the following identities
are satisfied.

No(0)|V[* = b5 (s) [Vl H[Va]* ... [ V[,

(5-2-15) and for i # 0
Sk—i 1 s
Ai(8)|V]* = B(s) [ Vol Ve |t .. [Whogpa | * T LW o,
Proof. — Let £ be the regular representation of AN on the space C*(0O,)
given by
(Ep) F)(X) = (™' X) where f € C=(0;), p € AN, X € O; .

For : =0,1,...,k, we have for p € P
(5-2-16) £(p) o Ai(8) = xi(p) T Ai(3) o £(p) -

These relations are easily proved by restricting the operators to the functions
Y s D XY),
Then, using (5-2-16) and the relations (Corollary 3.8.5)

= 2wl = ) (g

Xo (P) Xo (p)
we show that the functions on both sides of (5-2-15) are relatively invariant
under the action of AN, with the same character. As the action of AN is
transitive on O, these two functions differ only by a constant denoted b} (s).
The value of |[V|® at the point I, is equal to 1 and the value of A;(9)|V|®
at the same point is polynomial in s. Thus b}(s) is polynomial in s.

Xo(Pp)

O
For an integer p € N we define
AP = AFAY ... A} and A(D)P = Ag(0)PA1(D)P ... Ak()P .
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Using the fact that the degree of the polynomial A; is £ + 1 — j (Theorem
1.14.2) we deduce from (5-2-14) that
2imb(X,Y) .\ Rtk (R+2) 2imb(X,Y) + -
A(9)Pe M= (2im) 2 AP(X)e ’ (XeVT, YeVT).
This leads to the computation of the following Fourier transform.

Lemma 5.2.8. For f € (V1)

(k+1)(k+2)
F(APF) = (2im) " 2 A(QPFF .
Now we have everything we need to prove the functional equation which
extends Proposition 5.2.1 to functions in the Schwartz space of V™ and V.

Theorem 5.2.9 (Abstract functional equation for Type I and II).
For f € S(VT), g € S(V7), e € {+1}F*! and n € {£1}**! the integrals
defining Z (f, s) and Zy (g, 8) have meromorphic continuations in Ck1 and
there exist meromorphic functions v(s,n,e) and §(s,e,n) such that

(5-2-17) Zn_(}-fas) = Z V(Sanae)zj(fat(s) —m)
ec{£1}k+1
(5-2-18) ZH(fos)= Y d(s,en)Z, (Ff,t(s) —m)
ne{x1}kt+1

Proof. —First of all notice that (5-2-18) is obtained from (5-2-17) by
exchanging the roles of V' and V. Therefore we only prove (5-2-17).

It remains to prove that 75 = 0 where T, is the tempered distribution
given by (5-2-12). Recall from Lemma 5.2.6 that there exists an integer p
(independant of s) such that

APT;; =0.
For f € S(V*), < APT;, f > is a linear combination of terms of the form
Zy (F(APf),s) and ZT(APf t(s) —m).
From Lemma 5.2.8 we get
Z, (F(APf),s) = (2im) Z, (A9 F(f), s) -

For Re(s) > 0 this Zeta function is an integral and, using the fact that the
differential operator A(J)? is a homogeneous differential operator of degree
1p(k + 1)(k + 2) we obtain by integration by parts that

_ p(k+1)(k+2)
2

_ .\ p(k+1)(k+2)
Zy (F(APf),s) = (=2im)” /_ (FH@)(A@PIVI)(Y) dY .
n
Then Lemma 5.2.7 implies the existence of a polynomial P,(s) such that

Z, (F&0f),0) = Bifs) [ (FH@IVEay,
where

a(SOasla"'aSk) = (50 - (k+ 1)p,31 +pa"';sk +p) .
On the other hand we have

ZF (AP, t(s) —m) = 8860 ... 8 Z (f, (t(s) —m) + (p,-.., D)) ,
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where §; is the sign of Aj on OF.
Therefore we obtain
0 =< APT] f >= Pn(s)Zn_(.’Ff, a(s))

- Z V(Sanag)dgéf'"5£Z5+(f7(t(5)_m)+(p7--'ap))'
ec{x1}k+1

As t(a(s)) —m = (t(s) —m) + (p,...,p), we obtain meromorphic functions
which are, for obvious reasons, equal to the functions v(a(s),n,¢) given in
Proposition 5.2.1 such that for f € S(V') and Res > 0 we have

Z,(Ffa(s) = Y vlals),ne)ZS (f,t(as)) —m)

e€(E1)kt1

Theorem 5.2.9 is therefore proved by meromorphic continuation.
O

Remark 5.2.10. The previous Theorem is essentially Theorem 1 in F.
SATO’s paper ([Sat]-1982). Howewer the proof by Sato relies on the result of
BERNSHTEIN and GELFAND ([B-G]-1969]) and on the fact the distributions
f — ZI(f,s) are of bounded order for s in a compact set (which is not
proved in [B-G]). Our proof is an extension to the case of several variables
of the proof by SHINTANI ([Sh]-1972). It relies on a result of C. SABBAH (see
Proposition 5.2.2) which implies the result of BERNSHTEIN and GELFAND and
the local boundedness of the order of the Zeta distributions (see Lemma

5.2.5).

5.3. Computation of the coefficients d(s,¢,n)

In this section we will compute the coefficients (s, e,7n) defined in The-
orem 5.2.9. The proof is done by induction on the rank (Definition 1.6.2) of
the graded algebra (g, Hp).

Let us start with the case where k =0 (rank one case).
We will first recall the functional equation of J.T. TATE in the real case

([Ta]-1967).
Let 1 (resp. —1) be the character x of R* given by

(z) 1 ify=1,
xr) =
X sg(@) ifx=-1,

where sg(z) = +1ifz >0and —1if z < 0.
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Definition 5.3.1 (TATE’s rho factors).
The TATE tho factors are the meromorphic functions z — p(z,x) on C
defined by

R r(s) =2(2m) "I (2)cos & if x =1

= —2i(27)*I'(2)sin ¥ ifx =—1.

Proposition 5.3.2 (TATE’s functional equation).
For ¢ € S(R) and x a character of R*, the function defined for Rez > 0 by
dz

the integral Z(p, z,x) = [g o(@)x(z)|z|? El has a meromorphic continuation

to C and satisfies the following relation
Z(‘PvzaX> = P(Z,X)Z(S/O\; 1- zaX) ’
where P(y) = [ p(z)e*™¥dz.

In the case k = 0 and £ = 1 (Type I and II) we have V* = RXj and
V= = RY, where Yy = 0(Xy). If dz denotes the Lebesgue measure on R,
there exists positive constants A and u such that

e f(X)dX = )\/Rf(a:Xo) dz and / 9(Y)dY = ,u/ 9(zYp) dz .

R
The normalization of the measures dX and dY done in section 4.1 implies
that A = p = 1 : the equality 8(Xy) = o(Xp) implies by (N7) that A =
p. The equality b(zXo,yYy) = zy (Lemma 1.10.2) and the choice of the
character ¢ of R implies by (N3) that Ay = 1. Then we have for € and 7 in
{-1,+1}

ZH(f2) = [ feXo) |zl dz and Z;(g,2) = / o(=%o) |zf* de .
ex>0 nz>0

Proposition 5.3.3. In the case where k = 0, the functions ZJ (f,z)
and Z, (g,%z) have meromorphic continuations to C for f € S(V*) and
g € S(V7) and satisfy the following relation

Z;_(faz) = Z 50(z,€,77)Zn_(ff,—Z—1) ’

n==x1

where
1
50('2’6’77) = E(p(z + 1a 1) + 67’:0(2 + 1’ _1))
= (2m) "G5 (5 4 1) |

Remark 5.3.4. It may be noted that this is an explicit expression of
the relation (5-2-18) since, in this case (k = 0 and k = 1), we have t(s) = —s
and m = 1.

Remark 5.3.5. The function dy(z,¢,7n) depends on z of course but only
on the sign of the product e7.
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Proof of Proposition 5.3.3. — The result is a direct consequence of
TATE’s functional equation. If ¢ is the function z — f(xXj), the relations

Z((P,Z + 171) = Zf_(f,Z) + Z_—Fl(faz)
and Z(‘Paz + 17_1) = Zf_(f,Z) - Z_—Fl(faz)

give the result.
O

We precise now the procedure of induction which will lead to the general
result

Recall from Chapter 4 that if the regular graded algebra g is of rank
k + 1, then the regular graded algebra g =V~ (0) ® g(0) ® V*(0) is of rank
k.

We will denote by underlined letters the elements of the algebra g which
is graded by H, = Z?;& H),. For example G = G(0) denotes the analytic
subgroup of G with Lie algebra g = g(0), a% denotes the sum of RH); for
j=0,...,k—1, P denotes the parabolic subgroup of G defined as in section
3.5and A; (j =0,...,k — 1) the relative invariants for the action of P on

V* = V*(0) normalized by A;(Y°5Z) X;) =1 and so on...

Lemma 5.3.6 (Type I, IT and III).
(1) The Lie algebra B of the parabolic subgroup P is given by

P=35")@ > Eij(1,-1).

i<j<k

(2) The LANGLANDS decomposition of P is given by P = M A N where
N=NNG and M = M NG. Moreover M and M have the same Lie
algebra.

Proof. —

(1) We have only to prove that 35(a®) = 34(a®). Since g is the centralizer of
Hj and of H),, an element X belongs to 3g(go) if and only if it centralizes
H), and each Hy; for j =0,...,k — 1 w.e. if it centralizes al.
(2) By Proposition 3.5.1 and (1) the Levi parts m@ a = 34(a%) and m@ a =
39(g0) of P and ‘B respectively are equal. It follows, also from Proposition
3.5.1, that a = a and consequently that m = m. In the case where M is
disconnected it may happen that M is strictly contained in M. But in any
case we have Zx(a®) = Zx(a®) NG hence M = M NG.

O

Lemma 5.3.7 (Type I, II and III).
(1) If u, v and A are elements of VT (0), V(2) and g(—1) respectively, then

Ak(U)AJ(U) lszoa’k_la

Ay (4 +v) = Byu+v) = {Am =k
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(2) If v/, v' and A are elements of V—(0), V~(—2) and g(—1) respectively,
then

Vo(u)Vi(v') #fj=0
AV eadA(ul_'_vl) :V'(UI+UI): Y0 ) )
i )=V V) if =1,k
Proof of (1). — The polynomials A; are invariant under the action of N,
hence, in particular, under the action of exp(g(—1)) and the first equality
follows.
Let Q; be the function defined for v € V(0) and v € V*1(2) by

Ap(v)Aj(u) ifj=0,...,k—-1,

Qj(“+v):{ Ap(v) ifj=k.

The functions A; and Q; are polynomials functions on V*(0) @ V*(2). The
inclusion N C N and the fact that N centralize V1 (2) = g* imply that

these functions are invariant under the action of N. We know (Lemma

3.6.2) that if A;(u) # 0 for all j € {0,...,k — 1} there exists an element

n € N such that n.u belongs to @?;35"1 It is therefore sufficient to show

the equality of A; and Q; on @?:Oﬁ)‘j .

In the case £ = 1 (Type I and II), the result follows from the following
relations (see Theorem 1.14.2(3) ):

k k k—1 k—1
(5-3-1) Aj (Z :1:5X5> = H:I}: and A; (Z :1:5X3> = H zh .
s=0 s=j s=0 s=j

In the case £ > 1 (Type III) we know from Theorem 3.5.4 that M acts
transitively on the spheres of g% . From the proof of this Theorem, we know
moreover that if X € @?ZOE)‘J' there exists an element m = mgmy --- my
with m; € L; N K such that

m.X € &f_(RX; .

Since L; N K is the analytic subgroup of G with Lie algebra [g=%,gh] N ¢
contained in m = m, it follows from Lemma 5.3.6 that

meM .

Since, in Type III case, A; and Q; are invariant under the action of M
(Theorem 3.6.1), it is now sufficient to prove the equality of A; and @Q; on
®§:0RXj- The result , as in the case £ = 1, is a consequence of the relation
(5-3-1) above.

O

As a direct consequence of the previous Lemma and of the characteri-
zation of the AN—-orbits given in Corollary 3.6.5 and 3.8.7 , we obtain, in
Type I and IT cases, the following relations between AN and AN orbits.

For ¢ € {£1}**! let I.™ be the element of V* = V*+(0) given by

Z;:é ejX; and O." the orbit under A N of I.*. For n € {£1}*¥1, let I,~
be the element of V™ = V' (0) given by Zf;é n;Y; and O~ the orbit under
AN of I,
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Proposition 5.3.8 (Type I and II).
(1) If u, v and A are elements of V(0), VT (2) and g(—1) respectively, then

e A(u+v) € OF <= €, Ag(v) >0 and ue O, 1,

where u € O, <= Aj(u)ej---ep 1 >0 for j=0,...,k—1.
(2) If W', v' and A are elements of V—(0), V~(—2) and g(—1) respectively,
then

A + ') € 0, <= mVi(') >0 and v € O, ,

where u' € Oy~ <= V;(u')no - Mg—1—5 > 0 for j=0,..., k- 1.

In order to use Theorem 4.8.1 to compute by induction the coefficients
of the functional equation, we first prove that vy(u’,v) (see Definition 4.7.3).
depends only on the orbit under AN of v’ € V~(0) and v € V(2).

Ve W
Let us recall that e denotes the dimension of the root spaces g~ 2 J,

which is equal to d in Type I case.

Lemma 5.3.9. Let u' be an element of O, with n € {£1}**! and v
an element of V*(2) such that e Ag(v) > 0 with ¢ = +£1. Then we have

v, v) = €'t eer(SiZomi)

Proof. —From Definition 4.7.3 we have v(u/,v) = €'5(P~9 where (p, q)
is the signature of the quadratic form Q. , defined on g(—1) by Q. ,(4) =
1b((ad A)%u', v).

By hypothesis «’ belongs to the AN-orbit of I,,” . Thus there exist an

element n € N and strictly positive real numbers E] (j=0,...,k—1) such
that
k-1
n.u' =wuy where uy = Zujanj .
i=0

Moreover N centralizes V1 (2) = g** and there exists a strictly positive real
number v, such that

n.v = vg where vg = exvip Xy, -

As N stabilizes g(—1), the quadratic form Q. , is equivalent to the quadratic

form Q%,UO.
The space g(—1) is the direct sum of the subspaces E; (1, —1) for j =
0,...k — 1 which are orthogonal for the quadratic form Q% vo- Moreover if

A belongs to Ej;x(1,—1) then b((ad A)?Y;, X)) = 0 for i # j. Thus we have
the following equivalence of quadratic forms :

Qu6,'u0 ~ GBf;énjaij,k ;
where Q; 1, is the quadratic form defined on Ej;;(1,—1) by
1
Qj,k(A> = Eb((a,dA)ZYJ,Xk) for A € Ej,k(l, —1) .
In section 2.5 we have defined quadratic forms gx; x, on Ejx(—1,—1) by

1
ax;x.(Y) = —5b(ad X;.Y,ad X.Y) .
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A simple calculation shows that the forms Q; and gx; x, are related by
the formula

Qj,k(ad Xj.Y) = Xj,Xk(Y) forY € Ej’k(—l, —1) .

Since ad X is an isomorphism from F;(—1,—1) onto E; (1, —1) the qua-
dratic forms @ and gx;, x, are equivalent.

We know from Theorem 2.8.12 that for Type I and II the signature of the
quadratic form gx; x, is equal to (%, %) Then if (p,q) is the signature
of Qy' v, we obtain

k—1
p—g=eck Y nj,
7=0

and the result follows from the definition of y(u’,v).

Theorem 5.3.10 (Type I and II).
Let f € S(V*) and e € {£1}**1. In the functional equation (5-2-18) proved
in Theorem 5.2.9

ZE—}_(f:S) = Z 5k(5767n)z77(ff’t(8) -m),

ne{£1}k+1

the coefficients s — 0y (s,e,m) are the meromorphic functions given by
Sk(s,e,m) = [ do(so + -+ + 55+ 0 €50 1j) [[ e éeitmottm-)

Remark 5.3.11. The coefficient §(s,e,n) defined in Theorem 5.2.9 de-
pends of course on the graded algebra g. We prove here that for Type I
and IT it depends only on the rank & + 1 of this graded algebra and on the
constant d. Henceforth we will denote it by J; to emphasize the dependance
on k.

Remark 5.3.12. The formula given for §p in Proposition 5.3.3 implies
that the function d, is a product of an analytic function of s with the product
ITjoT(so+ - +s5+ 5 +1).

Proof. — To obtain the explicit expression of the coefficients d; it is
sufficient to use C* functions f with compact support in OF. In that case
the Zeta function s — ZF(f, s) is analytic on CF+1.

We will prove the formula by induction on k. For k = 0 the formula
reduces to TATE’s result (see Proposition 5.3.3). We suppose now that this
formula is true on g where it can be written for ¢ € C°(O7)

Ze(pos) = Y, Sk 1(s,6,m)Z; (Fo,t(s) —m) .

ne{£1}*
Here we have ¢ = (eq,...,€5-1), 8 = (S0,---,8,_1) and
dim V™" k—1)d
m = . —l—i—g since k = 1.

kk 2
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Let f be a function in C°(O1). Using the integration formula proved
in Proposition 4.6.4, Lemma 5.3.7(1) and Proposition 5.3.8(1), Zf(f, s) can
be written as

kd
zir) = [ i) AP At S dudo
exAg(v)>0 JueO:

We know from Proposition 4.2.3 that the map ® : (u, 4,v) — €2 4(u+v)
is a diffeomorphism from V*1(0) x g(—1) x V(2)’ onto the set O = {X €
V| Ap(X) # 0}, where V1 (2)' = {v € V(2) | Ag(v) # 0}. Moreover, by
Lemma, 5.3.7, the inverse image of O by this diffeomorphism is the open
set O x g(—1) x V(2)". It follows that the function (u,v) Tf+(u,v)
is a C* function with compact support in OF x V*+(2)". Thus the integral
above is absolutely convergent for each value of s € CF+!1. Moreover the
induction hypothesis can be applied to the function u — @(u) = T]?L (u,v)

and we obtain

/O+ﬁwmgwﬁw=
u€Oe

S Galsen) / (FuTH) (@, ) [V ()12 duf

Lo
ne{E1}k weOn

Let us suppose now that t(s) — m is such that the function v’ —
|V (u')|{9)=™ is continuous on V~(0). Then each integral in the previous
sum is absolutely convergent and compactly supported in v. Therefore we
may exchange the order of integration in the computation of Z. (f, s) which
gives

kd
<[ EEpE AP
exAr(v)>0

In order to apply Theorem 4.8.1 we wish to introduce (v, v) which is, by
Lemma 5.3.9, independent of the choice of v’ € O,~. Thus we introduce a

function v € V(2) — Gy (v), defined for a fixed element u' € Oy, by
Gu (v) = v(u',v) (fuT]j') (u',v) = eiieen(E520 ) (fuT}") (u',v) .

This function belongs to C°(V *(2)') and TATE’s functional equation (Propo-
sition 5.3.3) applied to this function gives

dk dk
/ Gy (v)|Ag(v)[F T+ 2 dy = E So(so+ -+ sk + —, €k k)
exAg(v)>0 —+1 2
M=

dk
x f (FoCu) @) (Vi) o0 S
Mk Vi (v')>0

From Theorem 4.8.1 we obtain

(F.6u ) @) = (R (W, ) FTF) ) () = Tppw, ) -
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The formula giving Z (£, s) can now be written as

Zaji_(fa 3) = Z 5k—1(§, g, Q)eii%egk(zy;; 77j)
ne{£1}*

dk
X Y osot ot sk ek )
ng==%1

></ / T;f(u',v')\D(u',v')|du'dv',
u’e&_ Nk Vi (v')>0

where "
DG, o) = [T ()| 0o T
Using the relations m = m — g and m =1+ % we deduce from Lemma
5.3.7(2) that
D@ )] = V(' 4091 w)]2 -
Using again the integral formula proved in Proposition 4.6.4 (but this time
on V) and Proposition 5.3.8(2) we obtain

ZE(f,8) = > Sw(s,em)Zy (Fft(s) —m),
ne{+1}k+1

where
_ dk i er(S523 my)
Or(s,€,m) = Op_1(8,€,m) do(s0 + -+ + s + 7,€k,77k) e A TReg=0 i)
By analytic continuation we obtain a relation between §; and d;_; which
are meromorphic functions by Theorem 5.2.9. A proof by induction on &
gives the announced formula for dy.

O

5.4. Computation of the coefficients v(s,7,¢)

The matrix (u(s, 7, a)) piet defined in Theorem 5.2.9 is the inverse

ene{£l
of the matrix (6(t(s) —m,e,n)), nef{s1yk+1 Since we have

tt(s)—m)—m=s.

In fact, using the relation F o F = Ids(y+), we can express the coefficients
v in terms of the coefficients §.

Theorem 5.4.1 (Type I and II).
Let f € S(V*) and n € {£1}*+1. In the functional equation (5-2-17) proved
in Theorem 5.2.9

Z,(Ff,s)= Y. wls,m,e) 2 (f,t(s) —m) ,

ec{E1}k+1
the coefficients s — vg(s,m,€) are the meromorphic functions given by
Vk(sa UB 8) = (Sk(sa 777 _g) >

where —e = (—¢€q,...,—¢€k) and € = (€g,€x—1,---,€1,€0)-
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Proof. —In order to exchange the role of V* and V~ we will use the
involution v of g defined in section 3.7. It follows from Remark 4.1.2 that

/ g(Y)dYy :/ g(yX)dX forge LY (V7).
V- v+
Moreover we have from Definition 3.8.1
Vi(Y)=A;(Y) forj=0,...,k.
It follows from Corollary 3.6.5 and 3.8.7 that
XeOf—=~Xc¢ O .

Let us start with a function f € C°(O"). Then we have
2y (F1.9) = [ (FNOXIARF X = 2 (0,9)
7

where ¢ is the function V" 3 X — (Ff)(yX). Then the functional equation
(5-2-18) gives

Zy(Ffs)= Y. (s, 7,6) 27 (Fo,t(s) —m) .
ee{£1}k+1

Since 7 is an involution we deduce from the relation b(X',vX) = b(vX', X)
that

o(X) = (.7-"(]‘ o*y))(—X) for X € VF .
And the relation F o F =Id s(v-) implies that

(]:<p) (Y)=(foy)(-Y) forYeV ™.

Moreover, if —¢ denotes (—&g, ..., —¢x) for € = (gg,...,ex) € {F1}FH1 we
have
YeO, <<= -YecO_,.
Therefore we obtain
2o (Fo,t(s) — m) = / (f 07) (~Y) [V(¥)[H)-m ay

€

= [ renmv@may

- / F(X) A= 4x
ot

= Zi—g(f;t(s) -m) .
And consequently we have

Z,(Ffs)= Y. (s, m,e)Z7(f,t(s) —m)

ee{£1}kt1
= Z Jk(saﬁa —g)Z:_(f,t(S) _m) .
ec{1}k+1

Taking a function f € C°(O7) such that Z1(f,t(s) —m) # 0 we obtain the
result.
[l
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Now the matrix (3 (t(s) —m,e, 77))6 ne {1
we obtain the following Corollary, which would be difficult to deduce from
the explicit formulas given in Theorem 5.3.10.

i1 is explicitely inverted and

Corollary 5.4.2. Ifn and 1’ are two elements of {£1}*+1 then we have

Z 5k(£aﬁ, —N)(sk(t(s) — m,e,n') _ {O ifn#n,

. )
ce{L1}kt1 Lifn=mn.

5.5. Functional equation for (P, V™)
We will now consider the local Zeta functions of the prehomogeneous
vector spaces (P,V*1) and (P, V™).

In Type I case the open orbits of P and of AN are the same on V* and
V'~ since the action of M is trivial on @¥_g*/. The local Zeta functions of
these prehomogeneous spaces are the functions Z; and Z, defined in 5.1.1.

But in Type II case there are only two open P-orbits in V' (Theorem
3.6.3) which are given by

k
Of = PI" ={X € 0" | Ay(X) > 0} where I* =) " X; ,

Of =PI = {X € O | Ag(X) < 0} where I;” = () X;) — X}, .

Similarly there are also only two open P—orbits in V'~ (Theorem 3.8.6) which
are given by

k
Oy =P.I" ={Y € 07 | Vo(X) > 0} where I” =) 6(X;),
=0

k—1
O = PI; ={Y € 07 | Vo(X) < 0} where I} = (D 6(X;)) — 6(Xy) -
i=0
Each open P-orbit is a finite union of AN-orbits and for simplicity we will
introduce the following notation.

Notation 5.5.1 (Type II). Let p € {0,1}. We denote by p the set
p={e e {1} 0F cOf}.
From Theorem 3.6.3 and Corollary 3.6.5 we deduce that
e€l<—= ¢y ep=1,
e€l<<= ey g =-1.
And from Theorem 3.8.6 and Corollary 3.8.7 we obtain also
e€Ep—=0;, CO, .

The Zeta functions of (P,V ™) and (P,V ™) are then defined as follows (in
the next section we will generalize this Definition).
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Definition 5.5.2 (Type II).
Let s = (sq,...,s,) € C**1. For f € S(V*) and h € S(V™), the local
Zeta functions of (P,V™*) and (P,V ™) are defined for p € {0,1} by

/f VAX)[ dX = 3 ZF(f,5)

EEp
~(h, s) /h ) VI)PdY =) 7, (h, s)
nep

We will deduce the functional equation for these Zeta functions from
the previous functional equation (Theorem 5.2.9). The proof relies on the
following Lemma.

Lemma 5.5.3. Let g € {0,1} and n and 7' be elements of q. Then, for
p € {0,1}, there ezists a permutation € — €' of the set p such that we have

5k(3a8’77) = 5k(3,€'a77') and Vk(3,€a77) = Vk(3,€',77') .
(equality of meromorphic functions)

Proof. —Let us recall that from Theorem 5.3.10 and Proposition 5.3.3
we have

k id
367] H 30+“‘+S] 6_7,7']] H _T" "70+ +nj— 1)’
7=0 j=1
where
jd
50(30 +--+s;+ ?,ej,nj)
— (27T>—(1+so+---+sk+]§—d)r(1 4804+ S+ -%i) % e—i%sjnj(l-l-so-l-"--l-sk-l-jz—d) .

Let us define ¢’ by
5‘1777; :g]n] fOI‘jZO,...,k .
As 1o -k = 1g - - - M}, the map € — €' is a permutation of p for p € {0,1}.

In the cases where e = 0, d;(s,e,n) depends only on the products ¢;n;
and the result follows.

In the case where e # 0 we have necessarily (in Type II case) k = 0 or
k =1 by Corollary 2.8.7. If kK = 0 there is nothing to prove since there are
only two open AN—orbits which are also the P—orbits. If k¥ = 1 it remains
to prove that

e—i%slno — e—i%e’lnf) )
But the relations &\ 7 = 171 (definition of ') and niny = mino (hypothesis
on 7 and 7n') imply that
89.776 =é&1Mo ,

and the first equality is proved.

