Image denoising by statistical area thresholding - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2005

Image denoising by statistical area thresholding

Résumé

Area openings and closings are morphological filters which efficiently suppress impulse noise from an image, by removing small connected components of level sets. The problem of an objective choice of threshold for the area remains open. Here, a mathematical model for random images will be considered. Under this model, a Poisson approximation for the probability of appearance of any local pattern can be computed. In particular, the probability of observing a component with size larger than $k$ in pure impulse noise has an explicit form. This permits the definition of a statistical test on the significance of connected components, thus providing an explicit formula for the area threshold of the denoising filter, as a function of the impulse noise probability parameter. Finally, using threshold decomposition, a denoising algorithm for grey level images is proposed.
Fichier principal
Vignette du fichier
JMIV864_CR.pdf (469.17 Ko) Télécharger le fichier

Dates et versions

hal-00020670 , version 1 (14-03-2006)

Identifiants

Citer

David Coupier, Agnès Desolneux, Bernard Ycart. Image denoising by statistical area thresholding. Journal of Mathematical Imaging and Vision, 2005, 22, pp.183-197. ⟨10.1007/s10851-005-4889-z⟩. ⟨hal-00020670⟩
290 Consultations
153 Téléchargements

Altmetric

Partager

More