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ON A CLASS OF DANIELEWSKI SURFACES IN AFFINE 3-SPACEADRIEN DUBOULOZ AND PIERRE-MARIE POLONIAbstrat. In [16℄ and [17℄, L. Makar-Limanov omputed the automorphism groups of surfaesin C3 de�ned by the equations xnz−P (y) = 0, where n ≥ 1 and P (y) is a nonzero polynomial.Similar results have been obtained by A. Crahiola [3℄ for surfaes de�ned by the equations
xnz − y2 − σ (x) y = 0, where n ≥ 2 and σ (0) 6= 0, de�ned over an arbitrary base �eld. Herewe onsider the more general surfaes de�ned by the equations xnz −Q (x, y) = 0, where n ≥ 2and Q (x, y) is a polynomial with oe�ients in an arbitrary base �eld k. We harateriseamong them the ones whih are Danielewski surfaes in the sense of [8℄, and we ompute theirautomorphism groups. We study losed embeddings of these surfaes in a�ne 3-spae. Weshow that in general their automorphisms do not extend to the ambient spae. Finally, we giveexpliit examples of C∗-ations on a surfae in A3

C
whih an be extended holomorphially butnot algebraially to C∗-ations on A3

C
.IntrodutionSine they appeared in a elebrated ounterexample to the Canellation Problem due to W.Danielewski [5℄, the surfaes de�ned by the equations xz − y (y − 1) = 0 and x2z − y (y − 1) = 0in C3 and their natural generalisations, suh as surfaes de�ned by the equations xnz − P (y) =

0, where P (y) is a nononstant polynomial, have been studied in many di�erent ontexts. Ofpartiular interest is the fat that they an be equipped with nontrivial ations of the additivegroup C+. The general orbits of these ations oinide with the general �bers of A1-�brations
π : S → A1, that is, surjetive morphisms with generi �ber isomorphi to an a�ne line. Normala�ne surfaes S equipped with an A1-�bration π : S → A1 an be roughly lassi�ed into twolasses aording the following alternative : either π : S → A

1 is a unique A
1-�bration on S up toautomorphisms of the base, or there exists a seond A1-�bration π′ : S → A1 with general �bersdistint from the ones of π.Due to the symmetry between the variables x and z, a surfae de�ned by the equation xz −

P (y) = 0 admits two distint A1-�brations over the a�ne line. In ontrast, it was establishedby L. Makar-Limanov [17℄ that on a surfae SP,n de�ned by the equation xnz − P (y) = 0 in C3,where n ≥ 2 and where P (y) is a polynomial of degree r ≥ 2, the projetion prx : SP,n → Cis a unique A1-�bration up to automorphisms of the base. In his proof, L. Makar-Limanov usedthe orrespondene between algebrai C+-ations on an a�ne surfae S and loally nilpotentderivations of the algebra of regular funtions on S. It turns out that his proof is essentiallyindependent of the base �eld k provided that we replae loally nilpotent derivations by suitablesystems of Hasse-Shmidt derivations when the harateristi of k is positive (see e.g., [3℄).The fat that an a�ne surfae S admits a unique A1-�bration π : S → A1 makes its studysimpler. For instane, every automorphism of S must preserve this �bration. In this ontext, aresult due to J. Bertin [2℄ asserts that the identity omponent of the automorphisms group of suha surfae is an algebrai pro-group obtained as an inreasing union of solvable algebrai subgroupsof rank ≤ 1. For surfaes de�ned by the equations xnz − P (y) = 0 in C
3, the piture has beenompleted by L. Makar-Limanov [17℄ who gave expliit generators of their automorphisms groups.Similar results have been obtained over arbitrary base �elds by A. Crahiola [3℄ for surfaes de�nedby the equations xnz − y2 − σ (x) y = 0, where σ (x) is a polynomial suh that σ (0) 6= 0.Mathematis Subjet Classi�ation (2000): 14R10, 14R05.Key words: A1-�brations, Danielewski surfaes, automorphism groups, extension of automorphisms.1



The latter surfaes are partiular examples of a general lass of A1-�bred surfaes alledDanielewski surfaes [8℄, that is, normal integral a�ne surfae S equipped with an A1-�bration
π : S → A1

k over an a�ne line with a �xed k-rational point o, suh that every �ber π−1 (x), where
x ∈ A

1
k \ {o}, is geometrially integral, and suh that every irreduible omponent of π−1 (o) isgeometrially integral. In this artile, we onsider Danielewski surfaes SQ,n in A3

k de�ned by anequation of the form xnz −Q (x, y) = 0, where n ≥ 2 and where Q (x, y) ∈ k [x, y] is a polynomialsuh that Q (0, y) splits with r ≥ 2 simple roots in k. This lass ontains most of the surfaesonsidered by L. Makar-Limanov and A. Crahiola.The paper is organised as follows. First, we brie�y reall de�nitions about weighted rootedtrees and the notion of equivalene of algebrai surfaes in an a�ne 3-spae. In setion 2, we reallfrom [8℄ the main fats about Danielewski surfaes and we review the orrespondene betweenthese surfaes and ertain lasses of weighted trees in a form appropriate to our needs. We alsogeneralise to arbitrary base �elds k some results whih are only stated for �elds of harateristizero in [7℄ and [8℄. In partiular, the ase of Danielewski surfaes whih admit two A1-�brationswith distint general �bers is studied in Theorem 2.11. We show that these surfaes orrespondto Danielewski surfaes S (γ) de�ned by the �ne k-weighted trees γ whih are alled ombs andwe give expliit embeddings of them. This result generalises Theorem 4.2 in [9℄.In setion 3, we lassify Danielewski surfaes SQ,h in A3
k de�ned by equations of the form

xhz − Q (x, y) = 0 and determine their automorphism groups. We remark that suh a surfaeadmits many embeddings as a surfae SQ,h. In partiular, we establish in Theorem 3.2 thatthese surfaes an always be embedded as surfae Sσ,h de�ned by an equation of the form xhz −
∏r

i=1 (y − σi (x)) = 0 for a suitable olletion of polynomials σ = {σi (x)}i=1,...,r. We say thatthese surfaes Sσ,h are standard form of Danielewski surfaes SQ,h. Next, we ompute ( Theorem3.10) the automorphism groups of Danielewski surfaes in standard form. We show in partiularthat any of them omes as the restrition of an algebrai automorphism of the ambient spae.Finally we onsider the problem of extending automorphisms of a given Danielewski surfae SQ,hto automorphisms of the ambient spae A3
k. We show that this is always possible in the holomorphiategory but not in the algebrai one. We give expliit examples whih ome from the study ofmultipliative group ations on Danielewski surfaes. For instane, we prove that every surfae

S ⊂ A3
C
de�ned by the equation xhz − (1− x)P (y) = 0, where h ≥ 2 and where P (y) has r ≥ 2simple roots, admits a nontrivial C∗-ation whih is algebraially inextendable but holomorphiallyextendable to A3

C
. In partiular, even the involution of the surfae S de�ned by the equation x2z−

(1− x)P (y) = 0 indued by the endomorphism J (x, y, z) = (−x, y, (1 + x) ((1 + x) z + P (y))) of
A3

k does not extend to an algebrai automorphism of A3
k.1. Preliminaries1.1. Basi fats on weighted rooted trees.De�nition 1.1. A tree is a nonempty, �nite, partially ordered set Γ = (Γ,≤) with a unique min-imal element e0 alled the root, and suh that for every e ∈ Γ the subset (↓ e)Γ = {e′ ∈ Γ, e′ ≤ e}is a hain for the indued ordering.1.2. A minimal sub-hain ←−e′e = {e′ < e} with two elements of a tree Γ is alled an edge of Γ. Wedenote the set of all edges in Γ by E (Γ). An element e ∈ Γ suh that Card (↓ e)Γ = m is saidto be at level m. The maximal elements ei = ei,mi

, where mi = Card (↓ ei)Γ of Γ are alled theleaves of Γ. We denote the set of those elements by L (Γ). The maximal hains of Γ are the hains(1.1) Γei,mi
= (↓ ei,mi

)Γ = {ei,0 = e0 < ei,1 < · · · < ei,mi
} , ei,mi

∈ L (Γ) .We say that Γ has height h = max (mi). The hildren of an element e ∈ Γ are the elements of Γat relative level 1 with respet to e, i.e., the maximal elements of the subset {e′ ∈ Γ, e′ > e} of Γ.De�nition 1.3. A �ne k-weighted tree γ = (Γ, w) is a tree Γ equipped with a weight funtion
w : E (Γ) → k with values in a �eld k, whih assigns an element w (←−e′e) of k to every edge ←−e′e2



of Γ, in suh a way that w (←−−e′e1) 6= w
(←−−
e′e2

) whenever e1 and e2 are distint hildren of a sameelement e′.In what follows, we frequently onsider the following lasses of trees.De�nition 1.4. Let Γ be a rooted tree.a) If all the leaves of Γ are at the same level h ≥ 1 and if there exists a unique element ē0 ∈ Γfor whih Γ \ {ē0} is a nonempty disjoint union of hains then we say that Γ is a rake.b) If Γ \ L (Γ) is a hain then we say that Γ is a omb. Equivalently, Γ is a omb if and only ifevery e ∈ Γ \ L (Γ) has at most one hild whih is not a leaf of Γ.
e0 ē0A rake rooted in e0. e0A omb rooted in e0.1.2. Algebrai and analyti equivalene of losed embeddings.Here we brie�y disuss the notions of algebrai and analyti equivalenes of losed embeddings ofa given a�ne algebrai surfae in an a�ne 3-spae.Let S be an irreduible a�ne surfae and let iP1

