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ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGHRADON TRANSFORMHERMINE BIERMÉAbstrat. We estimate the anisotropi index of an anisotropi frational Brow-nian �eld. For all diretions, we give a onvergent estimator of the value of theanisotropi index in this diretion, based on generalized quadrati variations. Wealso prove a entral limit theorem. First we present a result of identi�ation basedon the asymptoti behavior of the spetral density of a proess. Then, we de�neRadon transforms of the anisotropi frational Brownian �eld and prove that theseproesses admit a spetral density satisfying the previous assumptions.IntrodutionThe one dimensional frational Brownian motion (fBm) was de�ned through astohasti integral by Mandelbrot and Van Ness [18℄ in 1968 for the modeling ofirregular data suh as the level of water �ows or eonomi series. Let us reall thatthis proess is a Gaussian zero mean proess with stationary inrements harater-ized by its so-alled Hurst index H ∈ (0, 1) and denoted by BH = {BH(t); t ∈ R}.A generalization of Bohner's Theorem allows to give a spetral representation ofits ovariane funtion, namely(1) Cov (BH(t), BH(s)) =

∫

R

(
e−itξ − 1

) (
eisξ − 1

) 1

|ξ|2H+1
dξ.The funtion 1

|ξ|2H+1 is alled the spetral density of the fBm. Proesses with thatkind of spetral density are alled "1/f -noises" in the terminology of signal theory.The Hurst parameter is the index of irregularity of the fBm. It orresponds to theorder of self-similarity of the proess and to the ritial Hölder exponent of its paths.Many estimators for the Hurst parameter have been proposed based for example ontime domain methods or spetral methods (see [9℄ and [3℄ and referenes therein).The quadrati variations give relevant estimators of the Hölder exponent of moregeneral Gaussian proesses with stationary inrements [15℄.For d-dimensional data, one an onsider a natural extension of the 1-dimensionalfBm, still alled fBm haraterized by its ovariane funtion given by (1) where nowDate: 15/02/06 .1991 Mathematis Subjet Classi�ation. 60G60,62M40,60G15,60G10,60G17,60G35,44A12.Key words and phrases. Anisotropi Gaussian �elds, Identi�ation, Estimator, Asymptoti nor-mality, Radon transform. 1



2 HERMINE BIERMÉ
s, t ∈ Rd, the integral is over Rd, the produts are replaed by t.ξ and s.ξ, the usualsalar produts on Rd, and the spetral density is given by 1

|ξ|2H+d , where |.| is theeulidean norm on Rd. This yields to a zero mean Gaussian �eld with stationaryinrements that is isotropi.Other generalizations have been proposed for anisotropi data modeling like thefrational Brownian sheet [17℄ or the multifrational Brownian motion introduedsimultaneously in [5℄ and [21℄, where H is replaed by a Hurst parameter dependingon the point. However suh generalizations yield to models with non stationaryinrements. In order to keep this property and to get anisotropi �elds the authorsof [7℄ de�ne anisotropi frational Brownian �elds as zero mean Gaussian random�elds with stationary inrements and spetral density of the form 1
|ξ|2h(ξ)+d , wherethe power h(ξ) ∈ (0, 1) depends on the diretion of ξ. However, these �elds look likeisotropi when the analysis is done line by line sine the regularity along the linedoes not depend on the diretion. Thus the authors of [7℄ give another method toreover anisotropy. Here we will use their method and give onsistent estimators ofthe anisotropi index h of suh �elds with asymptoti normality.The paper is organized as follows. In the �rst setion we will reall the generalsetting for the study of �elds with stationary inrements. The seond setion isdevoted to estimators of the Hölder exponent of Gaussian proesses (d = 1) withspetral density, using generalized quadrati variations. We give estimators withasymptoti normality under assumptions that rely on the asymptoti behavior of thespetral density. In the third part we estimate the anisotropi index of an anisotropifrational Brownian �eld, using the method developed in [7℄. It is based on the studyof Radon transforms of the �eld. These transformations yield to Gaussian proesseswith spetral densities for whih we give an asymptoti expansion. Then we applythe results of the �rst part to this proess. We illustrate this method in the fourthpart using exat syntheses of fBm surfaes.1. Anisotropi Gaussian modelsWe onsider a real d-parameter Gaussian �eld X = {X(t); t ∈ Rd} with zero meanand stationary inrements. We assume that X is mean square ontinuous, that is

E
(
|X(t) − X(t0)|2

)
−→
t→t0

0,for any point t0 ∈ Rd. Atually X is mean square ontinuous when its ovarianefuntion Γ(s, t) = E (X(s)X(t)) is ontinuous with respet to eah variable. Then,aording to Yaglom [27℄, there exists a single non-negative symmetri measure σon Rd, alled spetral measure of X, with
∫

Rd

|ξ|2
1 + |ξ|2dσ(ξ) < +∞,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 3and a single non-negative de�nite matrix A = (aj,k)1≤j,k≤d suh that
E ((X(s) − X(0)) (X(t) − X(0))) =

∫

Rd

(
e−is.ξ − 1

)
(e−it.ξ − 1)dσ(ξ) + s.At.It follows that X an be represented as(2) X(t) − X(0)

L2(Ω)
=

∫

Rdr{0}

(
e−it.ξ − 1

)
dZ(ξ) + t.Y, for t ∈ Rdwhere Y = (Y1, . . . , Yd) is a Gaussian zero mean random vetor with ovariane A,and Z is a zero mean, omplex-valued, Gaussian random measure on the Borel setsof B (Rd r {0}

), with
E

(
Z (A) Z (B)

)
= σ(A ∩ B) and Z (−A) = Z (A),for any A, B ∈ B

(
Rd r {0}

).From now on, we will onsider that Y = 0 sine the orresponding term does nota�et the regularity. We assume moreover that the spetral measure σ is absolutelyontinuous with respet to Lebesgue's measure. Then, its density funtion f is aneven funtion of L1
(
Rd, min (1, |ξ|2) dξ

) alled the spetral density of X.Let us remark that the �nite dimensional distributions of {X(t) − X(0); t ∈ Rd}are ompletely given by the funtion v : t ∈ Rd 7→ E((X(t) − X(0))2), alled thevariogramme of X. In our setting
v(t) = 4

∫

Rd

sin2

(
ξ.t

2

)
f(ξ)dξ,and most properties of X an be haraterized by its spetral density. For instane,the Gaussian �eld X − X(0) is isotropi, i.e. the �nite dimensional distributions of

