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ON A CLASS OF DANIELEWSKI SURFACES IN AFFINE 3-SPACEADRIEN DUBOULOZ AND PIERRE-MARIE POLONIAbstra
t. In [16℄ and [17℄, L. Makar-Limanov 
omputed the automorphism groups of surfa
esin C3 de�ned by the equations xnz−P (y) = 0, where n ≥ 1 and P (y) is a nonzero polynomial.Similar results have been obtained by A. Cra
hiola [3℄ for surfa
es de�ned by the equations
xnz − y2 − σ (x) y = 0, where n ≥ 2 and σ (0) 6= 0, de�ned over an arbitrary base �eld. Herewe 
onsider the more general surfa
es de�ned by the equations xnz −Q (x, y) = 0, where n ≥ 2and Q (x, y) is a polynomial with 
oe�
ients in an arbitrary base �eld k. We 
hara
teriseamong them the ones whi
h are Danielewski surfa
es in the sense of [8℄, and we 
ompute theirautomorphism groups. We study 
losed embeddings of these surfa
es in a�ne 3-spa
e. Weshow that in general their automorphisms do not extend to the ambient spa
e. Finally, we giveexpli
it examples of C∗-a
tions on a surfa
e in A3

C
whi
h 
an be extended holomorphi
ally butnot algebrai
ally to C∗-a
tions on A3

C
.Introdu
tionSin
e they appeared in a 
elebrated 
ounterexample to the Can
ellation Problem due to W.Danielewski [5℄, the surfa
es de�ned by the equations xz − y (y − 1) = 0 and x2z − y (y − 1) = 0in C3 and their natural generalisations, su
h as surfa
es de�ned by the equations xnz − P (y) =

0, where P (y) is a non
onstant polynomial, have been studied in many di�erent 
ontexts. Ofparti
ular interest is the fa
t that they 
an be equipped with nontrivial a
tions of the additivegroup C+. The general orbits of these a
tions 
oin
ide with the general �bers of A1-�brations
π : S → A1, that is, surje
tive morphisms with generi
 �ber isomorphi
 to an a�ne line. Normala�ne surfa
es S equipped with an A1-�bration π : S → A1 
an be roughly 
lassi�ed into two
lasses a

ording the following alternative : either π : S → A

1 is a unique A
1-�bration on S up toautomorphisms of the base, or there exists a se
ond A1-�bration π′ : S → A1 with general �bersdistin
t from the ones of π.Due to the symmetry between the variables x and z, a surfa
e de�ned by the equation xz −

P (y) = 0 admits two distin
t A1-�brations over the a�ne line. In 
ontrast, it was establishedby L. Makar-Limanov [17℄ that on a surfa
e SP,n de�ned by the equation xnz − P (y) = 0 in C3,where n ≥ 2 and where P (y) is a polynomial of degree r ≥ 2, the proje
tion prx : SP,n → Cis a unique A1-�bration up to automorphisms of the base. In his proof, L. Makar-Limanov usedthe 
orresponden
e between algebrai
 C+-a
tions on an a�ne surfa
e S and lo
ally nilpotentderivations of the algebra of regular fun
tions on S. It turns out that his proof is essentiallyindependent of the base �eld k provided that we repla
e lo
ally nilpotent derivations by suitablesystems of Hasse-S
hmidt derivations when the 
hara
teristi
 of k is positive (see e.g., [3℄).The fa
t that an a�ne surfa
e S admits a unique A1-�bration π : S → A1 makes its studysimpler. For instan
e, every automorphism of S must preserve this �bration. In this 
ontext, aresult due to J. Bertin [2℄ asserts that the identity 
omponent of the automorphisms group of su
ha surfa
e is an algebrai
 pro-group obtained as an in
reasing union of solvable algebrai
 subgroupsof rank ≤ 1. For surfa
es de�ned by the equations xnz − P (y) = 0 in C
3, the pi
ture has been
ompleted by L. Makar-Limanov [17℄ who gave expli
it generators of their automorphisms groups.Similar results have been obtained over arbitrary base �elds by A. Cra
hiola [3℄ for surfa
es de�nedby the equations xnz − y2 − σ (x) y = 0, where σ (x) is a polynomial su
h that σ (0) 6= 0.Mathemati
s Subje
t Classi�
ation (2000): 14R10, 14R05.Key words: A1-�brations, Danielewski surfa
es, automorphism groups, extension of automorphisms.1



