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Abstract

Area openings and closings are morphological filters which efficiently suppress
impulse noise from an image, by removing small connected components of level sets.
The problem of an objective choice of threshold for the area remains open. Here,
a mathematical model for random images will be considered. Under this model, a
Poisson approximation for the probability of appearance of any local pattern can be
computed. In particular, the probability of observing a component with size larger
than k in pure impulse noise has an explicit form. This permits the definition of a
statistical test on the significance of connected components, thus providing an explicit
formula for the area threshold of the denoising filter, as a function of the impulse noise
probability parameter. Finally, using threshold decomposition, a denoising algorithm
for grey level images is proposed.
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1 Introduction

The general problem of image denoising consists of deciding what is the “signal” and
should be kept, and what is the noise, and must be removed. Many different criteria can
be used to detect the noise-induced structures. For example, the oscillations due to an
additive gaussian noise can be measured in terms of the wavelet coefficients. The noise
may then be removed by a thresholding in the wavelet domain. Donoho and Johnstone
[6] gave an explicit way to choose the threshold as a function of the variance of the noise.
Their claim is that “denoising, with high probability, rejects pure noise completely”. The
underlying idea is that in pure noise, all the structures that actually belong to the image
could not appear; or else, the structures coming from the image itself can be defined as
those “objects” which would have a very small probability of appearing in a pure noise.
This idea was implemented in [4] and [5] for the detection of alignments and meaningful
level lines in an image.

Here, we shall focus on the size of connected components of the level sets of the image.
Removing small components is a classical and efficient way of removing impulse noise from
an image. This method, known as “the grain filter”, was first introduced in the framework
of Mathematical Morphology [16] by Vincent in [20] as morphological area openings and
closings (see also [21] and [8]). This filter is sometimes called the “extrema killer”. It was
then generalized by Masnou and Morel in [12], and by Monasse and Guichard in [14]. In
[15] a similar filter was used, in the framework of gradient percolation, for recovering fuzzy
images.

But the main question remains: how should the threshold for the area of the components
that have to be kept, be chosen? A natural idea, imported from statistical inference,
consists of fixing an a priori risk level ε (e.g. ε = 0.001), and deciding that anything that
has probability lower than ε of occurring under a pure noise hypothesis cannot come from
the noise and hence should be kept in the image. Thus for the threshold area, one will
choose the integer s(n, p, ε), such that a connected component of size k > s(n, p, ε) has
a probability less than ε of appearing in a pure noise image with probability parameter
p and size n × n. Applying a grain filter with area threshold s(n, p, ε) will ensure that,
with probability larger than 1 − ε, pure noise is eliminated. To implement this, one must
be able to compute the probability of any connected component of size k appearing in a
pure noise image. An exact computation is not feasible. However an approximation can
be given if the image is large: our main theoretical result (Theorem 2.4) gives a Poisson
approximation for the probability of occurrence for any image property which is local in
the sense that its definition involves only a fixed number of connected pixels.

Our plan is as follows. Section 2 is devoted to the probabilistic model of noise in binary
images: all pixels are independent, black with probability p or white with probability
1−p. The Poisson approximation result will be stated (Theorem 2.4) and an outline of
its proof will be given (technical details will be postponed to the Appendix). Section 3 is
devoted to applications. We will first explain how Theorem 2.4, together with numerical
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combinatorial results on square lattice animals1, can be used to obtain an explicit formula
for the size threshold s(n, p, ε). An example of denoising for a binary image will be given.
Then we shall extend the method to grey level images through threshold decomposition:
the binary image corresponding to each grey level is treated separately, then all denoised
binary images are recombined. Some experiments and a discussion of the obtained results
come last.

2 Probability of a local property

Our probabilistic model for random images is the following. Let n be a positive integer.
Consider the pixel set Ξn = {1, . . . , n}2. A binary image of size n is a mapping from Ξn
to {0, 1} (black/white). Their set is denoted by En. It is endowed with the probability
distribution µn,p defined by: each pixel is black with probability p or white with probability
1 − p, and all the pixel colors are independent. A random image of size n and probability
parameter p, denoted by In,p, is a random element of En with probability distribution µn,p.

The pixel set Ξn is embedded in Z
2 and naturally endowed with a graph structure. We

consider in this paper the case of 4-connectivity (2 horizontal and 2 vertical neighbors). For
purely technical reasons, it will be convenient that all pixels have the same neighborhood:
this is why we impose periodic boundary conditions, deciding that (1, j) is a neighbor of
(n, j) and (j, 1) of (j, n). Thus the graph is a 2-dimensional torus. As usual, the graph
distance d is defined as the minimal length of a path between two pixels. We shall denote
by B(x, r) the ball of center x and radius r with respect to the distance d. It is defined by

B(x, r) = {y ∈ Ξn; d(x, y) 6 r} .

Notice that this ball B(x, r) is diamond-shaped (it is a rhombus) and that for r < n/2, it
contains 2r2 + 2r + 1 pixels (see Figure 1). For the rest of this section, the radius r is a
fixed integer, and the image size n is larger than 2r + 1.

Figure 1: Example of an image on the ball B(0, r) with r = 3. This small image is also
called a pattern. The number of black pixels of this pattern D is b(D) = 2.