X −X(0) are invariant under rotations of enter 0, if and only if f is a radial map.In the same vein, X −X(0) is self-similar of order H , i.e. a dilation of rate λ in theset of indies indues a dilation of rate λH in the state spae, if and only if f is anhomogeneous map of the shape c(ξ)
|ξ|2H+d , where c is an even homogeneous funtion ofdegree 0, ie c(λξ) = c(ξ) for all λ ∈ R∗ and ξ ∈ Rd.We are mainly interested to identify the anisotropi index of an anisotropi fra-tional Brownian �eld as introdued by [7℄. Suh a �eld is de�ned to have a spetraldensity given by
fh(ξ) =

1

|ξ|2h(ξ)+d
,where h is an even homogeneous funtion of degree 0, with values in (0, 1). When his a onstant funtion equal to H0, the �eld is just a frational Brownian motion withHurst parameter H0. Thus it is isotropi. An estimator of the funtion h is given in[2℄ through a diretional analysis of the �eld, using projetions. However, no speedonvergene an be found under their weak onditions that the spetral density



4 HERMINE BIERMÉbehaves like fh at high frequenies. We onsider here the same estimator in broaderontext (h an take arbitrarily large values), but under stronger assumptions, whihallow to give the speed of onvergene.Let us remark that the asymptoti homogeneity of the spetral density is linked tothe Hölder regularity of the Gaussian �eld. It is proved (see Prop.1.3 of [7℄) that if
f(ξ) ≤ c

|ξ|2H0+d
,for large |ξ|, with H0 ∈ (0, 1) and a positive onstant c, then there exists a version

X̃ of X whose paths a.s. satisfy a uniform Hölder ondition of any order less than
H0. More preisely, with probability one, for all α < H0, for all K > 0, one an �nda positive random variable C > 0 suh that ∀s, t ∈ [−K, +K]d ,

|X̃(t) − X̃(s)| < C|t − s|α .The main idea of the anisotropi index identi�ation given in [2℄ and here is to usethe former result, not for the �eld itself but for one dimensional assoiated proesses.2. Identifiation of the exponent for a 1D-proessWe will prove a �rst identi�ation result in a general setting. It states that aonsistent estimator of the ritial Hölder exponent of a Gaussian proess with sta-tionary inrements, when given by the asymptoti behavior of its spetral density,an be reovered using generalized quadrati variations. This is not a new idea (see[15℄ for instane) but the required assumptions rely diretly on the spetral densityand not on the variogramme. In fat, our assumptions are stronger than those of[2℄ where an estimator of the Hölder exponent is given using asymptoti behaviorof the spetral density. They an be linked to those of [15℄, where an asymptotiexpansion of the variogramme is required.Let us onsider a zero mean Gaussian proess X = {X(t); t ∈ R}, with stationaryinrements and spetral density f ∈ L1(R, min (1, |ξ|2)dξ). We want to estimate theasymptoti degree of homogeneity of f through disrete observations of X on [0, 1].The generalized quadrati variations [15℄ of X are given by(3) VK(N, X) =

N−K∑

p=0

(
K∑

k=0

(−1)K−k

(
K
k

)
X

(
p + k

N

))2where
• K is an integer greater than 1 (the order of the inrements of X),
•
(

K
k

) is the binomial oe�ient K!
k!(K−k)!

,
• N is an integer greater than K ( 1

N
is the step of disretization),



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 5so that ∑K
k=0(−1)K−k

(
K
k

)
X(p+k

N
) is the inrement of order K of X at point p

Nwith step 1
N
.Let us remark that one an also onsider k-variations of the proess. We will foushere on the quadrati variations (k = 2). It is motivated by a result of J. F. Coeur-jolly [10℄ who proves that, in the frational Brownian motion ase, the asymptotivariane of the Hurst parameter estimator is the lowest for k = 2.Reall that, up to a onstant, the spetral density of a 1D frational Brownianmotion of Hurst parameter H ∈ (0, 1) is given by the funtion

1

|ξ|2H+1
.Remark that no proesses with stationary inrements an admit suh spetral den-sity whenever H ≥ 1 sine this funtion does not belong to L1(R, min (1, |ξ|2)dξ)anymore. However one an obtain suh spetral densities by onsidering �elds withhigher order stationary inrements (see [5℄ and [22℄ for instane). Moreover there isno restrition by onsidering proesses with spetral density asymptotially equiva-lent to that kind of funtion for any H > 0. We an now state our �rst identi�ationresult.Proposition 2.1. Let X = {X(t); t ∈ R} be a zero mean Gaussian proess, withstationary inrements and spetral density f . We assume that f is di�erentiable on

R r [−r, r], for r large enough and that there exists H > 0, c > 0 and s ≥ 0 suhthat,(4) f(ξ) =
c

|ξ|2H+1
+ o|ξ|→+∞

(
1

|ξ|2H+1+s

)
,and(5) f ′(ξ) = −(2H + 1)

c

|ξ|2H+2
+ o|ξ|→+∞

(
1

|ξ|2H+2

)
.Let K > H + 1

2
an integer. Then, almost surely,

ĤN,K =
1

2

(
log2

(
VK(N, X)

VK(2N, X)

)
+ 1

)
−→

N→+∞
H.Moreover, when s < 1

2
,

N s
(
ĤN,K − H

)
L2(Ω)−→ 0,and, when s ≥ 1

2
, there exists γ2 > 0 suh that

NE

((
ĤN,K − H

)2
)

−→
N→+∞

γ2, with √
N
(
ĤN,K − H

)
d−→

N→+∞
N
(
0, γ2

)
,



6 HERMINE BIERMÉwhere d−→ means the onvergene in distribution and N (0, γ2) is the entered normallaw with variane γ2.Proof. First, let us remark that it is enough to onsider the ase where c = 1 sine
ĤN,K is also equal to

1

2

(
log2

(
VK(N, X/

√
c)

VK(2N, X/
√

c)

)
+ 1

)
.Let us denote the inrement of order K of X with a step 1/N by(6) ZN,K (t) =

K∑

k=0

(−1)K−k

(
K
k

)
X

(
t + k

N

)
.Sine by assumption X has stationary inrements and spetral density f it followsfrom (2) that, when K ≥ 1,

