On a class of Danielewski surfaces in affine 3-space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2006

On a class of Danielewski surfaces in affine 3-space

Adrien Dubouloz

Résumé

L. Makar-Limanov computed the automorphisms groups of surfaces in $\mathbb{C}^{3}$ defined by the equations $x^{n}z-P\left(y\right)=0$, where $n\geq1$ and $P\left(y\right)$ is a nonzero polynomial. Similar results have been obtained by A. Crachiola for surfaces defined by the equations $x^{n}z-y^{2}-h\left(x\right)y=0$, where $n\geq2$ and $h\left(0\right)\neq0$, defined over an arbitrary base field. Here we consider the more general surfaces defined by the equations $x^{n}z-Q\left(x,y\right)=0$, where $n\geq2$ and $Q\left(x,y\right)$ is a polynomial with coefficients in an arbitrary base field $k$. Among these surfaces, we characterize the ones which are Danielewski surfaces and we compute their automorphism groups. We study closed embeddings of these surfaces in affine $3$-space. We show that in general their automorphisms do not extend to the ambient space. Finally, we give explicit examples of $\mathbb{C}^{*}$-actions on a surface in $\mathbb{C}^{3}$ which can be extended holomorphically but not algebraically to a $\mathbb{C}^{*}$-action on $\mathbb{C}^{3}$.
Fichier principal
Vignette du fichier
Danielewski_in_affine_space.pdf (333.65 Ko) Télécharger le fichier

Dates et versions

hal-00019635 , version 1 (24-02-2006)
hal-00019635 , version 2 (26-08-2006)

Identifiants

Citer

Adrien Dubouloz, Pierre-Marie Poloni. On a class of Danielewski surfaces in affine 3-space. 2006. ⟨hal-00019635v2⟩

Altmetric

Partager

More