: S →֒ A
3
k and iP2

: S →֒ A
3
k be embeddingsof S in a same a�ne 3-spae as losed subshemes de�ned by polynomial equations P1 = 0 and

P2 = 0 respetively.De�nition 1.5. In the above setting, we say that the losed embeddings iP1
and iP2

are alge-braially equivalent if one of the following equivalent onditions is satis�ed:1) There exists an automorphism Φ of A
3
k suh that iP2

= iP1
◦ Φ.2) There exists an automorphism Φ of A3

k and a nonzero onstant λ ∈ k∗ suh that Φ∗P1 = λP2.3) There exists automorphisms Φ and φ of A3
k and A1

k respetively suh that P2 ◦ Φ = φ ◦ P1.1.6. Over the �eld k = C of omplex numbers, one an also onsider holomorphi automorphisms.With the notation of de�nition 1.5, two losed algebrai embeddings iP1
and iP2

of a given a�nesurfae S in A
3
C
are alled holomorphially equivalent if there exists a biholomorphism Φ : A

3
C
→ A

3
Csuh that iP2

= iP1
◦Φ. Clearly, the embeddings iP2

and iP1
are holomorphially equivalent if andonly if there exists a biholomorphism Φ : A3

C
→ A3

C
suh that Φ∗ (P1) = λP2 for a ertain nowherevanishing holomorphi funtion λ. Sine there are many nononstant holomorphi funtions withthis property on A3

C
, Φ need not preserve the algebrai families of level surfaes P1 : A3

C
→ A1

C
and

P2 : An
C
→ A1

C
. So holomorphi equivalene is a weaker requirement than algebrai equivalene.2. Danielewski surfaesFor ertain authors, a Danielewski surfae is an a�ne surfae S whih is algebraially isomorphito a surfae in C3 de�ned by an equation of the form xnz−P (y) = 0, where n ≥ 1 and P (y) ∈ C [y].These surfaes ome equipped with a surjetive morphism π = prx |S : S → A1 restriting to atrivial A1-bundle over the omplement of the origin. Moreover, if the roots y1, . . . , yr ∈ C of P (y)are simple, then the �bration π = prx |S : S → A1 fators through a loally trivial �ber bundle overthe a�ne line with an r -fold origin (see e.g., [5℄ and [11℄). In [8℄, the �rst author used the termDanielewski surfae to refer to an a�ne surfae S equipped with a morphism π : S → A1 whihfators through a loally trivial �ber bundle in a similar way as above. In what follows, we keepthis point of view, whih leads to a natural geometri generalisation of the surfaes onstrutedby W. Danielewski [5℄. We reall that an A1-�bration over an integral sheme Y is a faithfully�at (i.e., �at and surjetive) a�ne morphism π : X → Y with generi �ber isomorphi to thea�ne line A1

K(Y ) over the funtion �eld K (Y ) of Y . The following de�nition is a generalisationto arbitrary base �elds k of the one introdued in [8℄.3



De�nition 2.1. A Danielewski surfae is an integral a�ne surfae S de�ned over a �eld k,equipped with an A1-�bration π : S → A1
k restriting to a trivial A1-bundle over the omplementof the a k-rational point o of A1

k and suh that the �ber π−1 (o) is redued, onsisting of a disjointunion of a�ne lines A
1
k over k.Notation 2.2. In what follows, we �x an isomorphism A1

k ≃ Spec (k [x]) and we assume that the
k-rational point o is simply the "origin" of A1

k, that is, the losed point (x) of Spec (k [x]).2.3. In the following subsetions, we reall the orrespondene between Danielewski surfaesand weighted rooted trees established by the �rst author in [8℄ in a form appropriate to ourneeds. Although the results given in lo. it. are formulated for surfaes de�ned over a �eldof harateristi zero, most of them remain valid without any hanges over a �eld of arbitraryharateristi. We provide full proofs only when additional arguments are needed. Then weonsider Danielewski surfaes S with a trivial anonial sheaf ωS/k = Λ2Ω1
S/k. We all themspeial Danielewski surfaes. We give a omplete lassi�ation of these surfaes in terms of theirassoiated weighted trees.2.1. Danielewski surfaes and weighted trees.Here we review the orrespondene whih assoiates to every �ne k-weighted tree γ = (Γ, w) aDanielewski surfae π : S (γ) → A1

k = Spec (k [x]) whih is the total spae of an A1-bundle overthe sheme δ : X (r) → A1
k obtained from A1

k by replaing its origin o by r ≥ 1 k-rational points
o1, . . . , or.Notation 2.4. In what follows we denote by Ur = (Xi (r))i=1,...,r the anonial open overing of
X (r) by means of the subsets Xi (r) = δ−1

(

A1
k \ {o}

)

∪ {oi} ≃ A1
k.2.5. Let γ = (Γ, w) be a �ne k-weighted tree γ = (Γ, w) of height h, with leaves ei at levels ni ≤h,

i = 1, . . . , r. To every maximal sub-hain γi = (↓ ei) of γ (see 1.2 for the notation) we assoiate apolynomial
σi (x) =

ni−1
∑

j=0

w (←−−−−−−ei,jei,j+1)x
j ∈ k [x] , i = 1, . . . , r.We let ρ : S (γ)→ X (r) be the unique A1-bundle overX (r) whih beomes trivial on the anonialopen overing Ur, and is de�ned by pairs of transition funtions

(fij , gij) =
(

xnj−ni , x−ni (σj (x)− σi (x))
)

∈ k
[

x, x−1
]2
, i, j = 1, . . . , r.This means that S (γ) is obtained by gluing n opies Si = Spe (k [x] [ui]) of the a�ne plane

A2
k over A1

k \ {o} ≃ Spe (k [x, x−1
]) by means of the transition isomorphisms indued by the

k
[

x, x−1
]-algebras isomorphisms

k
[

x, x−1
]

[ui]
∼
→ k

[

x, x−1
]

[uj] , ui 7→ xnj−niuj + x−ni (σj (x)− σi (x)) i 6=, i, j = 1, . . . , r.This de�nition makes sense as the transition funtions gij satisfy the twisted oyle relation
gik = gij + xnj−nigjk in k

[

x, x−1
] for every triple of distint indies i, j and k. Sine γ is a�ne weighted tree, it follows that for every pair of distint indies i and j, the rational funtion

gij = x−ni (σj (x)− σi (x)) ∈ k
[

x, x−1
] does not extend to a regular funtion on A1

k. Thisondition guarantees that S (γ) is a separated sheme, whene an a�ne surfae by virtue ofFieseler's riterion (see proposition 1.4 in [11℄). Therefore, πγ = δ ◦ ρ : S (γ)→ A1
k = Spe (k [x])is a Danielewski surfae, the �ber π−1 (o) being the disjoint union of a�ne lines

Ci = π−1
γ (o) ∩ Si ≃ Spe (k [ui]) , i = 1, . . . , r.2.6. A Danielewski surfae π : S (γ) → A1

k above omes anonially equipped with a birationalmorphism (π, ψγ) : S → A1
k × A1

k = Spe (k [x] [t]) restriting to an isomorphism over A1
k \ {o}.Indeed, this morphism orresponds to the unique regular funtion ψγ on S (γ) whose restritionsto the open subsets Si ≃ Spe (k [x] [ui]) of S are given by the polynomials

ψγ,i = xniui + σi (x) ∈ k [x] [ui] , i = 1, . . . , r.4



This funtion is referred to as the anonial funtion on S (γ). The morphism (πγ , ψγ) : S (γ)→ A2
kis alled the anonial birational morphism from S (γ) to A2

k.2.7. It turns out that there exists a one-to-one orrespondene between pairs (S, (π, ψ)) onsistingof a Danielewski surfae π : S → A
1
k and a birational morphism (π, ψ) : S → A

2
k restriting to anisomorphism outside the �ber π−1 (o) and �ne k-weighted trees γ. In partiular, Proposition 3.4in [8℄, whih remains valid over arbitrary base �elds k, implies the following result.Theorem 2.8. For every pair onsisting of a Danielewski surfae π : S → A1
k and a birationalmorphism (π, ψ) : S → A1

k×A1
k restriting to an isomorphism over A1

k \ {o}, there exists a unique�ne k-weighted tree γ and an isomorphism φ : S
∼
→ S (γ) suh that ψ = ψγ ◦ φ.Remark 2.9. If γ = (Γ, w) is not the trivial tree with one element then the anonial funtion

ψγ : S (γ) → A1
k on the orresponding Danielewski surfae π : S (γ) → A1

k is loally onstant onthe �ber π−1 (o). It takes the same value on two distint irreduible omponents of π−1 (o) if andonly if the orresponding leaves of γ belong to a same subtree of γ rooted in an element at level
1. Sine every Danielewski surfae nonisomorphi to A