ZN,K(t)
L2(Ω)
=

∫

Rr{0}

e−i tξ

N

(
e−i ξ

N − 1
)K

dZ(ξ),with Z a zero mean, omplex-valued, Gaussian random measure on the Borel setsof B (R r {0}), suh that
E

(
Z (A) Z (B)

)
=

∫

A∩B

f(ξ)dξ and Z (−A) = Z (A).Thus, when K ≥ 1, the proess ZN,K is Gaussian, stationary and with zero mean.Moreover,(7) E (VK(N, X)) = (N − K + 1)Var (ZN,K(0)) ,(8) Var(VK(N, X)) = 2(N − K + 1)
N−K∑

p=−(N−K)

Cov(ZN,K(p), ZN,K(0))2 ,where (8) is obtained by using on one hand the fat that Cov(ZN,K(p)2, ZN,K(p′)2) =
2Cov(ZN,K(p), ZN,K(p′))2 sine ZN,K is Gaussian and, on the other hand the sta-tionarity of ZN,K .First step. Asymptotis of E (VK(N, X)) and Var(VK(N, X)).Let us ompute the ovariane of ZN,K and give asymptotis using the asymptoti be-havior of the spetral density. For p ∈ Z, we write ΓN,K(p) = Cov (ZN,K(p), ZN,K(0)),as in Lemma 3.2 of [2℄. Then

ΓN,K(p) =

∫

R

hK

(
p,

ξ

N

)
f(ξ)dξ, with hK(p, ξ) = 4K cos(pξ) sin2K

(
ξ

2

)
.We will prove the following result.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 7Lemma 2.2. For K > H + s/2,(9) E (VK(N, X)) = C1N
−2H+1 + o

(
N−2H−s+1

)
,and, when K > H + 1/2,(10) Var(VK(N, X)) = C2N

−4H+1 + o
(
N−4H+1

)
,where

C1 =

∫

R

hK(0, ξ)
1

|ξ|2H+1
dξ and C2 = 2

∑

p∈Z

(∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

)2

.Proof. Let us remark that in the ase of a standard fBm (X = BH)
ΓH

N,K(p) :=

∫

R

hK

(
p,

ξ

N

)
1

|ξ|2H+1
dξ = N−2H

(∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

)
.Using (7), it is straightforward to see that in this ase, for K > H ,

E (VK(N, BH)) = C1N
−2H+1 + o

(
N−2H

)
.Moreover an integration by parts proves that, for K > H + 1/2, one an �nd C > 0suh that(11) ∣∣∣∣

∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

∣∣∣∣ ≤ C(1 + |p|)−1.Hene C2 is well de�ned andVar(VK(N, BH)) = C2N
−4H+1 + o

(
N−4H+1

)
.Let us hoose K ≥ 1 suh that K > H . Then

ΓN,K(p) = ΓH
N,K(p) +

∫

R

hK

(
p,

ξ

N

)
∆H(ξ)dξ,where ∆H(ξ) denotes the di�erene f(ξ)− 1

|ξ|2H+1 . Using the asymptoti behavior of
f and f ′ we will prove that, whenever K > H + s/2,(12) ΓN,K(0) − ΓH

N,K(0) = o
N→+∞

(
N−2H−s

)
.And, for K > H + 1/2, for all p ∈ Z, with |p| ≤ N ,(13) (1 + |p|)

(
ΓN,K(p) − ΓH

N,K(p)
)

= o
N→+∞

(
N−2H

)
.Using the estimates for the fBm, this will onlude for the proof of Lemma 2.2.Let ǫ > 0 and let us hoose r large enough suh that for |ξ| > r,(14) |∆H(ξ)| ≤ ǫ|ξ|−2H−s−1 and |∆H

′(ξ)| ≤ ǫ|ξ|−2H−2.We write ∫

R

hK

(
p,

ξ

N

)
∆H(ξ)dξ =

∫

|ξ|≤r

+

∫

|ξ|>r

.



8 HERMINE BIERMÉFor the �rst integral, we remark that when K > H , sine ∆H ∈ L1(R, min (1, |ξ|2K)dξ),
∣∣∣∣
∫

|ξ|≤r

hK

(
p,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤ C(r)N−2K .For the seond integral, on one hand, for p = 0, as soon as K > H + s/2,
∣∣∣∣
∫

|ξ|>r

hK

(
0,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤
(

4K

∫

R

sin2K

(
ξ

2

)
1

|ξ|2H+1+s
dξ

)
ǫN−2H−s,and we get (12). On the other hand, for p 6= 0, sine ∆H is di�erentiable over

R r [−r, r], we an integrate by parts. Then, by (14), for K > H + 1/2 and Nsu�iently large, one an �nd C > 0 suh that
∣∣∣∣p
∫

|ξ|>r

hK

(
p,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤ CǫN−2H ,whih yields to (13). �Seond step. Proposition 3.1 of [2℄ states that, almost surely, when K > H + 1/2,
VK(N, X)

E(VK(N, X))
−→

N→+∞
1.For sake of ompleteness, we reall the proof. Let η > 0 and let us denote

AN =

{∣∣∣∣
VK(N, X)

E(VK(N, X))
− 1

∣∣∣∣ > η

}
.By Markov Inequality,

P(AN) ≤ η−4|E(VK(N, X))|−4E
(
|VK(N, X) − E(VK(N, X))|4

)
.Sine ZN,K is Gaussian, one an prove that there exists c > 0 suh that

E
(
|VK(N, X) − E(VK(N, X))|4

)
≤ c Var(VK(N, X))2 .By (9) and (10), one an �nd C > 0 suh that, for N large enough,

P(AN ) ≤ Cη−4N−2.Then, the series ∑N P(AN) onverges and by Borel-Cantelli Lemma, almost surely,
∣∣∣∣

VK(N, X)

E(VK(N, X))
− 1

∣∣∣∣ ≤ η for N su�iently large.That onludes the proof of the seond step.Third step. We will sketh the proof of the following asymptoti normality. When-ever K > H + 1/2,
√

N

(
VK(N, X)

E(VK(N, X))
− 1

)
d−→

N→+∞
N
(

0,
C2

C2
1

)



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 9with
NE

((
VK(N, X)

E(VK(N, X))
− 1

)2
)

−→
N→+∞

C2

C2
1

.The seond assertion is lear from Lemma 2.2. To prove the asymptoti normality,let us reall the following version of Lindeberg's ondition [11℄ used in [15℄.Lemma 2.3. [15℄ Consider the sequene of variables VN de�ned by
VN =