1Square lattice animals or “polyominoes” are simply defined as connected clusters of squares in the
plane (for example, the “Tetris” game uses all lattice animals of size 4).
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The image properties we are interested in are all local, in the sense that they can be
described inside balls of a fixed radius. All balls are translations of each other. We shall
choose a ball of radius r, say B(0, r), and fix a translation τx, from B(0, r) to B(x, r) for
all x. We call pattern, and denote by D, an image defined on B(0, r), and determined
by its set of black pixels, denoted by β(D) (see Figure 1 for an example of pattern). Of
course, B(0, r) \ β(D) is the set of white pixels. We shall denote by b(D) the cardinality
of β(D) (number of black pixels in the pattern). We shall deal with rather small levels
of noise, seen as relatively sparse black pixels on a white background. This is of course a
mere convention: swapping black and white, together with p and 1−p does not change the
model. Thus, in what follows, we will always assume that p 6 1

2
.

If D is a pattern on B(0, r) and τ is a translation of pixels, we shall denote by τ(D)
the pattern on B(τ(0), r), whose set of black pixels is τ(β(D)). If τ(0) = x, we denote by
D(x) the property: “the restriction of the image to B(x, r) is τ(D)”. The property we are
actually interested in is

D̃ = (∃x ∈ Ξn , D(x)) .

In other words D̃ means: “a copy of pattern D can be found somewhere in the image”.

The patterns D are the building blocks of all local properties. Indeed, there exists only
a finite number of such patterns (precisely 22r2+2r+1): let us denote their set by D. Any
assertion relative to the pixels in B(0, r) will be called “local”: it can be expressed in a
unique way as a disjunction (logical “or”, denoted by ∨) of distinct patterns.

The following definitions will be used in the counting of occurrences of a local property
in an image.

Definition 2.1 Let ψ be a local assertion, relative to the pixels in B(0, r).

1. The definition set of ψ, denoted by D(ψ), is the subset of D such that

ψ =
∨

D∈D(ψ)

D .

2. The black index b(ψ) of ψ is the integer b(ψ) defined by

b(ψ) = min
D∈D(ψ)

{b(D)} .

3. A meaningful definition set of ψ, denoted by D0(ψ), is a subset of D(ψ) such that

(a) ∀D ∈ D0(ψ) , b(D) = b(ψ) ,

(b) If τ is a translation, then D,D′ ∈ D0(ψ) and τ(β(D)) = β(D′) imply D = D′ ,

(c) D ∈ D(ψ) and b(D) = b(ψ) imply ∃τ , ∃D′ ∈ D0(ψ) , s. t. τ(β(D)) = β(D′) .

All meaningful definition sets have the same cardinality, which will be called the
meaningful index of ψ, and denoted by e(ψ).
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The black index b(ψ) is the minimal number of black pixels, in a pattern that satisfies ψ.
One can see the meaningful index e(ψ) as the maximal number of patterns with exactly
b(ψ) black pixels that satisfy ψ, up to possible translations. Both will be used to count
occurrences of the local property based on ψ.

Example. Let us illustrate all these definitions by considering a simple example: the
property “there exist two connected black pixels”. On the ball of radius r = 1, the
definition set of this local assertion ψ is composed of all those patterns on B(0, 1) whose
center is black, and at least one of the 4 neighbors is also black (15 patterns). The black
index b(ψ) of ψ equals 2, and its meaningful index is e(ψ) = 2 (a possible meaningful
definition set is made of the two patterns on B(0, 1) such that the center and its right
horizontal neighbor, resp. its top vertical neighbor, are the only black pixels in the ball
B(0, 1)).

Definition 2.2 Let ψ be a local assertion, and ψ(x) its localization on the ball centered at
x :

ψ(x) =
∨

D∈D(ψ)

D(x) .

We call local property based on ψ, and denote by ψ̃ the property

ψ̃ = (∃x , ψ(x)) .

Our basic example of a local property ψ̃ is: “there exists a connected component of k black
pixels”. A connected component of size k is always included in a ball of radius r > k/2. The
local assertion ψ is “there exists a connected component of size k in B(0, r)”. The definition
set is the set of all patterns on B(0, r) having at least k connected black pixels. The black
index is the minimal number of black pixels necessary for ψ to be satisfied (obviously k in
our example). The meaningful index is the number of connected components of size k, up
to translations (see Section 3).

For a fixed level p with 0 < p < 1, if we let n tend to infinity, by the independence of
pixels, it is easy to see that asymptotically any pattern will be present in a random image
with a probability tending to 1 (see [3] for more precise results). Therefore the asymptotic

probability for the random image In,p to satisfy ψ̃ is 1, whatever ψ. That asymptotic
probability can be different from 1 only if p = p(n) tends to 0 as n tends to infinity. Thus
our images will have a relatively small proportion of black pixels.

A classical object of the theory of random graphs (see [1, 19] as general references),
is the notion of threshold function. It describes the appearance of a given subgraph in a
random graph. The notion of threshold function easily adapts to random images. Let A be
an image property. The function θ(n) is called a threshold function of A if for p(n) 6 1/2
then

lim
n→∞

p(n)

θ(n)
= 0 =⇒ lim

n→∞
µn,p(n)(A) = 0 ,
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and

lim
n→∞

p(n)

θ(n)
= ∞ =⇒ lim

n→∞
µn,p(n)(A) = 1 .

Notice that a threshold function is not unique. For instance if θ(n) is a threshold function
for A, then so is cθ(n) for any positive constant c. It is customary to ignore this and talk
about “the” threshold function of A. We then have the following lemma.