2
k admits a birational morphism (π, ψ) forwhih ψ is loally onstant but not onstant on the �ber π−1 (o), it follows that every suh surfaeorrespond to a tree γ with at least two elements at level 1.2.2. A1-�brations on Danielewski surfaes.Suppose that the strutural A1-�bration π : S → A1

k on a Danielewski surfae S is unique up toautomorphisms of the base. Then a seond Danielewski surfae π′ : S′ → A1
k will be isomorphito S as an abstrat surfae if and only if it is isomorphi to S as a �bered surfae, that is, if andonly if there exists a ommutative diagram

S
∼

Φ
//

π

��

S′

π′

��

A1
k

∼

φ
// A1

k ,where Φ : S
∼
→ S′ is an isomorphism and φ is an automorphism of A

1
k preserving the origin o.2.10. So it is useful to a have haraterisation of those Danielewski surfaes admitting two A1-�brations with distint general �bers. The �rst result toward suh a lassi�ation has been ob-tained by T. Bandman and L. Makar-Limanov [1℄ who established that a omplex Danielewskisurfae S with a trivial anonial sheaf ωS admits two A1-�brations with distint general �bers ifand only if it is isomorphi to a surfae SP,1 in A3

C
de�ned by the equation xz − P (y) = 0, where

P is a polynomial with simple roots. Over a �eld of harateristi zero, a omplete lassi�ationhas been given by the �rst author in [8℄ and [9℄. It turns out that the main result of [9℄ remainsvalid over arbitrary base �elds. This leads to the following haraterisation.Theorem 2.11. For a Danielewski surfae π : S → A1
k, the following are equivalent :1) S admits two A1-�brations with distint general �bers.2) S is isomorphi to a Danielewski surfae S (γ) de�ned by a �ne k-weighted omb γ = (Γ, w).3) There exists an integer h ≥ 1 and a olletion of moni polynomials P0, . . . , Ph−1 ∈ k [t]with simple roots ai,j ∈ k

∗, i = 0, . . . , h− 1, j = 1, . . . ,degt (Pi), suh that S is isomorphi to thesurfae SP0,...,Ph−1
⊂ Spe (k [x] [y−1, . . . , yh−2] [z]) de�ned by the equations















































xz − yh−2

h−1
∏

l=0

Pl (yl−1) = 0

zyi−1 − yiyh−2

h−1
∏

l=i+1

Pl (yl−1) = 0 xyi − yi−1

i
∏

l=0

Pl (yl−1) = 0 0 ≤ i ≤ h− 2

yi−1yj − yiyj−1

j
∏

l=i+1

Pl (yl−1) = 0 0 ≤ i < j ≤ h− 25



Proof. One heks in a similar way as in the proof of Theorem 2.9 in [9℄ that a surfae S =
SP0,...,Ph−1

is a Danielewski surfae π = prx |S : S → A1
k. Furthermore, the projetion π′ =

prz |S : S → A1
k is a seond A1-�bration on S restriting to a trivial A1-bundle (π′)

−1 (
A1

k \ {0}
)

≃Spe (k [z, z−1
]

[yh−2]
) over A1

k \ {0}. So 3) implies 1). To show that 1) implies 2) we use thefollowing fat, whih is a onsequene of a result due to M.H. Gizatullin [13℄ : if a nonsingular a�nesurfae S de�ned over an algebraially losed �eld k admits an A1-�bration q : S → A1
k, then this�bration is unique up to automorphisms of the base if and only if S does not admit a ompletion bya nonsingular projetive surfae S̄ for whih the boundary divisor S̄ \S is a zigzag, that is, a hainof nonsingular proper rational urves. In [8℄, the �rst author onstruted anonial ompletions

S̄ of a Danielewski surfae S (γ) de�ned by a �ne k-weighted tree γ = (Γ, w) for whih the dualgraph Γ′ of the boundary divisor S̄ \S (γ) is isomorphi to the tree obtained from Γ be deleting itsleaves and replaing its root by a hain with two elements. Clearly, S̄ \S (γ) is a zigzag if and onlyif Γ is a omb. The onstrution given in lo. it. only depends on the existene of an A1-bundlestruture ρ : S (γ)→ X (r) on a Danielewski surfae S (γ). So it remains valid over an arbitrarybase �eld k. Now let S = S (γ) be a Danielewski surfae admitting two distint A1-�brations.Given an algebrai losure k̄ of k, the surfae Sk̄ = S ×Spe(k) Spe (k̄) is a Danielewski surfaeisomorphi to the one de�ned by the tree γ onsider as a �ne k̄-weighted tree via the inlusion
k ⊂ k̄. Sine every A1-�bration π : S → A1

k lifts to an A1-�bration πk̄ : Sk̄ → A1
k̄
it follows that

Sk̄ admits two A1-�brations with distint general �bers. So we dedue from Gizatullin's riterionabove that γ is a omb. Thus 1) implies 2).It remains to show that every Danielewski surfae π : S = S (γ) → A1
k de�ned by a �ne

k-weighted omb γ of height h ≥ 1 admits a losed embedding in an a�ne spae as a surfae
SP0,...,Ph−1

. This follows from a general onstrution desribed in Â�4.6 of [9℄ that an be simpli�edin our more restritive ontext. For the onveniene of the reader, we indiate below the mainsteps of the proof. If γ is a hain, then S (γ) is isomorphi to the a�ne plane A
2
k whih embeds in

A
h+2
k as a surfae SP0,...,Ph−1

for whih all the polynomials Pi, i = 0, . . . , h − 1 have degree one.We assume from now on that γ has at least two elements at level 1 (see Remark 2.9 above). Wedenote by e0,0 < e1,0 < · · · < eh−1,0 the elements of the sub-hain C = Γ \L (Γ) of Γ onsisting ofelements of Γ whih are not leaves of Γ. For every l = 1, . . . , h, the elements of Γ at level l distintfrom el,0 are denoted by el,1, . . . , el,rl
provided that they exist. Sine γ is a omb, it follows from2.5 above that S is isomorphi to the surfae assoiated with a ertain �ne k-weighted tree withthe same underlying tree Γ as γ and equipped with a weight funtion w suh that w (←−−−−−−ei,0ei+1,0) = 0for every index i = 0, . . . , h−2 and suh that w (←−−−−−−−−eh−1,0eh−1,1) = 0. We onsider S as an A1-bundle

ρ : S → X (r) and we denote by Si = Spe (k [x] [ui]) the trivialising open subsets of S over X (r).For every l = 0, . . . , h−1 and every i = 1, . . . , sl, we let τl,i (x, ui) = xui +w (←−−−−−el−1,0el,i) ∈ k [x] [ui].With this notation, the anonial funtion ψ on S restrits on an open subset Si orresponding toa leaf el,i of Γ at level l to the polynomial xl−1τl,i (x, ui) ∈ k [x] [ui]. Therefore, y−1 = ψ is onstantwith the value a0,i = w (←−−−−e0,0e1,i) ∈ k
∗ on the irreduible omponent π−1 (o) orresponding to aleaf e1,i, i = 1, . . . , r1, at level 1. It vanishes identially on every irreduible omponent of π−1 (o)orresponding to a leaf of γ at level l ≥ 2. More generally, diret omputations show that thereexists a unique datum onsisting of regular funtions y−1, . . . , yh−2 and yh−1 on S and polynomials

Pi ∈ k [t], i = 0, . . . , h− 1 satisfying the following onditions :a) For every l = 0, . . . , h − 1, and every l ≤ m ≤ h , yl−1 restrits on an open subset Siorresponding to a leaf em,i of γ at level m to a polynomial yl−1,i ∈ k [x] [ui] suh that
yl−1,i =







Ll,i (ui) mod x if m = l

al,i + xLl+1,i (ui) mod x2 if m = l + 1
ξmx

m−l−1τm,i (x, ui) + νm,ix
m−l mod xm−l+1 if m > l + 1,where Ll,i (ui) , Ll+1,i (ui) ∈ k [ui] are polynomials of degree 1, al,i, ξm ∈ k

∗ and νm,i ∈ k. Fur-thermore al,i 6= al,j for every pair of distint indies i and j.b) For every l = 0, . . . , h− 1, Pl is the unique moni polynomial with simple roots al,1, . . . , al,rlsuh that x−1yl−1

∏l−1
i=0 Pi (yi−1)Pl (yl−1) is a regular funtion on S.6



By onstrution, these funtions y−1, . . . , yh−2, yh−1 = z distinguish the irreduible omponentsof the �ber π−1 (o) and indue oordinate funtions on them. It follows that the morphism
i = (π, y−1, . . . , yh−1, z) : S →֒ A

h+2
k is an embedding. The same argument as in the proofof Lemma 3.6 in [9℄ shows that i is atually a losed embedding whose image is ontained inthe surfae SP0,...,Ph−1

⊂ A
h+2
k de�ned in Theorem 2.11 above. One heks that the induedmorphism φ : S → SP0,...,Ph−1

de�nes a bijetion between the sets of losed points of S and
SP0,...,Ph−1

. Furthermore, φ is also birational as y−1 indues an isomorphism π−1
(

A
1 \ {o}

) ∼
→

Spec
(

k
[

x, x−1
]