The latter surfa
es are parti
ular examples of a general 
lass of A1-�bred surfa
es 
alledDanielewski surfa
es [8℄, that is, normal integral a�ne surfa
e S equipped with an A1-�bration
π : S → A1

k over an a�ne line with a �xed k-rational point o, su
h that every �ber π−1 (x), where
x ∈ A

1
k \ {o}, is geometri
ally integral, and su
h that every irredu
ible 
omponent of π−1 (o) isgeometri
ally integral. In this arti
le, we 
onsider Danielewski surfa
es SQ,n in A3

k de�ned by anequation of the form xnz −Q (x, y) = 0, where n ≥ 2 and where Q (x, y) ∈ k [x, y] is a polynomialsu
h that Q (0, y) splits with r ≥ 2 simple roots in k. This 
lass 
ontains most of the surfa
es
onsidered by L. Makar-Limanov and A. Cra
hiola.The paper is organised as follows. First, we brie�y re
all de�nitions about weighted rootedtrees and the notion of equivalen
e of algebrai
 surfa
es in an a�ne 3-spa
e. In se
tion 2, we re
allfrom [8℄ the main fa
ts about Danielewski surfa
es and we review the 
orresponden
e betweenthese surfa
es and 
ertain 
lasses of weighted trees in a form appropriate to our needs. We alsogeneralise to arbitrary base �elds k some results whi
h are only stated for �elds of 
hara
teristi
zero in [7℄ and [8℄. In parti
ular, the 
ase of Danielewski surfa
es whi
h admit two A1-�brationswith distin
t general �bers is studied in Theorem 2.11. We show that these surfa
es 
orrespondto Danielewski surfa
es S (γ) de�ned by the �ne k-weighted trees γ whi
h are 
alled 
ombs andwe give expli
it embeddings of them. This result generalises Theorem 4.2 in [9℄.In se
tion 3, we 
lassify Danielewski surfa
es SQ,h in A3
k de�ned by equations of the form

xhz − Q (x, y) = 0 and determine their automorphism groups. We remark that su
h a surfa
eadmits many embeddings as a surfa
e SQ,h. In parti
ular, we establish in Theorem 3.2 thatthese surfa
es 
an always be embedded as surfa
e Sσ,h de�ned by an equation of the form xhz −
∏r

i=1 (y − σi (x)) = 0 for a suitable 
olle
tion of polynomials σ = {σi (x)}i=1,...,r. We say thatthese surfa
es Sσ,h are standard form of Danielewski surfa
es SQ,h. Next, we 
ompute ( Theorem3.10) the automorphism groups of Danielewski surfa
es in standard form. We show in parti
ularthat any of them 
omes as the restri
tion of an algebrai
 automorphism of the ambient spa
e.Finally we 
onsider the problem of extending automorphisms of a given Danielewski surfa
e SQ,hto automorphisms of the ambient spa
e A3
k. We show that this is always possible in the holomorphi

ategory but not in the algebrai
 one. We give expli
it examples whi
h 
ome from the study ofmultipli
ative group a
tions on Danielewski surfa
es. For instan
e, we prove that every surfa
e

S ⊂ A3
C
de�ned by the equation xhz − (1− x)P (y) = 0, where h ≥ 2 and where P (y) has r ≥ 2simple roots, admits a nontrivial C∗-a
tion whi
h is algebrai
ally inextendable but holomorphi
allyextendable to A3

C
. In parti
ular, even the involution of the surfa
e S de�ned by the equation x2z−

(1− x)P (y) = 0 indu
ed by the endomorphism J (x, y, z) = (−x, y, (1 + x) ((1 + x) z + P (y))) of
A3

k does not extend to an algebrai
 automorphism of A3
k.1. Preliminaries1.1. Basi
 fa
ts on weighted rooted trees.De�nition 1.1. A tree is a nonempty, �nite, partially ordered set Γ = (Γ,≤) with a unique min-imal element e0 
alled the root, and su
h that for every e ∈ Γ the subset (↓ e)Γ = {e′ ∈ Γ, e′ ≤ e}is a 
hain for the indu
ed ordering.1.2. A minimal sub-
hain ←−e′e = {e′ < e} with two elements of a tree Γ is 
alled an edge of Γ. Wedenote the set of all edges in Γ by E (Γ). An element e ∈ Γ su
h that Card (↓ e)Γ = m is saidto be at level m. The maximal elements ei = ei,mi