Lemma 2.3 The threshold function of the local property ψ̃ is n− 2
b(ψ) .

Proof: We shall just give here the main steps, since the detailed proof will appear in [3].
Let D be a pattern and let Xn denote the number of copies of D in the image. Then

µn,p(n)(D̃) = µn,p(n)(Xn > 0) 6 E(Xn) = n2p(n)b(D)(1 − p(n))2r2+2r+1−b(D) 6 n2p(n)b(D).

On the other hand, let Yn denote the number of copies of D occurring in balls B(x, r)
where both coordinates of x are multiples of 2r + 1 (which implies that two such balls
cannot meet). The number of such balls is n2

r where nr = ⌊ n
2r+1

⌋. Then

µn,p(n)(Xn > 0) > µn,p(n)(Yn > 0) = 1 − µn,p(n)(Yn = 0)

= 1 −
(
1 − p(n)b(D)(1 − p(n))2r2+2r+1−b(D)

)n2
r

> 1 − exp(−nr2p(n)b(D)(1 − p(n))2r2+2r+1−b(D))

Using these inequalities and the definition of a threshold function, we conclude that θ(n) =
n−2/b(D) is the threshold function of the property D̃ . To conclude, one has to check that
the threshold function of a disjunction of patterns is the smallest threshold function of
these patterns. �

Lemma 2.3 means that the appearance of a local property mainly depends on its black
index: if p(n) is small compared to n− 2

b , then the probability of any local property that

needs b black pixels to be satisfied is small. If p(n) is large compared to n− 2
b , then the

probability is large. The particular case b(ψ) = 0 corresponds to the appearance of a white
ball. If there exists α, with 0 6 α < 1, such that for all n, we have p(n) 6 α, then the
probability for a white ball of being present in the random image always tends to 1 as n
tends to infinity: there is no threshold function. From now on, we will always assume that
the black index of ψ is positive.

Lemma 2.3 suggests that the correct scaling for p(n) when one studies a local property

ψ̃ is p(n) = c n
− 2
b(ψ) . Our main result shows that with this scaling, the probability of ψ̃ in

a random image converges to a non trivial limit.

Theorem 2.4 Let ψ be an assertion on B(0, r), with black index b(ψ) and meaningful

index e(ψ). Let p(n) = cn− 2
b(ψ) , where c is a positive constant. Then

lim
n→∞

µn,p(n)(ψ̃) = 1 − exp(−e(ψ)cb(ψ)) . (1)
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The reason why such a result is called a Poisson approximation becomes clear if one
considers the property “there exists a black pixel”. Let Xn be the total number of black
pixels. Since all pixels are independent, the random variable Xn follows the binomial
distribution with parameters n2 and p(n). In particular the probability that there exists a
black pixel is

P[Xn > 0] = 1 − (1 − p(n))n
2

.

Here the black index is 1 and the threshold function is n−2. Take p(n) = cn−2. Then the
binomial distribution of Xn converges to the Poisson distribution with parameter c, and
the probability that there exists a black pixel (Xn > 0) tends to 1 − exp(−c).

The situation is not so simple as soon as the black index is larger than 1. Consider for
instance again the local property ψ̃: “there exist two connected black pixels”. We already
saw that on the ball of radius r = 1, the definition set is composed of all those patterns on
B(0, 1) whose center is black, and at least one of the 4 neighbors is also black (15 patterns).
Consider the number of occurrences of any of those patterns, somewhere in the random
image. It is a sum of Bernoulli random variables. However they are not independent:
patterns on balls centered at two adjacent pixels have one pixel in common. The same can
be said of any local property ψ̃: the number of occurrences of ψ(x) can be viewed as a sum
of (dependent) Bernoulli random variables. The sum of a large number of Bernoulli r.v.’s
converges in distribution to a Poisson distribution, provided the dependencies between the
variables are not too large. In the theory of random graphs, similar results are frequent
(see e.g. [19] Lecture 1 p.296, Lecture 2 p.303 or Lecture 5 p.314).

Proof of Theorem 2.4: There are several ways to prove a Poisson approximation result. We
chose the famous “moment method” based on the following result ([1], Chapter 1 p.25).

Lemma 2.5 Let (Xn)n∈N∗ be a sequence of integer valued, nonnegative random variables
and λ be a strictly positive real. For all n, l ∈ N

∗ define the quantity

El(Xn) =
∑

k>l

P(Xn = k)
k!

(k − l)!
.

If, for all l ∈ N
∗, limn→∞El(Xn) = λl then (Xn) converges in distribution to the Poisson

distribution with parameter λ.

In our case, Xn counts the number of occurrences in the random image of some patterns,
to be precised later. The “moment” El(Xn) is the expected number of ordered l-tuples of
occurrences of those patterns.

Firstly, one should observe that patterns in the definition set of ψ cannot be all treated

equally: since p(n) = cn− 2
b(ψ) , by Lemma 2.3 any pattern with more than b(ψ) black pixels

has a vanishing probability of being observed. Hence we can reduce the set of patterns to
those having exactly b(ψ) black pixels. In the example of two connected pixels with r = 1,
D(ψ) has 15 different patterns, but only 4 of them have exactly 2 black pixels.