[y−1]
). Sine SP0,...,Ph−1

is nonsingular, we onlude that φ an isomorphism byvirtue of Zariski Main Theorem (see e.g., 4.4.9 in [14℄). �2.3. Speial Danielewski surfaes.It follows from Adjuntion Formula that every Danielewski surfae S in A3
k has a trivial anonialsheaf ωS/k = Λ2Ω1

S/k. More generally, a Danielewski surfae π : S → A1
k with a trivial anonialsheaf, or equivalently with a trivial sheaf of relative di�erential forms Ω1

S/A1

k

, will be alled speial.2.12. These surfaes orrespond to a distinguished lass of weighted trees γ. Indeed, it followsfrom the gluing onstrution given in 2.5 above that a Danielewski surfae S (γ) admits a nowherevanishing di�erential 2-form if and only if all the leaves of γ are at the same level. In turn, thismeans that these surfaes S are the total spae of A1-bundles ρ : S → X (r) over X (r) de�ned bymeans of transition isomorphisms
τij : k

[

x, x−1
]

[ui]→ k
[

x, x−1
]

[uj] , ui 7→ uj + gij (x) , i, j = 1, . . . , r,where g = {gij}i,j ∈ C1
(

X (r) ,OX(r)

)

≃ C
[

x, x−1
]2r is a �eh oyle with values in thesheaf OX(r) for the anonial open overing Ur. So they an be equivalently haraterised amongDanielewski surfaes by the fat that the underlying A1-bundle ρ : S → X (r) is atually thestrutural morphism of a prinipal homogeneous Ga-bundle.2.13. To determine isomorphism lasses of speial Danielewski surfaes, we an exploit the fatthat the group Aut (X (r)) ≃ Aut (A1

k \ {o}
)

×Sr ats on the set PH1
(

X (r) ,OX(r)

) of isomor-phism lasses of A1-bundles as above. Indeed, for every φ ∈ Aut (X (r)), the image φ · [g] of alass [g] ∈ PH1
(

X (r) ,OX(r)

) represented by a bundle ρ : S → X (r) is the isomorphism lass ofthe �ber produt bundle pr2 : φ∗S = S ×X(r) X (r) → X (r). The following riterion generalisesa result of J. Wilkens [19℄.Theorem 2.14. Two speial Danielewski surfaes π1 : S1 → A1
k and π2 : S2 → A1

k with underlying
A1-bundle strutures ρ1 : S1 → X (r1) and ρ2 : S2 → X (r2) are isomorphi as abstrat surfaes ifand only if r1 = r2 = r and their isomorphism lasses in PH1

(

X (r) ,OX(r)

) belongs to the sameorbit under the ation of Aut (X (r)).Proof. The ondition guarantees that S1 and S2 are isomorphi. Suppose onversely that thereexists an isomorphism Φ : S1
∼
→ S2. The divisor lass group of a speial Danielewski surfae

π : S → A1
k is generated by the lasses of the onneted omponents C1, . . . , Cr of π−1 (o) modulothe relation C1+· · ·+Cr = π−1 (o) ∼ 0, whene is isomorphi to Zr−1. Therefore, r1 = r2 = r for aertain r ≥ 1. If one of the Si's, say S1 is isomorphi to a surfae SP,1 ⊂ A3

k de�ned by the equation
xz − P (y) = 0, then the result follows from [17℄. Otherwise, we dedue from Theorem 2.11 thatthe A1-�brations π1 : S1 → A1

k and π2 : S2 → A1
k are unique up to automorphisms of the base.In turn, this implies that Φ indues an isomorphism φ : X (r)

∼
→ X (r) suh that φ ◦ ρ1 = ρ2 ◦ Φ.Therefore, Φ : S1

∼
→ S2 fators through an isomorphism of A

1-bundles φ̃ : S1
∼
→ φ∗S2, where φ∗S2denotes the the �ber produt A1-bundle pr2 : φ∗S2 = S2×X(r)X (r)→ X (r). This ompletes theproof as φ∗S2 ≃ S2. �3. Danielewski surfaes in A3

k defined by an equation of the form xhz −Q (x, y) = 0and their automorphismsIn this setion, we study Danielewski surfaes π : S → A1
k non isomorphi to A2

k admittinga losed embedding i : S →֒ A3
k in the a�ne 3-spae as a surfae SQ,h de�ned by the equation7



xhz − Q (x, y) = 0. We show that a same abstrat Danielewski surfae may admit many suhlosed embeddings. In partiular, we establish that S an be embedded as a surfae Sσ,h de�nedby an equation of the form xhz −
∏r

i=1 (y − σi (x)) = 0 for a suitable olletion of polynomials
σ = {σi (x)}i=1,...,r. Next we study the automorphism groups of the above surfaes S. We showthat, in a losed embedding as a surfae Sσ,h, every automorphism of S expliitly arises as therestrition of an automorphism of the ambient spae. We will show on the ontrary in the nextsetion that it is not true for a general embedding as a surfae SQ,h.3.1. Danielewski surfaes SQ,h.A surfae S = SQ,h in A3

k de�ned by the equation xhz − Q (x, y) = 0 is a Danielewski surfae
π = prx |S : S → A1

k if and only if the polynomial Q (0, y) splits with simple roots y1, . . . , yr ∈ k,where r = degy (Q (0, y)). If r = 1, then π−1 (o) ≃ A1
k and π : S → A1

k is isomorphi to a trivial
A1-bundle. Thus S is isomorphi to the a�ne plane. Otherwise, if r ≥ 2, then S is not isomorphito A2

k, as follows for instane from the fat that the divisor lass group Div (S) of S is isomorphito Zr−1, generated by the lasses of the onneted omponents C1, . . . , Cr of π−1 (o), with a uniquerelation C1 + . . .+ Cr = div (π∗x) ∼ 0.The above lass of Danielewski surfaes ontains a�ne surfaes SP,h in A3
k de�ned by an equationof the form xhz −P (y) = 0, where P (y) is a polynomial whih splits with simple roots y1, . . . , yrin k. Replaing the onstants yi ∈ k by suitable polynomials σi (x) ∈ k [x] leads to the followingmore general lass of examples.Example 3.1. Let h ≥ 1 be an integer and let σ = {σi (x)}i=1,...,r be a olletion of r ≥ 2polynomials σi (x) =

∑h−1
j=0 σi,jx

j ∈ k [x] suh that σi (0) 6= σj (0) for every i 6= j. The surfae
S = Sσ,h in A3

k = Spec (k [x, y, z]) de�ned by the equation
xhz −

r
∏

i=1

(y − σi (x)) = 0is a Danielewski surfae π = prx |S : S → A1
k. The �ber π−1 (o) onsists of r opies Ci of the a�neline de�ned by the equations {x = 0, y = σi (0)}i=1,...,r respetively. For every index i = 1, . . . , r,the open subset Si = S \

⋃

j 6=i Ci of S is isomorphi to the a�ne plane A2
k = Spe (k [x, ui]), where

ui denotes the regular funtion on Si indued by the rational funtion
ui = x−h (y − σi (x)) = z

∏

j 6=i

(y − σj (x))
−1
∈ k (S)on S. It follows that π : S → A

1
k fators through an A

1-bundle ρ : S → X (r) isomorphi tothe one with transition pairs (fij , gij) =
(

1, x−h (σj (x)− σi (x))
), i, j = 1, . . . , r. The olletion

σ = {σi (x)}i=1,...,r is exatly the one assoiated with the following �ne k-weighted tree γ = (Γ, w).
σ1,0

σ1,1

σ1,h−1

σ2,0

σ2,1

σ2,h−1

σr−1,0

σr−1,1

σr−1,h−1

σr,0

σr,1

σr,h−1

r

h

So S is isomorphi to the orresponding Danielewski surfae πγ : S (γ) → A1
k. By de�nition(see 2.6 above), the anonial funtion ψγ on S (γ) is the unique regular funtion restriting tothe polynomial funtion ψγ,i = xhui + σi (x) ∈ k [x, ui] on the trivialising open subsets Si ≃ A2

k,
i = 1, . . . , r of S (γ). So it oinides with the restrition of y on S under the above isomorphism. In8



the setting of Theorem 2.8, this means that γ orresponds to the Danielewski surfae S equippedwith the birational morphism prx,y : S → A2
k.It turns out that up to isomorphisms, the above lass of Danielewski surfaes Sσ,h ontains allpossible Danielewski surfaes SQ,h, as shown by the following result.Theorem 3.2. Let SQ,h be a Danielewski surfae in A3

k de�ned by the equation xhz−Q (x, y) = 0,where Q (x, y) ∈ k [x, y] is a polynomial suh that Q (0, y) splits with r ≥ 2 simples roots in k.Then there exists a olletion σ = {σi (x)}i=1,...,r of polynomials of degrees deg (σi (x)) < h suhthat SQ,h is isomorphi to the surfae Sσ,h de�ned by the equation xhz −
∏r

i=1 (y − σi (x)) = 0.Proof. Sine Q (0, y) splits with simple roots y1, . . . , yr in k, a variant of the lassial HenselLemma (see e.g., Theorem 7.18 p. 208 in [10℄) guarantees that the polynomial Q(x, y) an bewritten in a unique way as
Q (x, y) = R1 (x, y)

r
∏

i=1

(y − σi (x)) + xhR2 (x, y) ,where R1 (x, y) ∈ k [x, y]\
(

xhk [x, y]
) is a polynomial suh that R1 (0, y) is a nonzero onstant andwhere σ = {σi (x)}i=1,...,r is a olletion of polynomials of degree stritly lower than h suh that

