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ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGHRADON TRANSFORMHERMINE BIERMÉAbstra
t. We estimate the anisotropi
 index of an anisotropi
 fra
tional Brow-nian �eld. For all dire
tions, we give a 
onvergent estimator of the value of theanisotropi
 index in this dire
tion, based on generalized quadrati
 variations. Wealso prove a 
entral limit theorem. First we present a result of identi�
ation basedon the asymptoti
 behavior of the spe
tral density of a pro
ess. Then, we de�neRadon transforms of the anisotropi
 fra
tional Brownian �eld and prove that thesepro
esses admit a spe
tral density satisfying the previous assumptions.Introdu
tionThe one dimensional fra
tional Brownian motion (fBm) was de�ned through asto
hasti
 integral by Mandelbrot and Van Ness [18℄ in 1968 for the modeling ofirregular data su
h as the level of water �ows or e
onomi
 series. Let us re
all thatthis pro
ess is a Gaussian zero mean pro
ess with stationary in
rements 
hara
ter-ized by its so-
alled Hurst index H ∈ (0, 1) and denoted by BH = {BH(t); t ∈ R}.A generalization of Bo
hner's Theorem allows to give a spe
tral representation ofits 
ovarian
e fun
tion, namely(1) Cov (BH(t), BH(s)) =

∫

R

(
e−itξ − 1

) (
eisξ − 1

) 1

|ξ|2H+1
dξ.The fun
tion 1

|ξ|2H+1 is 
alled the spe
tral density of the fBm. Pro
esses with thatkind of spe
tral density are 
alled "1/f -noises" in the terminology of signal theory.The Hurst parameter is the index of irregularity of the fBm. It 
orresponds to theorder of self-similarity of the pro
ess and to the 
riti
al Hölder exponent of its paths.Many estimators for the Hurst parameter have been proposed based for example ontime domain methods or spe
tral methods (see [9℄ and [3℄ and referen
es therein).The quadrati
 variations give relevant estimators of the Hölder exponent of moregeneral Gaussian pro
esses with stationary in
rements [15℄.For d-dimensional data, one 
an 
onsider a natural extension of the 1-dimensionalfBm, still 
alled fBm 
hara
terized by its 
ovarian
e fun
tion given by (1) where nowDate: 15/02/06 .1991 Mathemati
s Subje
t Classi�
ation. 60G60,62M40,60G15,60G10,60G17,60G35,44A12.Key words and phrases. Anisotropi
 Gaussian �elds, Identi�
ation, Estimator, Asymptoti
 nor-mality, Radon transform. 1



2 HERMINE BIERMÉ
s, t ∈ Rd, the integral is over Rd, the produ
ts are repla
ed by t.ξ and s.ξ, the usuals
alar produ
ts on Rd, and the spe
tral density is given by 1

|ξ|2H+d , where |.| is theeu
lidean norm on Rd. This yields to a zero mean Gaussian �eld with stationaryin
rements that is isotropi
.Other generalizations have been proposed for anisotropi
 data modeling like thefra
tional Brownian sheet [17℄ or the multifra
tional Brownian motion introdu
edsimultaneously in [5℄ and [21℄, where H is repla
ed by a Hurst parameter dependingon the point. However su
h generalizations yield to models with non stationaryin
rements. In order to keep this property and to get anisotropi
 �elds the authorsof [7℄ de�ne anisotropi
 fra
tional Brownian �elds as zero mean Gaussian random�elds with stationary in
rements and spe
tral density of the form 1
|ξ|2h(ξ)+d , wherethe power h(ξ) ∈ (0, 1) depends on the dire
tion of ξ. However, these �elds look likeisotropi
 when the analysis is done line by line sin
e the regularity along the linedoes not depend on the dire
tion. Thus the authors of [7℄ give another method tore
over anisotropy. Here we will use their method and give 
onsistent estimators ofthe anisotropi
 index h of su
h �elds with asymptoti
 normality.The paper is organized as follows. In the �rst se
tion we will re
all the generalsetting for the study of �elds with stationary in
rements. The se
ond se
tion isdevoted to estimators of the Hölder exponent of Gaussian pro
esses (d = 1) withspe
tral density, using generalized quadrati
 variations. We give estimators withasymptoti
 normality under assumptions that rely on the asymptoti
 behavior of thespe
tral density. In the third part we estimate the anisotropi
 index of an anisotropi
fra
tional Brownian �eld, using the method developed in [7℄. It is based on the studyof Radon transforms of the �eld. These transformations yield to Gaussian pro
esseswith spe
tral densities for whi
h we give an asymptoti
 expansion. Then we applythe results of the �rst part to this pro
ess. We illustrate this method in the fourthpart using exa
t syntheses of fBm surfa
es.1. Anisotropi
 Gaussian modelsWe 
onsider a real d-parameter Gaussian �eld X = {X(t); t ∈ Rd} with zero meanand stationary in
rements. We assume that X is mean square 
ontinuous, that is

E
(
|X(t) − X(t0)|2

)
−→
t→t0

0,for any point t0 ∈ Rd. A
tually X is mean square 
ontinuous when its 
ovarian
efun
tion Γ(s, t) = E (X(s)X(t)) is 
ontinuous with respe
t to ea
h variable. Then,a

ording to Yaglom [27℄, there exists a single non-negative symmetri
 measure σon Rd, 
alled spe
tral measure of X, with
∫

Rd

|ξ|2
1 + |ξ|2dσ(ξ) < +∞,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 3and a single non-negative de�nite matrix A = (aj,k)1≤j,k≤d su
h that
E ((X(s) − X(0)) (X(t) − X(0))) =

∫

Rd

(
e−is.ξ − 1

)
(e−it.ξ − 1)dσ(ξ) + s.At.It follows that X 
an be represented as(2) X(t) − X(0)

L2(Ω)
=

∫

Rdr{0}

(
e−it.ξ − 1

)
dZ(ξ) + t.Y, for t ∈ Rdwhere Y = (Y1, . . . , Yd) is a Gaussian zero mean random ve
tor with 
ovarian
e A,and Z is a zero mean, 
omplex-valued, Gaussian random measure on the Borel setsof B (Rd r {0}

), with
E

(
Z (A) Z (B)

)
= σ(A ∩ B) and Z (−A) = Z (A),for any A, B ∈ B

(
Rd r {0}

).From now on, we will 
onsider that Y = 0 sin
e the 
orresponding term does nota�e
t the regularity. We assume moreover that the spe
tral measure σ is absolutely
ontinuous with respe
t to Lebesgue's measure. Then, its density fun
tion f is aneven fun
tion of L1
(
Rd, min (1, |ξ|2) dξ