In order to prove the second equality we use the relation proved in The-
orem 5.4.1 :

ve(s,e,m) = 0k(s,&,—7) .
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As n and 7’ are elements of ¢, there exists r € {0,1} such that —7 and —
are elements of r. Infact r =qifk+1lisevenand r=1—gq if k41 is odd.
As €' is defined by e;m; = ¢;m; for j € {0,...,k}, the relation &; = &
implies
(@);(=m); = (¢);(=n"); -
Thus the second equality is a direct consequence of the first one.
([l

It follows from the previous Lemma that Y __ dx(s,e,n) does not depend

E€p
on 7 but only on the open P-orbit in which O, is contained. Similarly
Y neq Vk(8,7,€) does not depend on € but only on the open P-orbit in which

OF is contained. Therefore the following Definition makes sense.

Definition 5.5.4. For q and q elements of {0,1} we set

Sk(s,p,9) = Y _k(s,e,m) ifneq,
EEP

t(s,4,p) Zuksn, ) ife€p.
nEq

For f € S(V*) and p € {0,1} we deduce from Theorem 5.2.9 that

=> > D buls,emZ, (Ff,t(s) —m)

s€p qe{0,1} 1€g

Z 5k(s,p,q)ZZ;(ff,t(S) _m) .

qe{0,1} neq

Similarly we have for ¢ € {0,1}

Zq_(]:fas) = Z Vk(s,q,p)ZZj(f,t(s) _m) :

pe{0,1} €cp

Therefore we obtain the following functional equations for the Zeta function
of (P,VT).

Theorem 5.5.5 (Type II, functional equation for (P, V1)).
For f € S(V*), p,q € {0,1} the integrals defining Z,f (f,s) and Z, (Ff,s)

have meromorphic continuations in C*t1 and satisfy the following functional
equations

Zq_(j:f,s) - Z Vk(S,q,p)Z‘;—(f,t(S) - m),
pe{0,1}

= Y ls,p,0)Z, (Ff,t(s) —m) .

qe{0,1}
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5.6. A generalized functional equation for (P,V*) in Type II

Throughout this section we suppose that g is of Type II.

In fact, in order to prove our main theorem on Zeta functions related
to the minimal spherical series in the Type II case (see chapter 7), we need
now to introduce a slight generalization of the Zeta functions ZI;" (f,s) and
Z, (h,s) which were introduced in Definition 5.5.2.

The polynomials A; (resp. V) are nonzero on the open P-orbits. The
signs of these polynomials are constant on the open AN-orbits but are
nonconstant on the P—orbits. Let us denote by sg(z) the sign of a nonzero
real number z. For 7 = (g,...,7%) € Z¥*! and for X € OF, the sign of
A(X)" = Ag(X)™ -+ Ag(X)™ depends only on the class of each 7; in Z/27.
Thus we can define for 7 = (7g,..., ) € (Z/2Z)F*!

sg (A(X)T) —sg (AO(X)TO . Ak(X)Tk) for X € OF
sg(V(Y)T) —sg (VO(Y)TO ---Vk(Y)Tk) for Y € O~ .
The following Lemma is a direct consequence of Corollary 3.6.5 and Corol-
lary 3.8.7.
Lemma 5.6.1. For 7 = (19,71,...,7¢) € (Z/2Z)k+1 we have

X €Of = sg(A(X)") = (e0---er)(e1--er)™ -5,
YeO, =sg(V(Y)) =(co--ex)™"" J”’“( cogp)R gt

(e

The first expression will be denoted by 7(¢) and the second expression by
t(7)(e) since, from Definition 3.8.9, we have t(7) = (—To—-+*— Tk, Tk, - - - T1)-

Definition 5.6.2 (Type II). Let s = (sq,51,...,5x) € C**! and let
T = (T0,T1, -+, Tk) € (Z/2Z)¥+1. Forp € {0,1},f € S(V*) and h € S(V™)
we define

25 (fsm) = [ FOIMN (A7) ax

Z; (h,s,7) = . hY)|V(Y)*sg(V(Y)U) dY .

Remark 5.6.3. The parameter 7 occurring in the previous definition
will essentially parametrize the (M N H)-spherical representations of M as
we shall see in chapter 7.

From Lemma 5.6.1 we obtain

Zf(f,8,m) =Y _7(e) ZI(£,9)

EEp

Zy (hys,7) =Y _7(c) Z7(h,s) .

EEP

As in section 5.5 the functional equation for these Zeta functions is a
consequence of Theorem 5.2.9, using the following Lemma.
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Lemma 5.6.4 (Type II). Let 7 € (Z/27)*+1.
(1) For n € g, the meromorphic function EsEp 7(n) 7(¢) 6x(s,€,m) does not

depend on the choice of n € q but depends only on q (and on p).
(2) For € € p, the meromorphic function Zneq 7(n) 7(¢) vi(s,n,e) does not

depend on the choice of ¢ € p but depends only on p (and on q).

Proof of (1). —Let n, n' € ¢. We know from the proof of Lemma 5.5.3
that if the permutation € — ¢’ of p is defined by
e;-ng =¢g;n; forj=0,...,k,

then

5k(8: &, 77) = 6’6(3’ ‘C’J’ nl)
Moreover for such a permutation, we have for any 7 € (Z/27Z)*+1

T(n)7(e) = 7(n')7(e").

This yields the result. The proof of (2) is similar.

Then, from previous Lemma, the following Definition makes sense.

Definition 5.6.5. For q and q elements of {0,1} we set
Sk(s,7p,0) = 7(n) Y _ 7(e)ok(s,e,m) ifneg,

EEP

vi(s,7,4,p) = 7€) S r(mvals,me) ife€p.

neg

Theorem 5.6.6 (Type II). For f € S(VT), h € S(V™), p,q € {0,1},
the integrals defining Z;,"(f, s,7) and Z; (h, s, T) have meromorphic contin-
uations to CF+1 which satisfy the following functional equations

faST deSTpa (ffa() maT)a

q=0,1

Zy(Ffsm) =Y vils,m,4,0) % (£,t(s) —m,7)

p=0,1

Proof. — The fact that Zf(f,s,7) and Z (h,s,7) have meromorphic
continuations is a direct consequence of Theorem 5.2.9. Let us prove the
second relation (the proof of the first one is similar). Using the definition of
Zy (h,s,7) and Theorem 5.4.1 we get

Z;(ff,S,T) = ZT(T])Z;(.?]C, S)

neq
- ZT(U) Z ve(s,m,€)ZF (f,t(s) —m) .
neq ee{£1}k+1

In order to introduce

Z3 (f,4(s) —m,7) = Y 7(e) ZF (f,4(s) —m)

EEP
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we remark that 7(¢)2 = 1 and then write

1
Zy (Ff,5,m) =20 D@ ( D (o) (n) vils, m,€) ) 2 (£,4(s) — m)

p=0 e€p neq

Then we get from Definition 5.6.5

M-

Z, (Ffsm) =Y w(s,4,0) Y 7() ZX(f,t(s) —m)

EEP

3
Il
<)

1

Vk(saT;Q;p) Z}j— (f,t(S) - m’T) -
=0

3

5.7. Functional equation for (G,VT)

We will now consider the local Zeta functions of the prehomogeneous vec-
tor spaces (G,V*) and (G,V ). As before we will obtain the corresponding
functional equation from Theorem 5.2.9.

In Type II case we know from Theorem 2.7.3 that there are two open
G-orbits in VT, as well as in V~. Let us call Qoi and Qit these open orbits
where

k
Of =G.IT ={X € V' | A¢(X) >0} C V" where I =) X;,
7=0
k—1
Qf =G.I ={X € V1| Ag(X) <0} C VT where I = -Xj + Y _ X,
7=0

Qy =GI ={X eV~ |Vy(X)>0}CV~ where I~ =6(I"),
Q =GI ={X eV~ |Vy(X) <0} CV~ where I, =6(I}) .
Each open P-orbit is dense in an open G-orbit. More precisely we have

(’)‘,,‘," C Q;‘ and O, C Q, for p € {0,1}. Moreover the unique irreducible

relative G—invariant on V* is Ag and on V~ is V. Therefore the corre-
sponding Zeta functions are defined for f € S(V*), h € §(V ), z € C and
p €{0,1} by

Z5(12) = [ FO01MF aX = [ (010X axX

2 (12) = [0 a)Fay = [ h)IVo(v)Fay

P b

Hence the corresponding functional equation is a direct consequence of The-
orem 5.5.5.

Theorem 5.7.1 (Type II, functional equation for (G,V™)).
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For f € S(V*), p,q € {0,1}, the integrals defining Z;,"(f,z) and Z; (Ff, z)
have meromorphic continuation in C and satisfy the following functional
equation

Z 0k((2,0,...,0),p,9) Z, (Ff,—2 —m) .

q€{071}

In Type I case there are only k + 2 open G-orbits in V' (Theorem
2.10.1) which are given by

k
+_ gt + _ _
Q, =G.I; where I = g (p=0,1,....,k+1).

T
=

<.
Il
)

Similarly there are also k + 2 open G—orbits in V'~ which are given by

k
Q, =G.I, where I; =) 0(X;)— Y 6(X;) (p=0,1,...,k+1).
j Jj=k—p+1
Each open G-orbit is, up to a set of measure 0, a finite union of AN—orbits
and for simplicity we will introduce the following notation.

Notation 5.7.2 (Typel). Letp € {0,1,...,k+1}. We denote by p the
set

={ee{£1}*" |0 cQf}.
From Theorem 2.10.1 and Corollary 3.6.5 we deduce that

ceeps=#{jle;=-1}=p,

where # A denotes the number of elements of the set A. From Corollary
3.8.7 we also obtain

eep—=0; CQ,

Definition 5.7.3 (Type I).
Let z € C. For f € S(V*) and h € 8(V™), the local Zeta functions of
(G,V7T) and (G,V ) are defined for p € {0,...,k+ 1} by

/f VAo(X)F X = 3" ZF(£,(2,0,...,0)) ,

EEP

Zp_(h,z):/g_h(Y)\Vo v =37 (h .,0)).

P nep

The existence of the functional equation for these Zeta functions as
well as some details concerning the coeflicients was obtained by SATO and
SHINTANI ([Sa—Sh]-1974 Theorem 1). The explicit computation of the coefli-
cients in Type I case is also known (see [S—F]-1984 Theorem 1 and [Mu]-1986
Proposition 3). But we will show that it may be obtained from the previous
functional equation (Theorem 5.2.9 and Theorem 5.3.10). The proof relies
on the following Lemma.
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Lemma 5.7.4 (Type I). Let Q1 be an open G-orbit in V~, n and 7'
be elements of q. Then, for p € {0,...,k + 1}, there exists a permutation
e+ &' of the set p such that we have

0k((2,0,...,0),e,m) = &((2,0,...,0),,7) .
Proof. —1In Type I case we have e = d. Then, from Theorem 5.3.10 and

Proposition 5.3.3, we may write for s = (z,0,...,0)
: jd LA
519(3’ &, 7]) = H 50(2 + 7, €js 7]]) H e_"Tsj(ﬂo-F'"-l—nj_l) ’

=1

Jj=0
;T k M. i
_ wk(z) % 6715(1+z)(2j:06ﬂ]]) % e iZdA ,

where
k d d
— o)y~ (+2+i3) (1 o
wi(2) = [ ] (2m) IT(1+2+53)
Jj=0
and
k k k
A=§:ﬁwn+§:@0m+~-+W4)=§:%wW+m+~-+m4+Jm%
=0 j=1 j=1

Let us consider the map 1 € ¢~ {a1,...,ar} where

aj=mn0+m+-+n-1+75n; -

As 1, = 1 mod2 the a;’s are even numbers. Let us show that the a;’s are
distinct. If a; = a; with 1 <7 < j then

Wi =+ i1+ -+ -1+ Gy
which implies
linj — G —m| = g1 +---+nja| <j—i—1.
But if n; = n; we have
g — (G =Dl =j—i+1>5—i—1,
and if ; = —n; we have
g — (=Dl =j+i-1>j-i-1.

Hence we obtain a contradiction. Therefore the a;’s are distinct. Moreover
the relation 7 € ¢ implies that

—2(q—1)<a; <2(k—gq) forj=1,...,k.
Therefore the image of the map n € ¢+ {a1,...,a;} is the set
{-2(¢—1),-2(¢g—2),...,2(k —g—1),2(k —q)} .

It follows that, if 7 and ' are two elements in g, there exists a permutation
7 of {1,...,k} such that

!
aj = arj) >
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where {a1,...,ax} and {a,...,a}} are the elements associated respectively
to n and 7’ by the previous map. Moreover we have

aj >0=—=mn;>0 e =1,
a; <0=mn; <0 ie n=-1,
aj =0=mnon; <0 e mnon;=-1.

These relations imply that for j = 1,...,%k we have

a; # 0= 11 = 1hrgj)
a; =0 = nyn; = No7r(j) <O .

Now we define a permutation o of {0,...,k} as follows.
If my = mo then, for jo such that a} =0, we have 7} = 7,(;,), and we set

0(0)=0 and o(j)=7(j) forj=1,...,k.

If ny # mo then 1 < g < k, and therefore, there exists jo such that ag-o =0.

We have n; = —ng = no and 7,(jo) = —70 = 7p- In this case we set
7(jo) ifj=0,

In the two cases we obtain

!
a.

=gy forj=1,...,k andn]—na()forj—ﬂ k.

Therefore if, for € € p, we define ¢’ by

69 260.(]-) fOI‘j :0,...,k‘ y
then &’ € p and we obtain for both cases

k
Zs Z‘SJT’J and Za Ze]a]—.
j=0

Jj=1

Bl

It follows that
5k(3a5’;771):5k(3a5a77) fOI'S:(Z,O,...,O) .
O

The previous Lemma implies that Esep 0x((z,0,...,0),&,m7) does not

depend on 7 but only on the open G-orbit in which O is contained. Then
we may define gk(z,p,q) for p,q € {0,...,k+ 1} by

,p’ de ZO ),6,77) lfﬂeg
EEP
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For f e S(V*) and p € {0,...,k + 1} we deduce from Theorem 5.2.9 that

Z+ (f,2) ZZZJk zO ,0),¢ )Z,;(]-'f,(—z—m,O,...,O))

EEP q nEq
= Z 5k(z,p,Q)ZZ"_(‘7:f,(_Z_m,O,---,O))-

q€{0,...,k+1} neg
Therefore we obtain the following functional equation for the Zeta function
related to the G—orbits.

Theorem 5.7.5 (Type I, functional equation for (G,V1)).

For f € S(V*), p,q € {0,...,k + 1} the integrals defining Z(f,z) and
Zy (Ff,z) have meromorphic continuation in C and satisfy the following
functional equation

Z:(f’z) = Z gk(zapaq)zq_(j:fa -z m) :
q€{0,....k+1}

Remark 5.7.6. Using Theorem 5.4.1 we also obtain with the same
hypothesis

Zq_(]:faz_m): Z ﬁk(z—m,q,p)Z;'(f,—z) )
p€{0,....k+1}
where
vg(z —m,q,p Z5k 0,...,0),n,—¢) foreep.
neq

This is exactly Theorem 1 of [S-F]-1984. Using the fact thate € p <= £ € p
we may also write

vg(z —m,q,p,) 225k((z—m,0,...,0),n,—6) foreep.
neq

More precisely, using the equality m = 1+ 24, it may be verified that we
have

k
- _ k(k+1) d
Di(z —m, q,p) = (2m) K TD2 x FHHDZ o (97) | I RACRES

Jj=0

% 2 :e—sza,y, % edeAe,n ,
nEq
where

e ¢ is any element of p ,
o Bep= —(<k+1> Shoeim) = #{i lem =1},
o Acyp =5 imjleo+---+ej1) — j_geimi(k — ) -

This is exactly SATAKE-FARAUT formula.






CHAPTER 6

Functional equation of the Zeta function
for Type III

Throughout this chapter we suppose that g is of type III.

There is an unique open G-orbit in V' (resp. V) which will be denoted
by Q7 (resp. Q7). Recall also that there is an unique open P-orbit in V'
(resp. V) denoted by Ot (resp. O7).

Let (X;);=o,...x be the sequence satisfying condition (D) chosen in sec-
tion 3.6 and define I = X+ -+ 4+ Xj. The sets Q1 and @~ (resp. O and
O™) are the G-orbits (resp. P-orbit) of I™ and I~ = 6(It).

In this chapter we will consider representations of the group M (defined
by the LANGLANDS decomposition of P as in section 3.5) with an (M N H)-

invariant vector where H is the centralizer in G of I (and of I). The key
point here is the fact that M /(M N H) is compact (see Theorem 3.5.4).

6.1. (M N H)-spherical representations of M

Let (p,M,) be a unitary representation of M and #H3° be the Fréchet
space of U vectors in H,. Then its topological anti-dual H ;> is called
the space of distribution vectors of p. The group M acts naturally both on
Hy° and on H,*°. The space of (M N H)-invariant distributions vectors is
denoted by (’H;‘”)MQH.

Of course, if H,, is finite dimensional, then H2° = H,,.

Proposition 6.1.1. Let (p,H,) be a irreducible unitary representa-
tion of M having a nonzero (M N H)—invariant distribution vector. Then
dimH, < +oco and H, is (equivalent to) a closed subspace of L>(M/M N H)
(i-e. (p,H,) is a discrete series representation of M /M N H).

Proof. — This Proposition is essentially Lemma 3.5. of [vdB]-1988. For
the convenience of the reader and also because we will need later on some
details and notations, we nevertheless give the proof.

Recall from the proof of Theorem 3.5.4 that the inclusion M N K — M
induces a homeomorphism ¢ : M N K/ M NKNH — M/M N H. This is
due to the fact that M = (M N K)exp(m N p) where mNp C h. If the
invariant measures are normalized appropriately, this gives rise by pull back
to an isometric isomorphism

o* L*(M/MNH) — L*MNK/MNKNH) .

This map ¢* is M N K-equivariant. As exp(mNp) acts trivially on the space
L?*(M/M N H), the map ¢* sets up in fact a one-to-one correspondence

151



152 6. ZETA FUNCTIONS (TYPE III)

between M-invariant subspaces of L2(M/M N H) and M N K-invariant sub-
spaces of L2 (M NK/MNK N H).

As M N K is compact, the irreducible M—invariant closed subspaces of
L?(M/M N H) are therefore finite-dimensional.

Let now (p,H,) be an irreducible unitary representation of M, having a
nonzero (M N H)-invariant distribution vector v, € (’H;‘”)M MH_ Then the
map j : H° — C*°(M/M N H) defined for v € H3° and m € M by

J()(m) = (vp, p(m~")v)
is a M—equivariant embedding, which is continuous for the Fréchet topolo-
gies.

For any irreducible unitary representation 7w of M occurring in the space
L?>(M/M N H) (7 is necessarily finite dimensional from above), denote by
U the isotypic component of 7 in L?(M/M N H). Again, as M/M N H
is compact, the space U, is finite dimensional. Let P, be the orthogonal
projection on Uy in L2(M/M N H). As L?(M/M N H) is the direct sum of
the isotypic components we have

0#j=> (Proj)
™
and therefore there exists mg such that Py, o j # 0. Consider
Pryoj: My — Upr, -

This map is M-equivariant and continuous. Recall now that (M,#,) is
topologically irreducible if and only if (M, H;°) is topologically irreducible
([Bru]-1956, Prop. 2.6). Therefore the kernel of Py, o j must be {0} and
Pr, o j is injective. Hence dimH7° < +oo. It follows that H, is also finite
dimensional and that H, = #;°. Moreover j is an M—equivariant embeddind
of H, into L>(M/M N H).

O

Let us now recall some basic facts from the representation theory of the
orthogonal group O(Q) where Q is a positive definite quadratic form on R
(see for example [C]-1983). Denote by S the unit sphere

S={reR|Qx)=1}.
The group O(Q) acts transitively on S and if zp € S, the centralizer of
zo in O(Q) (denoted by H) is isomorphic to an orthogonal group in £ — 1
variables.
The Laplacian Q(9) is defined to be the differential operator with con-
stant coefficients such that
Q(9), eBe@y) — Q(z) eBel@v)

where Bo(z,y) = 3(Q(z + y) — Q(z) — Q(y)) is the scalar product defined
by Q. A function f on R¢ is said to be harmonic if

Q()f =0.

The homeomorphism O(Q) /ﬁ ~ S gives rise to an isometry from
L?(0(Q)/H) onto L?(S) (with appropriate invariant measures on O(Q)/H
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and S). The irreducible (necessarily finite dimensional) representations of
O(Q) having a H-invariant vector are exactly the so-called spherical har-
monics M} (¢t € N) where H! is the space of complex valued harmonic poly-
nomials of degree ¢t on R¢ on which the group O(Q) acts by left translations.
These representations are non equivalent for ¢ # t'. Moreover

LZ(S) = 691?20%2 3
where the embedding of H! into L?(S) is given by restriction to S.

Suppose now we are given a family Qg, @1, ..., Q of positive definite
quadratic forms on Rf R ... R% respectively. For j € {0,1,...,k} de-
note by I’;T; the isotropy subgroup in O(Q);) of a fixed point on the Q;—sphere
Sj. Put T = O(Qo) x O(Q1) X ... x O(Qy) and T = Hy x Hy X -+ X Hy.
Suppose also we are looking for irreducible representations 7 of T' having
a T-invariant vector. Then elementary representation theory tells us that
there exists (79,71, --,7%) € N1 such that

T:’HZ)’@HZ®---®HZ: .
It should be noticed that if (7o, ..., 7x) # (79, ..., T;), then the corresponding

representations are non equivalent.

k

]:Oﬁ)‘i is defined by

In our context, a scalar product on &
(X,Y) — b(X,0Y) for X,Y € &F_ogY .

For this scalar product the spaces g% are mutually orthogonal. Denote
by @, the corresponding quadratic form on gY i.e. Q;(X) = b(X,0(X))
for X € g%. Denote by S; the corresponding unit sphere in gV and by
O(Q;) the corresponding orthogonal group of g*/. Denote by T the isotropy
subgroup of I inside ' = O(Qqg) x O(Q1) x - X O(Qy). As X, belongs
to S; by Lemma 1.10.2, T is the product of the isotropy subgroups of X; in
O(Q;)- According to the preceding remarks the irreducible representations

of I having a I'-invariant vector are of the form H;° ® H;' ® - - - @ H;*, where
¢ =dimgh.
Notation 6.1.2. For 7 = (19,71, ...,7%) € NeTlwe set
He=HP QN Q- QHS
where H;' is the space of Q;(0)-harmonic polynomials of degree ; on .

As the quadratic forms Q; are invariant under M (see the proof of The-
orem 3.5.4), the group M acts on the space H.r.

From now on, we will also denote by T the corresponding representation
of M on H.

As M N H centralizes I, this representation has a (M N H)-invariant
vector.

Theorem 6.1.3 (Type III). The representation (7,H,) of M is irre-
ducible and conversely any irreducible unitary representation of M having
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a (M N H)—-invariant distribution vector is equivalent to (1,H,) for some
parameter T € N1 Moreover we have the multiplicity free decomposition :

L*(M/MNH) =&, ey Hr

Proof. —Let L; be the analytic subgroup of G with Lie algebra [; =
[0, gY]. As L; centralizes a®, we have L; C MA. On the other hand
the representation of L; on 9V gives rise to an irreducible prehomogeneous
vector space of commutatlve parabolic type, whose relative invariant is the
quadratic form @;. From the classification of real prehomogeneous vector
spaces of parabolic type (see [Ru]- 86), we know that [; D 0(Q;) X center,
where 0(Q;) is the Lie algebra of O(Q;). Therefore the Lie algebra of L; N K
contains 0(Q;). This implies that the representation of L; N K on ’H? is
irreducible for all 7; € N. As the subgroups L; commute, the product
H?ZO(Lj N K) is contained in M, and therefore the infinitesimal action of

M on M, contains the infinitesimal action of H?:o 0(Q;). Hence (1,H,) is
an irreducible representation of M. Moreover, if 7 # 7/, the representations
(r,H,) and (7', H ) are non equivalent.

Conversely let p be an irreducible unitary representation of M having
a (M N H)-invariant distribution vector. From Proposition 6.1.1 we know
that p is a finite dimensional subrepresentation of

LA (M/M N H) ~ L2HS ~ L%(Sp) ® L*(81) ® -+ ® L(Sy) .

As L2(S;) = & HE, we necessarlly have p = 7 for some 7 € N¥*1. The

multiplicity free decomposition is then also clear.
O

Corollary 6.1.4. Let HM"H pe the subspace of (M N H)-invariant vec-
tors in H,. Then HMNH = ('HT VMO gnd dim HMOH = 1.

Proof. —Since 7 is a finite-dimensional representation of M, we have

H, = HP = H;°° and , therefore, HMH = (H °)MNH_ Ag the regular
representation of M on L?2(M/M N H) is the representation induced from
the trivial representation of M N H, and as 7 occurs wilt multiplicity one in
L?(M/M N H), the result follows from the Frobenius reciprocity theorem.

O

Definition 6.1.5. The irreducible unitary representations (1,H,) de-
fined as before will be called (M N H)-spherical representations of M.

The contragredient representation (7, H;z), where H; is the dual space
of H,, is also an (M N H)-spherical representations of M. It has a very
natural (M N H)-invariant vector, which is the evaluation map ev, € H+:
defined by

r cH — C
R+ R(I).
This map is well defined since each element of 7, may be considered as a
polynomial function on the space @fzoﬁ’\i, homogeneous of degree 7; on ghi



6.2. EQUIVARIANT MAPPINGS FROM 0% INTO #, 155

Definition 6.1.6. We will denote by v, the (M N H)-invariant vector
of Hr defined by

(R|v;)r =R(I") forallREH, ,
where (| ) stands for the Hilbert product in H.,.

6.2. Equivariant mappings from O% into #,

Theorem 6.2.1. Let (7,H;) be a (M N H)-spherical representation of
M and v, be the (M N H)—invariant vector defined above. Then there ezists
a unique map by : O — H,. (resp. b, : O~ — H,) such that for all
XeOt, (resp. Ye O )meM, ac A, ne N we respectively have

bf(manX) = r(m)b (X) and b (I") =0, ,
b, (manY)=7(m)b (Y) and b (I )=v, .

Proof. —As AN is a normal subgroup of M AN = P we first extend 7
into a representation of P in H., by setting:

T(man) =71(m) forallme M,a€ A,ne N .

The mapping P 3 p — 7(p)v, € H, is right invariant under PNH = M NH.
Therefore the mapping b} defined on Ot = P.I* by

by (pI*) = 7(p)vr forp € P,

is well defined and satisfies the relations given in the Theorem..

Suppose now that a map b : OF — H, is given which satisfies
b (manX) = 7(m)b(X) form € M,a € A,n € N and X € OF. Then it is
clear that b (I") is an M N H-invariant vector in H,. From Corollary 6.1.4
we know that there exists a constant ¢ such that b (I") = cv,. If more-
over the map b is required to verify bt (I") = v,, the uniqueness therefore
follows.

The proof for b is similar.
O

Again let 7 be a (MNH )-spherical representation of M which is extended
into a representation of P as above. Then the same proof as Theorem 6.2.1
leads to the following Proposition.