N−K∑

p=0

λp,N

(
ǫ2
p,N − 1

)
,where the ǫp,N are i.i.d zero mean normalized Gaussian variables and the λp,N arepositive. Let λN be the maximum of the λp,N . If λN = oN→+∞

(√Var(VN)
), then

VN√Var(VN )
tends in distribution to a zero mean normalized Gaussian variable.Let us denote by ΓN the ovariane matrix of the Gaussian vetor (ZN,K(p))0≤p≤N−K .Then

VK(N, X)
d
=

N−K∑

p=0

λp,Nǫ2
p,N ,where (λp,N)0≤p≤N−K are the positive eigenvalues of ΓN . Sine λN ≤∑N−K

p=−(N−K) |ΓN,K(p)|,equations (11) and (13), ompared to (10), show that λN = oN→+∞

(√Var(VK(N, X))
).By Lemma 2.3

VK(N, X) − E(VK(N, X))√Var(VK(N, X))

d−→
N→+∞

N (0, 1).Finally it is enough to reall that, for K > H + 1/2, from (9) and (10),
E (VK(N, X))√Var (VK(N, X))

=
C1

C
1/2
2

√
N (1 + o (1)) .Fourth step. Conlusion.To onlude for the proof we will use the following lemma about asymptoti nor-mality of an estimator.Lemma 2.4. Let (Tn) a sequene of random vetors of Rk that tends almost surelyto m ∈ Rk. Let g be a funtion de�ned on a neighborhood U of m with real values.We assume that g is twie di�erentiable on U with partial derivatives bounded on U .(1) If √n (Tn − m)

d−→
n→+∞

N (0, Γ), then
√

n (g (Tn) − g(m))
d−→

n→+∞
N (0,∇g(m)tΓ∇g(m)).



10 HERMINE BIERMÉ(2) If nE ((Tn − m)(Tn − m)t) −→
n→+∞

Γ and nE

(
((Tn − m)t(Tn − m))

2
)

−→
n→+∞

0,then
nE
(
(g (Tn) − g(m))2

)
−→

n→+∞
∇g(m)TΓ∇g(m).We do not give the details of the proof, whih is a variant of the proof of Theorem3.3.11 in [12℄. The main tool is Taylor formula for g at m.We will use Lemma 2.4 for the pair of estimators (TN , T2N ), with TN = VK(N,X)

E(VK(N,X))
.By the seond step, for K > H + 1/2, the pair (TN , T2N) tends to (1, 1) almostsurely. Moreover, by the third step, for K > H + 1/2,

√
N (TN − 1)

d−→
N→+∞

N
(

0,
C2

C2
1

) and √
N (T2N − 1)

d−→
N→+∞

N
(

0,
C2

2C2
1

)
,with

NE
(
(TN − 1)2) −→

N→+∞

C2

C2
1

and NE
(
(T2N − 1)2

)
−→

N→+∞

C2

2C2
1

.Equations (9) and (10) show that
NE

(
(TN − 1)4) ≤ cN

Var(VK(N, X))2

E (VK(N, X))4
≤ CN−1.We only sketh the proof of the onvergene in distribution to a Gaussian vetorof the pair √

N (TN − 1, T2N − 1), sine it follows along the same line as in [15℄.Similar arguments as in the third step allow us to prove the onvergene in law toa Gaussian variable, for any linear ombination(15) a
√

N (TN − 1) + b
√

N (T2N − 1) , with a, b > 0.To prove that (15) holds for any a, b ∈ R, let us remark that on one hand the lawof the pair √
N (TN − 1, T2N − 1) is tight. On the other hand it admits a uniqueaumulation value, sine the harateristi funtion of a Gaussian vetor is an entirefuntion, whih is uniquely determined by its values on (a, b), with a, b > 0. Weobtain that √

N (TN − 1, T2N − 1) −→
N→+∞

N (0, Γ) ,where Γ =

(
C2

C2
1

C3

2−2H+1C2
1

C3

2−2H+1C2
1

C2

2C2
1

), with
C3 = 2

∑

p∈Z

(∫

R

e−i p.ξ

2

(
e−iξ − 1

)K (
eiξ/2 − 1

)K 1

|ξ|2H+1
dξ

)2

,whih is well de�ned sine K > H + 1/2.We an now apply Lemma 2.4 with g(x, y) = log2

(
x
y

). It is straightforward to see
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√

N log2

(
TN

T2N

)
d−→

N→+∞
N
(
0, ν2

)
, and NE

((
log2

(
TN

T2N

))2
)

−→
N→+∞

ν2,with
ν2 =

1

(log 2)2

(
(1 −1)Γ

(
1
−1

))
=

1

(log 2C1)
2

(
C2

(
1 +

1

2d

)
− 2C3

1

2−2H+d

)
.But

log2

(
TN

T2N

)
= log2

(
VK(N, X)

VK(2N, X)

)
− log2

(
E (VK(N, X))

E (VK(2N, X))

)
,where by (9), for K > H + s/2,

log2

(
E (VK(N, X))

E (VK(2N, X))

)
= 2H − 1 + o

(
N−s

)
.Thus, almost surely, for K > H + 1/2,

ĤN,K =
1

2

(
log2

(
VK(N, X)

VK(2N, X)

)
+ 1

)
−→

N→+∞
H.Moreover, if s < 1

2
, whenever K > H + 1/2,

N s
(
ĤN,K − H

)
L2(Ω)−→

N→+∞
0,and, for γ2 = ν2

4
, if s ≥ 1

2
, whenever K > H + 1/2,
√

N
(
ĤN,K − H

)
d−→

N→+∞
N
(
0, γ2

)
,with

NE

((
ĤN,K − H

)2
)

−→
N→+∞

γ2.

�Let us add a few remarks. The proof uses similar arguments as in [15℄. Howeverthe asymptoti expansion of the spetral density required in our assumption doesnot imply that the variogramme ful�lls the asymptoti expansion needed in [15℄.Our result is onneted to the identi�ation of �ltered white noise introdued in [4℄.In the simplest ase of this paper, the authors onsider a spetral density f givenby
f(ξ) = |ξ|−2H−1 + R(ξ),with H ∈ R+ r N and R ∈ C2(R), satisfying |R(j)(ξ)| ≤ C|ξ|−2H−1−s−j, with s > 0,for 0 ≤ j ≤ 2. These assumptions are lose to ours but here we do not need suhregularity on the reminder R and moreover H an be an integer. For more detailswe refer to [6℄ where a omplete proof is given for a similar result in the more generalase of Gaussian random �elds, indexed by Rd, with stationary inrements of order

m ∈ N and spetral density asymptotially equivalent to |ξ|−2H−d.