) 
alled the spe
tral density of X.Let us remark that the �nite dimensional distributions of {X(t) − X(0); t ∈ Rd}are 
ompletely given by the fun
tion v : t ∈ Rd 7→ E((X(t) − X(0))2), 
alled thevariogramme of X. In our setting
v(t) = 4

∫

Rd

sin2

(
ξ.t

2

)
f(ξ)dξ,and most properties of X 
an be 
hara
terized by its spe
tral density. For instan
e,the Gaussian �eld X − X(0) is isotropi
, i.e. the �nite dimensional distributions of

X −X(0) are invariant under rotations of 
enter 0, if and only if f is a radial map.In the same vein, X −X(0) is self-similar of order H , i.e. a dilation of rate λ in theset of indi
es indu
es a dilation of rate λH in the state spa
e, if and only if f is anhomogeneous map of the shape c(ξ)
|ξ|2H+d , where c is an even homogeneous fun
tion ofdegree 0, ie c(λξ) = c(ξ) for all λ ∈ R∗ and ξ ∈ Rd.We are mainly interested to identify the anisotropi
 index of an anisotropi
 fra
-tional Brownian �eld as introdu
ed by [7℄. Su
h a �eld is de�ned to have a spe
traldensity given by
fh(ξ) =

1

|ξ|2h(ξ)+d
,where h is an even homogeneous fun
tion of degree 0, with values in (0, 1). When his a 
onstant fun
tion equal to H0, the �eld is just a fra
tional Brownian motion withHurst parameter H0. Thus it is isotropi
. An estimator of the fun
tion h is given in[2℄ through a dire
tional analysis of the �eld, using proje
tions. However, no speed
onvergen
e 
an be found under their weak 
onditions that the spe
tral density



4 HERMINE BIERMÉbehaves like fh at high frequen
ies. We 
onsider here the same estimator in broader
ontext (h 
an take arbitrarily large values), but under stronger assumptions, whi
hallow to give the speed of 
onvergen
e.Let us remark that the asymptoti
 homogeneity of the spe
tral density is linked tothe Hölder regularity of the Gaussian �eld. It is proved (see Prop.1.3 of [7℄) that if
f(ξ) ≤ c

|ξ|2H0+d
,for large |ξ|, with H0 ∈ (0, 1) and a positive 
onstant c, then there exists a version

X̃ of X whose paths a.s. satisfy a uniform Hölder 
ondition of any order less than
H0. More pre
isely, with probability one, for all α < H0, for all K > 0, one 
an �nda positive random variable C > 0 su
h that ∀s, t ∈ [−K, +K]d ,

|X̃(t) − X̃(s)| < C|t − s|α .The main idea of the anisotropi
 index identi�
ation given in [2℄ and here is to usethe former result, not for the �eld itself but for one dimensional asso
iated pro
esses.2. Identifi
ation of the exponent for a 1D-pro
essWe will prove a �rst identi�
ation result in a general setting. It states that a
onsistent estimator of the 
riti
al Hölder exponent of a Gaussian pro
ess with sta-tionary in
rements, when given by the asymptoti
 behavior of its spe
tral density,
an be re
overed using generalized quadrati
 variations. This is not a new idea (see[15℄ for instan
e) but the required assumptions rely dire
tly on the spe
tral densityand not on the variogramme. In fa
t, our assumptions are stronger than those of[2℄ where an estimator of the Hölder exponent is given using asymptoti
 behaviorof the spe
tral density. They 
an be linked to those of [15℄, where an asymptoti
expansion of the variogramme is required.Let us 
onsider a zero mean Gaussian pro
ess X = {X(t); t ∈ R}, with stationaryin
rements and spe
tral density f ∈ L1(R, min (1, |ξ|2)dξ). We want to estimate theasymptoti
 degree of homogeneity of f through dis
rete observations of X on [0, 1].The generalized quadrati
 variations [15℄ of X are given by(3) VK(N, X) =

N−K∑

p=0

(
K∑

k=0

(−1)K−k

(
K
k

)
X

(
p + k

N

))2where
• K is an integer greater than 1 (the order of the in
rements of X),
•
(

K
k

) is the binomial 
oe�
ient K!
k!(K−k)!

,
• N is an integer greater than K ( 1

N
is the step of dis
retization),



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 5so that ∑K
k=0(−1)K−k

(
K
k

)
X(p+k

N
) is the in
rement of order K of X at point p

Nwith step 1
N
.Let us remark that one 
an also 
onsider k-variations of the pro
ess. We will fo
ushere on the quadrati
 variations (k = 2). It is motivated by a result of J. F. Coeur-jolly [10℄ who proves that, in the fra
tional Brownian motion 
ase, the asymptoti
varian
e of the Hurst parameter estimator is the lowest for k = 2.Re
all that, up to a 
onstant, the spe
tral density of a 1D fra
tional Brownianmotion of Hurst parameter H ∈ (0, 1) is given by the fun
tion

1

|ξ|2H+1
.Remark that no pro
esses with stationary in
rements 
an admit su
h spe
tral den-sity whenever H ≥ 1 sin
e this fun
tion does not belong to L1(R, min (1, |ξ|2)dξ)anymore. However one 
an obtain su
h spe
tral densities by 
onsidering �elds withhigher order stationary in
rements (see [5℄ and [22℄ for instan
e). Moreover there isno restri
tion by 
onsidering pro
esses with spe
tral density asymptoti
ally equiva-lent to that kind of fun
tion for any H > 0. We 
an now state our �rst identi�
ationresult.Proposition 2.1. Let X = {X(t); t ∈ R} be a zero mean Gaussian pro
ess, withstationary in
rements and spe
tral density f . We assume that f is di�erentiable on

R r [−r, r], for r large enough and that there exists H > 0, c > 0 and s ≥ 0 su
hthat,(4) f(ξ) =
c

|ξ|2H+1
+ o|ξ|→+∞

(
1

|ξ|2H+1+s

)
,and(5) f ′(ξ) = −(2H + 1)

c

|ξ|2H+2
+ o|ξ|→+∞

(
1

|ξ|2H+2

)
.Let K > H + 1

2
an integer. Then, almost surely,

ĤN,K =
1

2

(
log2

(
VK(N, X)

VK(2N, X)

)
+ 1

)
−→

N→+∞
H.Moreover, when s < 1

2
,

N s
(
ĤN,K − H

)
L2(Ω)−→ 0,and, when s ≥ 1

2
, there exists γ2 > 0 su
h that

NE

((
ĤN,K − H

)2
)

−→
N→+∞

γ2, with √
N
(
ĤN,K − H

)
d−→

N→+∞
N
(
0, γ2

)
,



6 HERMINE BIERMÉwhere d−→ means the 
onvergen
e in distribution and N (0, γ2) is the 
entered normallaw with varian
e γ2.Proof. First, let us remark that it is enough to 
onsider the 
ase where c = 1 sin
e
ĤN,K is also equal to