Proposition 6.2.2. Let s € CFTL, let x* be the character of the P
relative invariant A® and (x~)° be the character of the P-relative invariant
V$. Define, for X € Ot and Y € O™,

bl (X) = A*(X)bf (X)  and by, (Y) =V (Y)b (Y).
Then b (resp. b, ) is the unique map from OF (resp. O~ ) into H. which
satisfies forp € P and X € O (resp. Y € O~)

bt (pX) = (X\)*(P)T(P)bFs(X) and bf,(I7) =,
by s (pY) = (x ) (P)7(P)brs(Y) and b (") = v .

The next results give some information about the behaviour of b} near
the boundary of O and of b, near the boundary of O~.
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Lemma 6.2.3. Let R be an element of H.,.
Then for X € (g o gM @ --- @ g™*) N OF we have

R(X)
(RIbF (X)), = ————4 ——
Ag(X) 2 A1(X) 2 - Ap(X) 2
MegMo. g ™) N O we have
- R(6(Y))
(R ‘ b’T (Y))T = TR Tp_1—Tk T0—71 I
Vo(Y)2Vi(Y) 2 - Vi(Y) 2
It may be noticed that, as A;(X) > 0 in Type III case, the square root
Aj(X)? is well defined for j € {0,...,k}.
Proof. — For an element X of (g% @ g™ @ .- @ g*) N OT, there exist
m € M and a € A such that X = mal™. Hence it follows from Definition
6.1.6 that

(R[b} (X)), = (R|7(m)v,); = (r(m)"'R)(I*) = R(mI*) .

Moreover, we have mI™ = Yy + Y7 + -+ + Y}, with ¥; € g%. Then for
a = exp(H) with H € a we get

and for' Y € (g

malt =amIt =aYy+aYi +-- +a¥, = aYy 4+ aMYi + - + a™MY},

A = M) As R is homogeneous of degree Tj on g%, we obtain

R(malIt) = a™2 T T M R(mIT).

On the other hand, in Type III case, Theorem 3.6.1 implies that we have
for u = (ug, ..., ux) € Zk!

where a

k
A(mal*)s = H aFE g+ A) — guodot(uotun) At (uottug) Ak
j=0

Hence, for u = (19,71 — 70, - -, Tk — Tk—1), We get
R(maIt) = A(maIt): R(mIT)
and this yields the first result.

Let Y = mal~ be an element of (g7 @g ™M@ ---9g*)NO". We
have as above
(R| b7 (Y)), = R(mI") .
From the proof of Theorem 3.5.4 we may write m = mgmpyg with mg €
MNK and mg € M N H. As mpy centralizes IT and I~ we have

O(mal ) =6(a)ymI™ =a ‘mI" .
Then we obtain
R(O(Y)) = R(a"tmI*) = a7 ™M~ "M R(mI™)
On the other hand, using Theorem 3.8.2, we have for v = (vy, ..., v;) € Z*+1
V(mal~)3 = a~@F+o)do—(vot+ve-1)a——voki
Hence, for v = (7%, Tk—1 — Tky---,T0 — T1), We get

R(§(mal™)) = V(mal )2 R(mI"),
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and this yields the second result.
O

Let us denote by 7 the (M N H)-spherical representation associated to
the parameter 7 = (7%, T,_1,-..,70). The involution v o068 = 6 o vy (where
7 is the involution defined in Theorem 3.7.1) interchanges g% and g .
Therefore, if R is an element of H,, the polynomial R o7y o § belongs to Hx
and we deduce from Lemma 6.2.3 the following result.

Lemma 6.2.4. Let Y be an element of (g7 @g ™M@ ---0g™)NO~.
Then we have for R € H,

(R|b7(V)r = (R|BE(7)z
whereE:ROWOQ.

Proposition 6.2.5. There ezist polynomial maps U : VT — H, and
U™ :V~ — H,, such that for X € OF and Y € O~ we have

b0 = 25 g b= )
A(X):z V(Y)2
where § = (60,01, ...,0k) is defined by
bo=70, 1 =T1+70,.--, 0 =Tk +Tp_1,
and § = (50,51,...,316) is defined by
go = Tk, 51 =Tk,1—|—7'k,...,gk =T10+T1 .

Proof. — Recall from Theorem 3.10.4 that every X € O is N-conjugate
to a unique element f(X) € g2°@- - -@g k. More precisely there exists n € N
such that

nX = f(X) = fo(X) + fr(X) + - + fu(X),
where f;(X) € g%. The map X + fx(X) is the orthogonal projection of X

on g**, hence a polynomial map from V1 into g* and for j =0,...,k — 1,

we have f;(X) = %;
2

g

where P; is a polynomial map from V7 into

As b1 (X) = b/ (f(X)), it follows from the previous Lemma 6.2.3 that
for R € ., we have

R(f(X R(f(X
(R (8 (x), = X)) BUX))
A(f(X))z  A(X):
where u = (79,71 — 70,..., 7Tk — Tk—1). As R is homogeneous of degree 7; on
gV, we obtain
(P Py
Rof_R(Al b + i)

1

= ATAD AT,HR(Po +P+- 4Py + fr) -
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Setting R(X) = R(Py(X) + Pu(X) + -+ 4+ Pe_1(X) + fe(X)), we get a
polynomial function R on V' such that

R(X
GI30 o) M—C.S.
A(X)3AL(X)™ ... Ap(X)Te-1
_ R(X)
Ao(X)F AL (X)L Ay(X) T
_ R(X)
AX)s
Taking now an orthonormal basis R; of #,, we have
R;(X
b (X) = SO (X) | R, R = 3 )
i T AX)2

By setting
Ut(X) =) Ri(X)R;,
i

we obtain the first assertion.

In order to prove the second assertion, we use Lemma 6.2.4. For Y € O~
we have 7Y € OF and Aj(vY) = V;(Y) for j € {0,...,k}. Therefore we
get
- = R(YY) _R(YY)

(R|b; (V) = (R[bE(y¥))s = — % = 205
2

A(Y):  V(Y)
where § = (Thy Tk—1 + Ty---,70 + 71) and R is the polynomial function on
V* associated to R = R oo @ by setting

R(X) = R(Po(X) + -+ + Po_1(X) + fr(X)) .

Taking again an orthonormal basis R; of H, we obtain

_ _ Ri(1Y)
br (V) =3 (b7 (V) |R) Ri=Y —“"2R;.
(Y) Z:( (Y) | R;) ; -
By setting o

U (Y) = Y_Ri(2Y) R,

we obtain the second assertion.

6.3. Definition of the local Zeta functions

Recall from Theorem 3.6.3 and Theorem 3.8.6 that (P,V ') and (P,V ™)
are prehomogeneous vector spaces with a single open orbit given respectively
by

Ot =PI"={XeVT|A;(X)>0 forj=0,1,...,k},
O =PI ={YeV |V;(Y)>0forj=0,1,...,k}.
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The fundamental relative invariants of the prehomogeneous space (P,V ™)
are the polynomials A; (j = 0,1,...,k) and the fundamental relative in-
variants of the prehomogeneous space (P,V ™) are the polynomials V; (j =
0,1,...,k).

The following definition of local Zeta functions of (P,V*) and (P,V ")
are not the usual one because they involve b} and b, and are H,valued.

Definition 6.3.1. For s = (sg,s1,...,8;) € C*1, 7 a (M N H)-
spherical representation of M, f € S(V*) and h € S(V ™), the local Zeta
functions for Type III are defined by

Z¥(f,87) = (X)A*(X)bf (X)dX

(D+f
Z(h@ﬂﬁzi/hOQV%YwTﬂﬂdY.

Recall that all the polynomials A; and V; take only non negative values.
Therefore there is no absolute value needed in the definition of A% and V*
(see Definition 3.8.8).

Remark 6.3.2. Using Proposition 6.2.5, it is easy to see that there
exists ug € R such that the integrals defining the Zeta functions converge
for Res = maxRes; > up and define holomorphic functions on this open
subset of C**1. We know also from [B-G]-1969 that these Zeta functions
have a meromorphic continuation on CF+1.

6.4. Existence of a functional equation for (P, V™)

Recall from chapter 4 (Notation 4.1.4) that

dimV™* dimV*t ¢  kd
“RE+D) 2k+1) 2 4°
The involution ¢ on C**! is still defined by

m

t(S) = (—80 — 81— — sk,sk,sk_l,...,sl)
and we also make the convention that in Ck+!
(20,215 --y28) —m = (20 — M, 21, .-, 2k) -

For f € S(V*) (resp. h € S(V ™) the Fourier transform Ff (resp. Fh) is
defined as in Definition 4.1.3.

Let ug € R be given such that the integrals defining Z*(f,s,7) and
Z~(h,s,T) converge for Re(s) > up and any f € S(V*1) and h € S(V7).
Then, for such a parameter s, the mappings f — Z7(f,s,7) and h —
Z~(h,s, ) define tempered H,—valued distributions on V* and V™.

If now f € C°(O7), then Z*(f,s,7) is an entire function on C**! and
f+—— Z*(f,s,7) is adistribution on O for any s. As in Type I and II cases,
we will first prove the existence of the functional equation for f € C(O™).

Define for p € P and ¢ any function on V+
pp(X) = p(p'X) (XeVT).
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Recall that (M N H)-spherical representations of M in H, are extented to
representations of P which are trivial on AN.

Lemma 6.4.1. Let 7 be a (M NH)-spherical representation of M. Then
for any p € P and f € C°(OT) we have

(6_4'1) Z+(fpasa7-) = Xs+m(p)T(p)Z+(f’SaT) -
Conversely if T is a Hr—valued distribution on OV which satisfies

Vp € PYf €CX(0F), (T, fp) =x"""®)r ()T, f)
then T is a multiple of f —> ZT(f,s,7).

Recall that x* = xg° - ka is the character of the P-relative invariant
Af.

Proof. — As the characters x; of A; are positive on P, an easy compu-
tation using Lemma 4.1.5 and Proposition 6.2.1 implies (6-4-1).

Let now T be a H,-valued distribution on @ which transforms under
P as in (6-4-1). Let (7,7+) be the contragredient representation of (7, H,).
We transform first 7' into a so-called H;—distribution (see [Bru]-1956 p.
105), that is a continuous linear form T on C®(OF,H;) = CX(OF) ® H;,
by setting

VQ € Hr, Vf € CX(0F), (T,f®Q)=((T,f),Q)

The correspondence between #H,—valued distributions and ;—distributions
is one to one (see [Bru]-1956, Prop. 1.1.b. p. 105).

If o € C(OT1,H;), we may define 7(p)p for p € P by

(F()p)(X) = F(p)p(X) (X € OF).
Then we have
Vp € P, (T, ¢p) = (T, x* ™ (p)7(p) 'o) -

This means that T is a H;z—distribution which is quasi-invariant under
P with multiplier x~(**™)7 (see [Bru]-1959, Definition 3.3. p.123). By

BRUHAT’s Theorem 3.1 ([Bru]-1959 p. 124), there exists a unique vector
v € H, such that

x(R)T™7r(h)v =v forhe PNH,
and (T, ¢) = / (x(D)* ™ (D)o, p(B)) dp  for @ € CO(OT,Hr) -
P/PNH

Here dp denotes an invariant measure on P/P N H. Using the identification
of P/P N H with OF, it follows from Lemma 4.1.5 that this measure is
given by Ag(X)~™dX which implies that xo(p)™dp corresponds to dX. On
the other hand x* is trivial on P N H hence v is (P N H)-invariant which
implies, by Corollary 6.1.4, that v is a scalar multiple of v, and 7(p)v a
scalar multiple of the function p ~ b (pI*). Therefore there exists ¢ € C
such that

T, ) —c/ A (bF (X), (X)) dX .
It follows that for f € C°(OT) we obtain
(T,f)=cZ*(f,s,7).
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O

Proposition 6.4.2. Let 7 be a (M N H)-spherical representation of M
and s € CF1. There exists a meromorphic function v(s,T) such that for
any f € C(OT) we have

Z7(Ff,s,7) =v(s,7)Z7(f,t(s) —m,7)
(equality of meromorphic functions).

Proof. —1It is enough to prove the Proposition on an open subset of
Ck*! where both Zt(f,t(s) —m,7) and Z~(Ff,s, ) are holomorphic. As
f € CL(OT) this is the case for Re(s) > ug. Moreover, in this case both
Z*(f,t(s) — m,7) and Z (Ff,s,7) are defined by integrals. In order to
use Lemma 6.4.1 let us determine how Z~(Ff,s, ) transforms under the
natural action of P on f.

Lemma, 4.1.5 implies that

F(fo) = x0" (@) (Ffp -

An easy computation using again Lemma 4.1.5 and the relations

_ 1 — Xk41-j .
= —, =0 g =1,...,k),
X0 X0 Xi X0 < )
which were proved in Corollary 3.8.5 imply that for p € P we have:
(6_4'2) Z_(]:(.fp)’ S, T) = Xt(S) (p)T(p)Z_(j:(f)a S, T) -

It follows from (6-4-1) and (6-4-2) that Z—(F(f), s, 7) transforms under
P as Z*T(f,t(s) — m,7) and Lemma 6.4.1 yields the result.
O

Proposition 6.4.3. Let 7 be a M N H-spherical representation of M.
Let || || be a fized norm on H,. For any f € S(V™') and any h € S(V7)
the analytic functions s — Z7(f,s,7) and s — Z~(h,s,7), defined for
Re(s) > ug, have a meromorphic continuation on an open subset U c Ck+t
which contains the complementary set of a countable union of hyperplanes.

Moreover if K is a compact subset of U , there exist three constants C € R,
M €N and N € N (each depending on K ), such that for s € K

(6-4-3) VEeSWVT), 11Z27(f, sl < Cvmn(f)

(6-4-4) Vhe S(V7), ||Z (h,s,T)|| < Cvm,n(h)

(where vy, N s the usual semi-norm on (V) or S(V~) defined in section
5.2.). This implies in particular that f — Z*(f,s,7) and h — Z~(h,s,T)
are H,r—valued tempered distributions of order < N for s € K.

Proof. — As said in Remark 6.3.2 the fact that s — Z*(f,s,7) and
s > Z (h,s,7) have meromorphic continuation to CF*! is due to
BERNSHTEIN and GEL'FAND ([B-G]-1969) using HIRONAKA’s Theorem. We
prefer here use directly SABBAH’s result (see Proposition 5.2.2) as for Type
I and Type II.

If (e;)i-1,..p is a basis of H,, let us denote by Z; (f,s,7) and Z; (h, s, )
the i-th component of Z*(f,s,7) and Z~(h, s, T) respectively. In order to
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prove the assertion concerning the holomorphic extension to ﬁ, it is enough
to prove it for each component Z;"(f, s,7) and Z; (h, s, 7). But from Propo-
sition 6.2.5 we know that, for example,

79 T0+71 Te—117k )
T 2 T o +

Z (f,s,7) = | fx)as=(3 UF(X)dX |

f
v+

where Ui+ is a polynomial function. Therefore Proposition 5.2.2 applied
as in Lemma 5.2.3 gives the result. The same way, in order to prove the
inequalities (6-4-3) and (6-4-4), it is enough to prove the same inequality for
|Z;"(f,s,7)| and | Z; (h, s, 7)|- This again is proved as Lemma 5.2.5.

[l

In order to extend the functional equation of Proposition 6.4.2 to func-
tions f € S(VT), we define the distribution T, for f € S(V1) by

(6'4'5) <T8,T) f> = Zi(]:fasaT) - V(S,T)Z+(f,t(8) -m, T) °
The aim is to prove that this is the zero distribution.

For i € {0,1,...,k} let A;(9) be the differential operator with constant
coefficients on V'~ defined as in (5-2-14) by

Ai(0)e?Y) = Ay (X)W XY) (X evty eVvT).

Lemma 6.4.4. There exist polynomials by r,b1 - ..., by, in the variable
s = (so, 81,.-.,8k) such that

Ag(Q)VE ... Vikby = by (s)VE TV VikD,
AiO)VE ... VEEbT = by (s) V50 IV L VT VS (i £ 0)

Proof. —In order to apply Proposition 6.2.2 let us determine how the
function A;(9)V?®b; transforms under the action of P. Let m be the regular
representation of P on functions on O~ i.e. for a function ¥ on O7, 7 is
defined by

(r(P)V)(Y)=T(p 'Y) (peP, YeO).

Recall from (5-2-16) that for ¢ = 0,1,...,k we have

m(p) o Ai(8) = xi(p) T Ai(9) o 7 (p) -
On the other hand for any function ¥ € C*(O~,H,) we have

Ai(0)7(p)¥ = T(p)Ai(9)¥ (pe P).
Using Theorem 6.2.1 it follows that

w(p) ™ (AO)A%; ) = xi () (X ) (0)7 (1) As(D); -

Suppose for example that ¢ # 0. From Corollary 3.8.5 we have

Y — Xp41-i(P)
xi(p) X5 () )

which implies that

Xi(P) (X )*(p) = (x)*'(p) where &' = (s0 = 1,81, -, sky1—i + 1,0, 8) -
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Therefore the function A;(9)A®b; transforms under P as the function A% b_ .
Then, Proposition 6.2.2 implies the existence of a constant b; ;(s) such that

Ai(9)Vob; = b (s)VE T VL Vit vk

As in the proof of Lemma 5.2.7, it is easy to see that b; ; is a polynomial.
O

Theorem 6.4.5. (Abstract functional equation for type IIT)
Let 7 be a (M N H)-spherical representation of M. For f € S(V*) and
h € S(V ) the integrals defining Z*(f,s,7) and Z (h,s,T) have meromor-
phic continuation to Ckt1 and there exist meromorphic functions v(s,7) and
d(t, s) such that

(6_4_6) Z_(]:f’S’T) = V(S,T)Z+(f,t(8) - m’T) )

(6-4-7) Zt(f,8,7) =8(s,7)Z7(Ff,t(s) —m,T) .

Proof. —First of all notice that §(s,7) is the inverse of v(t(s) — m, 7)
since t(t(s) — m) — m = s. Therefore it remains to prove that T » = 0, i.e.
that for all f € S(VT),

Z_(F(f)a 8,7’) - V(S,T)Z+(f,t(8) - maT) =0.
Recall from Proposition 6.2.5 that

bt = v
T 70 Tot+T1 Thk—117k
AFA T LA, ”
and
_ U~
bT - TR Th=117Tk TQ+71
VeV, 2 .V,

where U+ is a H,-valued polynomial. Therefore, once a basis of H, is
chosen, the same proof as Lemma 5.2.6 (which needs Proposition 6.4.3) can
be applied to each component of T; ;. Hence there exists an integer p € N
such that
APAP APT, =0 .

Define A? = AJAY ... AP and A(9)P = Ag(9)PAL(9)P ... Ak(9)P. We will
now compute explicitly APT; .. Using Lemma 5.2.8, which is still true in
the type III case, we get

_ Lo (kL) (k+2)

Z=(F(APf),s,7) = 2um)"P 2 Z7(A(9)F(f), s,7) -

For Re(s) > wug this Zeta function is an integral. Integration by parts using
Lemma 6.4.4 leads to the existence of a polynomial P;(s) such that

Z (F(APf),s,7) = Pr(s) e F(HY)VEY)*@b, (Y)dY

= P.(s)Z(F(f), a(s),T)

where a(sg,81,...,8;) = (so — (k+ 1)p,s1 + p,...,8k + p). On the other
hand we have

ZT(APf,t(s) —m) = Z7(f,t(s) —m+ (p,...,p)) -
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Hence we obtain
0= <APTS,T’f> = PT(S)Zi(J:f,a(s),T)—V(S,T)Z+(f,t(8)—m+(p, R ’p>) .

As t(a(s)) —m =t(s) —m+(p,...,p), there exists a meromorphic function,
which for obvious reasons is equal to the function v(s,7) from Proposition
6.4.2, such that for f € S(V*) and Re(s) > up we have:

Z7(F(f),als), ) = v(s,7)Z* (f, t(a(s)) — m, 7).

The result follows by meromorphic continuation.

6.5. Explicit functional equation for £ =0

The explicit functional equation for the local Zeta function Z(f, s, 7) will
be obtained in the next section. As for Type I and Type II, the proof will
be done by induction on the rank k. One of the key ingredients will be the
proof in the case where kK = 0. We have seen in chapter 5 that for Type I
and Type II, the case k = 0 is essentially TATE’s functional equation of the
MELLIN transform.

For Type III the case k = 0 is somewhat more involved. In fact it relies
on the functional equation of a Zeta function attached to a positive definite
quadratic form and a harmonic polynomial, which was obtained by RALLIS
and SCHIFFMANN ([Ra-S]-1975). We first explain their result.

Let Q be a positive definite quadratic form on R¢. Define a bilinear form
® on R¢ by

(6-5-1) Vr,y eRE, B(z,y) = Q(z+y) — Q(z) — Q(y)

and define the Fourier transform on the Schwartz space S(R?) by

flah = [ 1@ i,

where dsx is a self-dual Lebesgue measure for this Fourier transform. This
means that the inversion formula is given by

f(Z‘) _ f(xl)efm'ﬂ@(z,z’) ds.’El ’
R

where d;2' is the same measure.
Let Q(0) be the differential operator with constant coefficients defined

by the formula (4iﬂ)2m = Q(8)f for f € S(R'). A polynomial R on
R¢ is called harmonic if Q(@)R = 0. Let H} be the space of harmonic
homogeneous polynomials of degree t. For f € S(Rf), R € Hz and z € C,
Re(z) > g we define the following Zeta function

(6-5-2) 2(f,5 ) = | f(2)Q(z)* 3 R(z) dsz -
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Theorem 6.5.1 (RALLIS-SCHIFFMANN).
Let R € H! and f € S(R®). The function z — Z(f,z, R) is holomorphic
for Re(z) > % and has a meromorphic continuation to the whole complex
plane which satisfies the following functional equation

2(f,7R) =15 08(F, § — 2~ )

where
B / : T . tr1y . T
1(2,8) = plz = 5 +1, 1) p(t+2,(=1)") cos( 7€) +ip(t+2,(=1)") sin(£)
and where p(z,+1) are TATE’s rho factors defined in section 5.3.
Proof. —This is a particular case of a functional equation proved by

RALLIS and SCHIFFMANN (they deal more generally with arbitrary non-
singular quadratic forms). More precisely it is a particular case of formula
(5-14) p. 551 of [Ra-S]-1975 (see also formula (5-20) p. 554 in loc.cit.).

O

Let us now consider a graded Lie algebra g = V~ @ g ® VT which is
of Type III and where k = 0. The condition k& = 0 implies that VT =
g% V- =3 ™ and g = m@ a. We know from Theorem 1.12.1 that
the fundamental relative invariant Ag is then of degree 2 and is, up to a
multiplicative constant, equal to b(X,0X). More precisely, as b(Xy,0Xy) =
1 by Lemma 1.10.2, we have Ag(X) = b(X,0X) for any X € V+ = glo.
Hence A, is a positive definite quadratic form on g*°.

In order to use Theorem 6.5.1 in our context we have to proceed to a
careful comparison between several Fourier transforms. If ®(X, X') is the
bilinear form defined as in (6-5-1) by ®(X, X') = Ag(X + X') — Ap(X) —
Ap(X'), then (X, X') = 2b(X,0X') (X,X' € g*). We define first two
Fourier transforms on S(g*°) by

(6-5-3) FXN = f(x)eme XX g, x

(6-5-4) foey = [ gonemeenn ax.
g0

where d;X and dX are self-dual Lebesgue measures on g for f and f
respectively. It may be proved that if (dX,dY’) is a pair of measures respec-
tively on V't = g and V~ = §~*° normalized as in section 4.1, then dX is
self-dual for f. Recall that ¢ denotes the dimension of §*°. An elementary
computation shows that

d,X = v/2'dX and f(X') = v2 f2X') (X' €§).

Moreover if the Fourier transform Ff between S(g*°) and S(g=*°) is
defined as in Definition 4.1.3 by

(6-5-5) FfY) = /~A f(X)e2'i7rb(X,Y) dX (Ve ~_)\0) ,
g"o
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then we have

!
656)  FAOX)=FX) = i) (X eV
\/_

As k = 0 the (M N H)-spherical representations of M are just the
representation of M on the spaces H;° of Ag(d)-harmonic polynomials of
degree 19 on g*°. As in section 6.1, we also denote by 7y the corresponding
representation of M and by v, the (M N H)-invariant vector in ;" defined
in 6.1.6.

Let us remark that, in the case k = 0, we have IT™ = X3, P = M A and
Ot = MAIT = E’\O\{O}.

We are now able to give the explicit functional equation for Type III
and k = 0. For the (M N H)-spherical representation on #;° (79 € N), the
Zeta functions defined in 6.3.1 can be written in this case as

ZH(f,z,m0) = - FXOAFX) (X)dX  (f € S@),z€0),
and
Z(h, 2,m0) = / RV (V)AY  (he SE),z € ) .

Theorem 6.5.2 (Type III and k = 0).
Let g =g ™ @ g g be a graded Lie algebra of Type II1 and of rank 1
(k =0). For 79 € N, the Zeta functions Z*(f,z,79) and Z (h,z,79), which
are holomorphic for Re(z) large enough, admit a meromorphic continuation
to the whole complex plane, and there exists a meromorphic function do(z,79)

such that

14

_aTO) .

Z+(f’z;7—0) = 50(Z,T0)Z_(ff, —z — 5

Moreover we have

JO(ZaTO) = {

—w‘zz—é_lf(z —~ D4 D (z+ 2 + £)sinmz if 7o is even
—1 W_QZ_%_lF(z — 24 D(z+ D+ £)cosmz if 7o is odd .

Proof. —1t is enough to prove that for any R € H,° we have

(R | Z+(faza7-0))7-0 = 50(2’7-0)(R | Z_(]:f’ —k = g’TO))TO

with the given factor §y(z, 70).
From Lemma, 6.2.3 and the relation d, X = \/iedX we get

(R| Z*(f, 2 70)) / F(X)Ao(X) (R | by (X)), dX
X)A “2PR(X)d, X .
\/ﬁ F(X)Ap(X)* (X)
It follows that
T l
656 (RIZ ), = Bz ).
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On the other hand we have

_ 14 _at _
(R| Z7(Ff,—2— 5,7'0))T0 = o FFY)Vo(Y) " 2(R | bTO(Y))T0 ay .
In the previous integral we make the change of variable Y = 6X and

use Proposition 4.1.1. From the relations V(0X) = b(0X,X) = Ay(X),
1 ~ X 1
Ff0X)=—7f(5), dX = —;d;X and Lemma 6.2.3 we get
VAR

14 ~ X L
(R‘ Z (Ff,—z— 5,7'0))T0 = % o+ (E)AO(X)_Z_§_ R(X)dsX

= [ FOndex)FE
o+

Since Ag(2X) = 22A¢(X) and R(2X) = 20 R(X) we obtain

R(2X)ds X .

657 (RIZ°(Ff—z—5,m)), =2 % U= 2,

Using (6-5-6) and (6-5-7) together with Theorem 6.5.1 we obtain

R).

L T l _ Y
Z+(f,2,7'0):22Z+2’}/(2—§0+§,T0)Z (ffa_z_iaTO) .
Hence
L T 4
So(z,m0) = 2%t ay(z — 50 +5:70).

From the explicit value of 7(z,7y) given in Theorem 6.5.1 we get

o(z,m0) = 2% 3 p(z — T +1,1)
L 4

x (plz+ T+ 50 (F1))cos(0) +ip(z + o + 5, (1)) sin(%ﬁ)) .