σi (0) = yi for every index i = 1, . . . , r. Sine yi 6= yj for every i 6= j and R1 (0, y) is a nonzeroonstant, it follows that for every index i = 1, . . . , r, the rational funtion
ui = x−h (y − σi (x)) =

∏

j 6=i

(y − σj (x))
−1
R1 (x, y)

−1
(z −R2 (x, y))on SQ,h restrits to a regular funtion on the omplement Si in SQ,h of the irreduible omponentsof the �ber pr−1

x (0) de�ned by the equations {x = 0, y = yj}j 6=i and indues an isomorphism Si ≃

Spec (k [x, ui]). Therefore, the olletion σ = {σi (x)}i=1,...,r is preisely the one assoiated with the�ne k-weighted rake γ = (Γ, w) with all its leaves at a same level h orresponding to the Danielewskisurfae prx : SQ,h → A1
k equipped with the birational morphism ψ = prx,y : SQ,h → A2

k (see 2.8and 2.12 above). In turn, we dedue from example 3.1 that the Danielewski surfae S (γ) assoiatedwith γ embeds as the surfae Sσ,h in A3
k de�ned by the equation xhz−

∏r
i=1 (y − σi (x)) = 0. Thisompletes the proof. �De�nition 3.3. Given a Danielewski surfae S isomorphi to a ertain surfae SQ,h in A3

k, alosed embedding is : S →֒ A3
k of S in A3

k as a surfae Sσ,h de�ned by the equation
xhz −

r
∏

i=1

(y − σi (x)) = 0is alled a standard embedding of S. We say that Sσ,h is a standard form of S in A
3
k.3.4. It follows from the above disussion that every Danielewski surfae S isomorphi to a ertainsurfae SQ,h in A3

k admits a standard embedding in A3
k. Following the proof of Theorem 3.2, wean in fat onstrut expliitly the isomorphisms between a Danielewski surfae SQ,h and one ofits standard forms Sσ,h. Let Q(x, y) = R1(x, y)

∏r
i=1 (y − σi (x))+xhR2(x, y) be as in the proof ofTheorem 3.2. Then, the endomorphism Φs of A3

k de�ned by (x, y, z) 7→ (x, y,R1 (x, y) z +R2 (x, y))indues an isomorphism φs between Sσ,h and SQ,h. One heks onversely that for every pair (f, g)of polynomials suh that R1 (x, y) f (x, y)+xhg (x, y) = 1, the endomorphism Φs of A
3
k de�ned by

(x, y, z) 7→

(

x, y, f (x, y) z + g (x, y)

r
∏

i=1

(y − σi (x))− f (x, y)R2 (x, y)

)indues an isomorphism φs between SQ,h and Sσ,h suh that φs ◦φs = idSQ,h
and φs ◦φ

s = idSσ,h
.Note that sineR1 (0, y) is a nonzero onstant, the regular funtion ξ = x−h(R1

∏r
i=1 (y − σi (x)))+

R2 on Sσ,h still indues a oordinate funtion on every irreduible omponent of the �ber π−1 (o)of the morphism π = prx : Sσ,h → A1
k, and the regular funtions π, y and ξ de�ne a new losedembedding of Sσ,h in A3

k induing an isomorphism between Sσ,h and the surfae SQ,h. This an9



be interpreted by saying that a losed embedding iQ,h : S →֒ A3
k of a Danielewski surfae S in

A3
k as a surfae SQ,h is a twisted form of a standard embedding of S obtained by modifying thefuntion induing a oordinate on every irreduible omponent of the �ber π−1 (o).3.5. Using standard forms makes the study of isomorphism lasses of Danielewski surfaes SQ,hsimpler. For instane, we have the following haraterisation whih generalises a result due to L.Makar-Limanov [17℄ for omplex surfaes SP,h de�ned by the equations xhz − P (y) = 0.Proposition 3.6. Two Danielewski surfaes Sσ1,h1

and Sσ2,h2
in A3

k de�ned by the equations
xh1z = P1 (x, y) =

r1
∏

i=1

(y − σ1,i (x)) and xh2z = P2 (x, y) =

r2
∏

i=1

(y − σ2,i (x))are isomorphi if and only if h1 = h2 = h, r1 = r2 = r and there exists a triple (a, µ, τ (x)) ∈
k∗ × k∗ × k [x] suh that P2 (ax, y) = µrP1

(

x, µ−1y + τ (x)
).Proof. The ondition is su�ient. Indeed, one heks that the automorphism

(x, y, z) 7→
(

ax, µ (y − τ (x)) , µra−2z
)of A3

k indues an isomorphism between Sσ1,h and Sσ2,h. Conversely, suppose that S1 = Sσ1,h1and S2 = Sσ2,h2
are isomorphi. Then h1 = h2 = h and r1 = r2 = r by virtue of Theorem2.14 above. If h = 1 then the result follows from [17℄. Otherwise, if h ≥ 2 then it follows fromTheorem 2.11 and example 3.1 above that the underlying A

1-bundle strutures ρ1 : S1 → X (r)and ρ2 : S2 → X (r) orresponding to the transition funtions
{

g1,ij = x−h (σ1,j (x)− σ1,i (x))
}

i,j=1,...,r
and {g2,ij = x−h (σ2,j (x)− σ2,i (x))

}

i,j=1,...,rrespetively are unique suh strutures on S1 and S2 up to automorphisms of the base X (r).Therefore, every isomorphism Φ : S1
∼
→ S2 indues an automorphism φ of X (r) suh that ρ2 ◦Φ =

φ◦ρ1. Consequently, every suh isomorphism Φ is determined by a olletion of loal isomorphisms
Φi : S1,i

∼
→ S2,α(i) where α ∈ Sr, de�ned by k-algebra isomorphisms

Φ∗
i : k [x]

[

u2,α(i)

]

−→ k [x] [u1,i] , x 7→ aix, u2,α(i) 7→ λiu1,i + bi (x) , i = 1, . . . , rwhere ai, λi ∈ k∗ and where bi ∈ k [x]. These loal isomorphisms glue to a global one if andonly if ai = a and λi = λ for every index i = 1, . . . , r, and the relation λg1,ij (x) + bi (x) =
g2,α(i)α(j) (ax)+bj (x) holds in k [x, x−1

] for every indies i, j = 1, . . . , r. Sine the σ1,i's and σ2,i'shave degrees stritly lower than h, we onlude that the latter ondition is equivalent to the fatthat bi (x) = b (x) for every i = 1, . . . , r and that the polynomial c (x) = σ2,α(i) (ax) − λahσ1,i (x)does not depend on the index i. Letting µ = λah and τ (x) = µ−1c (x), this means exatly that
P2 (ax, y) = µrP1

(

x, µ−1y + τ (x)
). �3.7. The proof above implies in partiular that all standard embeddings of a same Danielewskisurfae are algebraially equivalent. It is natural to ask if a losed embedding iQ,h : S →֒ A3

k ofDanielewski surfae S as a surfae SQ,h is algebraially equivalent to a standard one.If so, thenwe say that the embedding iQ,h is reti�able. The fat that the endomorphisms Φs and Φs of
A3

k onstruted in 3.4 are not invertible in general may lead one to suspet that there exists non-reti�able embeddings of Danielewski surfaes nonisomorphi to the a�ne plane. This is atuallythe ase, and the �rst known examples have been reently disovered by G. Freudenburg andL. Moser-Jauslin [12℄. For instane, they established that the surfae S1 in A3
C
de�ned by theequation f1 = x2z − (1− x)

(

y2 − 1
)

= 0 is a non-reti�able embedding of a Danielewski surfae.Indeed, a standard form for S1 would be the Danielewski surfae S0 de�ned by the equation
f0 = x2z −

(

y2 − 1
)

= 0. We observe that the level surfae f−1
0 (1) of f0 is a singular surfae. Onthe other hand, all the level surfaes of f1 are nonsingular as follows for instane from the JaobianCriterion. Therefore, ondition 3) in De�nition 1.5 annot be satis�ed and so, it is impossible to�nd an automorphism of A3

C
mapping S1 isomorphially onto S0.The lassi�ation of these embeddings up to algebrai equivalene is a di�ult problem ingeneral (see [18℄ for the ase h = r = 2). However, if k = C, the following result shows that thingsbeome simpler if one works in the holomorphi ategory.10



Theorem 3.8. The embeddings iQ,h : S →֒ A3
C
of a Danielewski surfae S as a surfae de�ned bythe equation xhz −Q (x, y) = 0 are all analytially equivalent.Proof. It su�es to show that every embedding iQ,h is analytially equivalent to a standard one

iσ,h. In view of the proof of Theorem 3.2, we an let Q (x, y) = R1 (x, y)
∏r

i=1 (y − σi (x)) +

xhR2(x, y). It is enough to onstrut an holomorphi automorphism Ψ of A3
C
suh that

Ψ∗

(

xhz −
r
∏

i=1

(y − σi (x))

)