12 HERMINE BIERMÉ3. Identifiation of the anisotropi index of anisotropi frationalBrownian fieldsIn this setion we onsider an anisotropi frational Brownian �eld X =
{
X(t); t ∈ Rd

},as introdued in [7℄, that is a zero mean Gaussian random �eld, with stationary in-rements and spetral density given by(16) fh(ξ) =
1

|ξ|2h(ξ)+d
,where h is an even homogeneous funtion of degree 0 with values in (0, 1), alledanisotropi index. To determine anisotropy of suh a �eld one ould try to estimateits diretional regularity by extrating lines of the �eld along various diretions.However, for anisotropi frational Brownian �elds, this method fails. Atually,when θ is a �xed diretion of the sphere Sd−1, one an prove that the proess

{X(tθ); t ∈ R} is still a zero mean Gaussian proess with stationary inrementswith a ritial Hölder exponent almost surely equals to the essential in�mum H ofthe funtion h (see [7℄ for de�nition and elements of proof). Then, the study of thegeneralized quadrati variations of suh a proess only allows us to reover H . Todeal with that obstrution and in order to study proesses rather than �elds, theauthors of [7℄ have introdued the Radon transform of suh �elds.When a funtion f is integrable over Rd, one an de�ne its Radon transform on R(see [25℄ for instane), in the diretion θ, by
Rθf(t) =

∫

<θ>⊥

f(s + tθ)ds, for all t ∈ R,where < θ >⊥ stands for the hyperplane orthogonal to θ. For a funtion f that doesnot deay su�iently at in�nity, one an integrate it against a window. Let ρ be asmooth funtion de�ned on < θ >⊥, that ompensates the behavior at in�nity of f .Then one an de�ne the windowed Radon transform of f on R, in the diretion θ,by
Rθ,ρf(t) =

∫

<θ>⊥

f(s + tθ)ρ(s)ds, for all t ∈ R.For sake of simpliity we will deal with the diretion θ to be θ0 = (0, . . . , 0, 1) andidentify the spae Rd−1 × {0} to Rd−1. Let us hoose ρ a funtion of the Shwartzlass S (Rd−1
), with real values, ie ρ is a smooth funtion rapidly dereasing(17) ∀N ∈ N, ∀x ∈ Rd−1, |ρ(x)| ≤ CN(1 + |x|)−N .Aording to Proposition 4.1 of [7℄, one an de�ne the Radon transform of X, withthe window ρ, in the diretion θ0, denoted by RρX = {RρX(t); t ∈ R}. This proessis obtained as the limit in L2(Ω) of the �nite dimensional distributions of the proess

2−n(d−1)
∑

s∈2−nZd−1

X ((s, t)) ρ(s), ∀t ∈ R,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 13when n tends to in�nity. This orresponds to a disretization of the integral. Theexistene of suh a proess is proved in both [7℄ and [6℄ and relies on the slow inreaseof the ovariane funtion of X due to its stationary inrements and on its meansquare ontinuity. Let us remark that one an de�ne the Radon transform of X,with the window ρ, under less restritive assumptions on ρ, as soon as the previouslimit exists. By linearity of suh a transformation, this new proess is still a zeromean Gaussian proess with stationary inrements and it admits a spetral densitygiven by the Radon transform of fh against the window |ρ̂|2,(18) R|ρ̂|2fh(p) =

∫

Rd−1

fh((γ, p)) |ρ̂(γ)|2 dγ, for all p ∈ R.Here, ρ̂ is the (d − 1)-dimensional Fourier transform of the window ρ and fh isthe spetral density of X given by (16). To estimate the Hölder regularity of thisproess, we will use its generalized quadrati variations as introdued in the setion2. Therefore, we have to study the asymptoti behavior of R|ρ̂|2fh in order to applyProposition 2.1. We will prove and use the following general result on the windowedRadon transform.Proposition 3.1. Let h and c be given funtions on Rd. Let α > 0 and H0, H1suh that 0 < H0 ≤ H1. We assume that h and c are even homogeneous funtionsof degree 0, Lipshitz of order α on the sphere, with h taking its values in [H0, H1].Let δ0 > 0. Let f be a funtion de�ned on Rd suh that, for all δ ∈ (0, δ0),
f(ξ) =

c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

) when |ξ| → +∞.Choose ρ ∈ S
(
Rd−1

) suh that ∫
Rd−1 ρ(γ)dγ = 1. Then, the Radon transform of fwith the window ρ satis�es, for all δ ∈ (0, δ1),

Rρf(p) =
c(θ0)

|p|h(θ0)
+ o

(
1

|p|h(θ0)+δ

) when p ∈ R and |p| → +∞,with δ1 = min (δ0, α) .Proof. Let ρ be a funtion of S (Rd−1
) with ∫

Rd−1 ρ(γ)dγ = 1. For p ∈ R, with |p|large enough, one an de�ne the integral
Rρf(p) =

∫

Rd−1

f((γ, p))ρ(γ)dγ.We want to estimate its asymptotis when |p| → +∞. First, let us assume thatthere exists A > 1 suh that, for ξ ∈ Rd and |ξ| > A,
f(ξ) =

c(ξ)

|ξ|h(ξ)
,



14 HERMINE BIERMÉwith h and c satisfying assumptions of Proposition 3.1. In this ase, we will provethat for all 0 < δ < α,(19) Rρf(p) = f(pθ0) + o(|p|−h(θ0)−δ) when p ∈ R and |p| → +∞.For |p| > A, sine ∫
Rd−1 ρ(γ)dγ = 1, let us write