Using the value of p (Definition 5.3.1) we obtain

14

So(z,70) = 272~ 371T(z — % 4 1)T(z + T2—° +3)alz) ,

2

where z — a(z) depends on (—1)™. For example if 7 is even we get

a(z) :cos(g(z — % +1))
X (cos(g(z + % + g)) cos(gf) + sin(g(z + 2—0 + g)) sin(%ﬂ)) )

The result follows from elementary trigonometric formulas.



168 6. ZETA FUNCTIONS (TYPE III)
6.6. Computation of the coefficients (s, )

In this section we will compute explicitely the coefficients (s, 7) defined
in Theorem 6.4.5. This will be done by induction on the rank. Recall from
Chapter 4 that if the regular graded algebra g is of rank k£ + 1, then the
regular graded algebra g =V~ (0) @ g(0) ® V1(0) is of rank k.

As for Type I and Type II in section 5.3 we will denote by underlined
letters all objects attached to the algebra 'gv which is graded by the element
H,= Z?;g H);. For example G = G(0) denotes the analytic subgroup of G
with Lie algebra g = g(0) and P denotes the parabolic subgroup of G defined
as in section 3.5. The polynomials A; (j =0,...,k—1) are the fundamental
relative invariants for the action of P on V* = V(0), normalized by the
condition A;(I") =1 where I'" = Z?;& X;.

From Lemma 5.3.6 we know that the LANGLANDS decomposition of P is
given by
B = MAM ;
where M = M NG and N = NNG. Moreover M and M have the same Lie
algebra.
Let L; be the analytic subgroup of G with Lie algebra [; (j =0,...,k).
The Cartan decomposition of L; is given by

Lj = MjA; where Mj =L;NK and Aj =" |
It follows that the group M; is connected and therefore a subgroup of M.

Lemma 6.6.1. The set MogMy --- My 1ApA1--- A 1N is a subgroup
of P. Moreover the action of this subgroup on V™ is prehomogeneous with
Ot =PI as single open orbit.

Proof. — The subgroups L; commute. Hence Mg --- My_1Aq--- Ap—1 N
is a subgroup of P. The proof of Theorem 3.5.4 shows that not only the
action of M but also the action of MyMj - - - My_1 is transitive on the product
of the spheres H?;& S;. Using this result, the same proof as in Theorem 3.6.3
(Type III) yields the result.

O

Let H be the centralizer of I in G.

Remark 6.6.2. It may be noticed that H is not a subset of H and
that, moreover, M N H is not a subset of M N H. To prove this consider a
element m € M}, which does not centralize Xj. Such an element exists since
the orbit of X} under the action of My is a sphere. This element belongs to
M C G and centralizes I, hence belongs to H. But m does not centralize
IT = I + X} and, therefore, does not belong to H.

Let (7,H,) be a (M N H)-sperical representation of M where H, is the
space Hy® @ Hi' ® -+ ® H;*. The restriction of this representation to the
space

He =HP QU] ®--- @H
defines a representation of the subgroup M of M which, by Theorem 6.1.3 is
a (M N H)-spherical representation of M denoted 7. Similarly the restriction
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to the space H,, = ’H;’“ defines a (My N Hy)-spherical representation 73 of
Mk where Hk = ZLk (Xk)

A (M N H)-invariant vector v, € #, of the representation 7 has been
defined in Definition 6.1.6. In a similar manner we define a M N H—invariant
vector in ‘H, for 7 and a M}, N Hy-invariant vector in H,, for 7.

Lemma 6.6.3. If we identify canonically H, whith Hr ® Hr,, then we
have
Vr = Uy @ Upy, -

Proof. — Using the canonical identification between the Hilbert spaces
Hr and H; ® H,, we get, for P € H; and Q € H,

(vz®vr, | P®Q), = (| P) (vr | Q).

=PINQXy) =PRQ)IT)=(v; | PRQ),_ .
O

Proposition 6.6.4.
(1) Foru € OF, v e Of =g*\{0} and A € g(—1) we have
b (44 u + v)) = b (u+ v) = b (u) @ b (0)
(2) Foru' € O, v e Oy =g *\{0} and A € g(—1) we have
by (€A +v)) = b (u+v) = b5 (u) @ b (1)

Proof. —We only give the proof for (1).

It follows from Lemma 5.3.7 that for u € O, v € O} and 4 € g(-1),
€24 4(y 4 v) is an element of Ot. Hence b} (e2d4(u + v)) is well defined and
we obtain from Theorem 6.2.1

bi (e (u+v)) = b (u+0).
Since the action of My, is transitive on the spheres of g** there exist my € Mj,
and ay, € Ay = exp(RH), ) such that
v =mpapXy -

Lemma 6.6.1 implies that there exist m € My--- My_1,a € Ap--- Agx—_1 and
n € N such that

Moreover myay commutes with m an. Hence if m = mmy, a = aag we have
u =manlIt since mpaplT = IT and v = maﬂfl‘c" since man X, = Xi. It
follows from Theorem 6.2.1 that

bt (u+v) = bf(man.I") = r(mmy)v,

Using Lemma 6.6.3 and again Theorem 6.2.1 applied to the regular graded

algebras (g, Hp) and (g, Hy,) we obtain
bl (u+v) = 7(m)v; ® T(my)vr,
= by (manI®)® b} (myapXy)

= b/ (u) ® b (v) .
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As in Type I and II cases we need an explicit computation of y(u', v),
but here the result is very simple.

Lemma 6.6.5 (Type III).
For v’ € O~ and v € O we have y(u',v) = 1.

Proof. — By Definition 4.7.3 we have v(u/,v) = €3 (P9 where (p,q)
is the signature of the quadratic form Q. , which is defined on g(—1) by
Qu’,v(A) = %b((adA)zul,’U).

As u' belongs to O~ we know from Lemma 3.6.2 that there exists an
element n € N such that

ES

-1
na' =uy where uy =Y Z; (Z;j g ™).

<.
Il
IS

Moreover nv still belongs to O and we note nv = Zj.

As N stabilizes g(—1), the quadratic form @, , is equivalent to the
quadratic form @, 7. The decomposition g(—1) = EB?;&Ej’k(l, —1) is an
orthogonal decomposition for Q. z,. Moreover if A belongs to E;(1,-1)

then b((ad AV Z;, Zk) = 0 for i # j. Thus we have the following equivalence
of quadratic forms :

Qui,z;, ~ @;?;éQj,k ,

where Q; 1, is the quadratic form defined on Ej;;(1,—1) by

1

Qj,k(A) = ib((ad A)2Zj, Zk) for A € Ej’k(l, —1) .

The quadratic forms qz; 7z, on Ej;(—1,—1) have been defined in section 2.5
by

1

qu,Zk(Y) = —Eb(ad Z]Y, ad ZkY> forY € Ej,k(—l, —1) .
A simple calculation shows that
Qj,k(ad Zj.Y) = qu,Zk(Y) forY € Ej,k(—l, —1) .

As ad Zj is an isomorphism from E; ;(—1, —1) onto E} x(1, —1) the quadratic
forms Qjx and gz, z, are equivalent.

We know from Theorem 2.8.12 that for Type III the signature of the

quadratic form gz; 7, is equal to (g, %).This yields the result.
O

Theorem 6.6.6 (Type III).
Let f € S(VY) and 7 € N*t1. In the functional equation (6-4-7) proved in
Theorem 6.4.5

Z*(f,5,7) = 8k(s,7)Z7(Ff,t(s) = m,7) ,
the meromorphic functions s — 0y (s,T) are given by

k .
jd
5k(S,T) = 1—[0(50(80 +-o s+ Z,Tj) .
j=
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Remark 6.6.7. The coefficient §(s, 7) defined in Theorem 6.4.5 depends
of course on the graded algebra g. We prove here that for Type III it depends
only on the rank k of this graded algebra and on the constants d and /.
Henceforth we will denote it by J; to emphasize the dependance on k.

Proof of Theorem 6.6.6. — To obtain the explicit expression of the co-
efficients ¢j, it is sufficient to use C* functions f with compact support in
Ot. In that case the Zeta function s — Z¥(f,s,7) is analytic on CF*1.

We will prove the formula by induction on k. For k = 0 the formula
reduces to Theorem 6.5.2. We suppose now that this formula is true on g

where it can be written for ¢ € C°(O™)

Z(p,8,7) = 0p—1(8,7)Z (Fop,t(s) —m) .

Here we have s = (sg,...,8,—1) and
dimV* _ ¢, (k-1)d . )
— — — - = _— 11 = .
="k 2 4 mTy Smeen

Let f be a function in C°(OV). Notice that if u € V1 and v € V(2),
then from Lemma 5.3.7 we have

u+v €O <= uec O andve O .

Then, from the integration formula proved in Proposition 4.6.4, Lemma 5.3.7
and Proposition 6.6.4 we get

Z+(fa 8, T) = / / Tf+ (u, ’U) A(u)i Ak(v)30+"'+3k+ de
vEOg UEQ+
X bf (u) @ b (v) du dv .
As the map @ : (u, 4,v) — €234(u + v) is a diffeomorphism from the open
set OF x g(—1) x O onto OF, the function (u,v) T;'(u,v) is a C®
function with compact support in O x (9;:. Thus the previous integral is

absolutely convergent for each value of s € C¥*1 and 7 € N**+1_ If we apply
now the induction hypothesis to the function u — T]j' (u,v) we obtain

[ T ) A b ) du =
ueOt

Gii(s,) [ (R 0 @)y, (o) du
u'eO~ -

Suppose now that s is chosen such that the function u' — V(u/)Hs)-m

is continuous on V'~ = V'~ (0). Then the last integral is absolutely conver-
gent and compactly supported in v. Hence we may exchange the order of
integration in the computation of ZT(f,s,7) and we get

() =bialen) [ vy m )

kd
® / . (fuTF)(u,a U)Ak(v)50+...+5k+ 4 bi;c (v) dv du' .
veO,
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From Theorem 6.5.2 applied to the graded algebra gy = g~ ®m;Da,Hg— *
we get

dk
/ I DAL S B (0) do = Go(on -+ s+ )
Ok

dk ¢
X / (fvfuT}‘i_) (UI, UI> vk(vl>—so—...—sk—T7§ b;k (’Ul) d’Ul .
VS Omy
From Lemma 6.6.5 and Theorem 4.8.1 we get
FoFlTf = FT} =Tz, .

The formula giving Z*(f,s,7) can now be written as

dk
Z+(fa 37T> = 5k—1(§a 1)50(30 + et + Z’Tk>

x/ / Trp(w',v') D(u',v") du'dv’
o-Jo;

where

dk ¢
D(’U,I,UI) _ Z(ul)t(g)fmvk(vl)fsof...fsk—f—i b;(u') ® b;k (’U’) .

Using the relations m = m — % and m = % + % we deduce from Lemma
5.3.7(2) and Proposition 6.6.4(2) that

D(u',v") = V(u' + u')t(s)*mvl(u')% b, (u' + ') .
From the integral formula proved in Proposition 4.6.4 (but this time on V)
we obtain

Z(fy5,7) = b 1(5,7)00(s0 4+ s+ )2 (FLt(s) —m7)

An induction on k gives the announced formula for d.

6.7. Computation of the coefficients v(s, 1)

The coefficient v(s,7) defined in Theorem 6.4.5 is the inverse of the
coefficient d(¢(s) — m, 7) since we have t(t(s) —m) —m =s.

Theorem 6.7.1 (Type III).
In the functional equation (6-4-6) proved in Theorem 6.4.5

Z=(Ff,s,7) =v(s, ) ZT(f,t(s) —m,7) (feSVT)),
the coefficient s — vg(s, T) is the meromorphic function given by
vi(s,7) = (=1) 6k (s, 7)
where T = (T, Tg—1,---,T1,70) and |7| =10+ 71 + - + 7.

Remark 6.7.2. A proof similar to the proof given in Theorem 5.4.1
namely a proof using the involution v which interchanges V* and V'~ and
the fact that F o F = Idy+ may be done. But here a direct computation
using the explicit value of d; obtained in section 6.6 gives the result.
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Proof. — We first give the value of vy(z,79) which is the inverse of
do(—z — £,1), since we have m = £ if k = 0 (Type III). From Theorem
6.5.2 we get

l oty v £ 70
do(—2z — 5,7'0) =72 (-2 — 5 57T DI(—z + E)a(z) ,
where
sinm(z + %) if 79 even ,
a(z) = . ¢ .
—icosm(z + 3) if 79 odd .
Using the formula T'(2)'(1 — z) = ——— we obtain
sinmz
l l
Bo(—2 = 5,70) = w Tz 4 4 S)D(z — o + D)
2 2 2 2
where
sin7r(z—|—12‘l+§)sin7r(z—ﬂzl+1) . .
- 7 = —sinwz if 79 even ,
sinm(z + 5)
B(z) =
i To 4 £y _ T 41
sinm(z + 2.+2)s1n7r(ez ) ={CcosTz if 79 odd .
—icosm(z + %)
It follows that
[N
(6-7-1) vo(z,m0) = do(~2 — 5, 70) L= (=1)do(z,70) -
We know from Theorem 6.6.6 that
k
.d
Sk(s,7) = [ bo(s0 +--- +5; +igpm)
j=0
Recall that m = £ + k9. Then if s' = (s},...,s}) denotes the element
t(s) — m we get
d d ¢
! ! .a .
30+---s]-+]1——30—31—---—sk_j—(k—])1—§ .

Thus we have
k

d, !
9 (t(s) — m, 1) :]1;[050(—(30 +t s +Jz) - §akaj) :

Since vy (s, 7) = 8x(t(s)—m, 7)1, the result is obtained from formula (6-7-1).
O






CHAPTER 7

Zeta function attached to a representation in the
minimal spherical principal series

In this chapter, we will define the main object of this article, namely the
Zeta function attached to a representation in the minimal spherical principal
series. We will also prove a functional equation for such a Zeta function (see
Theorem below). This functional equation is the main result of the paper.

Let =V~ ®g® V™" be a regular graded Lie algebra. We will denote
by (2 )p=o,....r the collection of open G-orbits in V* (the number of open
G-orbits is r +1). Let (X;),=o,...x be the sequence satisfying condition (D)
chosen in section 3.6. For each p we choose once and for all an element
I = Z?:o 2 X; (€5 = £1) belonging to Q. Let us recall how this choice
may be done for each Type.

e Type I (see Theorem 2.10.1 and section 5.6):

k—p k
r=k+1 and L= (3 x)-( Y X).
e Type II (see Theorem 2.7.3 and section 5.6):
k k—1
r=1, If=1"=%% ad If=(3X)-X.

e Type III (see Theorem 2.6.2) :

k
r=0 and If=I"=) Xj.
j=0

In any case the index p in Ip+ denotes the number of coefficients eé’ in the

decomposition Ip+ = Z;?:o €§X ; which are equal to —1.

We also define I, = 6(I) (p = 0,...,r) and the open G-orbit G.I,
will be denoted by 2. The collection of open G-orbits in V™ is given by

(Q; )p:O,...,r-
We know from Chapter 3, that if H, = Zg(I,) = Zg(I, ), then
+ ~ ~ —
Qf ~ G/H, ~ Q;
dIf gad I, jad I

is a symmetric space defined by the involution o}, = €*

175
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7.1. The minimal spherical principal series

For a general symmetric space G/H, van den BAN has defined in ([vdB]-
1988) the so-called minimal spherical principal series of representations of
G. The representations in this series do really have (generically) nonzero
H-invariant distribution vectors, and those which are unitary, give the most
continuous part of the Plancherel formula for G/H.

In this section we will describe these representations in some details for
the symmetric spaces G/Hp. These representations are a subset of the prin-
cipal series of representations induced from the minimal o,,6-stable parabolic
subgroup P introduced in section 3.5.

Remark 7.1.1. The first key fact to be noticed in our context is that
the parabolic subgroup P is minimal op6-stable for all p = 0,...,r (see
Proposition 3.5.1). It follows that the principal series induced from the
minimal o,60-stable parabolic subgroup for the various o, will be induced
from the same P.

Therefore we will in this section and in section 7.2 denote by H one of
the subgroup H, and by o the corresponding involution op.

Recall from Theorem 3.5.3 and the remarks before it, that there is a finite
number of open P-orbits in G/H which are parametrised by W°/W?%. We
will denote by W a set of representatives of W°/W0% in Ng(a?).

Let us now recall the definition of the principal series of representations
induced from P = M AN. Recall that m, a and n are the Lie algebras of M,
A and N respectively. As usually we define p € a* by

1
VX e€a, pX)= §tr(adX‘n).

Let (7,H,) be a unitary representation of M and ( | ), the Hilbert product
on H7,. For A € af (the dual of the complexification of a), let C; (G, )
be the space of continuous function ® : G — H such that

(7-1-1)  ®(mang) = aMPr(m)®(g) (meM,ac A,neN,geq).
Since G = PK, the sesquilinear form defined on C (G, #,) by

(81]%2) = /K (4(k)|Ba (k). dk

is positive definite. Let H,) be the Hilbert space obtained by comple-
tion with respect to this scalar product. The right regular action of G on
CT,)\(Ga %T) given by

7‘-7',)\(9)@(3:) = @(xg), S CT,)\(Ga 7'LT) .

extends to a bounded operator on #, » (also denoted m, z(g)) which defines
a continuous representation 7y of G on this Hilbert space.

The spherical principal series are the principal series which satisfy some
additional assumptions given by Van den BAN
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Definition 7.1.2 (Van den BAN’s conditions).
The representation m, x belongs to the minimal spherical principal series if
(a) A =0;
anh
(b) there exists w € W such that the representation wr of M (defined
by wr(m) = T(wmw™) for m € M) has a nonzero (M N H)-invariant
distribution vector.

Let us examine these conditions in our situation.

Concerning condition (a), it should be noticed that, as a consequence of
Proposition 3.1.4, the set a N b is independent from the choice of H = H),.
Moreover we have a = (a N h) @ a® and therefore condition (a) reduces to
A € (ad)* with A extended to a} by the condition A'a np = 0.

Remark 7.1.3. As o8 stabilizes n, we have
tr(ad(aOX)‘n) = tr(ad(X)‘n) for X €a.

Thus we get p(X) = 0 for X € anh ([vdB]-1988, Lemma 3.1). It follows
that p may also be considered as an element of (a2)*.

Concerning condition (b) the situation depends on the Type of the reg-
ular graded algebra. For Type I the quotient M /M N H is trivial (Theorem
3.5.4) and therefore wr and 7 are the same representation, namely the triv-
ial representation. For Type II and III there is only one open P-orbit in
G/H (see Theorem 3.5.3) and therefore W is trivial. Hence in any cases
condition (b) reduces to the condition

(b’) 7 is a representation of M which has a nonzero (M N H)-invariant
distribution vector.

As M/M N H is compact such a representation 7 is always finite dimensional
(Proposition 6.1.1).

Representations satisfying condition (b’) are described in Theorem 6.1.3
for Type III and are trivial for Type 1.
Here is the description of such representations for Type II.

Lemma 7.1.4 (Type II). In Type II case we define for m € M the
elements m; = +1 by m.X; = m;X; (j =0,...,k). Then any (M N H)-
spherical representation T is given by a character of M of the form

T(m) = (m1...mg)™(ma...mg)™...m*F where 7, € Z/27 .

Proof. — In Type II case there are only two open G-orbits in V', namely
Qf = GIT ~ G/Hy, and Qf = GI}' ~ G/H;. We know from the proof
of Theorem 3.5.4 that m; € {+1,—1} and that mom;...m; = 1. Let
M be the multiplicative group of such sequences (mg,mq,...,mg). The
proof of Theorem 3.5.4 also shows that the map m — (mg, mq,...,myg) is
a surjective group homomorphism from M onto M whose kernel is M N H.
Hence we have M N Hy = M N H; and M/MNHy = M/MNH, is a
commutative group isomorphic to M. It is then a straightforward exercise,
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using Proposition 6.1.1, to show that any representation 7 of M with an
(M N H)-invariant vector has the form given in the Lemma. O

Remark 7.1.5. It may be noticed that for all Types, representations 7
of M having a (M N Hp)-invariant distribution vector have also, for all ¢ €
{0,...,7}, a (M N Hy)-invariant vector. Therefore we will use the mention
(M N H)-spherical representations to characterize these representations of
M.

In our context the minimal spherical principal series can be defined as
follows.

Definition 7.1.6. The representation (7, x,H,x) belongs to the mini-
mal spherical principal series if
(1) A€ (a2)%
T is the trivial representation for Type I,

@) T is defined as in Lemma 7.1.4 for Type II ,
7 is one of the (M N H)-spherical representations determined

in section 6.1 for Type III.

Remark 7.1.7. In Type I case, it follows from Proposition 3.2.2 that
the parabolic subgroup P is minimal and that Hy = K. Since 7 is trivial on
M, (7 x,H:,) is a representation of class 1 (or K—spherical) of the minimal
principal series. Thus there exists a K—invariant vector in the space of this
representation. This will be generalized (in section 7.4) to each subgroup
H,, in terms of H,-invariant distribution vectors.

7.2. Summary with unified notations

In this section we will summarize some results obtained in the previous
chapter by using unified notations for the three Types. For any Type a
representation 7 as defined in 7.1.6 will occur in the definition of the Zeta
functions.

Let p € {0,...7r}. Recall from Theorem 3.5.3 that the open P-orbits
in G/H, are parametrized by a set W, of representatives of W%/W%? in

Nk (a®). Let us recall the description of these orbits in the different cases
(see Theorem 3.6.3).
e Type I : The open P—orbits OF in V't and O in V™~ are parametrized
by € € {£1}**! and given by
k
Of =PI where I} = Zerj and I_ = (1) .
=0

Moreover OF is a subset of Qf; if and only if ¢ € p where (Notation 5.7.2)

p={e € (+1)*!| ¢ has p components equal to —1} .

For ¢ € p we choose an element v, € Nk (a®) such that YeIy = I} (hence
Yel, =1I.). Then

Wy={¥leep} (p=0,...,k+1)
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can be taken as a set of representatives of W9 /W0,
e Type IT : Any open G—orbit contains only one open P-orbit namely
Of =PI cQf and Of =PI CQf,
Oy =PIy CQy and O] =PI C Q] .
Therefore W, (p =0, 1) contains an unique element, the neutral element e.

e Type III : In this case QT = Q(')" and {2~ = () contain only one open
P- orbit, namely
Ot=PI"=PIf cQt and O =PI  =PI; CQ~
Therefore W, (p = 0) contains an unique element, the neutral element e.
Definition 7.2.1. ForyeW, (p=0,...,r) we will denote by O;tﬂ the
open P—orbit in Q;—L defined by an element v € Wy. More precisely we have
O;,'f,y = P.I;,‘f,y where
Ipiﬂ = I;E for Type II and Type III
+ _ 7t . + _ 7%
I, =17 ifv.I; = I for Type I.

Recall that, in Type III case, we have defined (Theorem 6.2.1) two maps
b : O — H, and b, : O~ — H, by the relations

oI (IT) = vy, and br(I7) =,

b} (manX) = r(m)b (X) , by (manY) = r(m)b; (Y)
where m € M,a € A,ne N,X € OF andY € O . This definition extends
naturally to the other Types as follows.

e Type I: In this case 7, = C and the representation 7 is trivial. There-
fore we define b} on OF = Use{il}k+10j and by on O7 = Ugcrp1n107
by

bf(X)=1 for X € 0" and b, (Y)=1 forY €O .

e Type II : In this case #, = C and 7 is a character (described in Lemma
7.1.4) which is trivial on M N H,. Therefore we define b} on Of U Of and
b, on Oy UO; by

bi'(manI;') =7(m) and b (manl,)=17(m),
forme M,a€ A,ne N and p € {0,1}.
Finally we set the following unified definition.

Definition 7.2.2. Let 7 be a (M N H)—invariant spherical representa-

tion of M. The map b} : Ot — H, and the map by : O~ — H, are

charaterized as follows. For m € M,a € A,n € N, X € O, Y € O,
p €{0,...,7} and v € W), these maps satisfy the relations

{bﬂf;ﬂ) = v, o {b;(f,;,) =,
b (manX) = 7(m)b} (X) , by (manY) = 7(m)b; (V) ,

T

where v, = 1 in Type I and Type II cases and v, is the M N H—-invariant
vector of T given in Definition 6.1.6 in Type III case.
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This allows us to give the following definition.

Definition 7.2.3. Let 7 be an irreducible (M N H )-spherical represen-
tation of M, v be an element of Wy, (p € {0,...,r}) and s € Ckt+1. For
feS(VT), heS(V™) and Res large we define elements Z; (f,s,T) € H,
and Z, . (h,s,T) € H, by

Ziptar) = [ FOOIM B aX |

zm(h,s,r):/o_ WY V(Y| b, (V) dY .

Let us make more explicit the relationship between these integrals and
the Zeta functions defined in Chapter 5 and Chapter 6. This will show in
particular that the integrals defining Z;Eﬁ are convergent for Re s large .

e Type I : In this case H, = C, 7 is trivial (7 = 1) and bF = 1. If ¢ is
the element of p such that 'yII‘," = I and vI, =I; we get

Zy,(f,51) =2 (f,s) and Z,.(h,s,1) =Z_(h,s) .

e Type II : In this case p € {0,1}, v = e and H, = C. From Lemma
7.1.4 we have for m € M

T2

T(m) = (my...mg)" (ma...mg)™ .. .mg"

where 7; € 7./27 and the elements m; € {£1} are defined by m.X; = m; X;
for 7 =0,...,k. Moreover we have mgmy ---my = 1. As we have

mly =moXo + -+ 4+ mp_1Xp—1 + mp Xy ,
mIf =moXo+ -+ +mp_1 Xp1 —mp Xy ,

it follows from Lemma 5.6.1 that for u = (ug,u1,...,us) € (Z/2Z)F*! we
have

sg(A(mI{,")“) = sg(V(mIp_)t(“)) =(my---mg)“(my - - - my)¥? - - m*

1 ifp=0
X (_1)uo+u1+---+uk ifp =1.

Moreover, for m € M, a € A and n € N we have
sg(A(manl)") = sg(A(mI)") = sg(V(manl; )" ™) .

Therefore we obtain a simple relation between b and the sign of some power
of the relative invariants.

Lemma 7.2.4 (Type II). Let 7 be an irreductible (M N H)-spherical
representation of M parametrized by (71,...,7) € (Z/2Z)*. If we define
u, € (Z)27)k* by

ur =(T1 4+ Ty Ty ooy Th)
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we have for p € {0,1}
X € 0f UOF = b (X) = sg(AX)™)
Y € 05 UOT = by (Y) = sg(V(Y)u)) .
From Definition 5.6.2, this result implies that
Z;:e(f,s,'r) = ZI‘,"(f,s,uT) and  Z,(h,s,7) = Z, (h,s,uz) .

e Type III : In this case p = 0 and v = e. Then we get
Z(‘)':e(f,s,T) = Z*%(f,s,7) and Zyo(hys,7) = Z(h,s,7)) .

We can now summarize the properties of the Zeta functions obtained in
chapter 5 and 6 as follows.

Proposition 7.2.5. Let 7 be an irreducible (M N H)-spherical repre-
sentation of M. For f € S(V*) and h € S(V~) the integrals defining
Z;[‘,':,Y(f,s,r) € H, and Z, (h,s,7) € H, have meromorphic continuations
to C**1 which define H,valued distributions.