Now, one has to take care of multiple counts. Among the 4 patterns on B(0, 1) that have
2 black pixels, 2 patterns have two horizontal black neighbors, and the 2 other patterns have
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two vertical black neighbors. Assume the image has only one occurrence of two horizontal
black neighbors. If we examine all possible pixels x, we will find two adjacent centers for
which ψ(x) is satisfied. In order to obviate this problem, we need to count patterns up
to possible translations. We say that two patterns with black index b(ψ) are equivalent if
their sets of black pixels are translations of each other. The number of equivalence classes
is the meaningful index e(ψ) of Definition 2.1. (In the example of two connected black
pixels, there are two equivalence classes: horizontal or vertical neighbors).

We choose a meaningful set, i.e. we fix a pattern for each equivalence class:

D0(ψ) = {D̄1, . . . , D̄e(ψ)} .
The counting variable Xn to which Lemma 2.5 will be applied is the total number of
occurrences of one of the patterns D̄1, . . . , D̄e(ψ), in the random image In,p(n):

Xn =
∑

x∈Ξn

e(ψ)∑

i=1

ID̄i(x)(In,p(n)) ,

where I denotes the indicator function of an event. The expectation of Xn is

E(Xn) = n2 e(ψ) (p(n))b(ψ)(1 − p(n))2r2+2r+1−b(ψ) .

As n tends to infinity, it tends to e(ψ) cb(ψ), which is the parameter of the Poisson approx-
imation in formula (1). In order to apply Lemma 2.5 to Xn, one has to check that the
hypothesis holds.

Lemma 2.6

∀l ∈ N
∗ , lim

n→∞
El(Xn) =

(
e(ψ)cb(ψ)

)l
.

The proof of Lemma 2.6 is rather technical and will be given in the Appendix.

Now Lemma 2.5 implies that Xn converges in distribution to the Poisson distribution
with parameter e(ψ)cb(ψ). Therefore µn,p(n)(Xn > 0) tends to 1 − exp(−e(ψ)cb(ψ)). It is

clear that Xn > 0 implies that In,p(n) satisfies ψ̃. Hence µn,p(n)(Xn > 0) 6 µn,p(n)(ψ̃).

Moreover, the event (ψ̃ \ (Xn > 0)) = (ψ̃ ∩ (Xn = 0)) implies the appearance of a pattern
with at least b(ψ) + 1 black pixels in a ball of radius r, and by Lemma 2.3, its probability
tends to 0 as n tends to infinity. Therefore,

lim
n→∞

µn,p(n)(Xn > 0) = lim
n→∞

µn,p(n)(ψ̃) = 1 − exp(−e(ψ)cb(ψ)) .

It should be noticed that the asymptotics of Xn does not depend on the choice of the
meaningful definition set {D̄1, . . . , D̄e(ψ)}. It does not depend either on the radius r of the

ball. Consider for instance the property ψ̃ “the image contains two horizontally connected
black pixels”. Its definition set for the ball B(0, r) has r222r2+2r elements. Among these,
only 2r2 have exactly 2 black pixels, and there is only one equivalence class up to transla-
tions, whatever r. Therefore r is a phantom parameter, as should be expected. It serves
only to ensure that properties remain local. �
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3 Application to image denoising

In the previous section, we computed the asymptotic probability of appearance of any local
property in a random binary image. This provides the basis of a statistical test to decide
whether an observed pattern in an image may be due to noise or not, and this test can be
applied for image denoising. In this section, all the considered images will be corrupted
by the same kind of noise, namely impulse noise. This type of noise models for example
the fact that some (unknown) part of the data is lost. We will assume that the probability
parameter of the noise is known. We will first start with the denoising of binary images,
and then extend it to grey level images using their threshold decomposition.

3.1 Binary images

Let I0 be the original (non degraded) binary image of size n × n. This original image
I0 is then corrupted by impulse noise, which has a probability parameter p in the white
components and a probability parameter q in the black ones (see Figure 3 for an example).
We shall see in the next section why it is important to allow black and white pixels to be
destroyed with a different probability. Thus the noisy image I is given by

∀x, I(x) = I0(x) · (1 − ζp(x)) + (1 − I0(x)) · ζq(x), (2)

where the ζp(x)’s (resp. ζq(x)’s) are independent Bernoulli random variables with param-
eter p (resp. q). In other words, we have the following conditional probabilities

P(I(x) = 0 | I0(x) = 1) = p and P(I(x) = 1 | I0(x) = 0) = q.

As can be seen in Figure 3, the impulse noise creates small black and white connected
components. These small components will be removed using a statistical decision based on
their size (“size”, in this paper, always means “area”). We are first interested in the black
connected components (with respect to 4-connectivity). The results of the previous section
give us the threshold function and also the probability of appearance of such components.
More precisely, the threshold function for a given (fixed) black component of size k is
θ(n) = n−2/k and its asymptotic appearance probability in a n × n image of noise with
probability parameter p(n) = cθ(n), as n goes to infinity, is equal to

1 − e−c
k

.

Now, if we are interested in the appearance of a component of size k (i.e. any of them,
not only a given one), Theorem 2.4 claims that the asymptotic (for large n) probability of
appearance is

1 − e−akc
k

,

where ak is the number of 4-connected components one can make with exactly k pixels (up
to translations). Writing ck = n2pk, we thus have an approximation for the probability
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of appearance of a component of size k in the n × n image, with a proportion p of black
pixels. We denote by PA(n, k, p) this approximation :

PA(n, k, p) = 1 − e−n
2akp

k

.