1

2

(
log2

(
VK(N, X/

√
c)

VK(2N, X/
√

c)

)
+ 1

)
.Let us denote the in
rement of order K of X with a step 1/N by(6) ZN,K (t) =

K∑

k=0

(−1)K−k

(
K
k

)
X

(
t + k

N

)
.Sin
e by assumption X has stationary in
rements and spe
tral density f it followsfrom (2) that, when K ≥ 1,

ZN,K(t)
L2(Ω)
=

∫

Rr{0}

e−i tξ

N

(
e−i ξ

N − 1
)K

dZ(ξ),with Z a zero mean, 
omplex-valued, Gaussian random measure on the Borel setsof B (R r {0}), su
h that
E

(
Z (A) Z (B)

)
=

∫

A∩B

f(ξ)dξ and Z (−A) = Z (A).Thus, when K ≥ 1, the pro
ess ZN,K is Gaussian, stationary and with zero mean.Moreover,(7) E (VK(N, X)) = (N − K + 1)Var (ZN,K(0)) ,(8) Var(VK(N, X)) = 2(N − K + 1)
N−K∑

p=−(N−K)

Cov(ZN,K(p), ZN,K(0))2 ,where (8) is obtained by using on one hand the fa
t that Cov(ZN,K(p)2, ZN,K(p′)2) =
2Cov(ZN,K(p), ZN,K(p′))2 sin
e ZN,K is Gaussian and, on the other hand the sta-tionarity of ZN,K .First step. Asymptoti
s of E (VK(N, X)) and Var(VK(N, X)).Let us 
ompute the 
ovarian
e of ZN,K and give asymptoti
s using the asymptoti
 be-havior of the spe
tral density. For p ∈ Z, we write ΓN,K(p) = Cov (ZN,K(p), ZN,K(0)),as in Lemma 3.2 of [2℄. Then

ΓN,K(p) =

∫

R

hK

(
p,

ξ

N

)
f(ξ)dξ, with hK(p, ξ) = 4K cos(pξ) sin2K

(
ξ

2

)
.We will prove the following result.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 7Lemma 2.2. For K > H + s/2,(9) E (VK(N, X)) = C1N
−2H+1 + o

(
N−2H−s+1

)
,and, when K > H + 1/2,(10) Var(VK(N, X)) = C2N

−4H+1 + o
(
N−4H+1

)
,where

C1 =

∫

R

hK(0, ξ)
1

|ξ|2H+1
dξ and C2 = 2

∑

p∈Z

(∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

)2

.Proof. Let us remark that in the 
ase of a standard fBm (X = BH)
ΓH

N,K(p) :=

∫

R

hK

(
p,

ξ

N

)
1

|ξ|2H+1
dξ = N−2H

(∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

)
.Using (7), it is straightforward to see that in this 
ase, for K > H ,

E (VK(N, BH)) = C1N
−2H+1 + o

(
N−2H

)
.Moreover an integration by parts proves that, for K > H + 1/2, one 
an �nd C > 0su
h that(11) ∣∣∣∣

∫

R

hK(p, ξ)
1

|ξ|2H+1
dξ

∣∣∣∣ ≤ C(1 + |p|)−1.Hen
e C2 is well de�ned andVar(VK(N, BH)) = C2N
−4H+1 + o

(
N−4H+1

)
.Let us 
hoose K ≥ 1 su
h that K > H . Then

ΓN,K(p) = ΓH
N,K(p) +

∫

R

hK

(
p,

ξ

N

)
∆H(ξ)dξ,where ∆H(ξ) denotes the di�eren
e f(ξ)− 1

|ξ|2H+1 . Using the asymptoti
 behavior of
f and f ′ we will prove that, whenever K > H + s/2,(12) ΓN,K(0) − ΓH

N,K(0) = o
N→+∞

(
N−2H−s

)
.And, for K > H + 1/2, for all p ∈ Z, with |p| ≤ N ,(13) (1 + |p|)

(
ΓN,K(p) − ΓH

N,K(p)
)

= o
N→+∞

(
N−2H

)
.Using the estimates for the fBm, this will 
on
lude for the proof of Lemma 2.2.Let ǫ > 0 and let us 
hoose r large enough su
h that for |ξ| > r,(14) |∆H(ξ)| ≤ ǫ|ξ|−2H−s−1 and |∆H

′(ξ)| ≤ ǫ|ξ|−2H−2.We write ∫

R

hK

(
p,

ξ

N

)
∆H(ξ)dξ =

∫

|ξ|≤r

+

∫

|ξ|>r

.



8 HERMINE BIERMÉFor the �rst integral, we remark that when K > H , sin
e ∆H ∈ L1(R, min (1, |ξ|2K)dξ),
∣∣∣∣
∫

|ξ|≤r

hK

(
p,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤ C(r)N−2K .For the se
ond integral, on one hand, for p = 0, as soon as K > H + s/2,
∣∣∣∣
∫

|ξ|>r

hK

(
0,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤
(

4K

∫

R

sin2K

(
ξ

2

)
1

|ξ|2H+1+s
dξ

)
ǫN−2H−s,and we get (12). On the other hand, for p 6= 0, sin
e ∆H is di�erentiable over

R r [−r, r], we 
an integrate by parts. Then, by (14), for K > H + 1/2 and Nsu�
iently large, one 
an �nd C > 0 su
h that
∣∣∣∣p
∫

|ξ|>r

hK

(
p,

ξ

N

)
∆H(ξ)dξ

∣∣∣∣ ≤ CǫN−2H ,whi
h yields to (13). �Se
ond step. Proposition 3.1 of [2℄ states that, almost surely, when K > H + 1/2,
VK(N, X)

E(VK(N, X))
−→

N→+∞
1.For sake of 
ompleteness, we re
all the proof. Let η > 0 and let us denote

AN =

{∣∣∣∣
VK(N, X)

E(VK(N, X))
− 1

∣∣∣∣ > η

}
.By Markov Inequality,

P(AN) ≤ η−4|E(VK(N, X))|−4E
(
|VK(N, X) − E(VK(N, X))|4

)
.Sin
e ZN,K is Gaussian, one 
an prove that there exists c > 0 su
h that

E
(
|VK(N, X) − E(VK(N, X))|4

)
≤ c Var(VK(N, X))2 .By (9) and (10), one 
an �nd C > 0 su
h that, for N large enough,

P(AN ) ≤ Cη−4N−2.Then, the series ∑N P(AN) 
onverges and by Borel-Cantelli Lemma, almost surely,
∣∣∣∣

VK(N, X)

E(VK(N, X))
− 1

∣∣∣∣ ≤ η for N su�
iently large.That 
on
ludes the proof of the se
ond step.Third step. We will sket
h the proof of the following asymptoti
 normality. When-ever K > H + 1/2,
√