Moreover the open subset Ut (resp. U~ ) of Ck*1 on which Zf (f,8,7)
(resp. Z,.(h,s,7)) is holomorphic for all f € S(V*) (resp. h € S(V ™)), for
allp € {0,...,7} and for all v € W), contains the complementary set of a
countable union of hyperplanes.

Proof. —For the positive side, the first part of the Proposition is a
consequence of Lemma 5.2.3 and Lemma 5.2.5 in Type I and Type II cases
and of Proposition 6.4.3 in Type III case.

In Type I case we take for U+ the intersection for ¢ € {£1} of the
open subsets (76 defined in Lemma 5.2.5. From lemma 5.2.3 it follows that
U™ contains the complementary set of a countable union of hyperplanes. In
Type II case U™ is given by the same Definition since Z];': o(f,s,ur) is a linear
combination of Z.(f,s) with coefficients in {£1}. In Type III case we take
the open subset U defined in Proposition 6.4.3.

Similar arguments give the result on the negative side.

O

Using the previous notations, we can now write, in a unique form, the
functional equations obtained in Theorem 5.2.9 for Type I, in Theorem 5.6.6
for Type II and in Theorem 6.4.5 for Type III.

Theorem 7.2.6. Let 7 be an irreducible (M N H )-spherical represen-
tation of M. The Zeta functions ZS.(f,s,7) and Z,,(h,s,T) satisfy for
feSVT)and h e S(V_) the following functional equations

fas T Z Z dk’s P4, ) ;,y,(ff,t(S)—m,T),

q= 07 EWy

ff,ST Z Z VkSTaqa ap7 )Zz_)t'y(fat(’s)_m’7)7

p=0veEW,

where the meromorphic functions 6 (s, 7,p,7,49,7') and vg(s,7,q,7',p,7) are
defined for p,q € {0,...,7}, vy € W, and v € Wy as follows.
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e Type I: here 7 = 1. If yIf = I and v'I; = I, we have

dk(sa ]-’pa')”qa 7I> = 516(3’6’77) and Vk(s’ 1,(1,7/,29,’)’) = Vk(s,’l’],E) )

where 0k(s,e,m) and v(s,n,e) have been computed in Theorem 5.3.10 and
in Theorem 5.4.1 respectively.

e Type II: here vy =+ = e and we have
ok(s,7,p,€,q,€) = bk(s,7,p,q)  and  vi(s,7,q,€,p,€) = vi(s,7,9,p) ,
where 8y (s,7,p,q) and vi(s,T,q,p) are defined in Definition 5.6.5.
e Type III: here p=q =10, v =+' = e and we have
0k(s,7,0,¢e,0,e) = Ok(s,7) and vg(s,7,0,e,0,e) = vg(s,7),

where 6k (s, 7) and vg(s,T) have been computed in Theorem 6.6.6 and Theo-
rem 6.7.1.

7.3. Differentiable vectors and distribution vectors for the
minimal principal spherical series

Let 12, be the subspace of differentiable vectors in , y endowed with
its usual Fréchet space topology.

Proposition 7.3.1. The space H7'\ of differentiable vectors for mr x is
the space of C*® functions ® : G — H, such that

(7-1-1)  ®(mang) = a*Pr(m)®(g) (meM,ac A,neN,geq).

Proof. —From DIXMIER- MALLIAVIN’S Theorem ([D-M]-1978) we know
that the space of differentiable vectors of a continuous representation (here
the representation(m, ,# 3)) is generated by elements of the form

Tea(p)u = /G o(g)mra(g)udg whereu € H, )y, ¢ € C°(G) .

Since H; is finite—dimensional, it follows that ’H?f’)\ is contained in the space
of C* function ® : G — M, satisfying condition (7-1-1). And it is easy to
see that we have in fact equality between these spaces.

O

Let C°(G,H ;) be the space of H,-valued C*® functions with compact
support on G. We normalize the Haar measure dk on K such that [, dk = 1,
and then normalize the right Haar measure on dp on P such that

dg = §(p)dpdk where §(man) =a 2 (m€ M, a€ A, ne€ N).
Then the map
Loy :CP (G, Hr) — HY

U LoaU(g) = /P e r(m) " T(pg)dp (p = man)
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is well known to be a surjective G-equivariant continuous map (G acting on
the right hand side). Moreover if pg = moagng and if £(pg)¥ denotes the
function g — ¥(p, 'g) then we have

(7-3-1) LA (8(po)®) = af *LyA(T(mo) ™1 T) .

Recall that the space H_ Y 3 of distribution vectors for 7, y is the anti-dual
of the space ’HT’ of C*® vectors of the representation. There is a natural

representation 7_, of the group G on H_3° given by
(T_s0(9)a, ®) = (a,7(g) 1®) forac HT, @ EHT
When no confusion can arrive we will use the notation 7 instead of m_

The image by the transpose of L, ) of an element a € H_3° is an element
T in the anti-dual of C°(G, H,) given by

(T, %) = (a,L; z¥) for ¥ € CX(G,H,) .

Proposition 7.3.2. The transpose of L. is a G-equivariant isomor-
phism from ’H;g’\o onto the subspace of elements T belonging to the anti-dual
of C(G,M,) such that
(7-3-2) (T, £(man)¥) = a”_x(T, 7(m)"1)  for ¥ € C°(G,H,) .

If we denote by D'T —X(G’ Hr,) the space of antilinear forms on CX(G,H,)
satisfying condition (7-3-2) then we have
D (G -

Proof. — The properties of L 1mply that its transpose, ‘L, ), is G-
equivariant, injective and continuous into the anti-dual of C2°(G, H,). More-
over the relation (7-3-1) implies that the image of ‘L, ) is a subspace of
DIT,—X(G’ Hr).

To prove that the image is the space ’D'T —X(G’ H,) we use a positive
function w € C°(G) such that

/w(pg)dpzl forallge G .
P

(See for example [Kn] p. 140 for the existence of such a function). It may
be noticed that for & € HX, we have w® € C°(G,H,) and L, \(w®) = &
which implies in particular the surjectivity of L ).

Let T be an element of D’ ,fX(G’ #H.) and a the antilinear form on H%

given by
(a,@) = (T,w®) (®€HT)) .
Then we will prove that T' = L, 5(a) which is equivalent to prove that
(T, ) = (a, Ly \U) = (T, w.L; \¥) for ¥ € C°(G,H,) .

Using the continuity of 7' and the properties of w we have

(T, 9) = (1, /P w(pg) dp U(g))
- /P (T, ()~ (w E(p))) dp
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Since T satisfies relation (7-3-2) we get

(T, w) = /P PN, r(m) N we(p) V) dp (p = man)

— (T, w(g) /P a P r(m) T (pg) dp)

1

Using the change of variables p — p~* we obtain the result from the defini-

tion of L y.
O

There is a natural G-equivariant injection from C__(G,H,) into the
space ’D’T 7X(G, ‘H,) given by the application T + Ty where

(Ty,T) = /G (Y(g) | U(g), dg for T € CX(G,Hy) .

Lemma 7.3.3. For T € C__5(G,H,) we have for any ¥ € CZ°(G,H,)

[ (@) 1%@), da = [ (T®) | Ea)®), dk
Proof. — Using the decomposition G = PK we obtain

/G(T(g)l‘I'(g))rdg=/P/K(T(pk)I‘I’(pk))ﬁ(p)dp dk .

Since Y satisfies relation (7-1-1) for the pair (7, —\) we have

(T(ok) | T(ph)), = (T(K) | & r(m) " W (pk)), (p = man) ,
And the result follows from the definition of L, .
O

Therefore the previous G-equivariant embedding from C, (G, #;) into
the D! (G, #,) gives rise to a G-equivariant embedding from C_ (G, H)

into the space H_$° defined as follows.
p A

Proposition 7.3.4. The map from C__5(G,H,) into the space ’HT_’/"\O
given by the application T +— ay where

(aT,@):/K(T(kH@(k))Tdk for & € H,

is a G—equivariant embedding i.e. for g € G we have

71'7-,)\(9)0,1" = Qp(g)Y >

where v denotes the right regular representation of G on CT,,X(G,HT)

In conclusion we have the following commutative diagram where the
arrows are G—equivariant embedding.

12

D;.,_X(Ga %T)

~

CT,—X(G’ HT)
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The space of H-invariant distribution vectors is denoted by (’H;f\o)H It

follows from Lemma 3.3 in [vdB]-1988 (see also [Schl]-1994) that Van den
BAN’s conditions are necessary for 7, to have a H-invariant distribution
vector which has, as an element of D! (G, #,), a nonzero restriction to
the union of open P—-orbits in G/H. Moreover these conditions are sufficient
for almost all A\ as we will see in the next section.

7.4. H,—invariant distribution vectors for the minimal principal
spherical series

We fix in this section a (M N H)-spherical representation 7 of M and
consider representations (7, H, ) in the minimal spherical principal se-
ries. We will construct H,—invariant distribution vectors for p € {0,...,}.
Such constructions have been given in more general situations by Van den
BAN ([vdB]-1988) and BRYLINSKI-DELORME ([B-D]-1992). From Proposi-
tion 7.3.2 this is equivalent to give Hp—invariant elements of D'T ,—X(G’ Hr)
i.e. antilinear forms on C°(G, H,) which transform under the left action of
P as in (7-3-2) and which are invariant under the right action of Hp.

Let us recall (see Proposition 4.1.8) that the G-invariant measure d*X
on V7 induces naturally a G-invariant measure on G/H, ~ Q.

We will once and for all choose a Haar measure dg on G, and then
choose a Haar measure dyh on each Hy such that

/G<p(g) dg = /G/Hp (/H,, ©(gh) dph) dpg for ¢ € C°(G) -

Let us now start with a function ¥ € C°(G,#H,) and define a function
¥, € C2(G/Hy, Hy) by

T,(g) = /H U(gh) dyh

It is well known that the mapping ¥ — ¥, is surjective and continuous from
C(G,H,) onto C°(G/Hy, H,) for the usual topologies. Moreover the map
¥, — F}, where
Fo(9.If) =Ty(g) forge@,
is an isomorphism from C°(G/Hy, H) onto C°(,, H). Therefore in order
to obtain Hy,-invariant distribution vectors it is sufficient to define antilinear
forms on C°(Q,f,H;) which transform under the action of P similarly to
(7-3-2). This will be done in Proposition 7.4.4 below by integration on open
P-orbits in Q.
We use the notations introduced in section 7.2.

Definition 7.4.1. We denote by U the open subset of C**1 on which
s l—V>vZ]}L7,Y(f,s,T) is holomorphic for all f € C(QT), p € {0,...,k} and
v €W,

It follows from Proposition 7.2.5 that U™ is a subset of U. Therefore U
contains the complementary set of a countable union of hyperplanes.
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Remark 7.4.2. As the product by |Ag|?(z € C) of a function in CZ°(27)
is also a function in C°(Q2*) we have

s=1(80,81,---,8¢) € U= (so + z,81,...,8;,) € Ufor z € C.
In particular we have s € U <= s —m € U.

Remark 7.4.3. The open set U is also the subset of C**1 on which
s — Z, . (h,t(s), T) is holomorphic for all h € C°(27), p € {0, ...,k} and
v € Wp. To prove this we use the G-equivariant map 9 : @7 — Q~ defined

in section 3.9. We deduce from Proposition 3.9.5 and Proposition 4.1.9 that
for h € C°(27) we have

Zy A (hyt(s),T) = Z;:,Y(h o, —2m,T) .
The result follows from Remark 7.4.2.

Proposition 7.4.4. Let p € {0,...,7} and v € Wp. If s is an element
of the open set U the map

er7: C(Q, H,) — C
Fes [ (5700| FOO),IAX)P X
OP:’Y

s a nonzero continuous antilinear form on C* (QI",' ,Hr) which satisfies for
meE M, a € A and n € N the relation

(027, f(man)F) = x*(a)(0P7,7(m) 'F) (F ¢ CE(QF, Hy)) -

7,87 T,8)?

Moreover, for F € C (U, H,), the map s — (0%, F) is holomorphic on
U.

Recall that for s = (sq,...,sk) we set x*(a) = H?:o x;j(a)%.

Proof. — Assuming that ©%' is well defined, let us first study the action
of P. Forme M,ac A,n€ N and X € OF we have

|A(manX)|® = x*(a)|A(X)]* and bf(manX)=1(m)b (X) .

Therefore, using the G—invariance of the measure d* X, we get for a function
FeCr(Qf,M1,)

(©27, f(man)F) = /+ (b (manX) | F(X))T|A(manX)|s X

D,y

=><S(OL)/+ (b7 (X) [ 7(m) ' F(X)) |AX)]* d* X

= x*(a)(©%7,7(m) ' F) .

T,8)

It remains to prove that ©F:) defines a continuous antilinear form on
C(Q,f, M) which is weakly holomorphic on U. For that we will just show
that the antilinear form ©%7 is closely related to the local Zeta functions

defined in section 7.2 and the result will then be a consequence of Proposition
7.2.5.
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e Type I and II : In this cases #, = C and we have for a function
F e (0 Hr) = C())
(@21, F) = .\ FX)AX)|* d*X = Z;,Y(F,s —m,T) .
0P77

Thus, for s € U+ m, the map F — (%7, F) is a continuous antilinear
form on C2°(Q,, Hr). As the restriction of this form to C2°(O,,) is defined

by the function X — |A(X)|* ™ which is a nonzero continuous function
on Of  (for any s € Ck+1), ©27 is nonzero.

e Type III : Taking an orthonormal basis (R;)ic; of H, we write a
function F € C*(Q)),H,) as
F = ZfiR,' where f; € cg"(Q;) .
el
Then we obtain
(€23, F) = >3 (25,(Fivs —m,7) | Bi)
el

Similarly to the Type I and II cases, the result follows fom Proposition 7.2.5
and the fact that X ~— |A(X)|*~™b; (X) is continuous on O ..
O

From Theorem 3.6.1 we have x°(a) = Hfio ar(sidit+sede) Tt follows
that for A € (a2)* we have
(Va € Aa# :Xs(a)) = p-A=r(sodo+ -+ (s0+ -+ sk)A) -

Definition 7.4.5. We denote by V the open subset of (al)* defined by
AEV=sA\)eU+m=1U,
where s(\) = (so,...,8;) € CFTL is determined by the relation
,0—)\:n(so)\o—k---+(so+---+sk))\k) ,
and U is defined in Definition 7.4.1.

The construction of ©% in the previous Proposition allows us now, for
A € V, to construct Hp-invariant distribution vectors for m; .

Theorem 7.4.6. Let m,\ be a representation of the minimal principal
spherical series with X\ € V. Then for any p € {0,...,r} and any v € W,
the antilinear form a7 defined on 1%\ by

(af:}, LT,)\II'> <®p,'7

s(A)’ Fy)
:/O+ (bf-(X)le(X))TIA( WX (¥ e CP(G,H)) ,
D,y
where F, is defined on Q"’ by Fp(g. I fH (gh) dph, is a Hp—invariant
distribution vector for m, y.
For fized 7,\ and p the set {a’;:}}%WP s a set of linearly independant

vectors in ('HT_’;’\O)HP Moreover, for ¥ € C°(G,H,) the map

A= (a2}, L ¥)
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is holomorphic on V.

Proof. — As the map ¥ —— F}, is G—equivariant and continuous from
CX(G,H,) onto C°(Q, Hr) (G acting on the left hand side), it follows from
Proposition 7.4.4 that the antilinear form

U — (027, Fp)

T,8)

is continous on C®(G,H,). As A € V implies s(_X) € U + m (Definition
7.4.5), this map satisfies relation (7-3-2) for s = s(A\) and A € V. Therefore
Proposition 7.3.2 implies that o] is a well defined element of H_5°.

Let us now show that this element is Hp-invariant. For g € G we have

<7TT,)\(g)_la€:}aLT,)\Q> = <(1€:}:, 7TT,)\(g)L7-7)\\If>
= <(1€:K,LT,)\7‘(Q)\I’> )

where r is the right regular action. Now if ¢ = h € Hj, the functions
F,, associated to ¥ and to 7(h)¥ by right integration on Hj, are the same.
Therefore for h € H, we get

WT,A(h)*la';:} =aly .

As the map ¥ +— Fj, is surjective onto C°(€,), #), F}, can be taken to
be any element of C°(O, ., H-). Therefore it follows from Proposition 7.4.4
that a2’} is nonzero. As the various O, are disjoints, it is also clear that
the vectors (af:})qewp are linearly independant.

Finally it follows also from Proposition 7.4.4 that the map
A — (@23, Lra )

is holomorphic on V.
O

Remark 7.4.7. This Theorem implies that for A € V, the dimension
of (’H;?)H” is greater or equal to the cardinal of W, i.e. to the number of
open P-orbits in G/H,. However it follows from the work of van den BAN

([vdB]-1988 Theorem 5.10) that, in our context, the dimension of (’H;;")H”

is generically equal to the number of open P-orbits in G/Hp. This is due the
fact that, here, condition (b) reduces to condition (b’) and dim M) _ q

(Corollary 6.1.4). Notice that van den BAN’s results are proved under the
assumption that every Cartan subgroup of G is abelian, which is true since
G C G C GL(g) is linear.

7.5. Another expression of a?’] in the continuous case
b

As in previous section 7 denotes a M N H-spherical representation of
M, p an element of {0,...,r} and v an element of W,,.
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Definition 7.5.1. Let s € C*tl. Then PPY denotes the H,-valued
function defined on Qf by

PPY(X) = JAX) o (X) if X € (9;77 ,
0if X € Q\O;,

T,8

Lemma 7.5.2. Let s = (sg,...,s;) € C**! such that Res; > 0 for

j=1,...,k. Then function Py is continuous on QI",'.

Proof. —

e Type I : In this case bf(X) = 1 for X € Qf. If Res; > 0 for
j = 1,...,k, then the function X +— |A(X)|® is continuous on Q. since

Ao(X) # 0 for X € QFf. Recall that OF denotes the union of the open
P-orbits in V™. On each connected component of the open dense subset
Ot N Qf, the function X — PP is equal to |A(X)|® or to zero, hence
continuous. But this function is also equal to zero on Q\O* which is
exactly the set {X € QF | Ai(X)--- Ap(X) = 0}. Therefore it is continuous
on Q.f.

e Type II : In this case the function X — PF7J(X) is equal to £|A(X)|*
on each connected component of OF N Q" and the proof is similar to the
proof in Type I case.

e Type III : As in the proof of Lemma 6.2.3 we have for X = manI™' €
OT and for any polynomial R € H.,

(R|b5(X)) (R|7(m)v:)_ = R(mIT).

Since M /(M N H) is compact, the map m — R(mI™) is bounded on M
and, using a basis of the finite dimensional space H,, it is easy to see that
the H,—valued function X —— b1 (X), which is clearly continous on O,
is also bounded on O*. Therefore, if Res; > 0 for j = 1,...,k, the map
X +— PPJ(X) is continuous on Q.

7'_

O

Remark 7.5.3. It may be noticed in Type III case that, using Propo-
sition 6.2.5, we can prove that the map

X — A(X)2bF(X)

where 6y = 79, 01 = 71 + 70, ..., Op = Tk + Tk—1, is continuous on V. But
in the previous Lemma we need only the continuity on Q7.

Remark 7.5.4. We have for f € C°(Q))
+ - )
Zy o (fr8,7) = - FX)PPY(X) dX .
P

It follows from the previous Lemma that if s = (s, s1,...,5;) satisfies
Res; > 0 for j = 1,...,k then, if f € CH(QS), Z; (f,s,7) is defined
by a convergent integral which implies that s is an element of U (or U+ m
by Remark 7.4.2).
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Definition 7.5.5. Let A € (a2)*. The Poisson kernel IF’?:A s defined as
the H.—valued function defined on G by

PY9) = Pris (aly)  forgeG .

It follows from the Definition of s()\) (Definition 7.4.5) that we have
PP (g) = a”TAT(m)vT if g € manyH, ,

0 if g & manyH, ,
where v, = 1 in the Type I and Type II cases. Moreover ]P’f’} is right
H,—invariant.

These properties characterize the Poisson kernel. It is known (see [vdB]-
1988, Prop. 5.6) that ]P’f’/\ is continuous on G for A in an open domain of

(a%)*. We deduce from the previous Lemma an explicit domain where it is
the case.

Proposition 7.5.6. Let A € (a)* such that
Re()\(HAj) . A(HAH)) <—d forj=1,...,k.
Then the Poisson kernel IP’?Z is a continuous Hr—valued function on G.
More precisely it belongs to C__3(G,Hr).

Proof. —Using Lemma 7.5.2, it remains to prove that the announced
condition on A is equivalent to Res; > 0 for j = 1,... k. Recall from Remark
7.1.3 that p may be considered as an element of (a%)*. An elementary com-
putation using the decomposition n = ®;<;F; j(1, —1) leads to the equality

d d _
p=72 i=X) =7 (k=20 .
=0

1<j

<.

*

On the other hand we may write for A € (a?c

-3

k ONH
7=0

A)
YR

The relation —\ + p = n(so)\o +(so+s1)M+-+(so+s1+---+ sk))\k)
is then equivalent to

_ XNH)y,) | d _ A(Hy, .
30——T+Ek and s; = —— (=1,...,k),

which leads to the result.

Theorem 7.5.7. Suppose that A\ € (ad)* satisfies the conditions of
Proposition 7.5.6. Then we have for ® € H2\

(27, ®) = /K (P2Y(K) | ®(k)) , dk
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Proof. —Let @ € H and ¥ € C°(G,H,) such that L, \¥ = ®. As

S(X) is an element of U+m (see Remark 7.5.4) we apply Theorem 7.4.6 and
we get, using the Definition of PPy,

@38) = [ (P50 | F(X),a'X
D

where F), is defined on Q. by Fp(g.I) fH (gh) dph. Since the map
X — (Pp v ( )| Fp(X ))T is continuous with compact support in Q., we

may, 1ntrodu01ng PP A rewrite this convergent integral as an integral on
G/Hp. And we get, using the right Hp-invariance of ]P’ﬁ:; and the Definition
of Fp

(a2, ®) = / o BE@ BGE)) 4

/G/Hp /Hp 1(gh) | ®(gh)) _dphdg
- [®30)1 %), 4.

Since Pﬁ:} belongs to €, _5(G, ;) the result follows from Lemma 7.3.3.
O

7.6. The Zeta integral of an H—invariant distribution vector

In this section we consider a continuous representation 7 of G on a
Hilbert space #,, the subspace H° of differentiable vectors in H, and the
space ‘H, > of distribution vectors.

Definition 7.6.1. Let 7 be a continuous representation of G on a Hilbert
space Hr, a € H ™ a distribution vector and ¢ € C°(G). It is well known
that the map defined on the subspace H° of differentiable vectors by

’H°°9<I>l—>/ )a@)dg,

defines a continuous anti-linear form on H°, in other words an element of
H°. This element is denoted by

m(p)a = /G p(g)m(g)adg

If 7 is a unitary representation it is also well known that m(¢)a defines in
fact an element of H°. If 7 is only a continuous representation we have to
consider the conjugate dual representation 7* on H, = H,+ which is given
by

(7*(9)u|v)n, = (u|7(g) *v)y, foru,v € My
Each element of u € H, defines an element a, in H_ > by
(0y, @) = (u|®)y, for®ecH.

And the map u — a, intertwines 7* and the representation of G on H*°.
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Proposition 7.6.2. Let m be a continuous representation of G on a
Hilbert space Hr, a € H;™ a distribution vector and ¢ € CX(G). Then
m(p)a belongs to HX2. More precisely there exists an element b in H, which
is a C*® wector for w*, such that

(n(¢)a, ®) = (b| By, for any @ € H |
Proof. —From the definition of 7(¢)a we have
(r(p)a, @) = (a,7()®) (®€MUT),

where ¢ is the function in C°(G) defined by ¢(g) = ¢(¢g~1) for g € G. Since
the map ® — 7m(p)® is continuous from H, to H° ([Br|]-1956 p. 115), the
antilinear form ® — (m(p)a, ®) is continuous on H,. The existence of an
element b € H, such that

(m(p)a,®) = (b|®)y, forany ® € HX,
follows. It remains to prove that b is a C* vector for 7*.

An elementary computation shows that for ¢ € G we have

(7*(9)b| @)2, = (a,7(L(9)) @) ,
where £ is the left regular representation on C°(G). For X € g, ¥ € C°(G)
and ® € H° we set
d d
X x¢(g) = %w(exp(—tX)g)‘tzo and X® = %W(exth)@‘tzo .
We want to prove that in #, we have

* tX)b—b
lim = (exptX) =m(X *¢p)a.
t—0 t
This will imply that b is differentiable along X and finally that b is a C*®

vector.

Let us recall ([Pou]-1972) that the topology of HS° is defined by the
family of seminorms

18]lm = D [1X@ls,

la|<m

where a = (oq,...,a;), |a] = o1 + -+ + a5, s is the dimension of g,
(Xi,...,X;) is a basis of g and X*® = X" --- X% ®. As a is a contin-
uous linear form on H° there exists an integer m and a constant C' > 0
such that
(a,®)| < C||®||lm for ® € H .

Let ® € HX, v € C(G) and K a compact containing the support of 1.
Then for X € g we have X7 (¢)® = n(X % ¢)® and an easy computation
shows that

|17 (¥)@llm < C(K)Con ()] |,

where {Cm(¢) - Z|a\§m fG (X% x9)(g)|dg ,
C(K) = supge [[m(g)]] -

If we set
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we have, for any ® € H,

(7-(-*(expttX)b —-b _ ’n‘(X % (p)a‘q))?{ﬂ — <a,7r((;0vt)@> .

As t — 0, the function ¢; tends to 0 in C°(G) and there exists a compact
K containing the support of ¢; for ¢ in a neighborood of 0. Therefore we
obtain
‘(W*(exth)b —b
t

— (X xp)a|®) | < COEK)Cn(@)IIDn,

which implies
Hﬂ'*(exth)b —b
t

As t — 0, the functions X* % ¢, tend also to 0 in C°(G) and finally C,(57)
tends to 0 which leads to the result.

— (X * <p)a‘

< CCUK)Cn(@)

O

Let us consider now an H,-invariant distribution vector a, of m (where
p € {0,...,7}). Then for ¢ € C(G) we have

@ ®) = [ ([ oloh) dph) m(@)an D1y (@€ ).

G/Hp p
The function g — pr ¢(gh)d,h belongs to C°(G/H,). The functions f5"
and fy defined respectively on Qf and Q, by

Pt (gLF) = / olgh)dph = f2-(gI;) forgeG

P

are C*™ functions with compact support.

On the other hand the function g — 7(g)a, depends only on the class g
of g in G/Hy. Therefore this defines a function X — m(X)ap, on Q. ~ G/H,
and a function Y = 7(Y)a, on Q,; ~ G/H,. As the measure dg on G/H,
is induced from the measure d*X on QI‘," and from the measure d*Y on 2,
(Proposition 4.1.8) we obtain the following equalities

w()ap = [ L OR(X)ay X

D
D

_ / (V) a(Y)ap d'Y |
Q

It is therefore quite natural to introduce the following Zeta integrals of
an Hp-invariant vector.