The 4-connected components are known in the combinatorics literature as “square lattice
animals” or “polyominoes”. Counting these objects is a difficult combinatorial problem
and there is no general expression for ak. However, some asymptotic results are known: a
concatenation argument [10] shows that there exists a constant a, called growth constant,
such that:

lim
k→∞

(ak)
1
k = sup

k>1
(ak)

1
k = a .

The exact value of a is unknown. Numerical estimates give a ≃ 4.06 and the best published
rigorous bounds for it are 3.9 < a < 4.65 (see [2, 9, 11]). But thanks to some numerical
studies2, the values of the sequence (ak)k>1 are known up to k = 47, which will be enough
in practice for denoising applications. The first terms are: a1 = 1, a2 = 2, a3 = 6,
a4 = 19, etc. Furthermore, numerical computations show that for p 6 pmax ≃ 0.2, one has
ak+1p 6 ak for k ∈ [1, 47], which ensures that PA(n, k + 1, p) 6 PA(n, k, p). This means
that the probability of appearance of an animal is a decreasing function of its size. This
is rather reasonable: for fixed values of p and n, it would not make much sense to keep a
connected component of size k and to remove one of size k′ > k.

Let us fix a (small) positive real ε which will be our risk probability, in the sense of
statistical testing. If the size k of a connected component observed in a noisy image I is
such that PA(n, k, p) 6 ε, then we will consider that it comes from the original image I0,
and keep it. If PA(n, k, p) > ε, it will be regarded as noise and removed. Thus the size
threshold for the components we keep is defined by:

s(n, p, ε) = inf{k ; PA(n, k, p) = 1 − e−n
2akp

k

6 ε}. (3)

A component with size k > s(n, p, ε) has a very low probability (less than ε) of appearing
in a pure noise image. In Figure 2.b, we plot the size threshold s(n, p, ε) as a function of
the noise probability parameter p, for a fixed value of n = 256 and three different values
of ε: 10−1, 10−2 and 10−3.
The algorithm for the binary image denoising can be decomposed in four steps:

1. Extract all the 4-connected black components of the noisy image I.

2. Remove the ones which have a size less than s(n, p, ε) (i.e. change their pixels into
white). Obtain a new binary image.

3. Extract all the white 4-connected components of this new image.

2for up-to-date information on the topic, see the web-site of the “On-line Encyclopedia of Integer
Sequences”, http://www.research.att.com/∼njas/sequences/ and references therein.
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Figure 2: The size threshold s(n, p, ε) as a function of the noise probability parameter p ∈ [0, 0.18],

for n = 256 and ε = 10−1, 10−2 and 10−3.

4. Remove the ones which have a size less than s(n, q, ε) (i.e. change their pixels into
black), to obtain the final denoised image denoted by Ĩ = TI.

To summarize, this denoising filter T can be written as:

T = T+
s(n,q,ε) ◦ T−

s(n,p,ε) ,

where T+
s (resp. T−

s ) is the morphological area opening (resp. closing) of size s defined by
L. Vincent in [20]. See Figure 3 for an example of the obtained result and for a comparison
with the results obtained with a more standard binary filter (namely the median filter).

Before explaining how this method will be extended to grey level images, let us make
a few general comments.

• The method is valid when p is not too large, since we need akp
k to be small. In

practice, we are limited to p 6 pmax ≃ 0.2.

• The dependence on ε is low since it is in fact a log(ε)-dependence. Indeed, 1−e−n2akp
k

is approximately equal to n2akp
k when the value of this expression is small. If we

replace ak by ak, the threshold for the minimal size of the components we keep is
approximately given by

s(n, p, ε) ≃ log ε− 2 logn

log a+ log p
.

• The boundaries of the remaining components are not smoothed. This comes from the
fact that when some noise is at the boundary of a component, it becomes part of it.
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In order to remove it, one would need other a priori knowledge of the original image
(such as smooth or straight boundaries as in the case of Figure 3). It is actually a
general problem of image denoising: one has to define some a priori model for the
image. Here the underlying model is that the original binary image is made of “large”
(as compared to the noise) black and white connected components.

• The two filters T−
s and T+

s do not commute (see Figure 3). This was already noted
by Vincent in [20]. One solution he proposed is to use them in alternating sequential
filters [17, 18] with increasing sizes of area. This may not be a real issue, since he
also noticed that T−

s ◦T+
s and T+

s ◦T−
s are visually extremely close (this will be even

more true for grey level images). Another solution, proposed by Masnou and Morel
in [12], and then formalized by Monasse [13], is to process simultaneously upper and
lower level sets. This grain filter denoted Gt (where t is the area threshold) is done
by a pruning of the tree of all level sets, built thanks to the inclusion principle (this
algorithm which is very fast is called the Fast Level Set Transform [14]).
The fact that the foreground and the background of a binary image are treated
in a complementary way is a general problem in Mathematical Morphology. Many
operators are not self-dual, and they often occur pairwise: like dilation/erosion and
opening/closing for example. It is worth mentioning that in [7], H. Heijmans describes
a general method to construct morphological operators which are self-dual.

• It is generally considered that, for consistency reasons, using the 4-connectivity on
the black (or white) pixels should be followed by using the 8-connectivity for the com-
plementary set. From a theoretical point of view, the method we proposed can be
extended to 8-connectivity in a straightforward way. In order to apply the method,
one would have to count the number of 8-connected components of size k, which are
not available in the literature, whereas the (ak)’s are known up to k = 47. Conse-
quently, for our application to image denoising, we decided to treat the foreground
and the background in the same way, with 4-connectivity.