N

(
VK(N, X)

E(VK(N, X))
− 1

)
d−→

N→+∞
N
(

0,
C2

C2
1

)



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 9with
NE

((
VK(N, X)

E(VK(N, X))
− 1

)2
)

−→
N→+∞

C2

C2
1

.The se
ond assertion is 
lear from Lemma 2.2. To prove the asymptoti
 normality,let us re
all the following version of Lindeberg's 
ondition [11℄ used in [15℄.Lemma 2.3. [15℄ Consider the sequen
e of variables VN de�ned by
VN =

N−K∑

p=0

λp,N

(
ǫ2
p,N − 1

)
,where the ǫp,N are i.i.d zero mean normalized Gaussian variables and the λp,N arepositive. Let λN be the maximum of the λp,N . If λN = oN→+∞

(√Var(VN)
), then

VN√Var(VN )
tends in distribution to a zero mean normalized Gaussian variable.Let us denote by ΓN the 
ovarian
e matrix of the Gaussian ve
tor (ZN,K(p))0≤p≤N−K .Then

VK(N, X)
d
=

N−K∑

p=0

λp,Nǫ2
p,N ,where (λp,N)0≤p≤N−K are the positive eigenvalues of ΓN . Sin
e λN ≤∑N−K

p=−(N−K) |ΓN,K(p)|,equations (11) and (13), 
ompared to (10), show that λN = oN→+∞

(√Var(VK(N, X))
).By Lemma 2.3

VK(N, X) − E(VK(N, X))√Var(VK(N, X))

d−→
N→+∞

N (0, 1).Finally it is enough to re
all that, for K > H + 1/2, from (9) and (10),
E (VK(N, X))√Var (VK(N, X))

=
C1

C
1/2
2

√
N (1 + o (1)) .Fourth step. Con
lusion.To 
on
lude for the proof we will use the following lemma about asymptoti
 nor-mality of an estimator.Lemma 2.4. Let (Tn) a sequen
e of random ve
tors of Rk that tends almost surelyto m ∈ Rk. Let g be a fun
tion de�ned on a neighborhood U of m with real values.We assume that g is twi
e di�erentiable on U with partial derivatives bounded on U .(1) If √n (Tn − m)

d−→
n→+∞

N (0, Γ), then
√

n (g (Tn) − g(m))
d−→

n→+∞
N (0,∇g(m)tΓ∇g(m)).



10 HERMINE BIERMÉ(2) If nE ((Tn − m)(Tn − m)t) −→
n→+∞

Γ and nE

(
((Tn − m)t(Tn − m))

2
)

−→
n→+∞

0,then
nE
(
(g (Tn) − g(m))2

)
−→

n→+∞
∇g(m)TΓ∇g(m).We do not give the details of the proof, whi
h is a variant of the proof of Theorem3.3.11 in [12℄. The main tool is Taylor formula for g at m.We will use Lemma 2.4 for the pair of estimators (TN , T2N ), with TN = VK(N,X)

E(VK(N,X))
.By the se
ond step, for K > H + 1/2, the pair (TN , T2N) tends to (1, 1) almostsurely. Moreover, by the third step, for K > H + 1/2,

√
N (TN − 1)

d−→
N→+∞

N
(

0,
C2

C2
1

) and √
N (T2N − 1)

d−→
N→+∞

N
(

0,
C2

2C2
1

)
,with

NE
(
(TN − 1)2) −→

N→+∞

C2

C2
1

and NE
(
(T2N − 1)2

)
−→

N→+∞

C2

2C2
1

.Equations (9) and (10) show that
NE

(
(TN − 1)4) ≤ cN

Var(VK(N, X))2

E (VK(N, X))4
≤ CN−1.We only sket
h the proof of the 
onvergen
e in distribution to a Gaussian ve
torof the pair √

N (TN − 1, T2N − 1), sin
e it follows along the same line as in [15℄.Similar arguments as in the third step allow us to prove the 
onvergen
e in law toa Gaussian variable, for any linear 
ombination(15) a
√

N (TN − 1) + b
√

N (T2N − 1) , with a, b > 0.To prove that (15) holds for any a, b ∈ R, let us remark that on one hand the lawof the pair √
N (TN − 1, T2N − 1) is tight. On the other hand it admits a uniquea

umulation value, sin
e the 
hara
teristi
 fun
tion of a Gaussian ve
tor is an entirefun
tion, whi
h is uniquely determined by its values on (a, b), with a, b > 0. Weobtain that √

N (TN − 1, T2N − 1) −→
N→+∞

N (0, Γ) ,where Γ =

(
C2

C2
1

C3

2−2H+1C2
1

C3

2−2H+1C2
1

C2

2C2
1

), with
C3 = 2

∑

p∈Z

(∫

R

e−i p.ξ

2

(
e−iξ − 1

)K (
eiξ/2 − 1

)K 1

|ξ|2H+1
dξ

)2

,whi
h is well de�ned sin
e K > H + 1/2.We 
an now apply Lemma 2.4 with g(x, y) = log2

(
x
y

). It is straightforward to see
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√

N log2

(
TN

T2N

)
d−→

N→+∞
N
(
0, ν2

)
, and NE

((
log2

(
TN

T2N

))2
)

−→
N→+∞

ν2,with
ν2 =

1

(log 2)2

(
(1 −1)Γ

(
1
−1

))
=

1

(log 2C1)
2

(
C2

(
1 +

1

2d

)
− 2C3

1

2−2H+d

)
.But

log2

(
TN

T2N

)
= log2

(
VK(N, X)

VK(2N, X)

)
− log2

(
E (VK(N, X))

E (VK(2N, X))

)
,where by (9), for K > H + s/2,

log2

(
E (VK(N, X))

E (VK(2N, X))

)
= 2H − 1 + o

(
N−s

)
.Thus, almost surely, for K > H + 1/2,

ĤN,K =
1

2

(
log2

(
VK(N, X)

VK(2N, X)

)
+ 1

)
−→

N→+∞
H.Moreover, if s < 1

2
, whenever K > H + 1/2,

N s
(
ĤN,K − H

)
L2(Ω)−→

N→+∞
0,and, for γ2 = ν2

4
, if s ≥ 1

2
, whenever K > H + 1/2,
√

N
(
ĤN,K − H

)
d−→

N→+∞
N
(
0, γ2

)
,with

NE

((
ĤN,K − H

)2
)

−→
N→+∞

γ2.