Definition 7.6.3. For a, € (H;*°)r and f € Ce(Q) we define an
element Zf (f,m,ap) € H, > by

Z: (f,m,ap) = /Q FOm(X)ap d'X.
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Similarly for h € C°(, ) we define Z, (h,m,ap) € H; ™ by

Z; (h,m,ap) = / (Y)Y )ap dY |

Since ¢ — f£+ and ¢ — fb™ are surjective onto respectively C§°(QI‘," )
and C°(f2, ) these Zeta integrals are elements of 3% (from Proposition
7.6.2) and the relations obtained above may be written as follows.

Proposition 7.6.4. Let p € {0,...,k} and ap € (’H;‘”)H". Then for
¢ € CX(G) we have
Z;(fg*’, m,ap) = w(p)ay € MR and  Z, (f57, 7w ap) = w(p)a, € HE

7.7. A formal functional equation

Strictly speaking, the result of the present section, will not be used in
the sequel. Its essentially heuristic purpose is to explain why a functional
equation is expected for Z;,t( f,m,ap) if the representation 7 satisfies some
additional assumption. Basically, a functional equation for the Zeta function
we will consider below, is just a uniqueness result for a homogeneous (vector
valued) distribution. This point of view, which was already used in Chapter
5 and 6, goes back to André WEIL in a Bourbaki Seminar ([We]-1966).

If f belongs to C°(Q) the restriction of f to each 2} is also compactly
supported. It follows that Z} (f,,a,) is well defined for an element a, of
(H>0) .

Definition 7.7.1. For a = (ag,...,a,) an element of H;ZO(’H;C’O)HP
and f € C(QT), we define an element Z1(f,7,a) € H;* by

t(f, 7 a) ZZ (f,m, ap).
Similarly, for h € C (™) we deﬁne Z=(h,ma) € H > by
~(h,7,a) Zz (h,,ap)

We suppose now that the followmg assumption is satisfied.

Assumption 7.7.2. For allp=0,...,r and every a, € (H;®°)"r, the
H*®°—valued distribution on C°(27) defined by

h v+ Z,(h,7,ap)
extends to a tempered distribution.

Let us then consider, for all p,g =0,...,r and every a, € (H;°°)s the
H, *—valued distribution Tp, on Qf defined by

Tpq - CSO(Q;) — H,

f L o (ff)(Y>7T(Y)aq d*Y = Zq_(j:fv ™, aq) )
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where the Fourier transform Ff is as in Definition 4.1.3. The distribution
Tpq is well defined by Assumption 7.7.2 above. Let ¢ be the left regular
action of G on functions either on V* or on V.

Lemma 7.7.3. For f € CSO(Q;) and g € G, we have

(Tpg, £(9) 1) = x0(9)™ 7(9)(Tpq; f) -
Proof. —From Lemma 4.1.5 we get for Y € V—

FUHE) = xolg)™ (U9} FF) (¥) -

Therefore

(Tos £(9) ) = / (FF) (47T )x0 ()™ n(Y )ag d°Y

= Xo(9g / FfY)m(gY)agdY

= xo(g)™™ )< pqvf>
O

Let End (H;ZO(’H; °°)HP) denote the space of endomorphisms of the
product [[7_o(#H; ) and let Hom ((H,>) e, (H;>)"») be the space of
homomorphisms from (H, )%« into (H, ).

Then an element A € End (H;ZO(’H; °°)HP) can be represented by a matrix
A = (Apq) where Ap, € Hom ((H,;°°)Ha, (H°)Hr).

Theorem 7.7.4. If the Assumption 7.7.2 is satisfied for the represen-
tation m, then there exists an element A € End (H;ZO(’H;‘X’)HP) such that
for every f € C°(Q") and for every a = (ap) € H;ZO('H;"O)HP we have

Z_(ffaﬂ'aa) = Z+(faxam®ﬂ'7Aa) .

Proof. —Here p = x; " ® 7 denotes the representation of G on H, given
by p(9)u = xo0(9) ™m(g)u for u € H, and g € G. The differentiable vectors,
the distribution vectors and the Hp-invariant distribution vectors are the
same for the representations m and p = x,™ ® m. Let us notice that, as
for 7, the representation p on H, induces a representation, here denoted by
P—oo, 00 H_*° and given by

(p—co(9)a, u) = (a, p(9) ™ u) = x0(9)™(T—c0(9)a,u) ,
fora € H,* and u € H. Thus we have for f € C°(Qf) and a, € (H,*)Hr

Z5(f,xg™ © 7, ap) = / F(91) p—o0(9)ap d
G/Hy

= [ F0IB6(X) " n(X)ay X
= Z3(F|Mol", 7, a5) -

Consider the before defined H,*-valued distribution Ty, on C°().
Let us first transform T, into a H—distribution (see [Bru]-1956 p.105),
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that is a continuous linear form T}, on C° (QF , HP) = C2()) @ H® by
setting

(Toqr f @ u) = ((Tyg, F)yu) foru e U, f€C2(Qy).

(Recall that an element of H > is a anti-linear form). Since HX is a
Fréchet space, this correspondence between H_ *°—valued distributions and
Hee—distributions is bijective (see [Bru|-1956, Prop. 1.1.b. p.105).

For F € C(Q,H3°) we define 7(g)F for g € G and X € Qf by
(m(g)F)(X) = m(g)F(X) .
As xo(9g) is a real positive number, we get from Lemma 7.7.3 above that for
F=f®u
(Toa U9)F) = (Thg, (U(9)F) ® w) = <<qu,1z(g>7>,u>

= x0(9)™{7(6)(Tyq, ), > 9™ (¢ pq,f 1))
= Xo(g <pq’f®7r > <pqa( F>

The relation (qu,ﬂ(g)F) — (Tpgs (Xg™ © 7)(g~1)F) which we just proved,
means that qu is a Hy°—distribution with multiplier p = x, ™ ®7 (see [Brul-
1959 Def. 3.3. p.124). By BRrRUHAT’S Theorem 3.1. ([Bru]-1959, p. 124),
there exists a unique vector af € H_ > such that

Vh € Hy p-oco(h)al = ab

and

<TPQ’F> = /{;_'_ <p*00(X)a€’F(X)>d*X :

14

As xp is trivial on Hp, af is an H,-invariant distribution vector in H_ > for
the action of 7. And 1t follows that we have for f € C°(9,))

(7-7-1) Ty ) = / F(X)p-col(X)al ' X

=Z(fixo" ®m,ap) .

Let us denote by A,y € Hom ((H; ), (H;>)H) the linear map de-
fined by Apga, = a. The matrix A = (Ap,;) whose entries are the Ay,’s

defines an element of End (H o(Hx )H”)

If now f € C°(Q1), we can write
T
F=> "t (where f, € CZ°(Q))
-0

and

Ff=> Ffp.

p=0
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Then we have

Z~(Ff,m a) = Zz (Ff,maq) =YY Ly (Ffp,m aq)

q=0 q=0 p=0
T I8
= <qu’ fp) .
q:O p:O
Using (7-7-1) we obtain
(s T
Z_(ffaﬂ-aa) = ZZ;(fan6m®Waquaq)
q=0 p=0
r r
= Z;(fp’ Xo " ®, Z Apqaq)
p=0 q=0

ZT(f,xo™ ® T, Aa) .

7.8. Computation of Z;(f,mr»,a?))

These Zeta integrals are closely related to the local Zeta functions defined
in chapter 5 and 6. We will use the notations introduced in section 7.2.

It follows from Proposition 7.6.4 that the computation of Z;,t( f, WT,A,a’TJ:})

reduces to the computation of 71'.,-,)\(@)(12:}:.

Let us notice that for m = m, y the dual conjugate representation 7* is

equivalent to m__.

Proposition 7.8.1. Suppose that A € (al)* satisfies the conditions of
Proposition 7.5.6. Then, for ¢ € C(G), the distribution vector TI'T’)\(QO)CLg:K
is the function in ’Hf’_x given by

(m()al)(z) = /G o(9)BY] (z9)dg forz € G

Proof. — As 7rT ATy, We already know from Proposition 7.6.2 that

() p’} is a function in H° . From Theorem 7.5.7 we get for ® € H2°,

T

(ra)at3.9) = [ (B30ka) | 9()) i
Therefore we have

w(0a23.9) = [ ol [ (B230ka) | 90) i dg

)

=/K(/Gso(g)1P’ij(kg) dg | @(k))rdk
The function

T: xl—>/ PP s (zg dg_/Ggo(x_lg)IF’f:K(g)dg

7
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is a C*° function on G. From Definition 7.5.5 T satisfies the relation
T(manz) = P 7(m)Y(z) forme M,ac A,neN .
Thus T is an element of C*° (G, %) and we have proved that 7 (¢)a?’]

is the image of T by the embeddlng defined in Proposition 7.3.4.
O

Corollary 7.8.2. Suppose that A € (al)* satisfies the conditions of
Proposition 7.5.6. Then for any f € C°°(Q+) and h € C°(Q,) the Zeta

integrals Z; (f, 7, 7-7)\) and Z, (h, 77, a ) are the functions in ’H:?—X

given for x € G by
Zy (f,mrp, d25) (@) = Z;, () f, s(N) —m,7)
and  Z, (h,mx, @ ’;’K)( ) = Z, ,(£(x)h, t(s(X)) —m,T) .
Proof. —Let ¢ € C°(G) such that

flg1y) = / p(gh) dph .
Hp
From the previous Proposition and from Proposition 7.6.4 we get
23 (1,7 d)(@) = (e @) = [ ola™ 023 (0) o

Using the relation between PP} and Pf ’:(X) (Definition 7.5.5) and the fact

that IF”T”K is invariant under the right action of H, we obtain

/<P(w ') (g )dg—/ Fa= gL )PP (91,) dg -
G G/H,
And from the definition of PFy we get

[ ea 0@ da = [ () )0 AP () d' X

OP”Y
= Z;,Y(E(.’L‘)f, 5()‘) - m, T) :
The proof on the negative side is similar and relies on the fact that if P~
denotes the H,—valued function defined on 2, by
P(gI;) = P*(g) ,
then we have

P(v)= V(Y[ (V) Y € O,
0ifY € Q,\0,,

If s(A\) = (80,51,---,5;), then t(s(X)) = (=80 — 81 — -++ , —Sk, Sky---,51)-
Therefore as X satisfies the conditions of Proposition 7.5.6, we have s; > 0
for j = 1,...,k which implies that P~ is continuous on {2 (similarly to

Lemma 7.5.2) and that Z,_ (é(z)h, t(s(X\)) —m, 1) is defined by a convergent
integral for h € C°(Q, ).
O

And now we extend this result by holomorphic continuation.
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Theorem 7.8.3. Let w5 be a representation of the minimal princi-
pal spherical series with A\ € V. Let ap ) be the Hp—invariant distribution
vector defined in Theorem 7.4.6 where p € {0,.. r} and v € Wp. Then
for f € CX(Q)) and h € CX(Q,) the Zeta mtegmls Z5(f, 7 0 f’}) and
Z;(h,wT,,\, p’}) are the functions in ’H:’_X whose values at the point x € G

are given by
Zy (f, 7, d20)(2) = Z,,(U(2) f, s(X) —m,7)

and Z, (h,ﬂr,)\,a’;:})(x) = Zp_,,y(ﬁ(x)h,t(s(X)) —m,T) .

Proof. —For X\ € V, the map f — Zf (f,s —m,7) is a H,—valued
distribution and the map z — £(x)f is continuous from G into C°(Q,}).
Therefore the #,-valued function x +— Z; (£(x) f,s(A) — m,7) is con-
tinuous on G. Moreover it is easy to see that this function belongs to
C._x(G,#;). On the other hand we know from Proposition 7.6.4 that

Z;(f,mr,a27) is a function in #H° 5. Thus it is sufficient to prove that

25 (770, 623) (&) = 25, (@), 5(X) = m,7) for € K .

From the previous Corollary we know that this equality is satisfied for X in
the open subset of V where A satisfies the conditions of Proposition 7.5.6.

Let ¥ € C°(G, Hr). B
The map (k,A) —> (Z;:v(ﬁ(k)f, s(A)—m,T) | (LT,)\‘If)(k))T is continuous
in k € K and holomorphic in A € V. Hence the map

N [ (B 01,50 = m,7) | (Lo W), dk

is also holomorphic for A in V.
On the other hand the map

X'_) ( (faﬂ-T)\a )‘LT)\\I’) <TF7-)\((P) T)\’LT)‘\II>

where ¢ is a function in Cc°°(G) such that f(gl) = fH (gh) dph, is also
holomorphic on V (see Theorem 7.4.6).

As we have proven that these two maps coincide on an open subset of V,
they are equal on V. As this equality is proved for any ® = L, \¥ € HX,
the Theorem is proved on the positive side.

The proof on the negative side is similar.

7.9. The Zeta function attached to the minimal spherical
principal series and its functional equation (Main Theorem)

In order to write the functional equation for the Zeta functions Z*, we
will extend the Zeta integrals Z;,t to functions in the Schwarz spaces S(V )
or S(V7).

Recall from Proposition 7.2.5 that for s € U™ (resp. U™), the map
fr— Zf.(f,s,7) (resp. h — Z, . (h,s,7)) defines a tempered H,~valued
distribution.
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Definition 7.9.1. We denote by V' and V™ the open subsets of (a2)*
defined by

eVt <= s\ elUt +m
AEV = t(s(A)elU +m
Let f € S(V*) and A € V. As the map = — £(z)f is continuous from
G to S(V*), the map « — Z; (¢(z)f,s —m,7) is continuous from G to

H,. An easy computation shows that, for m € M, a € A and n € N, we
have

Z;,y(f(manm)f, s(A) —m,7) = aP*XT(m)pr,Y(Z(x)f, s(A) —m,7) .
Hence the map = — Z, ({(x)f,s(X) —m, ) is a function in C. (G Hs).
Similarly the map ¢ — Z;%E(w)h,t(s(X)) —m,T) is, for h € S(V~) and
A €V, a function in €, 5(G, H,).

As V* C V, we will, using the result of Theorem 7.8.3 in the last section,
extend ZI:,IE to Schwartz functions for A € V*.

Definition 7.9.2.
(1) Let X € V* and f € S(VT). Then Z}(f, 7rz,a p”) denotes the function
in CT,_X(G, H,) given by
Z;'(f, WT,A,aIT’:})(x) = Z;:,Y(E(:L')f, s(A) —m, 1) forze€q .
(2) Let X€ V™ and h € S(V~). Then Z, (h, 7y ), a ) denotes the function
n Cr,fX(G’ H:) given by
Z, (b, mrx, a23) (@) = Z,, (L(z)h, t(s (\)) —m, 1) forzeG .

Let us recall that C__ (G, H,) is a subset of #__ which is naturally em-
bedded in the dual of HT »- This dual is the subset of the distribution vectors
for m,,\ which are continuous antilinear forms on # ) (not only on HZ%)).
Theorem 7.8.3 implies that for f € C2°(QT) and A € V¥, Z7 (f, 7.z, al7)
coincides with the distribution vector defined in Definition 7.6.3. Similarly
for h € C°(Q7) and A € V7, Z (h, 7, », a2} coincides with the distribution
vector defined in Definition 7.6.3.

Proposition 7.9.3.
(1) For ® € H, 5, the maps

f — <Z1_9|—(f’ Tr, @ ﬁ,}) ®> and h+— (Z;(h,wﬂ)\,a?}),i)

are tempered distributions for respectively X\ € VT and X € V™.
(2) For U € C°(G,H;), f € S(VT) and h € S(V~), the maps

A <Z;(f’ T, a’;j}) y Lr\¥) and A <Z;'(f, T, aﬁ:’,{) y Ly W)
are holomorphic respectively on V' and V™.

Proof. — The proof is done on the positive side. From the Definition of
Z; we obtain for ® € H

B (o monsl0,®) = [ (25,000,500 = m,) | 8(1)



7.9. MAIN THEOREM 201

For s —m € U* the distribution f — Z,,(f,s — m,7) is tempered.
More precisely we get from Lemma 5.2.5 in Types I and II cases or from
Proposition 6.4.3 in Type III case the following precisions. For any compact
subset K in YT there exist a semi-norm vjs v (depending on K) on S(VT)
and a constant C(K) such that for s —m € K and f € S(V ') we have

1Zpy(f 8 =m,7)llr < C(K)vmn(f) -

As the goup K is compact an elementary computation (using the definition
of vy, n) shows that there exists a constant C' such that for all £k € K and
all f € S(V*) we have

vm,N(L(k)f) < Clvmn(f) -
Therefore, if s(A\) —m € K we obtain

(25 (£, 7,220, 8] < CCCE) ([ B0 k) vavae(1)
which implies the first part of the Proposition.

On the other hand if ® = L \¥ with ¥ € C°(G,H,) and if X belongs
to an open subset H of V* with H compact there exists a constant C” such
that for all A € H and k& € K we have

H(LT,)\\I,)(IC)”T < c".
It follows that if I = {s(A) | A € H} we get
| (Zy o (e(k) £, s(X) = m, 7) | (Lea®)(K)) | < CO)C'C"van(F) -

As the map X — (Zz‘,':,y(ﬁ(k)f, s(A) —m,7) ‘ (L7 2¥)(k)); is holomorphic on
7, the second part of the Proposition follows.
O

Definition 7.9.4. Let V be the open dense subset of V where, for every
p€{0,...,r}, the set (ap’}),yewp is a basis of (H_ )HP (see Remark 7.4.7).

We setVzVﬂV*’ﬂVﬁ
If ap is an element of (% °)"» with A € V it follows from Proposi-
tion 7.9.3 that the C°° (G, H;)-valued distributions f +— ZE(f, mrn ap)

(defined in Deﬁmtlon 7. 6 3) extend to tempered C__5(G,H,)-valued distri-

butions on S(V*). Therefore we may extend Definition 7.7.1 to functions
in S(V*) as follows.

Definition 7.9.5. Let A € V and let a = (ag, a1,...,a,) be an element
of Tlh=o(H,. Ve, For f € S(VT) and h € S(V7), Z*(f, 7, a) and
Z=(h, Tz, a ) denote the elements of H, 5 — ’H;;o given by

Z+(f, T2 @ ZZ f’ Tr /\7ap) and Z~ h y T, @ ZZ h 7r‘r)\7aq
p=0

These two elements Z(f,m; x,a) and Z~(h, 7 ,a) are the Zeta functions
associated to 7, .
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Theorem 7.9.6 (Main Theorem). Let w5 be a representation of

the minimal principal series with X € V. There ezists an element A™ in
End( H;ZO(’H_OO)HP) such that the following functional equation holds for

fesw) anda TG o (1, 50) P

Z(Ff, T, a) = Z1(f, xg™ @ mrn, A7 (a)) -
The endomorphism AT can be represented as a (r + 1) x (r + 1) matriz
whose coefficients Afy belong to Hom ((?{;?\O)H‘l, ('HT_XO)HP) In the ba-
sis (a’;:K)VEWp and (ai:}l)vrewq of (’H;;")HP and (H;?\O)H‘l respectively, the

matric of A;:;‘ is given by
(A;:2)77, = I/k(t(S(X)) - m,T,q,'y',p, ’7) fO’I’ v E Wp, ’)/I € Wq .
The definition of vg(s,7,q,7,p,7) is given in Theorem T.2.6.

Proof. — We have to prove an equality of two functions in C_ (G, H,).
It is therefore sufficient to prove the equality of the restrictions of these
functions to the compact group K. Let k € K. As we have

URYFf=FU(k)f) for feS(VT),
we get from Definition 7.9.2 that

Zg (Ff,mep, a2 )(k) = Zo (F(K)F), t(s(X) — m, 7).

Applying the functional equation given in Theorem 7.2.6 and using the re-

lation #(¢(s(\)) — m) — m = s(A\) we obtain
Z, (Ffymrnal ) (k) =

Z Z Vi (t(S(X)) -m,T7,4q, fY,apa V)Z;,Y(E(kl)f,s(X),T) .

p=0~vEW,
As xo(k) = 1, we may write, using again Definition 7.9.2,
Zy o (U(k) £, 8(N), 7) = Zp (LK) (f|Do|™), 8(A) —m, T)
= Z5 (f1Ao|™, 7rx, @73 (K)
Moreover we have (see the proof of Theorem 7.7.4)

Zy (Fl 0™, a23) = Zy (fixo™ ® Trp, a53) -

T,

Finally we obtain

!
Zg (Ffimep,all) =

"
Sz (o™ @ Y w(tsO) —mya, 7, p)ak]) -
p=0 YEWp

The existence of the matrix A™ is proved (for X € V) and we get
A;:;‘ (GZ::{) = Z Vg (t(S(X)) - maT’Q77,’p’7)a€:K )
YEWD

which gives the result.



7.10. FOURIER TRANSFORM ON L2%(V*,d*X) 203

This Theorem gives the proof in our situation of the formal equation
given in section 7.7 and an explicit expression of the matrix A.

7.10. Fourier transform on L}(V 7', d*X)

In this section we define a slight modification of the Fourier trans-
form F which gives rise to an unitary and G-equivariant operator F* on
L?(V*,d*X). This modification was introduced by E.M. STEIN ([St]-1967)
for the complex prehomogeneous vector space (GL(n,C)x GL(n, C), M, (C))
or in other terms for the complex regular graded algebra (gi(2n,C), Hp)
I, O
0 -I,)

We will use F* to give an interpretation of the main Theorem for the har-
monic analysis of the representation of G on the Hilbert space L?(V,d*X).

where Hy =

Recall that v is a G-equivariant map from Q7 into Q~ defined in section
3.9.

Definition 7.10.1. For f € C°(QT) the function F* f is defined on Q+
by

(F*1)(X) = 18X % (F(Ao 5 £)) (X)) for X eQ* .

Proposition 7.10.2. The map F* extends to a unitary automorphism
of the Hilbert space L>(V*,d*X) which commutes with the action of G on
v+,

Proof. —From Definition 4.1.6, the map f — |A0|7%f is a unitary
isomorphism from L%(V*,d*X) onto L?(VT,dX). Due to the choice of the
pairs of measures (dX,dY’) (see condition (N3) in section 4.1), the Fourier
transform F is a unitary isomorphism from L?(V*,dX) onto L2(V~,dY).
From Proposition 4.1.9 and Proposition 3.9.5 we get for h € L2(V ~,dY)

/ | Ao (X)| 7™ [R($(X))I* &"X =/ Vo(Y)[™|(Y)? d*Y
v+ V-

- / (Y2 dY |
.

which implies that the map h — |Ag|~% (ko 4) is a unitary isomorphism
from L2(V~,dY) onto L}(VT,d*X). Therefore F* is a unitary automor-
phism of L2(VT,d*X).

Recall that, if f, (¢ € G) denotes the function X — f(g~1X), then we
have

F(fs) = xol9)™(FS),

Using the G-equivariance of ¢ and the fact that yg is the (positive) character
of the relative invariant Ay we obtain the G—equivariance of F*.
O

In order to obtain an expression of Z]}f +(F*f,s,7) we need the following
properties of .
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Lemma 7.10.3.
(1) For p € {0,...,7} and v € Wy we have %(O.) = O, ..
(2) If T is a (M N H)-spherical representation of M we have

by ($(X)) =bf(X) (X e€OT).

=
(3) For h € C.(27) we have
[ ) ax = [ h@)wamn ay
v+ V-
Proof. —
From Proposition 3.9.3 we get ¢(I,,) = I, which implies (1).

From the definition of b (Definition 7.2.2), we have for m € M, a € A
and n € N
by (Y(manl, ) = 7(m)bz (¥(I,,)) = m(m)b (L) ,

bj(manI;,y) T(m)b:f(I;,y) .

In Type I and Type II case, by (I,.,) = bf(L,) = 1, and in Type III case
b, (I,.,) = bf (I ,) = vr. Hence (2) is proved.

The integral formula (3) follows directly from the integral formula given

in Proposition 4.1.9 and from Proposition 3.9.5.
O

Lemma 7.10.4. Let 7 be an irreducible (M N H)-spherical representa-
tion of M, y € Wy, (p =0,...,7) and s € CkL. If f is a function on VT
such that X — |Ag(X)|™% f(X) is an element of S(V1) then we have

x - _m 3
Z5(F £,8,7) = Zoy (F (180l 7% 1), t(s) = Sm,7) -

Proof. —From the hypothesis made on f, the right member of this

equality is well defined as a meromorphic function of s.

Let us suppose that this Zeta function is defined by a convergent integral
namely that the real part of ¢(s) — 3m is large enough. Then setting in this
integral Y = ¢(X) and using the previous Lemma we get

m 3
Zpi,'y(j:“AO'i?f)’t(s) - Em; T)

= [ F o N @IT@I ) ay

D,y

=/ (F*£)CO1A(X)|Z |V (@ (X)) O+ 56 (X)] dX .

by

As [V((X)]* = |A(X)[4®) (Proposition 3.9.5) and as t(t(s) + Z) =s — 2
we obtain
Zyo (F (12075 1), 8(5) - 37m7'> — /O+ (F* ) (X)AX)[*BF (X) dX .

DY
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Thus, for Ret(s) large, Z, (F*f, s, 7) is well defined as a convergent integral

and has a meromorphic continuation on C¥*! given by the meromorphic
continuation of the left hand side of the previous equality.
|

We may now write the functional equations obtained in chapters 5 and
6 only on the positive side of the graded algebra. Using the notations intro-
duced in section 7.2 we deduce from Theorem 7.2.6 the following result.

Theorem 7.10.5. Let 7 be an irreducible (M N H )-spherical representa-
tion of M. If f is a function on V' such that X — |Ao(X)|™2 f(X) is an
element of S(V), then the Zeta function Z. (f,s,T) satisfies the following
functional equations

r

Zi(f,8m) =Y > k(s +2mp1a.Y) 2 (F frsT),

qzov’ewq
v (F fy8,7) Z D w(t(s) = 3,709, 0,7) 24 (F5,7)
p=0~yeEW)

Proof. — We first write

m m
Z o5 m) = 2 (F180] %5+ 5,7) |
Applying Theorem 7.2.6 we get
+
Zp,’y(f’ S T)

r
:Z Z 5k(3+%’T>p777Q771)Z;7:(f(f|A0|7%),t(s+%)_m’,r) .

q=0~"eW,
Using Lemma 7.10.4 and the relation ¢(s + 2) — m = t(s) — 2m, we obtain

the first functional equation.

On the other hand, using again Lemma 7.10.4 to express Z;,Y, (F*f,s,7),
we get from Theorem 7.2.6

+’(‘7:*f>3 T)

_Z Zyk 2m T, q’f}/ b,y )Z;:'y(f|A0|_%’t(t(s) - %m) - m’T) .

p=0~veEW,

As t(t(s) — 3m) —m = s+ 2, we obtain the second functional equation.
O

Similarly the main theorem (Theorem 7.9.6) can be rewritten using F*
instead of F as follows.

Theorem 7.10.6 (Functional equation with F*). Let 7,  be a represen-

tation of the minimal principal series with X € V. There ezists an element
B™ in End(H (%r)\ )HP) such that the following functional equation
holds :

ZH(F* f, wrpn, @) = ZH (f, 700, B7(a))
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where f is a function on V' such that X — |Ao(X)|™ 7 f(X) is an element
of (V') and a is an element in [I;_o(H ). The endomorphism B™
can be represented as a (r+1) X (r+1) matriz whose coefficients B;,’,}\ belong
to Hom ((’H;io)Hq, (’H;;o)HP) In the basis (a’;:}),yewp and (aZ:} )ytew, of
(", 2)He and (’HT_,/o\O)H'I respectively, the matriz of B;,’,;‘ is given by

m

(B;:;\)’Y’Y' = Vi (t(S(X)) - 5: 754, ’Y,apa 7) fO’I’ S Wp, ’}/, € Wq .