, where mi = Card (↓ ei)Γ of Γ are 
alled theleaves of Γ. We denote the set of those elements by L (Γ). The maximal 
hains of Γ are the 
hains(1.1) Γei,mi
= (↓ ei,mi

)Γ = {ei,0 = e0 < ei,1 < · · · < ei,mi
} , ei,mi

∈ L (Γ) .We say that Γ has height h = max (mi). The 
hildren of an element e ∈ Γ are the elements of Γat relative level 1 with respe
t to e, i.e., the maximal elements of the subset {e′ ∈ Γ, e′ > e} of Γ.De�nition 1.3. A �ne k-weighted tree γ = (Γ, w) is a tree Γ equipped with a weight fun
tion
w : E (Γ) → k with values in a �eld k, whi
h assigns an element w (←−e′e) of k to every edge ←−e′e2



of Γ, in su
h a way that w (←−−e′e1) 6= w
(←−−
e′e2

) whenever e1 and e2 are distin
t 
hildren of a sameelement e′.In what follows, we frequently 
onsider the following 
lasses of trees.De�nition 1.4. Let Γ be a rooted tree.a) If all the leaves of Γ are at the same level h ≥ 1 and if there exists a unique element ē0 ∈ Γfor whi
h Γ \ {ē0} is a nonempty disjoint union of 
hains then we say that Γ is a rake.b) If Γ \ L (Γ) is a 
hain then we say that Γ is a 
omb. Equivalently, Γ is a 
omb if and only ifevery e ∈ Γ \ L (Γ) has at most one 
hild whi
h is not a leaf of Γ.
e0 ē0A rake rooted in e0. e0A 
omb rooted in e0.1.2. Algebrai
 and analyti
 equivalen
e of 
losed embeddings.Here we brie�y dis
uss the notions of algebrai
 and analyti
 equivalen
es of 
losed embeddings ofa given a�ne algebrai
 surfa
e in an a�ne 3-spa
e.Let S be an irredu
ible a�ne surfa
e and let iP1

: S →֒ A
3
k and iP2

: S →֒ A
3
k be embeddingsof S in a same a�ne 3-spa
e as 
losed subs
hemes de�ned by polynomial equations P1 = 0 and

P2 = 0 respe
tively.De�nition 1.5. In the above setting, we say that the 
losed embeddings iP1
and iP2

are alge-brai
ally equivalent if one of the following equivalent 
onditions is satis�ed:1) There exists an automorphism Φ of A
3
k su
h that iP2

= iP1
◦ Φ.2) There exists an automorphism Φ of A3

k and a nonzero 
onstant λ ∈ k∗ su
h that Φ∗P1 = λP2.3) There exists automorphisms Φ and φ of A3
k and A1

k respe
tively su
h that P2 ◦ Φ = φ ◦ P1.1.6. Over the �eld k = C of 
omplex numbers, one 
an also 
onsider holomorphi
 automorphisms.With the notation of de�nition 1.5, two 
losed algebrai
 embeddings iP1
and iP2

of a given a�nesurfa
e S in A
3
C
are 
alled holomorphi
ally equivalent if there exists a biholomorphism Φ : A

3
C
→ A

3
Csu
h that iP2

= iP1
◦Φ. Clearly, the embeddings iP2

and iP1
are holomorphi
ally equivalent if andonly if there exists a biholomorphism Φ : A3

C
→ A3

C
su
h that Φ∗ (P1) = λP2 for a 
ertain nowherevanishing holomorphi
 fun
tion λ. Sin
e there are many non
onstant holomorphi
 fun
tions withthis property on A3