�Let us add a few remarks. The proof uses similar arguments as in [15℄. Howeverthe asymptoti
 expansion of the spe
tral density required in our assumption doesnot imply that the variogramme ful�lls the asymptoti
 expansion needed in [15℄.Our result is 
onne
ted to the identi�
ation of �ltered white noise introdu
ed in [4℄.In the simplest 
ase of this paper, the authors 
onsider a spe
tral density f givenby
f(ξ) = |ξ|−2H−1 + R(ξ),with H ∈ R+ r N and R ∈ C2(R), satisfying |R(j)(ξ)| ≤ C|ξ|−2H−1−s−j, with s > 0,for 0 ≤ j ≤ 2. These assumptions are 
lose to ours but here we do not need su
hregularity on the reminder R and moreover H 
an be an integer. For more detailswe refer to [6℄ where a 
omplete proof is given for a similar result in the more general
ase of Gaussian random �elds, indexed by Rd, with stationary in
rements of order

m ∈ N and spe
tral density asymptoti
ally equivalent to |ξ|−2H−d.



12 HERMINE BIERMÉ3. Identifi
ation of the anisotropi
 index of anisotropi
 fra
tionalBrownian fieldsIn this se
tion we 
onsider an anisotropi
 fra
tional Brownian �eld X =
{
X(t); t ∈ Rd

},as introdu
ed in [7℄, that is a zero mean Gaussian random �eld, with stationary in-
rements and spe
tral density given by(16) fh(ξ) =
1

|ξ|2h(ξ)+d
,where h is an even homogeneous fun
tion of degree 0 with values in (0, 1), 
alledanisotropi
 index. To determine anisotropy of su
h a �eld one 
ould try to estimateits dire
tional regularity by extra
ting lines of the �eld along various dire
tions.However, for anisotropi
 fra
tional Brownian �elds, this method fails. A
tually,when θ is a �xed dire
tion of the sphere Sd−1, one 
an prove that the pro
ess

{X(tθ); t ∈ R} is still a zero mean Gaussian pro
ess with stationary in
rementswith a 
riti
al Hölder exponent almost surely equals to the essential in�mum H ofthe fun
tion h (see [7℄ for de�nition and elements of proof). Then, the study of thegeneralized quadrati
 variations of su
h a pro
ess only allows us to re
over H . Todeal with that obstru
tion and in order to study pro
esses rather than �elds, theauthors of [7℄ have introdu
ed the Radon transform of su
h �elds.When a fun
tion f is integrable over Rd, one 
an de�ne its Radon transform on R(see [25℄ for instan
e), in the dire
tion θ, by
Rθf(t) =

∫

<θ>⊥

f(s + tθ)ds, for all t ∈ R,where < θ >⊥ stands for the hyperplane orthogonal to θ. For a fun
tion f that doesnot de
ay su�
iently at in�nity, one 
an integrate it against a window. Let ρ be asmooth fun
tion de�ned on < θ >⊥, that 
ompensates the behavior at in�nity of f .Then one 
an de�ne the windowed Radon transform of f on R, in the dire
tion θ,by
Rθ,ρf(t) =

∫

<θ>⊥

f(s + tθ)ρ(s)ds, for all t ∈ R.For sake of simpli
ity we will deal with the dire
tion θ to be θ0 = (0, . . . , 0, 1) andidentify the spa
e Rd−1 × {0} to Rd−1. Let us 
hoose ρ a fun
tion of the S
hwartz
lass S (Rd−1
), with real values, ie ρ is a smooth fun
tion rapidly de
reasing(17) ∀N ∈ N, ∀x ∈ Rd−1, |ρ(x)| ≤ CN(1 + |x|)−N .A

ording to Proposition 4.1 of [7℄, one 
an de�ne the Radon transform of X, withthe window ρ, in the dire
tion θ0, denoted by RρX = {RρX(t); t ∈ R}. This pro
essis obtained as the limit in L2(Ω) of the �nite dimensional distributions of the pro
ess

2−n(d−1)
∑

s∈2−nZd−1

X ((s, t)) ρ(s), ∀t ∈ R,
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orresponds to a dis
retization of the integral. Theexisten
e of su
h a pro
ess is proved in both [7℄ and [6℄ and relies on the slow in
reaseof the 
ovarian
e fun
tion of X due to its stationary in
rements and on its meansquare 
ontinuity. Let us remark that one 
an de�ne the Radon transform of X,with the window ρ, under less restri
tive assumptions on ρ, as soon as the previouslimit exists. By linearity of su
h a transformation, this new pro
ess is still a zeromean Gaussian pro
ess with stationary in
rements and it admits a spe
tral densitygiven by the Radon transform of fh against the window |ρ̂|2,(18) R|ρ̂|2fh(p) =

∫

Rd−1

fh((γ, p)) |ρ̂(γ)|2 dγ, for all p ∈ R.Here, ρ̂ is the (d − 1)-dimensional Fourier transform of the window ρ and fh isthe spe
tral density of X given by (16). To estimate the Hölder regularity of thispro
ess, we will use its generalized quadrati
 variations as introdu
ed in the se
tion2. Therefore, we have to study the asymptoti
 behavior of R|ρ̂|2fh in order to applyProposition 2.1. We will prove and use the following general result on the windowedRadon transform.Proposition 3.1. Let h and c be given fun
tions on Rd. Let α > 0 and H0, H1su
h that 0 < H0 ≤ H1. We assume that h and c are even homogeneous fun
tionsof degree 0, Lips
hitz of order α on the sphere, with h taking its values in [H0, H1].Let δ0 > 0. Let f be a fun
tion de�ned on Rd su
h that, for all δ ∈ (0, δ0),
f(ξ) =

c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

) when |ξ| → +∞.Choose ρ ∈ S
(
Rd−1

) su
h that ∫
Rd−1 ρ(γ)dγ = 1. Then, the Radon transform of fwith the window ρ satis�es, for all δ ∈ (0, δ1),

Rρf(p) =
c(θ0)

|p|h(θ0)
+ o

(
1

|p|h(θ0)+δ

) when p ∈ R and |p| → +∞,with δ1 = min (δ0, α) .Proof. Let ρ be a fun
tion of S (Rd−1
) with ∫

Rd−1 ρ(γ)dγ = 1. For p ∈ R, with |p|large enough, one 
an de�ne the integral
Rρf(p) =

∫

Rd−1

f((γ, p))ρ(γ)dγ.We want to estimate its asymptoti
s when |p| → +∞. First, let us assume thatthere exists A > 1 su
h that, for ξ ∈ Rd and |ξ| > A,
f(ξ) =

c(ξ)

|ξ|h(ξ)
,



14 HERMINE BIERMÉwith h and c satisfying assumptions of Proposition 3.1. In this 
ase, we will provethat for all 0 < δ < α,(19) Rρf(p) = f(pθ0) + o(|p|−h(θ0)−δ) when p ∈ R and |p| → +∞.For |p| > A, sin
e ∫
Rd−1 ρ(γ)dγ = 1, let us write