Proof. — The proof is similar to the proof of Theorem 7.9.6 but now we
get from Definition 7.9.2 that

Zf (F* f, e a2 )(K) = Z(F*(U(k) f), s) = m,7) (k€ K) .

Here we used the G-invariance of F* proved in Proposition 7.10.2. Then
using the relation ¢(s(X) — m) — 3m = t(s(X)) — 2 we get from Theorem
7.10.5

ZH(F* f, 7, 0] ) (k)

=30 2 wltsM) ~ 5,70, 2 2, (LK) £, 5(N) —m, 7).

p=0~vEW,
As we have from Definition 7.9.2
ZS (k) f,5(0) = m, ) = Zg (f,mrr,a23) ()

the Theorem follows.

7.11. Interpretation of the functional equation with F*

The representation of the reductive group G on the separable Hilbert
space L2(VT,d*X) is unitary. Then it is known that such a representation
has a direct integral decomposition of the form

@
(Ve @ Hyr) dp(m)

~

LAV, d*X) ~ /
G

where G is the unitary dual (the set of equivalence classes of unitary irre-

ducible representations) of G, du a Borel measure on @, H, is the space of

the representation 7 and V; a vector space (possibly of infinite dimension).

The representation of G on V; ® H, is Id ® .

We know from Proposition 7.10.2 that F* is a unitary operator on the
space L2(V1,d*X) commuting with the action of G. It follows from a
generalized Schur’s Lemma (see the proof of Theoreme 14.10.2 in [Wal]-
1992) that it is a decomposable operator in the direct integral decomposition.
We will see that Theorem 7.10.6 gives the components of F* related to the
minimal spherical principal series.

In fact the decomposition of L2(V1,d*X) is closely related to the har-
monic analysis of the symmetric spaces G/H,, . The space L?(V*,d*X) is
a finite sum of G—invariant subspaces given by

LAV, d"X) = @y LA (O, d°X) = &}, L*(G/H,) .
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Let us notice that these subspaces are not invariant under the action of F*.
The direct integral decomposition for L?(G/H,) may be written as

L*(6/H,) = [.

GHyp

Hom ((H )", Hr ) ditp()

where G H, denotes the set of equivalence classes of unitary irreducible Hp—
spherical representations i.e. representations with a nonzero Hp-invariant
distribution vector (see [B-FJ-S]-1994). An explicit description of the mea-
sure up and of its support in G H, is given by the Plancherel formula for
the symmetric space G/Hp. This is a difficult problem (see the work of P.
DELORME [D]-1998 and the work of E. van den BAN and H. SCHLICHTKRULL
[B-S]-2001). Nevertheless the restriction to CJ°(G/Hp) of this isomorphism

is given by the “abstract” Fourier transform which is the map
€2(G/Hy) — [ Hom ((;%)"%, e ) dity(r)
Gu,

f— (f(ﬂ'))ﬂ'EéHp )
where

Fim)(ap) = /G TG i (ap € ()).

This is exactly Definition 7.6.3 namely

F(m)(ap) = Z; (f,m,ap) -
The Fourier transform related to the harmonic analysis of L2(V,d* X) may
then be defined as follows. For a function f € C(Q21), a H-spherical
representation 7 of G (where H is one of the groups Hp) and an element
a=(ao,--.,ar) € [[,, , (1) Hr we set

f(m)(@) =" For (m)(ap) = Z*(f,m,0) .
p=0

For a representation 7, in the minimal spherical principal series (not
necessarily unitary) Theorem 7.10.6 describes the action of F* on the cor-
responding component as

— ~

F*f(mra)(a) = f(mr) o B(a) ,
where B=B™ and A € V.






Appendix : The example of symmetric matrices

As an illustration and a guide to the reader, we will give in this appendix
a detailed description, through the example of the symplectic Lie algebra,
of all the structure results obtained in the paper. The numbering of the
sections will be the same as the numbering in the paper.

A.1.1. The graded algebra

We consider the semisimple algebra g = sp(k + 1, R) which is given by
~ A X
§= {(Y _tA) ‘ X,Y € Sym(k + 1,R), A € M(k + 1,R)} ,

where Sym(k+1, R) denotes the subspace of symmetric matrices in the space
M(k + 1,R) of (k + 1) x (k + 1) matrices.

Remark. — The integer k£ has been choosen such that it will correspond
to the number k defined in section 1.6.

_ [ 1k+ 0
m= (M)

where 141 is the identity matrix in M(k + 1,R). The algebra g is graded
by ad Hy and we obtain

Let Hy be given by

g:{Ae§|[H0,A]=0}={A= (‘8‘ _?A>‘AEM(k+1,R)} :

VY ={X €7 |[HoX] =2X} = {X = (3 )()() \X eSym(k+1,R)} :

Vo ={Y €g|[Hy,Y]=-2Y}= {Y = (3 g) ‘Y € Sym(k+1,]R)} i
The hypothesis (Hy) is therefore verified.

Remark. — As in the previous definition, we will use the same letter to
denote an element of V* or of g and the corresponding matrix in the space
M(k + 1,R), which will be distinguished by a bold face font.

The Lie algebra g is simple and the Killing form is given by
B(X,X') = (2k +4)Tx(X X') for X, X" € sp(k +1,R) ,
(see [H] — 1978 p.190 for a reference).

209
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The Cartan involution 6 on g is choosen to be :
6(X)=—-tX for X € sp(k+ 1,R) .
This implies in particular that (Hy) = —Hy and that By is positive definite.

The Cartan subspace of the pairs (g,6) and (g,8) is choosen to be :
to

t
o — H:(I(')I _%) where H = b e M(k + 1,R)

t

A.1.2. Root systems

We denote by 7, (j =0,...,k) the linear forms on a given by
to

H O ) t1
77]'(0 —H)th if H=

Then the root system ¥ of the pair (g,aP) is of type Cky1 and given by
i_{iminj for0§i<j§k} .
+2n; forj=0,...,k
The root system ¥ of the pair (g, a?) is of type A and given by
E={n—mjfor0<i#j<k}.
The subset II of given by
I = 11| J{2n} where IT = {no — n1,m — 2, -, k=1 — Mk} »

is a set of simple roots for £ and I = {\ € II | A(Hy) = 0)} is a set of
simple roots for X. The root \g = 2, satisfies A\g(Hp) = 2. Moreover the
set of positive roots defined by II is given by
S+ = Jmi—nj for0<i<j<k
ni+mn; fori,j=0,...,kf "~
Notation. — As usual, for i = 0,...,k and j = 0,...,k, E;; denotes the

ty,

(k+1) x (k+ 1) matrix whose coefficients are all zero except the coeeficient
of index (7, j) which is equal to one.

The root spaces related to the different roots are of dimension one and
given by :

. E;; 0 L.
=1 _ ij .
g J—R(O Ej,) fori +#j ;

’g“m'-H?j :R<g Eij‘(i)‘Ejz) fori,j=0,...,k;

~ oy 0 0
=1 — ;g —
g J R<Eij E;; O) fori,j =0,...,k.
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A.1.3. Complexification

It is well known that a” is also a Cartan subalgebra of g. It follows that
§~is the split real form of it’s complexification and therefore the root systems
3 and R are the same.

A.1.4. Highest root in D
The highest root A° in vt is given by
)\0 = 27]0 .

Since A0 is the unique root in ¥ which satisfies Proposition 1.4.1, the adjoint
representation of g on Vg is irreducible and \° is the highest weight for this

representation with respect to £*. Thus the hypothesis (Hg) is verified.

We give now the description of the co-roots :

_ o _ (B 0 ).
e for A\ = 27, H), = ( 0 _Ejj) ;

(Eii + Ejj 0 ) )

o E:—E. 0
o for A =n; —n; (¢ #j), HA:( "0 " —Eu'+Ejj)'

o for \=mn; +n; (i #j), Hx

A.1.5. The first step of the descent

The algebra?o generated by g*® and g—*0 is isomorphic to s[(2, R). More
precisely we have

i~ tEkk .'L‘Ekk ) }
b = t,r,y RS .
0 { <yEkk —tEgg 2,
The centralizer of [y in § is the reductive Lie algebra §; isomorphic to sp(k,R)
and given by

A, 0 X; 0

Ga=d0 9 0 Ol A eMER),X,,Y: € Sym(k,R)

1 Y; 0 _tjx1 0 ) 1 yIN), Ag, X1 y )
0 O 0 0

The Lie algebra g; is a graded Lie algebra which satisfies (H;) and (Ha)
where the gradation is defined by the element

1,

0
Hy = Hy — Hy, = 1

0
The root system 31 of (g, a?) where af = a? N7 is of type Cy and given by

i . :f:'rh':t'r]j for0§i<j§k—1
70 +2p forj=0,...,k—1 [~
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The set of simple roots in TNt s given by
I, = {mo —m,m —n2, .., Mk—2 — Me—1, 2Mk—1}
=L [ J{M)

where I} = {\ € I1 | A\(H),) = 0} and \; = 274_1.

A.1.6. The descent

The sequence of strongly orthogonal roots given in Theorem 1.6.1 is the
set

{Xo, A1,..., Ak} where \j =2m;_; .
The Lie algebras~[j are isomorphic to s{(2,R) and given by

T = {(tEk_j’k_j 2Bk ke ) | t,z,y € ]R} .

YEg_jr—j —tEp_jr—j

The centralizer g; of Lo @Tj_]_ is given by

A; 0 X, 0

_ Jlo o 0o o

95 = Yj 0 _tAj 0 s
0 O 0 0

where A; € M(k+1—j,R), X; and Y; € Sym(k+1—j,R). The gradation
is given by ad H; where

Tht1j
0
Hj=Ho=Hy == Hy, = —1py1-j
0
It follows that (g;, H;) is a graded algebra from the same series as (g, Ho)
with k replaced by k — j.

A.1.7. Generic elements in VT

The group Sp(k + 1,R) is simple and connected with center given by
{#Id}. Therefore the adjoint group of g is the group G = Sp(k+1,R)/{+Id}.
The centralizer of Hy in G is given by

Z5(Ho) = {(g tgo_l) g € GL(k+ l,R)} J{+1d} .

Therefore Zz(Hp) is isomorphic to GL(k + 1,R)/{£Id}. If k + 1 is odd,
GL(k + 1,R)/{+£Id} is isomorphic to the connected group GL*(k + 1, R),
but if k+1 is even, GL(k+1,R)/{%Id} has two connected components, the
identity component being GLT (k + 1,R)/{xId}. It follows that we have

e keven : G=Zz(Ho) ~GL"(k+1,R) ;

e kodd : G # Zz(Hy) and G ~ GL* (k+1,R)/{+Id} .
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In the sequel of this appendiz we will in general not mention the eventual
quotient needed to describe G, G or another subgroup of G. For erxample, if
we write that a matriz g belongs to G, the reader should keep in mind that

it means that, according to the parity of k, the image of g into the quotient
by {£Id} belongs to G.

The action of G on VT is given by

GxVt—VTF

g O 0 X 0 gXig
(& )G 8) =0 %)
where g € GL™(k + 1,R) and X € Sym(k + 1, R).

Let p and ¢ be positive integers such that 0 <p+¢q < k + 1 and let Iy, be
the matrix of Sym(k + 1, R) given by

qu — _EOO — e — p—l,p—l + Ep,p + M + Ep-l—q—l,P"'q_l
-1

0

If X belongs to Sym(k + 1, R), it is well known by Sylvester’s law that there
exist integers p, ¢ and g € GLT(k + 1,R), such that

X =gl, tg .

01I 0 X
+ _ _
qu_(O 6p> andX—(O 0) .

Then ad X maps g onto V' if and only if ad I}, maps g onto V'*. An easy
calculation proves that this is the case if and only if p4+ g = k+ 1. Therefore
we have

Let us write :

X € VT is generic <= det(X) #0 .
Moreover, if p+ ¢ = k + 1, then {6(I.}), Ho, I},} is an sly—triple. It follows

that the graded algebra (g, Hy) is regular i.e. satisfies the hypothesis (Hg).
The regular irreducible prehomogeneous space that we are considering

here is the real form (GL*(k+1),R),Sym(k+ 1, R)) of the prehomogeneous
space (GL(k + 1,C),Sym(k + 1,C)).
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A.1.8. The structure of (g, Hy).

0

The abelian subspace a’ is equal to a? and we have

3g(0%) = 34(aP) = a® = 0P .
The decomposition of Theorem 1.8.1 is the root-spaces decomposition re-
lated to the system 3. More precisely we have for i # j
By(1,1) = st
Ez'j(l, _1) = Eﬂk—i*nk—j )
Bij(—1,—1) = g

For A = {j,...,k}, the graded algebra g4 defined in Proposition 1.8.5
has the following form :

<. <.
O O O

!
oMo P

0
aj
0
0 —aj

where A; € M(k+1—j,R), a; € M(j,R), X; and Y; € Sym(k +1 —j,R).

This algebra contains strictly g; but Vj’ =V*tNgaisequalto VTN g; and
the action on Vi of the orthogonal subspace of g; in g4 = g N ga is trivial.

A.1.9. Properties of the spaces E;;(+1,+1)

Here the dimension of these spaces is clearly equal to 1 and the result
of Proposition 1.9.3 is therefore trivial. We will however explicit the Weyl
group elements which interchange the roots A; and A;. These elements are
essential ingredients in the proof of Proposition 1.9.3 in the general situation.

The Weyl group W of T is isomorphic to the semi—direct product of
Gry1 by (Z/2Z)F1. The action of a permutation 7 of G, on the roots
is given by 7; — n,(;) and the action of (e, ...,ex) € {£1}*T is given by
n;j + €;1;. The Weyl group W of X is the subgroup of W isomorphic to
Gk 41- Therefore the action of the element sg € W C W which interchanges
YT and ¥ is given by the permutation 7y of {0,...,k} such that

7'0(77]) = Nk—j »
which implies the result of Proposition 1.9.2 namely that sg.A\; = Ax_;.

Let n be the integer such that k+1=2nif k odd and k+1=2n+1 if
k even. Let J, be the matrix in M(n,R) given by

1
Jn =
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A representative element of sg is given by

= (16 g) where L =

O Jn
1 0| ifk+1=2n+1.
0 0

Since L belongs to GL (k + 1,R) , this representative belongs to G.

The constants defined in this section are given here by
¢ =dimghy =1 ;
d=dim F;;(+1,+1) =1

1
dimV*t = Sk +1)(E+2).

A.1.10. Normalization of the Killing form
As dimV+ = L(k 4+ 1)(k + 2), the normalized Killing form is given here
by
k+1 ~
B(X,Y
(k+1)(k+2) ( )
=Tr(XY),

forall X,Y € g =sp(k + 1,R).

b(X,Y) =~

A.1.11. The relative invariant A

The determinant is an irreducible polynomial on the space of symmetric
matrices which satisfies

det(gX'g) = det(g)?det(X) ,

for X € Sym(k + 1,R) and g € GL(k + 1,R). Therefore the polynomial Ay
is, up to a multiplicative constant, given by

0 0

In the proof of Theorem 1.11.2 we obtained a relative invariant polynomial
P on VT given by the formula

P(X) = det(y- y+(ad X)* forX e V't .

Ao(X) = det(X) for X — (0 X) evt.

Here it is the determinant of the endomorphism of Sym(k + 1, R) given by
Y — —2XYX .

It follows that
(k+1)2(k+2)

P=(-2) AFT2
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A.1.12. The case k=0

In this case g is the Lie algebra s[(2,R). The action of G ~ R™ on
VT ~ R is given by
(9,2) = g’ .
The G-orbits are {0}, ]0,+oc] and ] — 0o, 0[ and the Gc¢-orbits in VI are
{0} and C*. The fundamental invariant is of degree 1 and given by the map
z +— x on R. Therefore we obtain

k=1.

A.1.13. Properties of Ag

The properties described in section 1.12 are here trivial consequences of
the properties of the determinant. Since an element X; of gV is of the form

X;:(gﬁﬂ%y*ﬁ>wmm§jeR,

the formula (2) of Theorem 1.13.1 means that

Tk &k
det =xqg - xp det ..
zo&o €o
The character o of the group G is given by
xo(g) = det (g)? where g € GLT(k + 1,R) .

A.1.14. The polynomials A;

Since the graded algebra g; is obtained in the same way as g with k re-
placed by k+1—j, the fundamental relative invariants are also determinants.
It follows that the polynomials A; are principal minors. More precisely for
the element X € VT determined by a symmetric matrix X = (; ;)i j=o,...k
we have

ZToo 0 Tok—j
Aj (X ) = det )
Th—jo vt Th—jh—j
and the properties of A; given in Theorem 1.14.2 follow easily.

A.2 The orbits of G in VT

In the case we are considering here, it is easy to obtain the G-orbits in
V*. It is equivalent to obtain the orbits of GL*(k+1,R) in Sym(k+1,R) for
the action (g, X) — gXg. These orbits are, of course, given by Sylvester’s
law of inertia for real quadratic forms.

Nevertheless, we will follow the sections of this chapter to exhibit the
different objects used in the proof of the general case.

A.2.2. First reduction
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It is well known that each matrix X € Sym(k + 1, R) is conjugate under
an orthogonal matrix g to a diagonal matrix D i.e.
X =gDg ' =gD'g.

Moreover it is possible to choose g with positive determinant by replacing,
if necessary, the matrix g with the matrix

-1

1

It follows that each element of V't belongs to the G—orbit of an element of
the “diagonal” g2 @ - - - @ ¢, which is the result of Theorem 2.2.2.

A.2.3. An involution which permutes the roots in E; ;(+1,+1)

The maximal compact group K of G is here isomorphic to SO(k + 1, R)
eventually quotiented by ~{:I:Id} according to the parity of k. The maximal
compact subgroup K of G is the quotient by {£Id} of the set of matrices

(_ab 2) wherea+itb e U(k+1) .

In particular the elements of the form

(g taol) where a € O(k + ].) y

belong to the group K and not to the group K if det(a) = —1.

An element X; of g such that {6(X;), Hy,, X;} is a slo—triple is of the
form

0 0
It follows that the Weyl group element related to this sla—triple is given by

wi — (L1~ Fio o miFi
’ -ni¥i gy —Fi)

Xi=mi (O Fi) where F; = E_;p—; and n; = £1 .

which belongs to K since w; L — %y,. For i # j, we have F;F; = 0 and we
obtain

1k—|—1 — (Fz + F]> 77in' + ’I’]ij
Wi = wiw; = = w;w; .
b Lt ( _(niFi + ’I]ij) 1441 — (Fz + Fj) J

If X is an element of E;;(1,1) or of E;;(1,—1) we have
wi,j.X = w,-,thw,-,j = ’rh"r]je(X) .

It follows that Proposition 2.3.2 is trivially satisfied in this case and that
the involution of E; ;(p,q), (p = £1,¢q = *1) given by 7;; = w;j 0 6 is, up to
the sign, the identity. The sign depends on the choice of X; and of Xj.
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A.2.4. Construction of elements interchanging )\; and );

Here we have
H,, —H)\j =Hx-x; .
2

Therefore an element X € Ej j(1,—1) such that {6(X), Hy, — Hy;, X} is an
slo—triple is of the form

0 —'A

According to the choice of X; and of X}, this element will satisfy the equality
7;;(X) = X or the equality 7;;(X) = —X. The Weyl group element -; ;
associated to this sle—triple is given by

adX ,adf(X) adX _ (gz’j 01) ,
0 g

where 8ij = 1k+1_Ek—i,k—i_Ek—j,k—ji(Ek—i,k—j_Ek—j,k—i)- For simplicity,

we will write
0 1
8ij — + 10 y

where the 2 X 2 matrix on the right hand side is the square submatrix of
gi; corresponding to the indices in {k — 4,k — j} x {k — i,k — j}. The other
coeefficients of g;; are equal to one on the diagnonal and zero elsewhere.
Proposition 2.4.3 is easily verified, namely that <; ; interchanges the roots
Ai and Aj and stabilizes the other roots ;.

X = (A 0 ) where A = iEk—i,k—j .

Vi = €

The action of 'yizj is not trivial on g since we have (using the notation of
the previous section)

g5 = L1 — 2Bp_ip—i — 2Bg_jp—j = 1pyy — 2F; — 2F; ,

9 -1 0
To obtain an involution of g we use w? which does not depend on the

choice of X; since
w? — (Let1 —2Fi 0
¢ 0 1p41 —2F; )

— g; O
Vod = VigWi = —wiVij = —Viw; = ( 0 t~—1> :
8i;

where g = & (1x11 — Ep—ip—i — Exjr—j + Br_ip—j + Ex_jr ) i.c.

~ 01

&ij —— + (1 0) .
This element belongs to K but not to K since det(gi;) = —1 and we verify
the result of Proposition 2.4.4 namely that

Vo =1d.

which can be written

We set
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A.2.5. Quadratic forms
Let X € V* (resp. Y € V) and let X (resp. Y) be the associated

symmetric matrix. Then the quadratic form Qx(Y) on V"~ is given by
Qx(Y) =b(e*Y,Y) = tr(XYXY) .

If X belongs to &% (3% then we have X = Y F (&E;; with & € R It
follows that, if Y = (y;;), we have

k
Qx(Y) =) &vi+2 > &y, -
=0

0<i<j<k
And we verify that the rank of this quadratic form is given by

-1
rankQX:m+%,

where m is the number of indices ¢ such that & # 0. This is the result of

Theorem 2.5.1.

Since the dimension of each root space is 1 and since #L is the unique
root in E;;(£1,+1), the case we are considering here is of Type L

A.2.8. The signature of the quadratic forms gx; x;

Let (X;);=o,...k be a sequence satisfying condition (C). It means that X;
belongs to g% and that {6(X;), Hy,;, X;} is a slp—triple. Then X is given
by the symmetric matrix

Xj = ejEk—j,k—j where € = +1.

The quadratic form gx; x; is defined on E;;(—1,—1) by
1
9x;,X; (Y) = —Eb(adXiY, adeY) ,

and given for Y = y(Ekfi,kfj + Ek*j,k*i) by

cey?  ii# g,
axix; (V) = {4@;2 ifi=j.
It follows that, for i = j, this quadratic form is positive definite on g—
(Proposition 2.8.2) and that, for ¢ # j, it is positive definite (resp. negative
definite) on FE;;(—1,—1) if ¢;¢; > 0 (resp. €;¢; < 0) (Corollary 2.8.7). There-
fore the sequence (X);=o,....x satisfies the condition (D) if and only if ¢; = ¢;
for i,j € {0,---,k}, which implies that there exist only two sequences of
this type obtained for ¢; = 1 for each j € {0,...,k} or ¢; = —1 for each
j €40,...,k} (Remark 2.8.13). This can be written here

(Xj)j:O,...,k satisfies (D) =X+ X1+ -+ X =F1g4 -
Using the explicit value of v;; obtained in section A.2.4, we have
Xj = 'Yij(Xi) = € = € .

It follows that the quadratic form gx; ., (x;) is positive definite (Lemma
2.8.8).
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For ¢ = (eg,€1,-..,ex) we will denote by I the element of VT deter-
mined by the symmetric matric

k
L=> ¢Brjrj-
=0

In particular, for ¢ = (1,1,...,1), we will write I instead of I]. The
associated symmetric matric is then

k
M=) "E;; =144 .
i=0

A.2.9. Zg(I*)-orbits

The quadratic forms Q7+ and @_;+ are positive definite on V'~ and
the centralizer of IT (and of —I") in G is exactly the maximal compact
subgroup of G i.e. K. Theorem 2.9.3 is here the consequence of the fact
that each symmetric matrix is conjugate under the group K = SO(k+1,R)
to a diagonal matrix.

A.2.10. The G—orbits in VT

The result of Theorem 2.10.1 can here be written as follows.

The GLT (k+ 1,R)-orbits in Sym(k+1,R) are in one to one correspon-
dance with the orbits of the elements I where ¢ is of the form :

e=(0,...,0,1,...,1,—1,...,—1) withp>0;¢>0;p+q<hk+1.
( ) P q p+yq
k+1—p—q q 14

It is Sylvester’s law of inertia and (g, p) is the signature of the quadratic
form associated to the symmetric matrices in the orbit under consideration.

A.2.11. The classification

In the table of the end of chapter 2 we find the example studied here in
the following form :
g=sp(k+1,R); ¢ =sl(k+1,R); V' =Sym(k+1,R);
R =X of type Ci41;
ed=(0=e=1;
Type L

A.3. The symmetric spaces G/H

The open G-orbits in V' are of the form G.I where € = (eg,--.,€x)
with €; = £1 and



APPENDIX : THE EXAMPLE OF SYMMETRIC MATRICES 221

Moreover the orbits G.I, and G.I are the same if and only if
#ileg=1=4#{ile¢=1}.

A.3.1. The involutions
The Weyl group element we of the sly—triple {8(I;"), Ho, I} is of the

form
w. — 0 I
¢~ \-I 0/~
The adjoint action of we on g is given by the involution o, where
A X\ [(-I'AI. -IYI
dely —tA) = \ -IXI. T.AIL |-
It is easy to verify here the results of Theorem 3.1.1. In particular it can be

noticed that :

e The involution o, stabilizes g and the subalgebra of fixed points under
this involution is given by

he = {(13 —9A> where I, AL, = —tA} .

Therefore fj, is isomorphic to the Lie algebra of the orthogonal group of the
quadratic form defined on R¥*! by (z9,21,..., %) — Z?:o €.

e The application adl : g — V™ is given by

A 0 . 0 -I'A - AL
0 —A 0 0 '

This application has a kernel given by f. and is onto. More precisely let g
be the set of elements X € g such that o.(X) = —X. Then the application
—2adf(I}) : VT — g is given by

0 X\ . —iXIL. 0
0 0 0 LX) -
Then we have for X e V1

X = adl} o (—%adQ(Ij)) (X) .

Therefore the image of the application adl} is V.

e The involutions o, o and 6 commute (results of Theorem 3.1.1 (5)
and Proposition 3.1.3).

Here we have a® = a” and these subspaces are maximal abelian in

IJZ{XEG|9(X):—X}:{X: ("8‘ _?A> wheretA:A}

and in

ge={Xe€glo.(X)=-X}= {X = (‘3 —(t)A) where ‘A = IEAIE} :

This implies the result of Proposition 3.1.4.
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A.3.2. An involution ¢ for Type I

In section A.2.8. we have proved that the sequence (Xj) o, satisfies
the condition (D) if and only if Xo + X; + -+ + Xy = £1x41. In this case
Xo+ X1+ +Xp=IF withe=(1,1,...,1) ore =(-1,-1,...,—1) and
it follows immediately that we have

o:=80.

A.3.3. Root systems

The root system $° = 5(§, a°) is equal to the root system ¥ = (g, aP)
and therefore is of type Ci11 (see A.1.2).