C
, Φ need not preserve the algebrai
 families of level surfa
es P1 : A3

C
→ A1

C
and

P2 : An
C
→ A1

C
. So holomorphi
 equivalen
e is a weaker requirement than algebrai
 equivalen
e.2. Danielewski surfa
esFor 
ertain authors, a Danielewski surfa
e is an a�ne surfa
e S whi
h is algebrai
ally isomorphi
to a surfa
e in C3 de�ned by an equation of the form xnz−P (y) = 0, where n ≥ 1 and P (y) ∈ C [y].These surfa
es 
ome equipped with a surje
tive morphism π = prx |S : S → A1 restri
ting to atrivial A1-bundle over the 
omplement of the origin. Moreover, if the roots y1, . . . , yr ∈ C of P (y)are simple, then the �bration π = prx |S : S → A1 fa
tors through a lo
ally trivial �ber bundle overthe a�ne line with an r -fold origin (see e.g., [5℄ and [11℄). In [8℄, the �rst author used the termDanielewski surfa
e to refer to an a�ne surfa
e S equipped with a morphism π : S → A1 whi
hfa
tors through a lo
ally trivial �ber bundle in a similar way as above. In what follows, we keepthis point of view, whi
h leads to a natural geometri
 generalisation of the surfa
es 
onstru
tedby W. Danielewski [5℄. We re
all that an A1-�bration over an integral s
heme Y is a faithfully�at (i.e., �at and surje
tive) a�ne morphism π : X → Y with generi
 �ber isomorphi
 to thea�ne line A1

K(Y ) over the fun
tion �eld K (Y ) of Y . The following de�nition is a generalisationto arbitrary base �elds k of the one introdu
ed in [8℄.3



De�nition 2.1. A Danielewski surfa
e is an integral a�ne surfa
e S de�ned over a �eld k,equipped with an A1-�bration π : S → A1
k restri
ting to a trivial A1-bundle over the 
omplementof the a k-rational point o of A1

k and su
h that the �ber π−1 (o) is redu
ed, 
onsisting of a disjointunion of a�ne lines A
1
k over k.Notation 2.2. In what follows, we �x an isomorphism A1

k ≃ Spec (k [x]) and we assume that the
k-rational point o is simply the "origin" of A1

k, that is, the 
losed point (x) of Spec (k [x]).2.3. In the following subse
tions, we re
all the 
orresponden
e between Danielewski surfa
esand weighted rooted trees established by the �rst author in [8℄ in a form appropriate to ourneeds. Although the results given in lo
. 
it. are formulated for surfa
es de�ned over a �eldof 
hara
teristi
 zero, most of them remain valid without any 
hanges over a �eld of arbitrary
hara
teristi
. We provide full proofs only when additional arguments are needed. Then we
onsider Danielewski surfa
es S with a trivial 
anoni
al sheaf ωS/k = Λ2Ω1
S/k. We 
all themspe
ial Danielewski surfa
es. We give a 
omplete 
lassi�
ation of these surfa
es in terms of theirasso
iated weighted trees.2.1. Danielewski surfa
es and weighted trees.Here we review the 
orresponden
e whi
h asso
iates to every �ne k-weighted tree γ = (Γ, w) aDanielewski surfa
e π : S (γ) → A1

k = Spec (k [x]) whi
h is the total spa
e of an A1-bundle overthe s
heme δ : X (r) → A1
k obtained from A1

k by repla
ing its origin o by r ≥ 1 k-rational points
o1, . . . , or.Notation 2.4. In what follows we denote by Ur = (Xi (r))i=1,...,r the 
anoni
al open 
overing of
X (r) by means of the subsets Xi (r) = δ−1

(

A1
k \ {o}

)

∪ {oi} ≃ A1
k.2.5. Let γ = (Γ, w) be a �ne k-weighted tree γ = (Γ, w) of height h, with leaves ei at levels ni ≤h,

i = 1, . . . , r. To every maximal sub-
hain γi = (↓ ei) of γ (see 1.2 for the notation) we asso
iate apolynomial
σi (x) =

ni−1
∑

j=0

w (←−−−−−−ei,jei,j+1)x
j ∈ k [x] , i = 1, . . . , r.We let ρ : S (γ)→ X (r) be the unique A1-bundle overX (r) whi
h be
omes trivial on the 
anoni
alopen 
overing Ur, and is de�ned by pairs of transition fun
tions

(fij , gij) =
(

xnj−ni , x−ni (σj (x)− σi (x))
)

∈ k
[

x, x−1
]2
, i, j = 1, . . . , r.This means that S (γ) is obtained by gluing n 
opies Si = Spe
 (k [x] [ui]) of the a�ne plane

A2
k over A1

k \ {o} ≃ Spe
 (k [x, x−1
]) by means of the transition isomorphisms indu
ed by the

k
[

x, x−1
]-algebras isomorphisms

k
[

x, x−1
]

[ui]
∼
→ k

[

x, x−1
]

[uj] , ui 7→ xnj−niuj + x−ni (σj (x)− σi (x)) i 6=, i, j = 1, . . . , r.This de�nition makes sense as the transition fun
tions gij satisfy the twisted 
o
y
le relation
gik = gij + xnj−nigjk in k