• If the original image I0 is all white (I0 ≡ 0), and if it is corrupted by some noise with
probability parameter p as described by equation (2), we obtain an image I which
is “pure noise”. The probability that it contains a connected component with size
larger than s(n, p, ε) is (by definition of s(n, p, ε) and thanks to theorem 2.4) less
than ε. Thus,

P(T−
s(n,p,ε)I = I0) > 1 − ε ,

which means that, with probability larger than 1 − ε, pure noise is completely re-
moved.
Thus ε represents the “significance level” of our statistical method for denoising: the
probability of not removing a component coming from the noise is less than ε. In
practice, we generally take ε = 10−3 or 10−2 (the results are visually the same). This
parameter ε is completely independent of the image (which is not the case of the size
n of the image, or the probability parameter p of the impulse noise): ε has to be
fixed by the user in the same way as the risk level in statistical hypothesis testing.
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• For reasons of simplicity, the denoising filter T was described in the framework of
an image of size n × n. The method extends straightforwardly to an image of size
m×n, where m 6= n, by simply changing the size threshold s(n, p, ε) into s̃(m,n, p, ε)
defined by

s̃(m,n, p, ε) = inf{k ; PA(
√
nm, k, p) = 1 − e−mnakp

k

6 ε}.

3.2 Grey level images

Let u be a grey level image, of size n×n and grey level values in the range [0, 255]. Assume
that this image is corrupted by impulse noise with probability parameter p. This means
that the observed noisy image v may be written in the form:

∀x, v(x) = (1 − ζp(x)) · u(x) + ζp(x) · ν(x), (4)

where the ζp(x)’s are independent Bernoulli random variables with parameter p and the
ν(x)’s are i.i.d.r.v.’s, uniformly distributed on [0, 255].

For each level λ ∈ [0, 255], we can consider the thresholded images uλ = Iu>λ and
vλ = Iv>λ. The grey level images may then simply be recovered by u =

∑
λ uλ and

v =
∑

λ vλ. The binary noisy image vλ is a corrupted version of the binary image uλ; they
are related by

P(vλ(x) = 0 | uλ(x) = 1) = p× λ

256
and P(vλ(x) = 1 | uλ(x) = 0) = p× (1 − λ

256
).

We are thus back in the framework described for binary images with parameters pλ =
pλ/256 and qλ = p(1 − λ/256). The image vλ can be denoised following the method
described in the previous subsection. Finally, we reconstruct a grey level image by simply
adding the binary ones: ṽ =

∑
λ ṽλ. This can be summarized by the formula

ṽ = Tv =

255∑

λ=0

T+
s(n,qλ,ε)

◦ T−
s(n,pλ,ε)

(vλ), where pλ = p
λ

256
and qλ = p

(
1 − λ

256

)
. (5)

Figures 4 and 5 give two examples of results obtained by this filtering.

One natural question that can be asked is whether the filter T defined by formula
(5) is a morphological filter (see [16] and [18] and references therein for the definition
and properties of morphological filters). Unfortunately, the answer is negative. For two
grey levels λ > λ′, one has vλ 6 vλ′ , and for a fixed area threshold t one would have
T−
t (vλ) 6 T−

t (vλ′) (because area openings and closings are morphological operators). Now,
the two thresholds s(n, pλ, ε) and s(n, pλ′ , ε) can be different, i.e. s(n, pλ, ε) > s(n, pλ′ , ε)
and thus it is not necessarily true that T−

s(n,pλ,ε)
(vλ) 6 T−

s(n,pλ′ ,ε)
(vλ′). This happens when

vλ and vλ′ both contain the same small black connected component of size k such that
s(n, pλ, ε) > k > s(n, pλ′, ε). However, in the experimental results, we noticed that this
rarely happens: for most values of λ, one has ṽλ 6 ṽλ−1.

13



In order to illustrate the interest of adapting the area threshold to each grey level, we
treated the same image using our method, then using a fixed area threshold (for this we
used the algorithm developed by Monasse in [13]). The results are those of Figures 5 and
6. Figure 6 shows the result of the usual grain filter, denoted by Gt, for two different
values of the area threshold: t = 10 and t = 20. One can notice that the parameter value
t = 10 seems too low since there is still some remaining noise (for example on the coat
of the cameraman). On the other hand the value t = 20 seems too large, since some of
the original structures have disappeared (for instance the white parabola at the top of the
building) and still too low (there is some remaining noise on the coat). These results have to
be compared with the one of Figure 5-c. This last figure shows that thanks to the adapted
area threshold s(n, pλ, ε) a small white component can be kept and at the same time, a
larger grey component removed. These results also illustrate what we have proposed in
this paper, namely an adapted and automatic way to choose the right parameter for the
area openings and closings.

3.3 Extension to other noise models

In the previous subsection, we have explained how the theoretical results of Section 2
can be used to denoise an image degraded by impulse noise. Now, even if the proposed
denoising procedure corresponds to an impulse noise model, it is interesting to see how
it works in the presence of white noise. An example of the obtained results is shown on
Figure 7: we used again the cameraman image, which is here degraded by white noise with
standard deviation σ = 15. It is then denoised using the filter defined by Equation (5) with
parameter value p = 0.2 and ε = 10−2 (on the middle image) and p = 0.1 and ε = 10−2

(on the right image). The main question is here: how to choose the value of the parameter
p used in the filter, in relation to the standard deviation σ of the white noise ?