The algebra g is isomorphic to gl(k+1,R) and a® is a Cartan subalgebra
of g. It follows that the root system %0 = %(g, a%) is of type Ay, which is
the result of Theorem 3.3.3 (1).

Let now o, be the involution of g given by

oe(X) for X €g;
a.(X) = _
—0.(X) for XeVteoV™.

oo (A X\ _(LAL -LXIL
Ze\y —tA)~ \-LYI -L‘AL) "
Let goy, be the set of fixed points of g under the involution fo,. Theorem
3.3.2(2) asserts that the root system %07 = ¥(g6o. ; a%)) is here of type Ay.

Then we have

Up to conjugation by an element of K we may choose ¢ of the form
e=(1,...,1,-1,...,-1) withp+g=k+1.
—— ———

q p

(-1, 0
()

It follows that gy, is the set of elements of the form

Then we have

a; O 0 T
|0 a tz 0

X = 0 y —tag O ’
ty 0 0 —tay

where a1 € M(p,R), as € M(q,R), z,y € M(p, ¢, R). Therefore the applica-

tion
a1 X
X —
(ty _ta2> ’

is an isomorphism from the Lie algebra gy, onto gl(k + 1, R). Since o’ is a
Cartan subalgebra of gy, we verify here the result of Theorem 3.3.2 (2).

0
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Moreover gg,, Which is equal to gs, Mg is isomorphic to gi(p, R) X gl(g, R).
Therefore the root system 2% = %(gg,_,a’) is of type A, 1 X A, 1 which
is the result of Theorem 3.3.3 (3).

A.3.4. The groups K, H. and G’

We recall (see A.1.7) that the group G is isomorphic to GLT (k + 1, R)
for k even and to GLT(k + 1,R)/{xId} if k odd. More precisely

o-fo- (8 )}

where g € GL™ (k + 1, R) eventually quotiented by +Id.
The involution @ is well defined on G by

o(§ wi)=(% o
0 fgt 0 g

By definition, an element g belongs to G? if (g) = g. This means that
tg~l = g and eventually 'g ! = —g if k odd. But this last equality, equiv-
alent to glg = —14,1, is impossible. It follows that the group K = GY is
isomorphic to

SO(k +1) if k even |
SO(k +1)/{£Id} if k odd ,

which is a connected group whatever the parity of & is.

Moreover K is the centralizer in G of I = (8 1k0+1> and of I~ = 6(I™).

We suppose now that, as in section A.3.3, ¢ is of the form
e=(1,...,1,—-1,...,-1) withp+qg=Fk+1.
——— —— ——
q P

The involution o, is well defined on G by conjugation by the element w,
defined in A.3.1 and we get

(8 0 \_(L%&'L 0
“\o fg! 0 LeL)-

By definition an element g belongs to G%¢ if 0.(g) = ¢g. This means that
gl. ‘g = I. and eventually gl. ‘g = —I. if k odd. The first equality means
that g centralizes I and the second that I* and —I are in the same G-
orbits in V. By the classification of the G-orbits this last case occurs if
and only if p = q. More precisely we have for p = ¢

gl.lg=-I, <= g=hx 0 -1 ,
1, 0
where hI, th = I, and 1, is the identity matrix in M(p, R).
We obtain therefore that

* G =Zg(l) ifp#q,
e G D Zg(I:) and G # Zg(I:)ifp=g¢q.
This is the result of Theorem 3.4.2 (3).
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The centralizer of I in G is given by

if k = ~1
ZG(I;F):{SO(q,p) if k=p+q—1leven ,

SO(q,p)/{£Ild} ifk=p+qg—1o0dd .
If p > 0 and ¢ > 0 the group SO(q,p) has two connected components and

therefore Zg(I) is not necessarily connected. More precisely the number
of connected components of Zg(I}) is equal to

el if (¢g=0) or (p=0) or (podd andqodd);

e2 if (p+qoddwithg>0,p>0) or (peven>0 andgqeven >0).
The subgroup Zg(I) is open in G°¢ and will be denoted by H,. There-

fore we obtain a collection of reductive symmetric spaces G/H, which have

a realization as open subsets of V', namely G.I;". The union of these open
subset for e = (1,...,1,-1,...,—1) and p € {0,...,k+1} is the open dense
—_———

P
subset of generic elements of VT which is associated to the set of invertible

symmetric matrices.

A.3.5. A parabolic subgroup of G

The parabolic subalgebra of g defined by
P =34(a°) @ (i Eij(1, 1))

is here a minimal parabolic subalgebra of g which is given by

P = { (13 —9A> where A is an under triangular matrix} .

From the definition of 8 in A.1.1 and of o, in A.3.1 we get

o(A 0\ _(LAL 0
7%\o -A)~\ 0o -rAL) -

The subalgebra 3 is o.6—stable for every involution o, associated to a generic
element I of the diagonal GB;?:OE)‘J' and is therefore a minimal o.0-stable
parabolic subalgebra of g.

The LANGLANDS decomposition P = m & a @ n of 3 is here of the form

BL=a"Pn,
since 34(a%) = a®. Here n = ®;;E;;(1, —1) is the set of matrices
A o 0 ... 0
(0 —tA> such that A = | 4 Lo
x 0

We will now describe the LANGLANDS decomposition P = M AN of the
parabolic subgroup P of G with Lie algebra 3. Each of the groups M, A
and N will be in a one to one correspondence with some subgroups M, A
and N of GL*(k + 1, R) where the correspondence goes as follows :

9= (% —tg—1> € M,A,N < g €M, A,N (respectively) .
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With this correspondence the LANGLANDS decomposition is given by

1 0 0
N = neGL’L(k-l—l,R)‘n: . ool b
* % 1
ap 0 O
A= aEGL+(k+1,R)‘a: 0 ol@>0t,
0 0 ag
+1 0 0
M= m€GL+(k+1,R)‘m: 0 . 0
0 0 =1

The action of M on each I is trivial which implies that M is a subgroup
of H,. This is the result of Theorem 3.5.4.

A.3.6. The prehomogeneous vector space (P,V ™)

We will study the polynomials A; (5 = 0,...,k). We recall that if
X € V7 is determined by a symmetric matrix X then A;(X) is a principal
minor of X which will be denoted by d;. More precisely for X = (z;;); j—o,...k
we have
oo cct Tok—j

Tr—j,0 *°° Tk—jk—j
For n € N we have
5j(nth) = (5](X) ,

d. 0 0
and for d a diagonal matrix in MA of the foorm | ¢ -, | we have
0 0 do

0;(dXd) = (di ... d;j)"6;(X) .
It follows that for p = man € P withm € M, n € N and a € A associated

ap 0 O
to a diagonal matrixa= | g -, ¢ | with a; > 0 we obtain
0 0 ag

Aj(p-X) = xj(p)A;(X) where x;(p) = (ay, . .. a;)?
This proves that A; is relatively invariant under the action of P and gives
the corresponding character ;. This is the result of Theorem 3.6.1.

Let X be a symmetric matrix such that §;(X) # 0 for j =0,...,k. By

GAUss Lemma there exists a matrix n € N and real numbers xy, . . ., zx such
that
Tk 0 0
X=n|g 0 tn
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Moreover since §;(X) = xj...x;, the elements ; are nonzero. Therefore
we can write z; = eja]2- with a; > 0 and ¢; = &1 for j = 0,...,k. Then
there exists a € A and ¢ such that

X = nal, taln

In other words, if X is an element of V' such that Aj(X) # 0 for j €
{0,...,k} there exists € such that

X € NAIT .
Since M centralizes I} we have
NA.ID =PI} .

It follows that
P.IE+ = {X eVt | Aj(X)fj---ek > 0 for j :O,...,k} X
which is the result of Theorem 3.6.3.

If OF denotes the set of X € V't such that Aj(X) # 0 for j =0,...,k,
then O is the union of the open orbits of P in Vt. Therefore (P,V") is a
prehomogeneous vector space.

The open P-orbits in G/H, are in a one to correspondance with the open
orbits P.I" contained in G.I}. From the description of the open G-orbits
in V* we have P.I7 C G.I'" if and only if

#oln =1 =#{jle=1}.
It follows that for e = (1,...,1,—1,...,—1) the number of these open orbits
N———
P

1
k+ ) This is the result of Theorem 3.5.3.

is given by <

A.3.7. The involution v of g

We are looking for an element v € G such that 4% =1d and
(i) 7y stabilizes g and interchanges V* and V
(i) v normalizes P;
(iii) v normalizes a°.
The following element satisfies these properties :

1 0

It may be noted that the square of 7 is equal to -Id in Sp(k + 1, R) and then
to +Id in G = Sp(k + 1, R) /{xId}. Therefore v induces an involution on g.
More precisely a direct calculation shows the result of Theorem 3.7.1, namely
that for j = 0,..., %k we have

W-H)\j = _H/\kfj ’
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and for each of the two sequences (X);—o,....x satisfying the condition (D)
we have
Therefore we have v.I*T = (I").

We want now show the tools used for the general construction of v and
prove that such an element is not unique.
We start with elements 7; ; obtained in section A.2.4 :

Fii = (861 é:j) where g;; +— * (2 (1)> .
The sign of g;; depends on the choice of an element X € Ej; ;(1,—1) such
that {6(X), Hy, — Hy;, X) is a sly—triple.
Let n be the integer defined by k =2n+2 if k even and k =2n+ 1 if k
odd. Then we define

—~ —_ N —_—~—

v :mo'yl,kfl O+ O%k—n -
This element depends on the choice of n + 1 signs. Therefore there exists
n = (1o, --.,7Mn) with 7; = &1 such that

a3 £)
K o I,)”
where, according to the parity of k, we have

my [ L

Mn
I, = in or 1

in

o Mo

If (X;);=o,...,k satisfies the condition (D) then Z?:o X is equal to +I* and
is fixed by 7,. The Weyl group element w associated to I or —I" is given

by
0 Ip 0 —1pn
w= or .
(_1k+1 0 ) <1k+1 0
If we set 7, = wy, = Y,w we obtain
0 1“,7> ( 0 —1“7,>
'7 = or .
K (_Fn 0 r, 0
These elements satisfy also the properties of Theorem 3.7.1.

A.3.8. The orbits of P in V™ and the polynomials V;
The action of P on V'~ is given by

p 0 0 0\ 0 0
0 tp—l ‘\Y 0 - tp—lYp—l 0 .

The polynomials V; defined on V'~ for j =0,...,k by
Vi(Y) =47;(+Y),
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are relative invariants under the action of P since y normalizes P. Again
the polynomials V; are given by some minors.
Let Y = (yij)i j=0,...k be the symmetric matrix associated to an element
Y of V~. Then we obtain
“Ykk 0 Yk Y59 - Yik
Vi(Y) =6;(-TYT) = | : Do =DM :
Yk 0 7Y Yej - Ykk
It may be noted that the polynomials V; do not depend on the choice of
the elements v obtained in A.3.7 since (using the notations of the previous
section) we have
0;(-I', YT,) =4;(-TYT) .
A more general argument proving this result is given in Remark 3.8.3.
The character of V; for the action of P is given by
x; () = xi(vpr 1)
where X is the character of A;. If p is the under triangular matrix associated

to an element p € P, then the matrix associated to ypy ! is the under
triangular matrix given by I'*p 'T. Therefore

V;(p.Y)=6;(="(Tp 'I)(C'YT)(Tp 'T)) .

If p= nam withn € N, a € A and m € M, we have 'n~'T € N,
I'm T € M and

arp 0 0 a0 0
a= | o| =T a”ll'= 0 0
0 0 a 0 0 a

It follows that
Vi(p.Y) = (ag---ax—;) 28;(~TYT) = (ao -~ ar—;) *V;(Y),
and consequently that
X; (p) = (ao---ar—j)7% .

This is the result of Theorem 3.8.2. The open orbits of P in V'~ are char-
acterized by the signs of the polynomials V; as explained in Theorem 3.8.6.
Representatives of these orbits are given by the elements

I =6(I}) = (_OI 8) .

A.3.9. A G—equivariant map from Q" onto Q™
From the definitions the sets 21 and Q™ of generic elements in respec-
tively VT and V~ are defined as follows:

O ={X = (8 )0(> | X € Sym(k + 1,R), A¢(X) = det(X) # 0},

Q —{v = (3 8) 1Y € Sym(k + 1, R), Vo(Y) = det(Y) # 0}
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The G-equivariant map ¥ : QT — Q= is defined by the fact that
(¥(X), Hp, X) is an sly—triple. An easy computation shows that therefore

| (O 2)-( 22 9)

A.3.10. Intersection of N—orbits with the diagonal

We know from Theorem 3.10.4 that an element in OF is N-conjugate
to a unique element d(X) = fo(X)Xo + f1(X) X1 + -+ + frx(X)Xg. As the
polynomials A; are N-invariant, we have for all j =0,...,k

A(d(X)) = Ay(X).

Hence we obtain:

Fi(X) fip(X) .. fu(X) = Aj(X).

Therefore f;(X) = %

if X = (x;)i,j=0,.,k- This proves that the polynomials P;(X) in Theorem
3.10.4 are here given by

forall j =0,...,k—1and fr(X) = zop

Pj(X) = A(X).
This is in fact true (with the same proof) for Type I and Type II

A 4. Integral formulas

A.4.1. Integrals on V' and V™

Let us choose the Lebesgue measures dX on VT and dY on V™~ defined

by
k(k+1) .
dX = (V2)" = |[dei; it X = (2iy) € Sym(k + LK) ,
i<j
k(k+1) .
dY = (\/5) 2 dei,j if Y = (yi;) € Sym(k + 1,R).
i<j

Of course dX will denote the corresponding measure on Sym(k + 1, R).

Then, obviously we have

[
= | _seeyay

Therefore the pair (dX,dY") satisfies the condition (V7).
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The Fourier transform of a function f € S(V) is then defined by
(ff)(Y) — f(X)e2i7rb(X,Y)dX — f(X)e2i7rTr(XY)dX'
vt vt
An easy calculation shows that if F is defined on h € S(V ™) by
Fh(X) = / h(Y)e 2mXY) gy = / (Y )e 2m (XY gy,

then F o F is the identity on S(V ).
Hence the pair (dX,dY") satisfies condition (N7) and (Nz).

For g € GL*(k + 1,R), the endomorphism of Sym(k + 1,R) given by
X +—— gXtg has a determinant equal to

imvt imvt
det(g)* " = xo(g) "1
U+
Therefore if we set m = dim V7 _ 1(k +2) we get
kE+1
0 gXt _
£(g.X) ax = 1(o EeE)ax=xolw ™ [ sx) ax
v+ Sym(k+1,R) v+

which is Lemma 4.1.5.

A.4.2. Two diffeomorphisms

To describe the decomposition of g given by the eigenspaces of ad Hy,
let us first notice that here we have

H
Hy, = ( Ok _Hk> where Hy, =

For an element X € V1 we write

Xz(O X> where X = |,

0 0

with vi € R, wy; € M(1,k,R) and u; € Sym(k,R). Then we obtain
XeVH0)<=vi=0and w; =0,
XeVt(l)«<=vi=0andu; =0,
XeVt2) <= u=0andw; =0.

Moreover, if X € V*(2), then X € V1(2) < vy #0.

Similarly for an element Y € V'~ we write

Y:(g g) where Y = |, , ,
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with vi € R, w] € M(1,k,R) and u} € Sym(k,R). Then we obtain
YeV (0) = vi=0andw] =0,
XeV (-1l)<vi=0andu) =0,
XeV (-2)<=uj=0andw;=0.
Moreover, if Y € V—(0), then Y € V—(0) <= det(u}) # 0.

And for an element A € g we write

A=<A 0)whereAz

C B1

0 —fA Ay C

with ¢ € R, By € M(1,k,R), A; € M(k,1,R) and C € M(k,R). Then we
obtain

A€g(0)<—= A;=0andB; =0,
Xegl)<=A;=0,c=0and C=0,
Xeg(-1)«<=B1=0,c=0and C=0.

The map ® from V1(0) x g(—1) x VT (2)" into V' defined by
®(u, A,v) = 14 (u + v)
corresponds (with the previous notations) to the map
® : Sym(k,R) x M(k,1,R) x R* — Sym(k + 1, R)
(w1, Ay, vi)— X

where

Vi1 | VltAl

Aqvy AjvitAl +uy

This map is clearly a diffefomorphism onto the set of X € Sym(k+ 1, R) such
that v; # 0 which corresponds to the set of X € V1 such that Ag(X) # 0.
This is the first result of Proposition 4.2.3.

Similarly the map ¥ from V—(0)' x g(—1) x V—(—2) into V'~ defined by
(', A,v') = 4 4 0')
corresponds (with the previous notations) to the map
¥ : {u} € Sym(k,R) | det(u}) # 0} x M(k,1,R) x R* — Sym(k + 1, R)
(uf, Ay, v))—Y
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where
! t ! t !
vy + A1u1A1 | — Alul
Y =
—ujA; u)

This map is clearly a diffeomorphism onto the set of Y € Sym(k + 1,R)
such that det(u}) # 0 which corresponds to the set of Y € V such that
V1(Y') # 0. This is the second result of Proposition 4.2.3.

A .4.3. Isomorphisms between g(1),g(—1),V*(1) and V~(-1)

We consider the following diagram where v is a generic element in V1(2)
and v’ is a generic element in V—(0).

adv/1 g(1) \*\adu'
Vo(-1) V(1)
a

Let us make explicit these arrows in order to prove directly that they are
isomorphisms and that the diagram commutes. For this purpose we will use
the same notations as in section A.4.2
Let v’ € V~(0)". Under the just mentioned notational conventions the
map
adu': V(1) — g(1)
corresponds to the map:
M(1,k,R) — M(1,k,R)
W1 —> —Wlull

which is obviously an isomorphism since det(u’y) # 0.
Similarly the isomorphism:

adu' : g(—=1) — V7 (-1)
corresponds to the isomorphism:
M(k,1,R) — M(1,k,R)
A, —TA Y.
Let now v € V*(2)". Then the map
adv:V (-1) — g(1)
corresponds to the map
M(1,k,R) — M(1,k,R)
wi — viw]

since vi # 0, as v is generic in V1(2).
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Similarly the map:
adv:g(—1) — V(1)
corresponds to the map
M(k,1,R) — M(1,k,R)
Ay — —vitA,

which again is obviously an isomorphism. And it follows easely that the
diagram commutes.

We define a Lebesgue measure on the spaces V1 (1), V—(-1), g(1) and
g(—1), which are all isomorphic to R¥ | by setting

dw (resp. dw', dA, dB) = (vV2)*d~ ,
where dy = dy ... dvg if

B!
y=(",---,%) € M(1,k,R) ory=]|: | € Mk,1R).

Yk

Since the relation w = [4,v] is equivalent to w; = —v1tA4, it follows that,
for example

= Vlk v .
f o @ dw =t [ (A as

8(=1)
Similarly as the relation w' = [A,u] is equivalent to w} = 'A;ul, it follows
that
[ g de=jderui] [ f(Aw)da.
V=(-1) 8(-1)
Since vi = Ag(v) and det uj = V1 (u'), we get the result of Proposition 4.3.1
with the constants a, £, v and « equal to 1.

A.4.4. A first normalization and its consequence

For the normalization made in A.4.3, the relations (4-4-1) are clearly
satisfied. Moreover the relations (4-4-2) are also satisfied since, here, the
involution o associated to I(*l',___,l) is equal to 0 (see A.3.2). As we have seen
in A.4.3 that the constants appearing in the integral formulas of Proposition
4.3.1 are all equal to 1, Proposition 4.4.2 is proved in our case.

A.4.5. A second normalization and its consequence

The form b (A.1.10) induces a duality between the spaces V(1) and
V~(—1), and between the spaces g(—1) and g(1). More precisely we have
for w € VT(1), w' € V7 (=1), wy = (w',...,w*) and w}| = (w',..., w'™)

k . .
b(w,w') = Trww' = 2 Zw]w” .
j=1
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Similarly for A € g(—1) and B € g(1) we get
k a'
b(A,B)=TrAB=2) ot/ ifA;=]: |, Bi=("...,b".
j=1 ok
It is now clear that with the normalization made in A.4.3, the pairs of
measures (dw,dw') and (dA,dB) are dual for the Fourier transform and its
inverse defined as in A.4.1. i.e. the relation (4-5-1) is satisfied.

A.4.6. Integral formulas on V™ and V™

We define a pair of measures (du, du') on V*(0) x V~(0) and a pair of
measures (dv, dv') on V*1(2) x V" (—2) by conditions similar to (N;) and
(N3), as we did in A.4.1. If the pair of measures (dw,dw') on V(1) x
V~(—1) is normalized as in A.4.3, then an easy computation on the powers
of v/2 lead to

dX = dudwdv and dY = du/dw'dv’ .

The integral formulas obtained in Theorem 4.6.2 are here an easy conse-
quence of the explicit expression of the diffeomorphisms ® and ¥ obtained
in A.4.2. As the jacobian of ® at the point (uy, A, vy) is equal to |v1|F we
get for f € L'(Sym(k + 1,R)) associated to f € L'(VT)

/ f(X) dX
Sym(k+1,R)
Vi | VltAl
:/ / /f( A AivitA )|v1|kdu1dA1dv1
Sym(k,R) JR* JR 1V1 1V A1+ wm

:/ /TJ:I_(ul,Vl)‘Vl‘II duldvl ;
Sym(k,R) /R

where

Vi | VltAl

+ — |y |k (
Tf (a1, v1) = |v1]2 /Rk f Ajvy AvitAy + g

)dA1 .

Similarly, as the jacobian of ¥ at the point (u'y, A, v}) is equal to
| det u}| we get for g € L(Sym(k + 1,R)) associated to g € L}(V ™)

/ g(Y)dy :/ /Tg_(u'l,v'l)|det u'1|%du'1dv'1 ,
Sym(k+1,R) Sym(k,R) /R

where
1ot ! ¢ !
vi+Aju Ay | —Ajuy

—r oIy YL
7, (i) = lder(wn)ld [ e(| s, « |)aar

The formulas in Theorem 4.6.2 and Proposition 4.6.4 follow since v; =
Ag(v) and det(u)) = V1(u).
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A.4.7. Fourier transform of a quadratic character

Recall from Definition 4.7.3 that, if (u', v) € V=(0)' x V=(-2), and if
(p',4¢') is the signature of the quadratic form Q. , on g(—1) defined by

Quio(4) = 3b((ad AY0,0),

then we set

AW, v) = € 3F )

Using the parametrizations introduced in A.4.2, the explicit expression
of y(u',v) can be written as follows in the case of symmetric matrices. If
A € g(—1) corresponds to Ay € M(k,1,R), if v’ € V(0)" corresponds to
u} € M(k,R) (det(u}) # 0) and if v € V1(2) corresponds to v1 € R, we
get from A.4.3

1 1
Eb((ad A v) = —Eb(ad u'A,advA) = vi'Ajuj A, .

Therefore we obtain

AW, v) = e 3EDED)

where (p,q) is the signature of the quadratic form associated to the sym-
metric matrix u} (p + ¢ = k).

The Weil character formula (Corollary 4.7.4) may be written here is
follows. Let (u},v1) € R¥ x R* with det u} # 0. If (p, q) is the signature of
the quadratic form associated to matrix u}, then for ¢ € S(R*) we have

/ (Fo)(vi'Aqu))eXmr Aruihs ga,
RE
= A0 | et 3 [ g(ane AL aa,
R
where F is the Fourier transform defined on R by

(FONAD = [ o(A)eH MM day

and the measure on R*¥ ~ M(1,k,R) is normalized as in A.4.3.

A.4.8. A relation between T;_-f and T]'f

The partial Fourier transform F, with respect to the u variable is given
here for a function f € S(V1) associated to f € §(Sym(k + 1, R) by

0 0 0 0

— 2im Tr(uyu'y)
f“f( 0| uj ) /Sym(k’R) f( 0] w e duy
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(k—1)k —
where du; = (v/2) 2 [Ti<ij<k dmij for ui = (@ij)1<ij<k- Similarly the

(partial) Fourier transform F, with respect to the v variable is given by

V'l 0 V1 0

f”f( 0] 0 ) - /Rf( 0| 0 )X ™IV dy,

where dv; is the Lebesgue measure on R.
The proof of the formula

(Tr;) (W, V') = F, (7(u', v)]-'uTJ?L(u', v)) (v")

is not easier to obtain in the case of the symmetric matrices than in the
general case (see Theorem 4.8.1).

A.5. Functional equation of the Zeta function

There is no improvement or simplification of the proof or the result of
the functional equation in the specific case of symmetric matrices. Let us
just mention, that as d = e = 1, we have

So(z,e,m) = (2m)" e 5 HIT(z 4 1),

As we have seen in sections 5.3 and 5.4, this formula allows then the explicit
computation of the coefficients dx(s,e,n) and vg(s, 7, €).

A.7. Zeta function attached to a representation in the minimal
spherical series
For p € {0,...,k + 1}, we set [T = I and 0, = o, with
e=(1,...,1,-1,...,-1).
N N
k+1-p p

Then QF and Q, denote the G-orbits of respectively I/ and I, = 6(I,)
where G ~ GL(k + 1,R)" (eventually quotiented by +Id). The group
H, = Zg(I}) is open in G°? and isomorphic to SO(k + 1 — p, p) eventually
quotiented by +Id (see A.3.4). The G-orbit Q, of I, in Sym(k + 1,R) is
the set of symmetric matrices of signature (k + 1 — p,p) and we have here

QFf ~Q) ~GL(k+1,R)"/SO(k +1—p,p)

A.7.1 The minimal spherical principal series

Recall that we have here
k

a:ap:aozz:RHAj.
Jj=0

Asa=0a% C {X|o(X)=—X} (for any involution o = g,) we have
bp Na = {0} .

Hence for any A € af, the first condition of van den Ban (namely Algpra = 0)
is always fullfilled.
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On the other hand, as M/M N H = {e}, the second condition of van den
Ban (condition b’) in section 7.1. is not needed here: any (M N H)-spherical
irreducible representation of M is trivial.

Therefore the representations of the minimal spherical principal are
parametrized here by A € af, and denoted (my,#,). They are obtained
as follows.

Recall that

th
H 0 : tr—1
a= H_(O —H) with H = € gl(k+1,R)
to

Then we have for an element H € a

1 1
p(H) = S tr(ad H),) = 5 > (ti—ty)
0<i<j<k
1
= §(klt0-|-(k—2)t1+"'—ktk) .
ap, 0 O
Thereforeifa= | g .. g | with a; > 0 is an element in A we get

0 0 ag

k Py
#=T] 3
a (],‘7 .

=0

Similarly, if A € af. is defined by

then we get

k
110
a = (1]-.

§=0

For A € af, the representation my is defined by the right regular action on
CA(G) where C)(G) is the space of continuous functions ® : G — C such
that

®(mang) = A MPB(g) forge G, meM,ac A, neN,

and is extented to the Hilbert space 7y obtained by completion with respect
to the scalar product

(81, 85) = /K &1 (k)B2(k) dk

where K ~ SO(k + 1,R) is the maximal compact subgroup of G.

Therefore the set of representations (my,Hy) (A € af) is in fact the set
of K-spherical principal series of GL(k + 1,R)* (see Remark 7.1.7).
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Remark. — We dot not continue to investigate the specific case of
symmetric matrices, because the sequel would not be more simpler than the
general Type I case treated in sections 7.3-7.9.
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