= α
(

xhz −Q (x, y)
)for a suitable invertible holomorphi funtion α on A3

C
. We let R1 (0, y) = λ ∈ C∗ and we let

f (x, y) ∈ C [x, y] be a polynomial suh that λ exp (xf (x, y)) ≡ R1 (x, y) mod xh. Now the resultfollows from the fat that the holomorphi automorphism Ψ of A3
C
de�ned by

Ψ (x, y, z) =

(

x, y, λ exp (xf (x, y)) z − x−h[λ exp (xf (x, y))−R1 (x, y)]

r
∏

i=1

(y − σi (x)) +R2(x, y)

)satis�es Ψ∗
(

xhz −Q (x, y)
)

= λ exp (xf (x, y))
(

xhz −
∏r

i=1 (y − σi (x))
). �Example 3.9. We observed in 3.7 that the surfaes S0 and S1 de�ned by the equations f0 =

x2z −
(

y2 − 1
)

= 0 and f1 = x2z − (1− x)
(

y2 − 1
)

= 0 are algebraially inequivalent embeddingsof a same surfae S. However, they are analytially equivalent via the automorphism (x, y, z) 7→
(

x, y, e−xz − x−2 (e−x − 1 + x) (y2 − 1)
) of A3

C
.3.2. Automorphisms of Danielewski surfaes SQ,h in A3

k.In [16℄ and [17℄, Makar-Limanov omputed the automorphism groups of surfaes in A3 de�nedby the equation xhz − P (y) = 0, where h ≥ 1 and where P (y) is an arbitrary polynomial. Inpartiular, he established that every automorphism of suh a surfae is indued by the restritionof an automorphism of the ambient spae. Reently, A. Crahiola [3℄ established that this alsoholds for surfaes de�ned by the equations xhz − y2 − r (x) y = 0, where h ≥ 1 and where r (x) isan arbitrary polynomial suh that r (0) 6= 0. This subsetion is devoted to the proof of the moregeneral struture Theorem 3.15 below. We begin with the ase of Danielewski surfaes in standardform.Theorem 3.10. The automorphism group of a Danielewski surfae Sσ,h de�ned by the equation
xhz − P (x, y) = 0, where P (x, y) =

r
∏

i=1

(y − σi (x))is indued by the restrition of an automorphism of A3
k belonging to the subgroup Gσ,h of Aut

(

A3
k

)generated by the following automorphisms:(a) ∆b (x, y, z) =
(

x, y + xhb (x) , z + x−h
(

P
(

x, y + xhb (x)
)

− P (x, y)
)), where b (x) ∈ k [x].(b) If there exists a polynomial τ (x) suh that P (x, y + τ (x)) = P̃ (y) then the automorphisms

Ha (x, y, z) =
(

ax, y + τ (ax)− τ (x) , a−hz
), where a ∈ k∗ should be added.() If there exists a polynomial τ (x) suh that P (x, y + τ (x)) = P̃ (xq0 , y), then the yliautomorphisms H̃a (x, y, z) =

(

ax, y + τ (ax)− τ (x) , a−hz
), where a ∈ k∗ and aq0 = 1 should beadded.(d) If there exists a polynomial τ (x) suh that P (x, y + τ (x)) = yiP̃ (x, ys), where i = 0, 1 and

s ≥ 2, then the yli automorphisms Sµ (x, y, z) =
(

x, µy + (1− µ) τ (x) , µiz
), where µ ∈ k∗ and

µs = 1 should be added.(e) If har (k) = s > 0 and P (x, y) = P̃
(

ys − c (x)s−1
y
) for a ertain polynomial c (x) ∈ k [x]suh that c (0) 6= 0, then the automorphism Tc (x, y, z) = (x, y + c (x) , z) should be added.(f ) If h = 1, then the involution I (x, y, z) = (z, y, x) should be added.Remark 3.11. Automorphisms of type a) in Theorem 3.10 orrespond to algebrai ations ofthe additive group Ga on the surfae Sσ,h. More preisely, for every polynomial b ∈ k [x], thesubgroup {∆tb(x), t ∈ k

} of Aut (Sσ,h) is isomorphi to Ga, the orresponding Ga-ation on Sσ,h11



being de�ned by t ⋆ (x, y, z) = ∆tb(x) (x, y, z). Similarly, automorphisms of type b) orrespond toalgebrai ations of the multipliative group Gm.Proof. It is lear that every automorphism of A3
k of types (a)-(f) above leaves Sσ,h invariant, wheneindues an automorphism of Sσ,h. If h = 1, then the onverse follows from [16℄. Otherwise, if

h ≥ 2, then the same argument as the one used in the proof of Proposition 3.6 above showthat every automorphism of Sσ,h is determined by a datum AΦ = (α, µ, a, b (x)) suh that thatthe polynomial c (x) = σα(i) (ax) − µσi (x) + xhb (x) does not depend on the index i = 1, . . . , r.Furthermore, it follows from the onstrution of the losed embedding of Sσ,h in A3
k given inExample 3.1 that every suh olletion orrespond to an automorphism of Sσ,h indued by therestrition of the following automorphism Ψ of A3

k:
Ψ (x, y, z) =

(

ax, µy + c (x) , a−hµrz + (ax)
−h

(

r
∏

i=1

(µy + c (x)− σi (ax))− µr
r
∏

i=1

(y − σi (x)))

)

.One heks easily using this desription that the omposition of two automorphisms Φ1 and Φ2 of
Sσ,h de�ned by data AΦ1

= (α1, µ1, a1, b1) and AΦ2
= (α2, µ2, a2, b2) is the automorphism withorresponding datum AΦ =

(

α2 ◦ α1, µ2µ1, a2a1, a
−h
2 µ2b1 (x) + b2 (a1x)

).Clearly, automorphisms of type (a) oinide with the ones determined by dataA = (Id, 1, 1, b (x)),where b (x) ∈ k [x]. In view of the omposition rule above, it su�es to onsider from now onautomorphisms orresponding to data A = (α, µ, a, 0).1Â◦) If α is trivial, then µ = 1 by virtue of Lemma 3.13 below, and so A = (Id, 1, a, 0). Then,the relation c (x) = σi (ax)− σi (x) holds for every i = 1, . . . , r.1Â◦a) If aq 6= 1 for every q = 1, . . . , h− 1, then there exists a polynomial τ (x) ∈ k [x] suh that
σi (x) = σi (0) + τ (x) for every i = 1, . . . , r. Thus c (x) = τ (ax) − τ (x) and P (x, y + τ (x)) =

P̃ (y) =
∏r

i=1 (y − σi (0)) and the orresponding automorphism is of type (b).1Â◦b) If a 6= 1 but aq0 = 1 for a minimal q0 = 2, . . . , h− 1, then there exists polynomials τ (x)and σ̃i (x), i = 1, . . . , r, suh that σi (x) = σ̃i (xq0 ) + τ (x) for every i = 1, . . . , r. So there existsa polynomial P̃ suh that P (x, y + τ (x)) = P̃ (xq0 , y). Moreover, c (x) = τ (ax) − τ (x) and theorresponding automorphism is of type ().2Â◦) If α is not trivial then µs = 1. Sine Φ = Φ2 ◦ Φ1, where Φ1and Φ2 denote the automor-phisms with data AΦ1
= (Id, 1, a, 0) and AΦ2

= (α, µ, 1, 0) respetively, it su�es to onsider thesituation that Φ is determined by a datum AΦ = (α, µ, 1, 0), where µ ∈ k∗ and µs = 1. So therelation σα(i) (x) = µσi (x) + c (x) holds for every i = 1, . . . , r.2Â◦a) If µs = 1 but µs′

6= 1 for every s′ = 1, . . . , s− 1, then, letting τ (x) = (1− µ)−1
c (x) and

σ̃i (x) = σi (x)− τ (x) for every i = 1, . . . , r, we arrive at the relation σ̃α(i) (x) = µσ̃i (x) for every
i = 1, . . . , r. Furthermore, if i0 is a unique �xed point of α then σ̃i0 (x) = 0 as σi0 (x) = τ (x). Sowe onlude that P (x, y + τ (x)) = yiP̃ (x, ys) where i = 0, 1 and where s denotes the length ofthe nontrivial yles in α. The orresponding automorphism is of type (d).2Â◦b) If µ = 1 then α is �xed point free by virtue of Lemma 3.13 and har (k) = s, where
s denotes the ommon length's of the yles ourring in α. Moreover, s′ · c (0) 6= 0 for every
s′ = 1, . . . , s − 1 and σim

(x) = σi1 (x) + (m− 1) · c (x) for every index im ourring in a yle
(i1, . . . , is) of length s in α. Letting r = ds, we may suppose up to a reordering that α deomposesas the produt of the standard yles (is+ 1, is+ 2 . . . , (i+ 1) s), where i = 0, . . . , d− 1. Letting
R (x, y) =

∏s
m=1 (y −m · c (x)) = ys − c (x)

s−1
y, we onlude that

P (x, y) =

d−1
∏

i=0

R (x, y − σis (x)) = P̃
(

x, ys − c (x)
s−1

y
)for a suitable polynomial P̃ (x, y) ∈ k [x, y]. The orresponding automorphism is of type (e).