Rρf(p) = f(pθ0) +

∫

Rd−1

(f((γ, p)) − f(pθ0)) ρ(γ)dγ.Then, it is enough to give an upper bound for
∫

Rd−1

(f((γ, p)) − f(pθ0)) ρ(γ)dγ.Sin
e ρ is rapidly de
reasing, for all s > 0 and N ∈ N,
∫

|γ|>|p|s
(f((γ, p)) − f(pθ0)) ρ(γ)dγ = O|p|→+∞(|p|−H0−Ns),whi
h is negligible 
ompared to |p|−h(θ0)−δ as soon as N > δ+H1−H0

s
.Thus, it is su�
ient to 
onsider

∆s(p) =

∫

|γ|≤|p|s
(f((γ, p)) − f(pθ0)) ρ(γ)dγ.But,

|∆s(p)| ≤
∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
1

(|γ|2 + p2)h((γ,p))/2)
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

+
1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p)) − c(θ0)||ρ(γ)|dγ.Let us use the Lips
hitz assumptions on h and c.Lemma 3.2. If g is an homogeneous fun
tion of degree 0, Lips
hitz of order α onthe sphere Sd−1, then there exists C > 0 su
h that for all p ∈ R∗ and γ ∈ Rd−1,

|g((γ, p)) − g((0, p))| ≤ C min

(( |γ|
|p|

)α

, 1

)
.Proof. The fun
tion g is 
ontinuous on the sphere and thus it is bounded. Then, for

p ∈ R∗ and γ ∈ Rd−1,
|g((γ, p))− g((0, p))| ≤ 2‖g‖∞.Moreover, g is Lips
hitz of order α on the sphere. Then, there exists C > 0 su
hthat, for p 6= 0,

|g((γ, p))− g((0, p))| ≤
∣∣∣∣

(γ, p)

(|γ|2 + p2)1/2
− (0, p)

|p|

∣∣∣∣
α

.
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(γ, p)

(|γ|2 + p2)1/2
− (0, p)

|p|

∣∣∣∣
2

= 2

(
1 −

(
1 +

|γ|2
p2

)−1/2
)

≤ |γ|2
p2

,whi
h 
on
ludes the proof of Lemma 3.2. �Let us re
all that c is an even homogeneous fun
tion thus c(θ0) = c((0, p)), for all
p 6= 0. Then, sin
e c is Lips
hitz of order α, one 
an �nd C1 > 0 su
h that

∆2
s(p) =

1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p)) − c((0, p))||ρ(γ)|dγ ≤ C1|p|−h(θ0)−α(1−s),whi
h is negligible 
ompared to |p|−h(θ0)−δ as soon as δ < α(1 − s).It remains to 
onsider

∆1
s(p) =

∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
1

(|γ|2 + p2)h((γ,p))/2
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

=
1

|p|h(θ0)

∫

|γ|≤|p|s
|c((γ, p))|

∣∣∣∣∣
|p|h(θ0)

(|γ|2 + p2)h((γ,p))/2
− 1

∣∣∣∣∣ |ρ(γ)|dγ.Let us write
|p|h(θ0)

(|γ|2 + p2)h((γ,p))/2
= el(p),where, for p 6= 0,

l(p) = h(θ0) ln |p| − 1

2
h((γ, p)) ln

(
|p|2 + |γ|2

)

= (h((0, p)) − h((γ, p))) ln |p| − 1

2
h((γ, p)) ln

(
1 +

|γ|2
|p|2
)

,writing h(θ0) = h((0, p)) sin
e h is an even homogeneous fun
tion. Sin
e h is Lip-s
hitz of order α, by Lemma 3.2, for s < 1, there exists C2 > 0 su
h that, for
|p| ≥ A > e and |γ| ≤ |p|s,

|l(p)| ≤ C2

(( |γ|
|p|

)α

ln |p| + |γ|2
|p|2
)

≤ 2C2

( |γ|
|p|

)α

ln |p| ≤ 2C2|p|−α(1−s) ln |p|.The fun
tion t 7→ |t|−α(1−s) ln |t| tends to 0 at in�nity. Thus one 
an �nd As > 0su
h that for |p| > As we get |l(p)| < 1. Thus, for |p| > As

|el(p) − 1| ≤ e|l(p)| ≤ 2eC2|p|−α(1−s) ln |p|,and �nally
∆1

s(p) ≤ 2eC2‖c‖∞|p|−h(θ0)−α(1−s) ln |p|.



16 HERMINE BIERMÉFor δ < α, sin
e |∆s(p)| ≤ ∆1
s(p) + ∆2

s(p), taking s ∈ (0, α−δ
α

) ⊂ (0, 1) we get
∆s(p) = o|p|→+∞

(
1

|p|h(θ0)+δ

)and (19) follows. In the general 
ase, let us assume that, for all δ ∈ (0, δ0) and
ξ ∈ Rd,

f(ξ) =
c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

) when |ξ| → +∞.Repla
ing ρ by |ρ| and h by h+ δ in the spe
ial 
ase above, we get the result for theremainder. �Let us remark that the result still holds for a window ρ ∈ L1(Rd−1) that satis�es(20) |ρ(γ)| = O
(

1

|γ|M+d−1

) when γ ∈ Rd−1 and |γ| → +∞,with M > H1 − H0. In this 
ase δ1 = min
(
δ0, α

M+H0−H1

M+α

).We 
an now state our main result 
on
erning the identi�
ation of the anisotropi
index of an anisotropi
 fra
tional Brownian �eld. We keep the notations of part 2for the generalized quadrati
 variations of a 1D-pro
ess and re
all that we �x thedire
tion θ0 = (0, . . . , 0, 1) ∈ Sd−1.Theorem 3.3. Let X = {X(t); t ∈ Rd} be an anisotropi
 fra
tional Brownian �eld,with anisotropi
 index h given by an even homogeneous fun
tion of degree 0 withvalues in [H0, H1] ⊂ (0, 1), whi
h is assumed to be in C1
(
Sd−1

).Let ρ be a window in S
(
Rd−1

). Let RρX be the Radon transform of the �eld X.Let K ∈ N∗. If K > h(θ0) + d
2
then, almost surely,

̂hN,K(θ0) =
1

2

(
log2

(
VK(N, RρX)

VK(2N, RρX)

)
− (d − 2)

)
−→

N→+∞
h(θ0),Moreover, √

N
(

̂hN,K(θ0) − h(θ0)
)

d−→
N→+∞

N
(
0, γ2

)
,with

NE

((
̂hN,K(θ0) − h(θ0)

)2
)

−→
N→+∞

γ2.Proof. It is su�
ient to show that the spe
tral density of RρX satis�es the assump-tion of Proposition 2.1. From (18), this spe
tral density is given by the fun
tion
R|ρ̂|2fh(p) =

