Estimation of anisotropic Gaussian fields through Radon transform
Résumé
We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification based on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes admit a spectral density satisfying the previous assumptions.