�3.12. In the proof of Theorem 3.10 above, we used the fat that every automorphism Φ of aDanielewski surfae S = Sσ,h, where h ≥ 2, is determined by a ertain datumAΦ = (α, µ, a, b (x)) ∈12



Sr × k
∗ × k∗ × k [x] for whih the polynomial c̃(x) = σα(i) (ax)− µσi (x) ∈ k [x] does not dependon the index i. Atually, we needed the following more preise result.Lemma 3.13. The elements in a datum AΦ = (α, µ, a, b (x)) orresponding to an automorphism

Φ of S satisfy the following additional properties1 ) The permutation α is either trivial or has at most a unique �xed point. If it is nontrivialthen all nontrivial yles with disjoint support ourring in a deomposition of α have the samelength s ≥ 2.2 ) If α is trivial then µ = 1 and the onverse also holds provided that har (k) 6= s. Otherwise,if α is nontrivial and har (k) 6= s then µs = 1 but µs′

6= 1 for every 1 ≤ s′ < s.Proof. To simplify the notation, we let yi = σi (0) for every i = 1, . . . , r. Note that by hypothesis,
yi 6= yj for every i 6= j. If α ∈ Sr has at least two �xed points, say i0 and i1, then yi0 (1− µ) =
yi1 (1− µ) = c̃ (0), and so, µ = 1 and c̃ (0) = 0 as yi0 6= yi1 . In turn, this implies that α is trivial.Indeed, otherwise there would exist an index i suh that α (i) 6= i but yα(i) = yi, in ontraditionwith our hypothesis. Suppose from now that α is nontrivial and let s ≥ 2 be the in�mum ofthe length's of the nontrivial yles ourring in deomposition of α into a produt of yles withdisjoint supports. We dedue that yi (1− µs) = yj (1− µs) for every pair of distint indies i and
j in the support of a same yle of length s. Thus µs = 1 as yi 6= yj for every i 6= j. If µ = 1 then
s′ · c̃ (0) 6= 0 for every s′ = 1, . . . , s−1. Indeed, otherwise we would have yαs′(i) = yi +s′ · c̃ (0) = yifor every index i = 1, . . . , r whih is impossible sine α is nontrivial. In partiular, α is �xed-pointfree. On the other hand s · c̃ (0) = 0 as yi = yαs(i) = yi + s · c̃ (0) for every index i in the supportof a yle of length s in α. This is possible if and only if the harateristi of the base �eld k isexatly s. We also onlude that every yle in α have length s for otherwise there would exist anindex i suh that αs (i) 6= i but yαs(i) = yi + s · c̃ (0) = yi in ontradition with our hypothesis.If µ 6= 1 then µs′

6= 1 for every s′ < s. Indeed, otherwise there would exist an index i suh that
αs′

(i) 6= i but yαs′(i) = µs′

yi + c̃ (0)
∑s′−1

p=0 µ
p = yi, whih is impossible. The same argument alsoimplies that all the nontrivial yles in α have length s. �3.14. By ombining Theorems 3.2 and 3.10, we obtain the following desription of the automor-phisms groups of Danielewski surfaes SQ,h.Theorem 3.15. Let SQ,h be the Danielewski surfae in A3

k de�ned by the equation xhz−Q(x, y) =
0 and let Sσ,h be one of its standard forms. Then, every automorphism of SQ,h is of the form
Φs ◦ ψ ◦ Φs, where ψ belongs to the subgroup Gσ,h of the automorphisms group of A

3
k de�ned inTheorem 3.10 and Φs and Φs are the endomorphisms of A3

k de�ned in 3.4.3.16. We have seen in 3.7 that the embeddings iQ,h are not reti�able in general and so thatthe isomorphisms φs and φs do not extend to algebrai automorphisms of A
3
k. Therefore, inontrast with the ase of standard embeddings is for whih every automorphisms of a Danielewskisurfae S ≃ Sσ,h arises as the restrition of an automorphism of the ambient spae A3

k, the aboveresult may lead one to suspet that for a general embedding iQ,h of S as a surfae SQ,h, ertainautomorphisms of S do not extend to algebrai automorphisms A3
k. In the next setion we giveexamples of embeddings for whih this phenomenon ours. However, if k = C, Theorem 3.8 leadson the ontrary the following result.Corollary 3.17. Every algebrai automorphism of a Danielewski surfae SQ,h in A3

C
is extendableto a holomorphi automorphism of A

3
C
.4. Speial Danielewski surfaes and multipliative group ationsIn this setion, we �x a base �eld k of harateristi zero and we onsider speial Danielewskisurfaes S admitting a nontrivial ation of the multipliative group Gm = Gm,k. We establishthat every suh surfae is isomorphi to a Danielewski surfae SQ,h whih admits a standardembedding in A3

k as a surfae de�ned by an equation of the form xhz − P (y) = 0 for a suitable13



polynomial P (y) ∈ k [y]. In this embedding, every multipliative group ation on S arises as therestrition of a linear Gm-ation on A3
k. We show on the ontrary that this is not the ase for ageneral embedding of S as a surfae SQ,h.4.1. Multipliative group ations on speial Danielewski surfaes.Every Danielewski surfae isomorphi to a surfae SP,h in A3

k de�ned by an equation of the form
xhz − P (y) = 0 for a ertain polynomial P (y) admits an nontrivial ation of the multipliativegroup Gm whih arises as the restrition of the Gm-ation Ψ on A3

k de�ned by Ψ (a;x, y, z) =
Ha (x, y, z) =

(

ax, y, a−hz
). In the setting of Lemma 3.13 above, the automorphisms Ha or-respond to data Aφa

= (1, 1, a, 0), where a ∈ k∗. Here we establish that Danielewski surfaesisomorphi to a surfae SP,h in A
3
k are haraterised by the fat that they admit suh a nontrivial

Gm-ation.4.1. By virtue of example 3.1 above, the olletion of polynomials σi (x), i = 1, . . . , r, orre-sponding to a Danielewski surfae SP,h ⊂ A3
k is given by σi (x) = yi for every i = 1, . . . , r, where

y1, . . . , yr denote the roots of the polynomial P . In turn, we dedue from Theorem 2.14 and Propo-sition 3.6 above that a Danielewski surfae SQ,h with a standard form Sσ,h de�ned by a datum
(

r, h, σ = {σi (x)}i=1,...,r

) is isomorphi to a surfae SP,h as above if and only if there exists apolynomial τ (x) ∈ k [x] suh that σi (x) = σi (0) + τ (x) for every i = 1, . . . , r. So we onludethat every suh surfae orrespond to a �ne k-weighted rake γ of the following type.
y1

τ1

τh−1

y2

τ1

τh−1

yr−1

τ1

τh−1

yr

τ1

τh−1

r

h

4.2. One an easily dedue from the desription of the automorphism group of a Danielewskisurfae Sσ,h given Theorem 3.10 above that suh a surfae admits a nontrivial Gm-ation if andonly if it is isomorphi to a surfae SP,h. More generally, we have the following result.Theorem 4.3. A speial Danielewski surfae S admits a nontrivial ation of the multipliativegroup Gm if and only if it is isomorphi to a surfae SP,h in A3
k de�ned by the equation xhz−P (y) =

0.Proof. We may suppose that S = S (γ) is the Danielewski surfae assoiated with a �ne k-weightedtree γ = (Γ, w) with r ≥ 2 elements at level 1 and with all its leaves at level h ≥ 1. We denote by
σ = {σi (x)}i=1,...,r the olletion of polynomial assoiated with γ (see 2.5). By virtue of Theorem2.14 above, the olletion σ̃ de�ned by

σ̃i (x) = σi (x) −
1

r

r
∑

i=1

σi (x) i = 1, . . . , rleads to a Danielewski surfae isomorphi to S. So we may suppose from the beginning that
σ1 (x) + · · · + σr (x) = 0. If h = 1 then it follows that S is isomorphi to a surfae in A

3
kde�ned by an equation of the form xz − P (y) = 0, and so, the assertion follows from the abovedisussion. Otherwise, if h ≥ 2 then it follows from Theorem 2.11 that the strutural A1-�bration14



π = πγ : S = S (γ) → A1
k is unique up to automorphisms of the base. We onsider S as an

A1-bundle ρ : S → X (r) de�ned by the transition oyle
g =

{

gij = x−h (σj (x)− σi (x))
}

i,j=1,...,r
.The same argument as in the proof of Theorem 3.6 implies that every automorphism Φ of S isdetermined by a datum AΦ = (α, µ, a, b (x)) ∈ Sr × k

∗ × k∗ × k [x] for whih the polynomial
σα(i) (ax)− µσi (x) ∈ k [x] does not depend on the index i. In view of the omposition rule givenin the same proof, we dedue that an automorphism Φ of S may belong to a subgroup of Aut (S)isomorphi to Gm only if its assoiated datum is of the form AΦ = (α, µ, a, 0). Suppose that thereexists a nontrivial automorphism Φ determined by suh a datum AΦ. Then, sine α ∈ Sr, thereexists an integer N ≥ 1 suh that the polynomial c (x) = σi

(

aNx
)

− µNσi (x) does not dependon the index i = 1, . . . , r. Sine σ1 (x) + · · · + σr (x) = 0 by hypothesis, we onlude that theidentity σi

(

aNx
)