∫

Rd−1

fh((γ, p)) |ρ̂(γ)|2 dγ, for all p ∈ R,
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e we 
an divide RρX by a 
onstant, we 
an assume that∫
Rd−1 |ρ̂(γ)|2 dγ = 1. Then, sin
e 2h+d satis�es assumptions of Proposition 3.1 with

α = 1, by Proposition 3.1, for all δ < 1,
R|ρ̂|2fh(p) =

1

|p|2h(θ0)+d
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+δ

)
.We 
an also write this as

R|ρ̂|2fh(p) =
1

|p|2(h(θ0)+ d−1
2 )+1

+ o
|p|→+∞

(
1

|p|2(h(θ0)+
d−1
2 )+1+δ

)

.Moreover, sin
e h ∈ C1
(
Sd−1

), the fun
tion g(γ) := h((γ, 1)) is di�erentiable on
Rd−1 and, for γ, x ∈ Rd−1,

Dγg(x) =
1

(|γ|2 + 1)1/2
D (γ,1)

|(γ,1)|
h

(
(x, 0) − γ.x

|γ|2 + 1
(γ, 1)

)
,su
h that

|Dγg(x)| ≤ 2‖Dh‖∞|x|.Thus, the spe
tral density fh is di�erentiable on Rd r {0}. Let (γ, p) ∈ Rd−1 × R∗,sin
e h((γ, p)) = g(γ/p), we get
∂

∂p
fh((γ, p)) = fh((γ, p))

(
−D γ

p
g

(
− γ

p2

)
ln
(
|γ|2 + p2

)
− p (2h((γ, p)) + d)

|γ|2 + p2

)
.It follows that the spe
tral density R|ρ̂|2fh is di�erentiable on R∗ and for p 6= 0 wehave (

R|ρ̂|2fh

)′
(p) =

∫

Rd−1

∂

∂p
fh((γ, p)) |ρ̂(γ)|2 dγ.Let us write

∂

∂p
fh((γ, p)) =

|γ|
p2

F1((γ, p)) − pF2((γ, p)),with
F1((γ, p)) = D γ

p
g

(
− γ

|γ|

)
ln
(
|γ|2 + p2

)
fh((γ, p))and

F2((γ, p)) = (2h((γ, p)) + d) fh+1((γ, p)).Therefore, (
R|ρ̂|2fh

)′
(p) =

1

p2
R|γ||ρ̂|2F1(p) − pR|ρ̂|2F2(p).Then, by Proposition 3.1, whenever δ < 1,

R|ρ̂|2F2(p) =
2h(θ0) + d

|p|2h(θ0)+d+2
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+2+δ

)
.Moreover, for any ǫ > 0 small enough

|F1((γ, p))| ≤ 2‖Dh‖∞fh−ǫ((γ, p)).



18 HERMINE BIERMÉSin
e |γ| |ρ̂|2 is integrable over Rd−1 and rapidly de
reasing, following the same linesas in the proof of Proposition 3.1, we get
∣∣∣R|γ||ρ̂|2F1(p)

∣∣∣ ≤ C|p|−2h(θ0)−d+2ǫ.This allows us to 
on
lude that
(
R|ρ̂|2fh

)′
(p) = − 2h(θ0) + d

|p|2h(θ0)+d+1
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+1

)

.Therefore RρX satis�es the assumption of Proposition 2.1 with H = h(θ0) + d−1
2and s < 1, whi
h 
on
ludes the proof. �Let us remark that if we 
hoose a window su
h that |ρ̂|2 only satis�es (20) for

M > 2(H1−H0), the estimator ̂hN,K(θ0) still tends almost surely to h(θ0). Howeverthe speed of 
onvergen
e will depend on M . A
tually the result of Theorem 3.3holds when M ≥ 1 + 4(H1 −H0) whereas for M < 1 + 4(H1 −H0), Proposition 2.1shows that, for all s < M−2(H1−H0)
M+1

,
N s
(

̂hN,K(θ0) − h(θ0)
)

L2(Ω)−→
N→+∞

0.We would still obtain similar results by 
onsidering �elds with spe
tral densityasymptoti
ally of the order of fh and with partial derivatives of order 1 asymptot-i
ally of the order of the partial derivatives of fh. Moreover, we have restri
t h tohave values in (0, 1). This 
an be weakened by 
onsidering �elds with higher orderstationary in
rements or with spe
tral density asymptoti
ally of the order of fh (see[6℄ for example). This result allows us to estimate the anisotropi
 index h for alldire
tions θ ∈ Sd−1. A
tually, it is su�
ient to 
hose κθ a rotation of Rd that maps
θ0 = (0, . . . , 0, 1) onto θ. Sin
e X ◦ κθ is still an anisotropi
 fra
tional Brownian�eld, with anisotropi
 index given by h ◦ κθ, whi
h satis�es the same assumption as
h, we just have to 
onsider the Radon transform of this �eld.For numeri
al appli
ations, one has to approximate the Radon transform of X.In [2℄, the authors repla
e RρX(t) by(21) IN(t) = N−ν(d−1)

∑

s∈Zd−1

X
(
(N−νs, t)

)
ρ(N−νs),for ρ a smooth window with 
ompa
t support. They give 
onditions on ν to getestimators of the anisotropi
 index using generalized quadrati
 variations of IN withstep N instead of RρX(t). We 
an do the same here. Let us denote

TN,K(X) =
N−K∑

p=0

(
K∑

k=0

(−1)K−k

(
K
k

)
IN

(
p + k

N

))2

.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 19The key point of the proof is to estimate the error due to the approximation of
VK (N, RρX) by TN,K(X). Let us denote H = h(θ0) + d−1

2
. Under the assumptionsof Theorem 3.3, following the same lines as in [7℄, for α > 0 with α < H0 ≤ min h

Sd−1
,one 
an prove that there exists a positive �nite random variable C su
h that, a.s.

∣∣∣TN,K(X)1/2 − VK (N, RρX)1/2
∣∣∣ ≤ CN−να+ 1

2 .Moreover, sin
e for K > H + 1/2, a.s. VK(RρX)
E(VK(N,RρX))

−→
N→+∞

1, using (9) one 
an �nda positive �nite random variable C ′ su
h that, a.s.
VK (N, RρX)−1/2 ≤ C ′NH−1/2.Then, for ν > H

H0
, α ∈ (H/ν, H0) and N large enough, writing

log2

(
TN,K(X)

VK (N, RρX)

)
= 2 log2

(
1 +

TN,K(X)1/2 − VK (N, RρX)1/2

VK (N, RρX)1/2

)
,one 
an �nd a positive �nite random variable C ′′ su
h that, a.s.