Rρf(p) = f(pθ0) +

∫

Rd−1

(f((γ, p)) − f(pθ0)) ρ(γ)dγ.Then, it is enough to give an upper bound for
∫

Rd−1

(f((γ, p)) − f(pθ0)) ρ(γ)dγ.Sine ρ is rapidly dereasing, for all s > 0 and N ∈ N,
∫

|γ|>|p|s
(f((γ, p)) − f(pθ0)) ρ(γ)dγ = O|p|→+∞(|p|−H0−Ns),whih is negligible ompared to |p|−h(θ0)−δ as soon as N > δ+H1−H0

s
.Thus, it is su�ient to onsider

∆s(p) =

∫

|γ|≤|p|s
(f((γ, p)) − f(pθ0)) ρ(γ)dγ.But,

|∆s(p)| ≤
∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
1

(|γ|2 + p2)h((γ,p))/2)
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

+
1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p)) − c(θ0)||ρ(γ)|dγ.Let us use the Lipshitz assumptions on h and c.Lemma 3.2. If g is an homogeneous funtion of degree 0, Lipshitz of order α onthe sphere Sd−1, then there exists C > 0 suh that for all p ∈ R∗ and γ ∈ Rd−1,

|g((γ, p)) − g((0, p))| ≤ C min

(( |γ|
|p|

)α

, 1

)
.Proof. The funtion g is ontinuous on the sphere and thus it is bounded. Then, for

p ∈ R∗ and γ ∈ Rd−1,
|g((γ, p))− g((0, p))| ≤ 2‖g‖∞.Moreover, g is Lipshitz of order α on the sphere. Then, there exists C > 0 suhthat, for p 6= 0,

|g((γ, p))− g((0, p))| ≤
∣∣∣∣

(γ, p)

(|γ|2 + p2)1/2
− (0, p)

|p|

∣∣∣∣
α

.
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(γ, p)

(|γ|2 + p2)1/2
− (0, p)

|p|

∣∣∣∣
2

= 2

(
1 −

(
1 +

|γ|2
p2

)−1/2
)

≤ |γ|2
p2

,whih onludes the proof of Lemma 3.2. �Let us reall that c is an even homogeneous funtion thus c(θ0) = c((0, p)), for all
p 6= 0. Then, sine c is Lipshitz of order α, one an �nd C1 > 0 suh that

∆2
s(p) =

1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p)) − c((0, p))||ρ(γ)|dγ ≤ C1|p|−h(θ0)−α(1−s),whih is negligible ompared to |p|−h(θ0)−δ as soon as δ < α(1 − s).It remains to onsider

∆1
s(p) =

∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
1

(|γ|2 + p2)h((γ,p))/2
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

=
1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
|p|h(θ0)

(|γ|2 + p2)h((γ,p))/2
− 1

∣∣∣∣∣ |ρ(γ)|dγ.Let us write
|p|h(θ0)

(|γ|2 + p2)h((γ,p))/2
= el(p),where, for p 6= 0,

l(p) = h(θ0) ln |p| − 1

2
h((γ, p)) ln

(
|p|2 + |γ|2

)

= (h((0, p)) − h((γ, p))) ln |p| − 1

2
h((γ, p)) ln

(
1 +

|γ|2
|p|2
)

,writing h(θ0) = h((0, p)) sine h is an even homogeneous funtion. Sine h is Lip-shitz of order α, by Lemma 3.2, for s < 1, there exists C2 > 0 suh that, for
|p| ≥ A > e and |γ| ≤ |p|s,

|l(p)| ≤ C2

(( |γ|
|p|

)α

ln |p| + |γ|2
|p|2
)

≤ 2C2

( |γ|
|p|

)α

ln |p| ≤ 2C2|p|−α(1−s) ln |p|.The funtion t 7→ |t|−α(1−s) ln |t| tends to 0 at in�nity. Thus one an �nd As > 0suh that for |p| > As we get |l(p)| < 1. Thus, for |p| > As

|el(p) − 1| ≤ e|l(p)| ≤ 2eC2|p|−α(1−s) ln |p|,and �nally
∆1

s(p) ≤ 2eC2‖c‖∞|p|−h(θ0)−α(1−s) ln |p|.



16 HERMINE BIERMÉFor δ < α, sine |∆s(p)| ≤ ∆1
s(p) + ∆2

s(p), taking s ∈ (0, α−δ
α

) ⊂ (0, 1) we get
∆s(p) = o|p|→+∞

(
1

|p|h(θ0)+δ

)and (19) follows. In the general ase, let us assume that, for all δ ∈ (0, δ0) and
ξ ∈ Rd,

f(ξ) =
c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

) when |ξ| → +∞.Replaing ρ by |ρ| and h by h+ δ in the speial ase above, we get the result for theremainder. �Let us remark that the result still holds for a window ρ ∈ L1(Rd−1) that satis�es(20) |ρ(γ)| = O
(

1

|γ|M+d−1

) when γ ∈ Rd−1 and |γ| → +∞,with M > H1 − H0. In this ase δ1 = min
(
δ0, α

M+H0−H1

M+α

).We an now state our main result onerning the identi�ation of the anisotropiindex of an anisotropi frational Brownian �eld. We keep the notations of part 2for the generalized quadrati variations of a 1D-proess and reall that we �x thediretion θ0 = (0, . . . , 0, 1) ∈ Sd−1.Theorem 3.3. Let X = {X(t); t ∈ Rd} be an anisotropi frational Brownian �eld,with anisotropi index h given by an even homogeneous funtion of degree 0 withvalues in [H0, H1] ⊂ (0, 1), whih is assumed to be in C1
(
Sd−1

).Let ρ be a window in S
(
Rd−1

). Let RρX be the Radon transform of the �eld X.Let K ∈ N∗. If K > h(θ0) + d
2
then, almost surely,

̂hN,K(θ0) =
1

2

(
log2

(
VK(N, RρX)

VK(2N, RρX)

)
− (d − 2)

)
−→

N→+∞
h(θ0),Moreover, √

N
(

̂hN,K(θ0) − h(θ0)
)

d−→
N→+∞

N
(
0, γ2

)
,with

NE

((
̂hN,K(θ0) − h(θ0)

)2
)

−→
N→+∞

γ2.Proof. It is su�ient to show that the spetral density of RρX satis�es the assump-tion of Proposition 2.1. From (18), this spetral density is given by the funtion
R|ρ̂|2fh(p) =

∫

Rd−1

fh((γ, p)) |ρ̂(γ)|2 dγ, for all p ∈ R,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 17with fh given by (16). Sine we an divide RρX by a onstant, we an assume that∫
Rd−1 |ρ̂(γ)|2 dγ = 1. Then, sine 2h+d satis�es assumptions of Proposition 3.1 with

α = 1, by Proposition 3.1, for all δ < 1,
R|ρ̂|2fh(p) =

1

|p|2h(θ0)+d
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+δ

)
.We an also write this as

R|ρ̂|2fh(p) =
1

|p|2(h(θ0)+ d−1
2 )+1

+ o
|p|→+∞

(
1

|p|2(h(θ0)+
d−1
2 )+1+δ

)