[

x, x−1
] for every triple of distin
t indi
es i, j and k. Sin
e γ is a�ne weighted tree, it follows that for every pair of distin
t indi
es i and j, the rational fun
tion

gij = x−ni (σj (x)− σi (x)) ∈ k
[

x, x−1
] does not extend to a regular fun
tion on A1

k. This
ondition guarantees that S (γ) is a separated s
heme, when
e an a�ne surfa
e by virtue ofFieseler's 
riterion (see proposition 1.4 in [11℄). Therefore, πγ = δ ◦ ρ : S (γ)→ A1
k = Spe
 (k [x])is a Danielewski surfa
e, the �ber π−1 (o) being the disjoint union of a�ne lines

Ci = π−1
γ (o) ∩ Si ≃ Spe
 (k [ui]) , i = 1, . . . , r.2.6. A Danielewski surfa
e π : S (γ) → A1

k above 
omes 
anoni
ally equipped with a birationalmorphism (π, ψγ) : S → A1
k × A1

k = Spe
 (k [x] [t]) restri
ting to an isomorphism over A1
k \ {o}.Indeed, this morphism 
orresponds to the unique regular fun
tion ψγ on S (γ) whose restri
tionsto the open subsets Si ≃ Spe
 (k [x] [ui]) of S are given by the polynomials

ψγ,i = xniui + σi (x) ∈ k [x] [ui] , i = 1, . . . , r.4



This fun
tion is referred to as the 
anoni
al fun
tion on S (γ). The morphism (πγ , ψγ) : S (γ)→ A2
kis 
alled the 
anoni
al birational morphism from S (γ) to A2

k.2.7. It turns out that there exists a one-to-one 
orresponden
e between pairs (S, (π, ψ)) 
onsistingof a Danielewski surfa
e π : S → A
1
k and a birational morphism (π, ψ) : S → A

2
k restri
ting to anisomorphism outside the �ber π−1 (o) and �ne k-weighted trees γ. In parti
ular, Proposition 3.4in [8℄, whi
h remains valid over arbitrary base �elds k, implies the following result.Theorem 2.8. For every pair 
onsisting of a Danielewski surfa
e π : S → A1
k and a birationalmorphism (π, ψ) : S → A1

k×A1
k restri
ting to an isomorphism over A1

k \ {o}, there exists a unique�ne k-weighted tree γ and an isomorphism φ : S
∼
→ S (γ) su
h that ψ = ψγ ◦ φ.Remark 2.9. If γ = (Γ, w) is not the trivial tree with one element then the 
anoni
al fun
tion

ψγ : S (γ) → A1
k on the 
orresponding Danielewski surfa
e π : S (γ) → A1

k is lo
ally 
onstant onthe �ber π−1 (o). It takes the same value on two distin
t irredu
ible 
omponents of π−1 (o) if andonly if the 
orresponding leaves of γ belong to a same subtree of γ rooted in an element at level
1. Sin
e every Danielewski surfa
e nonisomorphi
 to A

2
k admits a birational morphism (π, ψ) forwhi
h ψ is lo
ally 
onstant but not 
onstant on the �ber π−1 (o), it follows that every su
h surfa
e
orrespond to a tree γ with at least two elements at level 1.2.2. A1-�brations on Danielewski surfa
es.Suppose that the stru
tural A1-�bration π : S → A1

k on a Danielewski surfa
e S is unique up toautomorphisms of the base. Then a se
ond Danielewski surfa
e π′ : S′ → A1
k will be isomorphi
to S as an abstra
t surfa
e if and only if it is isomorphi
 to S as a �bered surfa
e, that is, if andonly if there exists a 
ommutative diagram

S
∼

Φ
//

π

��

S′

π′

��

A1
k

∼

φ
// A1

k ,where Φ : S
∼
→ S′ is an isomorphism and φ is an automorphism of A

1
k preserving the origin o.2.10. So it is useful to a have 
hara
terisation of those Danielewski surfa
es admitting two A1-�brations with distin
t general �bers. The �rst result toward su
h a 
lassi�
ation has been ob-tained by T. Bandman and L. Makar-Limanov [1℄ who established that a 
omplex Danielewskisurfa
e S with a trivial 
anoni
al sheaf ωS admits two A1-�brations with distin
t general �bers ifand only if it is isomorphi
 to a surfa
e SP,1 in A3