= µNσi (x) holds for every index i = 1, . . . , r. In partiular, it follows that
σi (0) = µNσi (0) for every index i = 1, . . . , r. Thus µN = 1 sine γ is a �ne k-weighted tree withat least two elements at level 1. Suppose that one of the polynomials σi is not onstant. Then theabove identity implies that aNp = 1 for a ertain integer p. Therefore, every automorphism Φ of
S with assoiated datum (α, µ, a, 0) is yli and Aut (S) an not ontain a subgroup isomorphito Gm. So, S admits a nontrivial Gm-ation only if the polynomials σi, i = 1, . . . , r are onstant.This ompletes the proof sine these �ne k-weighted trees orrespond to Danielewski surfaes SP,hby virtue of 4.1 above. �4.2. Extensions of multipliative group ations on a Danielewski surfae.It follows from Theorem 3.10 that every speial Danielewski surfae S equipped with a nontrivial
Gm-ation admits an equivariant embedding in A3

k as a surfae SP,h de�ned by an equation of theform xhz − P (y) = 0. In this embedding, the Gm-ation on S even arises as the restrition of alinear Gm-ation on A
3
k orresponding to automorphisms of type b) in 3.10. On the other hand, asurfae S isomorphi to a surfae SP,h admits losed embeddings iQ,h : S →֒ A3

k in A3
k as surfaes

SQ,h de�ned by equations of the form xhz − R (x, y)P (y) = 0 (see Theorem 3.2). It is naturalto ask if there always exists Gm-ations on A3
k making these general embeddings equivariant.Clearly, this holds if the embedding iQ,h is algebraially equivalent to a standard embedding of Sas a surfae SP,h. The following result shows that there exists non reti�able losed embeddings

iQ,h of S for whih no nontrivial Gm-ation on S an be extended to an ation on the ambientspae.Theorem 4.4. Every Danielewski surfae S ⊂ A3
k de�ned by the equation xhz−(1− x)P (y) = 0,where h ≥ 2 and where P (y) has r ≥ 2 simple roots, admits a nontrivial Gm-ation θ̃ : Gm ×

S → S whih is not algebraially extendable to A3
k. More preisely, for every a ∈ k \ {0, 1} theautomorphism θ̃a = θ̃ (a, ·) of S do not extend to an algebrai automorphism of A3

k.Proof. The endomorphisms Φs and Φs of A
3
k de�ned by Φs (x, y, z) = (x, y, (1− x) z) and Φs (x, y, z) =

(

x, y, (
∑h−1

i=0 x
i)z + P (y)

) indue isomorphisms φs and φs between S and the surfae SP,h de�nedby the equation xhz − P (y) = 0 (see 3.4). The latter admits an ation θ : Gm × SP,h → SP,hof the multipliative group Gm de�ned by θ (a, x, y, z) = Ha (x, y, z) =
(

ax, y, a−hz
) for every

a ∈ k∗. The orresponding ation θ̃ on S is therefore de�ned by θ̃ (a, x, y, z) = θ̃a (x, y, z) =

φs ◦Ha (x, y, z) |SP,h
◦φs. Sine by onstrution, θ̃∗a (x) = ax for every a ∈ k∗, the assertion is aonsequene of the following Lemma whih guarantees that the automorphisms θ̃a of S are notalgebraially extendable to an automorphism of A3

k for every a ∈ k∗ \ {1}. �Lemma 4.5. If Φ is an algebrai automorphism of A3
k extending an automorphism of S, then

Φ∗ (x) = x.Proof. Our proof is similar to the one of Theorem 2.1 in [18℄. We let Φ be an automorphism of
A3

k extending an arbitrary automorphism of S. Sine f1 = xhz − (1− x)P (y) is an irreduiblepolynomial, there exists µ ∈ k∗ suh that Φ∗ (f1) = µf1. Therefore, for every t ∈ k, the au-tomorphism Φ indues an isomorphism between the level surfaes f−1
1 (t) and f−1

1

(

µ−1t
) of f1.15



There exists an open subset U ⊂ A1
k suh that for every t ∈ U , f−1

1 (t) is a speial Danielewskisurfaes isomorphi to a one de�ned by a �ne k-weighted rake γ whose underlying tree Γ is iso-morphi to the one assoiated with S. Sine Γ is not a omb, it follows from Theorem 2.11 thatfor every t ∈ U , the projetion prx : f−1
1 (t) → A

1
C
is a unique A

1-�bration on f−1
1 (t) up to au-tomorphisms of the base. Furthermore, prx : f−1

1 (t)→ A1
k has a unique degenerate �ber, namely

pr−1
x (0). Therefore, for every t ∈ U , the image of the ideal (x, f1 − t) of k [x, y, z] by Φ∗ is on-tained in the ideal (x, µf1 − t) =

(

x, P (y) + µ−1t
), and so Φ∗ (x) ∈

⋂

t∈U

(

x, P (y) + µ−1t
)

= (x).Sine Φ is an automorphism of A3
k, we onlude that there exists c ∈ k∗ suh that Φ∗ (x) = cx.In turn, this implies that for every t, u ∈ k, Φ indues an isomorphism between the surfaes

St,u and S̃t,u de�ned by the equations f1 + tx + u = xhz − (1− x)P (y) + tx + u = 0 and
f1 + µ−1ctx + µ−1u = xhz − (1− x)P (y) + µ−1ctx + µ−1u = 0 respetively. Sine deg (P ) ≥ 2there exists y0 ∈ k suh that P ′ (y0) = 0. Note that y0 is not a root of P as these ones aresimple. We let t = −u = −P (y0). Sine h ≥ 2, it follows from the Jaobian Criterion that St,u issingular, and even non normal along the nonredued omponent of the �ber pr−1

x (0) de�ned bythe equation {x = 0; y = y0}. Therefore S̃t,u must be singular along a multiple omponent of the�ber pr−1
x (0). This the ase if and only if the polynomial P (y)− µ−1cP (y0) has a multiple root,say y1, suh that P (y1)− µ

−1P (y0) = 0. Sine P (y0) 6= 0 this ondition is satis�ed if and only if
c = 1. This ompletes the proof. �Example 4.6. In partiular, even the involution of the surfae S de�ned by the equation x2z −
(1− x)P (y) = 0 indued by the endomorphism J (x, y, z) = (−x, y, (1 + x) ((1 + x) z + P (y))) of
A3

k does not extend to an algebrai automorphism of A3
k.It turns out that this kind of phenomenon does not our with additive group ations. Morepreisely, we have the following result.Proposition 4.7. Let SQ,h be the Danielewski surfae in A3

k de�ned by the equation xhz −
Q(x, y) = 0. Then, every Ga-ation on SQ,h arrises as the restrition of a Ga-ation on A3

k de�nedby ∆̃ (t, x, y, z) =
(

x, y + xhb(x)t, z + x−h(Q(x, y + xhb(x)t) −Q(x, y))
)

), for a ertain polynomial
b (x) ∈ k[x].Proof. With the notation of Remark 3.11, it follows from Theorem 3.15 that every additive groupation on SQ,h is indued by the restrition to SQ,h of a olletion of endomorphisms of A3

k of theform δt,b = Φs ◦∆tb(x) ◦ Φs, where b ∈ k [x]. One heks that
δt,b(x, y, z) = (x, y + xhb(x)t, z + x−h(Q(x, y + xhb(x)t)−Q(x, y)) + α(x, y)(xhz −Q(x, y))),for a ertain polynomial α(x, y) ∈ k[x, y]. Note that if α (x, y) 6= 0, these endomorphisms δt,b donot de�ne a Ga-ation on A3

k. However, they indue an ation on SQ,h whih oinides with theone indued by the Ga-ation ∆̃ above. �4.8. If k = C, Corollary 3.17 implies in partiular that every automorphism of S extends toan holomorphi automorphism of A3
C
. This leads the following result whih ontrasts with anexample, given by H. Derksen, F. Kutzshebauh and J. Winkelmann in [6℄, of a non-extendable

C+-ation on an hypersurfae in A5
C
whih is even holomorphially inextendable .Proposition 4.9. Every surfae S ⊂ A3

C
de�ned by the equation xhz − (1− x)P (y) = 0, where

h ≥ 2 and where P (y) has r ≥ 2 simple roots, admits a nontrivial C∗-ation whih is algebraiallyinextendable but holomorphially extendable to A
3
C
.Proof. We let θ̃ : C∗ × S → S be the C∗-ation on the surfae S ⊂ A3

C
de�ned by the equa-tion x2z − (1− x)P (y) = 0 onstruted in the proof of Theorem 4.4. For every a ∈ C∗,the automorphism θ̃ (a, ·) of S maps a losed point (x, y, z) ∈ S to the point θ̃ (a, x, y, z) =

(

ax, y, a−2 (1− ax) ((1 + x) z + P (y))
). One heks that the holomorphi automorphism Φa of

A3
C
suh that Φa |S= θ̃ (a, ·) is the following one:

Φa (x, y, z) =
(

ax, y, a−2e(1−a)xz + (ax)
−2
P (y)

(

e(1−a)x (x− 1)− ax+ 1
))
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Clearly, the holomorphi map Φ : C∗ × A3
C
→ A3

C
, (a, (x, y, z)) 7→ Φa (x, y, z) de�nes a C∗-ationon A

3
C
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