.Moreover, sine h ∈ C1
(
Sd−1

), the funtion g(γ) := h((γ, 1)) is di�erentiable on
Rd−1 and, for γ, x ∈ Rd−1,

Dγg(x) =
1

(|γ|2 + 1)1/2
D (γ,1)

|(γ,1)|
h

(
(x, 0) − γ.x

|γ|2 + 1
(γ, 1)

)
,suh that

|Dγg(x)| ≤ 2‖Dh‖∞|x|.Thus, the spetral density fh is di�erentiable on Rd r {0}. Let (γ, p) ∈ Rd−1 × R∗,sine h((γ, p)) = g(γ/p), we get
∂

∂p
fh((γ, p)) = fh((γ, p))

(
−D γ

p
g

(
− γ

p2

)
ln
(
|γ|2 + p2

)
− p (2h((γ, p)) + d)

|γ|2 + p2

)
.It follows that the spetral density R|ρ̂|2fh is di�erentiable on R∗ and for p 6= 0 wehave (

R|ρ̂|2fh

)′
(p) =

∫

Rd−1

∂

∂p
fh((γ, p)) |ρ̂(γ)|2 dγ.Let us write

∂

∂p
fh((γ, p)) =

|γ|
p2

F1((γ, p)) − pF2((γ, p)),with
F1((γ, p)) = D γ

p
g

(
− γ

|γ|

)
ln
(
|γ|2 + p2

)
fh((γ, p))and

F2((γ, p)) = (2h((γ, p)) + d) fh+1((γ, p)).Therefore, (
R|ρ̂|2fh

)′
(p) =

1

p2
R|γ||ρ̂|2F1(p) − pR|ρ̂|2F2(p).Then, by Proposition 3.1, whenever δ < 1,

R|ρ̂|2F2(p) =
2h(θ0) + d

|p|2h(θ0)+d+2
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+2+δ

)
.Moreover, for any ǫ > 0 small enough

|F1((γ, p))| ≤ 2‖Dh‖∞fh−ǫ((γ, p)).



18 HERMINE BIERMÉSine |γ| |ρ̂|2 is integrable over Rd−1 and rapidly dereasing, following the same linesas in the proof of Proposition 3.1, we get
∣∣∣R|γ||ρ̂|2F1(p)

∣∣∣ ≤ C|p|−2h(θ0)−d+2ǫ.This allows us to onlude that
(
R|ρ̂|2fh

)′
(p) = − 2h(θ0) + d

|p|2h(θ0)+d+1
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+1

)

.Therefore RρX satis�es the assumption of Proposition 2.1 with H = h(θ0) + d−1
2and s < 1, whih onludes the proof. �Let us remark that if we hoose a window suh that |ρ̂|2 only satis�es (20) for

M > 2(H1−H0), the estimator ̂hN,K(θ0) still tends almost surely to h(θ0). Howeverthe speed of onvergene will depend on M . Atually the result of Theorem 3.3holds when M ≥ 1 + 4(H1 −H0) whereas for M < 1 + 4(H1 −H0), Proposition 2.1shows that, for all s < M−2(H1−H0)
M+1

,
N s
(

̂hN,K(θ0) − h(θ0)
)

L2(Ω)−→
N→+∞

0.We would still obtain similar results by onsidering �elds with spetral densityasymptotially of the order of fh and with partial derivatives of order 1 asymptot-ially of the order of the partial derivatives of fh. Moreover, we have restrit h tohave values in (0, 1). This an be weakened by onsidering �elds with higher orderstationary inrements or with spetral density asymptotially of the order of fh (see[6℄ for example). This result allows us to estimate the anisotropi index h for alldiretions θ ∈ Sd−1. Atually, it is su�ient to hose κθ a rotation of Rd that maps
θ0 = (0, . . . , 0, 1) onto θ. Sine X ◦ κθ is still an anisotropi frational Brownian�eld, with anisotropi index given by h ◦ κθ, whih satis�es the same assumption as
h, we just have to onsider the Radon transform of this �eld.For numerial appliations, one has to approximate the Radon transform of X.In [2℄, the authors replae RρX(t) by(21) IN(t) = N−ν(d−1)

∑

s∈Zd−1

X
(
(N−νs, t)

)
ρ(N−νs),for ρ a smooth window with ompat support. They give onditions on ν to getestimators of the anisotropi index using generalized quadrati variations of IN withstep N instead of RρX(t). We an do the same here. Let us denote

TN,K(X) =
N−K∑

p=0

(
K∑

k=0

(−1)K−k

(
K
k

)
IN

(
p + k

N

))2

.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 19The key point of the proof is to estimate the error due to the approximation of
VK (N, RρX) by TN,K(X). Let us denote H = h(θ0) + d−1

2
. Under the assumptionsof Theorem 3.3, following the same lines as in [7℄, for α > 0 with α < H0 ≤ min h

Sd−1
,one an prove that there exists a positive �nite random variable C suh that, a.s.

∣∣∣TN,K(X)1/2 − VK (N, RρX)1/2
∣∣∣ ≤ CN−να+ 1

2 .Moreover, sine for K > H + 1/2, a.s. VK(RρX)
E(VK(N,RρX))

−→
N→+∞

1, using (9) one an �nda positive �nite random variable C ′ suh that, a.s.
VK (N, RρX)−1/2 ≤ C ′NH−1/2.Then, for ν > H

H0
, α ∈ (H/ν, H0) and N large enough, writing

log2

(
TN,K(X)

VK (N, RρX)

)
= 2 log2

(
1 +

TN,K(X)1/2 − VK (N, RρX)1/2

VK (N, RρX)1/2

)
,one an �nd a positive �nite random variable C ′′ suh that, a.s.