∣∣∣∣log2

(
TN,K(X)

VK (N, RρX)

)∣∣∣∣ ≤ C ′′N−να+H .We 
an state the following result.Proposition 3.4. We keep the assumptions of Theorem 3.3 and take ρ with 
ompa
tsupport. Let ν > H
H0

with H = h(θ0) + d−1
2
. Let K ∈ N∗. If K > H + 1/2 then,almost surely,

̂HN,K(θ0) =
1

2

(
log2

(
TN,K(X)

T2N,K(X)

)
− (d − 2)

)
−→

N→+∞
h(θ0),Moreover, when νH0 − H > 1/2, there exists γ2 > 0 su
h that

√
N
(

̂HN,K(θ0) − h(θ0)
)

d−→
N→+∞

N
(
0, γ2

)
.4. SimulationIn this se
tion we present a preliminary simulation study to test estimators givenby Theorem 3.3 on simulated paths. In order not to add bias due to approximatesyntheses we would like to 
onsider exa
t synthesis of anisotropi
 fra
tional Brow-nian �elds. This is a hard numeri
al problem, not yet solved in the general 
ase.A
tually, lots of numeri
al methods have been proposed these last years to simulate1-dimensional fra
tional Brownian motion (fBm). Most of them give rise to approx-imate syntheses, su
h as the midpoint displa
ement method (see [20℄, for instan
e),the wavelet based de
omposition ([19℄, [1℄, [24℄, et
...), or more re
ently a methodbased on 
orrelated random walks [14℄. A few of them 
an be applied not onlyfor 1-dimensional fBm but also to simulate 2-dimensional (anisotropi
) fra
tionalBrownian �elds. However they still yield to approximate syntheses and their use



20 HERMINE BIERMÉwould add errors when we test our estimators. Of 
ourse there exist exa
t synthesismethods based on the Choleski de
omposition of the 
ovarian
e fun
tion. Thesegive rise to numeri
al problems due to the size of the matrix. In order to have fastsynthesis one 
an use the stationarity of the in
rements by applying the embed-ding 
ir
ulant matrix method [13℄. By this way, we easily obtain fast and exa
tsynthesis of 1-dimensional fBm [23℄. Some authors, as in [8℄ and [16℄, apply thismethod for higher dimension but this does not yield to exa
t synthesis. Finally,M. L. Stein proposed a fast and exa
t synthesis method for isotropi
 fBm surfa
esin [26℄. We use the simulated paths obtained by this method for this preliminarystudy. We have implemented, in 
ollaboration with A. Fraysse and C. La
aux, thematlab 
ode 
orresponding, available at http://
iel.

sd.
nrs.fr/index.php?paol_sid=47313ed821793db9d30ef328a7537d
8&view_this_do
=
iel-00000016&version=1. We refer to [6℄ for more details.With this algorithm we generate realizations of points of fBm of Hurst parameter
H ∈ (0, 0.7) on an equispa
ed grid with mesh N0 = 210, namely

{
BH

(
k

N0

,
l

N0

)
; 0 ≤ k, l ≤ M0

}
,where M0 = 764 is the greatest integer less than N0/

√
2.In order to perform a Radon transform, we have thus 
hosen ρ = 1[0,M0/N0]. Let usremark that the Fourier transform of this window is given, for γ ∈ R, by

ρ̂(γ) =
e−iM0γ/N0 − 1

−iγ
,su
h that |ρ̂|2 satis�es (20) for any M < 1.With su
h data on a grid, we have to 
hoose parti
ular dire
tions to 
ompute the dis-
retized Radon transform. Otherwise we do not have enough points or regular step.Here we 
hose the verti
al and horizontal dire
tions. Then, the Radon transformsof BH in the verti
al and horizontal dire
tions, 
orrespond to

R1
ρBH

(
l

N0

)
=

1

N0

M0∑

k=0

BH

(
k

N0
,

l

N0

)
,and

R2
ρBH

(
k

N0

)
=

1

N0

M0∑

l=0

BH

(
k

N0
,

l

N0

)
,for 0 ≤ k, l ≤ M0. Hen
e we obtain dis
retizations of the integrals as in (21) for

N ∈ N and ν > 0 su
h as Nν = N0 = 210 is �xed.Finally, we estimate H + 1
2
through the estimator ĤN,2(θ) given in Proposition3.4, for N = 2n with n ∈ N∗, H ∈ {0.2, 0.5, 0.7}, θ ∈ {(0, 1), (1, 0)} and K = 2sin
e H + 1

2
+ 1

2
∈ (1, 2). Let us remark that in that 
ase, the exponent ν is equalto 10

n
and the 
ondition ν > H+1/2

H
of Proposition 3.4 be
omes n < 10

1+1/2H
. Hen
e,



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 21for H = 0.2 we should take n < 3, for H = 0.5, n < 5 and for H = 0.7, n < 6.However this makes no sense for the 
hoi
e of the step N = 2n of the variationssin
e the asymptoti
s of the estimators are only valid when N tends to in�nity. Asa 
ompromise we have 
hosen n ∈ {7, 8, 9}.We obtain the following results, averaged on 32 simulations of fBm surfa
es. Thebias 
orresponds to H+ 1
2
−ĥN,2(θ), where ĥN,2(θ) is the mean value obtained over the

32 realizations, whereas σ̂2 = 1
32

∑32
k=1

(
ĥk

N,2(θ) − ĥN,2(θ)

)2, where (ĥk
N,2(θ)

)

1≤k≤32denotes the values obtained over the 32 realizations.H=0.2 H=0.5 H=0.7
R1

ρBH R2
ρBH R1

ρBH R2
ρBH R1

ρBH R2
ρBH

N = 29 Bias 0.234 0.231 0.077 0.088 0.069 0.047
σ̂ 0.064 0.075 0.051 0.048 0.038 0.042

N = 28 Bias 0.124 0.117 0.039 0.039 0.024 0.037
σ̂ 0.109 0.087 0.067 0.076 0.064 0.066

N = 27 Bias 0.098 0.076 0.091 0.014 0.035 0.02
σ̂ 0.130 0.124 0.100 0.084 0.090 0.086All estimated values are under the theoreti
al values and σ̂ is high. This is notsurprising sin
e ν is not large enough. Besides let us remark that the bias de
reasesas the values of H in
reases. Moreover values are quite the same for both dire
tionsin all 
ases. That shows the isotropy of the fBm. We have to deal with the mainproblem that we 
an not generate a fBm with more than 210 × 210 points. This isdue to a numeri
al obstru
tion given by the method of simulation. One 
an expe
tthat this method 
ould give better estimates for the identi�
ation of the Hölderexponent for a larger step N0. However it might be relevant in order to estimate theanisotropy of a �eld. A
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