C
de�ned by the equation xz − P (y) = 0, where

P is a polynomial with simple roots. Over a �eld of 
hara
teristi
 zero, a 
omplete 
lassi�
ationhas been given by the �rst author in [8℄ and [9℄. It turns out that the main result of [9℄ remainsvalid over arbitrary base �elds. This leads to the following 
hara
terisation.Theorem 2.11. For a Danielewski surfa
e π : S → A1
k, the following are equivalent :1) S admits two A1-�brations with distin
t general �bers.2) S is isomorphi
 to a Danielewski surfa
e S (γ) de�ned by a �ne k-weighted 
omb γ = (Γ, w).3) There exists an integer h ≥ 1 and a 
olle
tion of moni
 polynomials P0, . . . , Ph−1 ∈ k [t]with simple roots ai,j ∈ k

∗, i = 0, . . . , h− 1, j = 1, . . . ,degt (Pi), su
h that S is isomorphi
 to thesurfa
e SP0,...,Ph−1
⊂ Spe
 (k [x] [y−1, . . . , yh−2] [z]) de�ned by the equations















































xz − yh−2

h−1
∏

l=0

Pl (yl−1) = 0

zyi−1 − yiyh−2

h−1
∏

l=i+1

Pl (yl−1) = 0 xyi − yi−1

i
∏

l=0

Pl (yl−1) = 0 0 ≤ i ≤ h− 2

yi−1yj − yiyj−1

j
∏

l=i+1

Pl (yl−1) = 0 0 ≤ i < j ≤ h− 25



Proof. One 
he
ks in a similar way as in the proof of Theorem 2.9 in [9℄ that a surfa
e S =
SP0,...,Ph−1

is a Danielewski surfa
e π = prx |S : S → A1
k. Furthermore, the proje
tion π′ =

prz |S : S → A1
k is a se
ond A1-�bration on S restri
ting to a trivial A1-bundle (π′)

−1 (
A1

k \ {0}
)

≃Spe
 (k [z, z−1
]

[yh−2]
) over A1

k \ {0}. So 3) implies 1). To show that 1) implies 2) we use thefollowing fa
t, whi
h is a 
onsequen
e of a result due to M.H. Gizatullin [13℄ : if a nonsingular a�nesurfa
e S de�ned over an algebrai
ally 
losed �eld k admits an A1-�bration q : S → A1
k, then this�bration is unique up to automorphisms of the base if and only if S does not admit a 
ompletion bya nonsingular proje
tive surfa
e S̄ for whi
h the boundary divisor S̄ \S is a zigzag, that is, a 
hainof nonsingular proper rational 
urves. In [8℄, the �rst author 
onstru
ted 
anoni
al 
ompletions

S̄ of a Danielewski surfa
e S (γ) de�ned by a �ne k-weighted tree γ = (Γ, w) for whi
h the dualgraph Γ′ of the boundary divisor S̄ \S (γ) is isomorphi
 to the tree obtained from Γ be deleting itsleaves and repla
ing its root by a 
hain with two elements. Clearly, S̄ \S (γ) is a zigzag if and onlyif Γ is a 
omb. The 
onstru
tion given in lo
. 
it. only depends on the existen
e of an A1-bundlestru
ture ρ : S (γ)→ X (r) on a Danielewski surfa
e S (γ). So it remains valid over an arbitrarybase �eld k. Now let S = S (γ) be a Danielewski surfa
e admitting two distin
t A1-�brations.Given an algebrai
 
losure k̄ of k, the surfa
e Sk̄ = S ×Spe
(k) Spe
 (k̄) is a Danielewski surfa
eisomorphi
 to the one de�ned by the tree γ 
onsider as a �ne k̄-weighted tree via the in
lusion
k ⊂ k̄. Sin
e every A1-�bration π : S → A1

k lifts to an A1-�bration πk̄ : Sk̄ → A1
k̄
it follows that

Sk̄ admits two A1-�brations with distin
t general �bers. So we dedu
e from Gizatullin's 
riterionabove that γ is a 
omb. Thus 1) implies 2).It remains to show that every Danielewski surfa
e π : S = S (γ) → A1
k de�ned by a �ne

k-weighted 
omb γ of height h ≥ 1 admits a 
losed embedding in an a�ne spa
e as a surfa
e
SP0,...,Ph−1