∣∣∣∣log2

(
TN,K(X)

VK (N, RρX)

)∣∣∣∣ ≤ C ′′N−να+H .We an state the following result.Proposition 3.4. We keep the assumptions of Theorem 3.3 and take ρ with ompatsupport. Let ν > H
H0

with H = h(θ0) + d−1
2
. Let K ∈ N∗. If K > H + 1/2 then,almost surely,

̂HN,K(θ0) =
1

2

(
log2

(
TN,K(X)

T2N,K(X)

)
− (d − 2)

)
−→

N→+∞
h(θ0),Moreover, when νH0 − H > 1/2, there exists γ2 > 0 suh that

√
N
(

̂HN,K(θ0) − h(θ0)
)

d−→
N→+∞

N
(
0, γ2

)
.4. SimulationIn this setion we present a preliminary simulation study to test estimators givenby Theorem 3.3 on simulated paths. In order not to add bias due to approximatesyntheses we would like to onsider exat synthesis of anisotropi frational Brow-nian �elds. This is a hard numerial problem, not yet solved in the general ase.Atually, lots of numerial methods have been proposed these last years to simulate1-dimensional frational Brownian motion (fBm). Most of them give rise to approx-imate syntheses, suh as the midpoint displaement method (see [20℄, for instane),the wavelet based deomposition ([19℄, [1℄, [24℄, et...), or more reently a methodbased on orrelated random walks [14℄. A few of them an be applied not onlyfor 1-dimensional fBm but also to simulate 2-dimensional (anisotropi) frationalBrownian �elds. However they still yield to approximate syntheses and their use



20 HERMINE BIERMÉwould add errors when we test our estimators. Of ourse there exist exat synthesismethods based on the Choleski deomposition of the ovariane funtion. Thesegive rise to numerial problems due to the size of the matrix. In order to have fastsynthesis one an use the stationarity of the inrements by applying the embed-ding irulant matrix method [13℄. By this way, we easily obtain fast and exatsynthesis of 1-dimensional fBm [23℄. Some authors, as in [8℄ and [16℄, apply thismethod for higher dimension but this does not yield to exat synthesis. Finally,M. L. Stein proposed a fast and exat synthesis method for isotropi fBm surfaesin [26℄. We use the simulated paths obtained by this method for this preliminarystudy. We have implemented, in ollaboration with A. Fraysse and C. Laaux, thematlab ode orresponding, available at http://iel.sd.nrs.fr/index.php?paol_sid=47313ed821793db9d30ef328a7537d8&view_this_do=iel-00000016&version=1. We refer to [6℄ for more details.With this algorithm we generate realizations of points of fBm of Hurst parameter
H ∈ (0, 0.7) on an equispaed grid with mesh N0 = 210, namely

{
BH

(
k

N0

,
l

N0

)
; 0 ≤ k, l ≤ M0

}
,where M0 = 764 is the greatest integer less than N0/

√
2.In order to perform a Radon transform, we have thus hosen ρ = 1[0,M0/N0]. Let usremark that the Fourier transform of this window is given, for γ ∈ R, by

ρ̂(γ) =
e−iM0γ/N0 − 1

−iγ
,suh that |ρ̂|2 satis�es (20) for any M < 1.With suh data on a grid, we have to hoose partiular diretions to ompute the dis-retized Radon transform. Otherwise we do not have enough points or regular step.Here we hose the vertial and horizontal diretions. Then, the Radon transformsof BH in the vertial and horizontal diretions, orrespond to

R1
ρBH

(
l

N0

)
=

1

N0

M0∑

k=0

BH

(
k

N0
,

l

N0

)
,and

R2
ρBH

(
k

N0

)
=

1

N0

M0∑

l=0

BH

(
k

N0
,

l

N0

)
,for 0 ≤ k, l ≤ M0. Hene we obtain disretizations of the integrals as in (21) for

N ∈ N and ν > 0 suh as Nν = N0 = 210 is �xed.Finally, we estimate H + 1
2
through the estimator ĤN,2(θ) given in Proposition3.4, for N = 2n with n ∈ N∗, H ∈ {0.2, 0.5, 0.7}, θ ∈ {(0, 1), (1, 0)} and K = 2sine H + 1

2
+ 1

2
∈ (1, 2). Let us remark that in that ase, the exponent ν is equalto 10

n
and the ondition ν > H+1/2

H
of Proposition 3.4 beomes n < 10

1+1/2H
. Hene,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 21for H = 0.2 we should take n < 3, for H = 0.5, n < 5 and for H = 0.7, n < 6.However this makes no sense for the hoie of the step N = 2n of the variationssine the asymptotis of the estimators are only valid when N tends to in�nity. Asa ompromise we have hosen n ∈ {7, 8, 9}.We obtain the following results, averaged on 32 simulations of fBm surfaes. Thebias orresponds to H+ 1
2
−ĥN,2(θ), where ĥN,2(θ) is the mean value obtained over the

32 realizations, whereas σ̂2 = 1
32

∑32
k=1

(
ĥk

N,2(θ) − ĥN,2(θ)

)2, where (ĥk
N,2(θ)

)

1≤k≤32denotes the values obtained over the 32 realizations.H=0.2 H=0.5 H=0.7
R1

ρBH R2
ρBH R1

ρBH R2
ρBH R1

ρBH R2
ρBH

N = 29 Bias 0.234 0.231 0.077 0.088 0.069 0.047
σ̂ 0.064 0.075 0.051 0.048 0.038 0.042

N = 28 Bias 0.124 0.117 0.039 0.039 0.024 0.037
σ̂ 0.109 0.087 0.067 0.076 0.064 0.066

N = 27 Bias 0.098 0.076 0.091 0.014 0.035 0.02
σ̂ 0.130 0.124 0.100 0.084 0.090 0.086All estimated values are under the theoretial values and σ̂ is high. This is notsurprising sine ν is not large enough. Besides let us remark that the bias dereasesas the values of H inreases. Moreover values are quite the same for both diretionsin all ases. That shows the isotropy of the fBm. We have to deal with the mainproblem that we an not generate a fBm with more than 210 × 210 points. This isdue to a numerial obstrution given by the method of simulation. One an expetthat this method ould give better estimates for the identi�ation of the Hölderexponent for a larger step N0. However it might be relevant in order to estimate theanisotropy of a �eld. AknowledgementsThe author would like to warmly thank Anne Estrade for her relevant ontributionas well as for very fruitful disussions, Aline Bonami for many remarks and ommentssimplifying many omputations lines, and Peter She�er for the areful reading ofthis text. Referenes[1℄ P. Abry and F. Sellan. The wavelet-based synthesis for frational Brownian motion proposedby F. Sellan and Y. Meyer: remarks and fast implementation. Appl. Comput. Harmon. Anal.,3:377�383, 1996.[2℄ A. Ayahe, A. Bonami, and A. Estrade. Identi�ation and series deomposition of anisotropiGaussian �elds, 2005. To appear in Proeedings of the Catania ISAAC05 ongress.
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