In the case of impulse noise, we were able to relate the size threshold s of the area
openings and closings to the impulse noise probability parameter p and to the grey level
λ. The main result was then: if we take u = 0 in Equation (4), then the degraded image
v is pure impulse noise, and after filtering (Equation (5)), we have, by definition of the
threshold s(n, p, ε), that Tv = u with probability larger than 1 − ε.

Now, if we want to obtain in the same way a denoising filter for white noise, we have
first to be able to relate the size threshold s used for the area openings and closings to the
standard deviation σ of the white noise and to the grey level λ of the thresholded image. In
order to do this, let us consider a pure white noise image w: all the w(x)’s are independent
identically distributed random variables with distribution N (0, σ2) (gaussian with mean 0
and variance σ2). For λ ∈ R, let us consider the thresholded image wλ = Iw>λ. We then
have

P(wλ(x) = 1) =

∫ +∞

λ

1

σ
√

2π
e−x

2/2σ2

dx.

This last term, denoted by p̃λ,σ should be the analogue of the probability parameter pλ
defined in the case of impulse noise (Equation (5) in the previous subsection). Now the
main difference here is that p̃λ,σ is not necessarily small (it goes to 1 as λ goes to −∞),
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and the thresholded image wλ may contain arbitrarily large connected components. Thus
a filter like the area opening or closing will never be able to remove all the noise. The
problem here is that the type of filter we have considered is not adapted to white noise.

Generally, when using a probabilistic approach for filtering, one needs a model for the
image and one for the noise. Here, we do not need a model for the image, since we only use
an “a contrario” hypothesis. It means that we only need to know that “the image is not
noise” in the sense that large connected components, which have a very small probability of
appearing in impulse noise, necessarily belong to the image. This approach does not work
in the case of white noise since the size of the connected components of level sets is not
a good way to discriminate white noise from the image (both contain large components).
Nevertheless, if we are able to find some characteristic geometric features (as the size
of connected components in the case of impulse noise), the proposed approach could be
extended to white noise or to other models of noise.

4 Conclusion

We have introduced a mathematical model for random images, in which we were able to
compute the probability of appearance of any “local pattern” (Theorem 2.4). This was then
used to give an explicit formula for the size threshold s(n, p, ε), such that the probability
of appearance of a component of size k > s(n, p, ε) in a n × n image of pure noise with
probability parameter p is less than ε. Using this value of s(n, p, ε) for the area openings
and closings defined by Vincent will ensure that, with probability larger than 1 − ε, pure
noise is completely removed. This denoising process was then extended to grey level images
using their threshold decomposition. There, the proposed area threshold depends on both
the probability parameter p of the impulse noise and the grey level λ of the level set.
Now, some questions remain, that have not been addressed in this paper: if the probability
parameter p of the impulse noise is unknown, what is the best way to estimate it ? For a
binary pure noise image, the best estimate of p is simply the ratio of the number of black
pixels to the area of the image. Then, by analogy, a first answer for binary images (like
the chessboard for example) is to compute the relative number of black pixels outside a
dilation of the “large” black components. Thus, for a grey level image, it is possible to
use the threshold decomposition to obtain initial estimates of pλ = p× λ/256 and then to
estimate p using, for example, a linear regression. Now, it is not clear that this estimate
will be a good one since natural grey level images often contain textures creating small
components which over-estimate p. In order to obtain a reliable estimate of p, it would
be necessary to use also some information extracted from the statistical moments (like the
covariance, three-point probability, etc. . . ) measured on the image.
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A Appendix

Proof of Lemma 2.6:
Fix l ∈ N

∗. Recall that Xn counts the number of occurrences of the meaningful patterns

D̄1, . . . , D̄e(ψ) in the random image In,p(n) where p(n) = cn− 2
b(ψ) . We are interested in:

El(Xn) =
∑

k>l

P(Xn = k)
k!

(k − l)!
.

We need to prove that El(Xn) tends to (e(ψ)cb(ψ))l as n tends to infinity.
One can see El(Xn) as the average number of ordered l-tuples of copies of the patterns
D̄1, . . . , D̄e(ψ) in In,p(n). Thus, we can write:

El(Xn) = E




∑

x1,...,xl
xi 6=xj

∑

16j1,...,jl6e(ψ)

ID̄j1(x1)∧...∧D̄jl (xl)
(In,p(n))




=
l∑

s=1

∑

(x1,...,xl)
∈C(s)

∑

16j1,...,jl
6e(ψ)

µn,p(n)(D̄j1(x1) ∧ . . . ∧ D̄jl(xl)) ,

where, for s = 1, . . . , l, C(s) represents the set of l−tuples (x1, . . . , xl) of pixels in Ξn
such that the set {B(x1, r), . . . , B(xl, r)} is composed of s equivalence classes for the
4−connectivity relation.
The term corresponding to s = l in the last sum will be denoted by E

′

l (Xn) and the rest
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by E
′′

l (Xn). The quantity E
′

l(Xn) can be seen as the average number of ordered l-tuples
of copies of D̄1, . . . , D̄e(ψ), on non-overlapping balls. We will first show that:

lim
n→∞

E
′

l (Xn) = (e(ψ)cb(ψ))l . (6)

Then we will prove that E
′′

l (Xn) tends to 0 as n tends to infinity.

We want to choose l pixels x1, . . . , xl such that the balls of radius r centered on those
pixels are two by two disjoint. For the first pixel x1, there are n2 possibilities. Let 2 6 j 6 l
and suppose pixels x1, . . . , xj−1 have been chosen. For the j-th choice, the set of all pixels
x such that d(x, xk) 6 2r for some 1 6 k 6 j − 1, must be avoided. The cardinality of
this set is bounded by (j − 1)× (8r2 + 4r+ 1) whatever x1, . . . , xj−1. This bound does not
depend on n. So, asymptotically the number of choices for the j−th element is n2, and
consequently the cardinality of C(l) is equivalent to n2l. On the other hand, if two balls
B(x, r) and B(x′, r) are disjoint, then for all 1 6 j, j′ 6 e(ψ), the random variables ID̄j(x)

and ID̄j′(x
′) are independent. Therefore, we obtain the first limit (relation (6)):

E
′

l(Xn) ∼ n2l(e(ψ)p(n)b(ψ)(1 − p(n))2r2+2r+1−b(ψ))l ∼ (e(ψ)cb(ψ))l .

The factor e(ψ)l comes from the choice of the e(ψ) patterns D̄1, . . . , D̄e(ψ) for the l chosen
balls.

There remains to prove that E
′′

l (Xn) tends to 0 as n tends to infinity. The intuition
is that if two patterns occur in overlapping balls, then locally more than b(ψ) black pixels
are present in a ball of radius 2r. This has vanishing probability, by Lemma 2.3.
Let 1 6 s 6 l − 1 and (x1, . . . , xl) be an element of C(s). Let C1, . . . , Cs represent the
connected components of the set ∪lk=1B(xk, r). Then by independence between them (they
concern disjoint pixel sets):

µn,p(n)(D̄j1(x1) ∧ . . . ∧ D̄jl(xl)) =
s∏

m=1

µn,p(n)(
∧

k;B(xk,r)∈Cm

D̄jk(xk)) .

As a consequence of s 6 l − 1, there exists at least one connected component, say C1,
having at least two elements. Since the black pixel sets of two different patterns of D0(ψ)
cannot be translated of each other, there must be at least b(ψ)+1 black pixels in C1. Thus
we have

µn,p(n)(
∧

k;B(xk,r)∈C1

D̄jk(xk)) 6 p(n)b(ψ)+1 .

For the other connected components, we simply bound

µn,p(n)(
∧

k;B(xk,r)∈Cm

D̄jk(xk)) 6 µn,p(n)(D̄jkm
(xkm)) 6 p(n)b(ψ) ,

for any index km such that B(xkm , r) ∈ Cm. Therefore, we obtain the following result:

µn,p(n)(D̄i1(x1) ∧ . . . ∧ D̄il(xl)) 6 p(n)sb(ψ)+1.
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Finally, the set C(s) only has O(n2s) elements and the number of ways to choose l elements
among D̄1, . . . , D̄e(ψ) does not depend on n. Consequently, the desired result follows:

E
′′

l (Xn) 6

l−1∑

s=1

O(n2s × n−
2(sb(ψ)+1)

b(ψ) ) =

l−1∑

s=1

O(n− 2
b(ψ) ) = o(1) .

2
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Figure 3: First row: on the left, the original binary image I0 of size 256× 256; on the right, the

corrupted image I. White pixels have been changed with probability p = 0.1 and black ones with

probability q = 0.2. Second row: on the left, the result of the denoising algorithm with ε = 10−2

when removing first black components and then white ones (i.e. applying T+
s(n,q,ε) ◦ T−

s(n,p,ε));

on the right, denoising by first removing white components and then black ones (i.e. applying

T−
s(n,p,ε) ◦ T+

s(n,q,ε)). The two images are not the same, illustrating the fact that the two operators

T−
s and T+

s do not commute. However in both cases, small black and white components due to

noise have been removed. Only the boundaries of the remaining ones are different. Third row:

results obtained when applying median filtering with a disk of radius r = 2 (on the left) and a

disk of radius r = 5 (on the right). The value of the parameter r = 2 seems too small since some

noise is still present in the black components. Now, for the value r = 5, one can notice that the

black corners have been eroded. The reason for this is that, in the noisy image, the probability

parameters p and q (used to corrupt respectively the white and black pixels) were such that q > p.
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Figure 4: Left: image v obtained with impulse noise with probability parameter p = 0.15 on the

Lena image. Middle: thresholded image vλ for the grey level λ = 150. Right: denoised image ṽ

obtained by the noise-adapted grain filter T with ε = 10−3.
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Figure 5: From left to right, top to bottom: (a) the original cameraman image u (size 256×256);

(b) degraded image v, with impulse noise probability parameter p = 0.2; (c) filtered image ṽ,

obtained with ε = 10−3; (d) image of the difference u − ṽ. It shows that most of the noise has

been removed, except at the boundaries of the objects and also in the grass texture.
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Figure 6: Result of the filtering of the noisy image v with the usual grain filter Gt with area

threshold t = 10 on the left and t = 20 on the right.

Figure 7: From left to right: (a) the cameraman image degraded by white noise with standard
deviation σ = 15; (b) denoising of the previous image by the filter defined by Equation (5) with
parameter values p = 0.2 and ε = 10−2; (c) denoising by the same filter with parameter values
p = 0.1 and ε = 10−2.
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