. This follows from a general 
onstru
tion des
ribed in Â�4.6 of [9℄ that 
an be simpli�edin our more restri
tive 
ontext. For the 
onvenien
e of the reader, we indi
ate below the mainsteps of the proof. If γ is a 
hain, then S (γ) is isomorphi
 to the a�ne plane A
2
k whi
h embeds in

A
h+2
k as a surfa
e SP0,...,Ph−1

for whi
h all the polynomials Pi, i = 0, . . . , h − 1 have degree one.We assume from now on that γ has at least two elements at level 1 (see Remark 2.9 above). Wedenote by e0,0 < e1,0 < · · · < eh−1,0 the elements of the sub-
hain C = Γ \L (Γ) of Γ 
onsisting ofelements of Γ whi
h are not leaves of Γ. For every l = 1, . . . , h, the elements of Γ at level l distin
tfrom el,0 are denoted by el,1, . . . , el,rl
provided that they exist. Sin
e γ is a 
omb, it follows from2.5 above that S is isomorphi
 to the surfa
e asso
iated with a 
ertain �ne k-weighted tree withthe same underlying tree Γ as γ and equipped with a weight fun
tion w su
h that w (←−−−−−−ei,0ei+1,0) = 0for every index i = 0, . . . , h−2 and su
h that w (←−−−−−−−−eh−1,0eh−1,1) = 0. We 
onsider S as an A1-bundle

ρ : S → X (r) and we denote by Si = Spe
 (k [x] [ui]) the trivialising open subsets of S over X (r).For every l = 0, . . . , h−1 and every i = 1, . . . , sl, we let τl,i (x, ui) = xui +w (←−−−−−el−1,0el,i) ∈ k [x] [ui].With this notation, the 
anoni
al fun
tion ψ on S restri
ts on an open subset Si 
orresponding toa leaf el,i of Γ at level l to the polynomial xl−1τl,i (x, ui) ∈ k [x] [ui]. Therefore, y−1 = ψ is 
onstantwith the value a0,i = w (←−−−−e0,0e1,i) ∈ k
∗ on the irredu
ible 
omponent π−1 (o) 
orresponding to aleaf e1,i, i = 1, . . . , r1, at level 1. It vanishes identi
ally on every irredu
ible 
omponent of π−1 (o)
orresponding to a leaf of γ at level l ≥ 2. More generally, dire
t 
omputations show that thereexists a unique datum 
onsisting of regular fun
tions y−1, . . . , yh−2 and yh−1 on S and polynomials

Pi ∈ k [t], i = 0, . . . , h− 1 satisfying the following 
onditions :a) For every l = 0, . . . , h − 1, and every l ≤ m ≤ h , yl−1 restri
ts on an open subset Si
orresponding to a leaf em,i of γ at level m to a polynomial yl−1,i ∈ k [x] [ui] su
h that
yl−1,i =







Ll,i (ui) mod x if m = l

al,i + xLl+1,i (ui) mod x2 if m = l + 1
ξmx

m−l−1τm,i (x, ui) + νm,ix
m−l mod xm−l+1 if m > l + 1,where Ll,i (ui) , Ll+1,i (ui) ∈ k [ui] are polynomials of degree 1, al,i, ξm ∈ k

∗ and νm,i ∈ k. Fur-thermore al,i 6= al,j for every pair of distin
t indi
es i and j.b) For every l = 0, . . . , h− 1, Pl is the unique moni
 polynomial with simple roots al,1, . . . , al,rlsu
h that x−1yl−1

∏l−1
i=0 Pi (yi−1)Pl (yl−1) is a regular fun
tion on S.6



By 
onstru
tion, these fun
tions y−1, . . . , yh−2, yh−1 = z distinguish the irredu
ible 
omponentsof the �ber π−1 (o) and indu
e 
oordinate fun
tions on them. It follows that the morphism
i = (π, y−1, . . . , yh−1, z) : S →֒ A

h+2
k is an embedding. The same argument as in the proofof Lemma 3.6 in [9℄ shows that i is a
tually a 
losed embedding whose image is 
ontained inthe surfa
e SP0,...,Ph−1

⊂ A
h+2
k de�ned in Theorem 2.11 above. One 
he
ks that the indu
edmorphism φ : S → SP0,...,Ph−1

de�nes a bije
tion between the sets of 
losed points of S and
SP0,...,Ph−1

. Furthermore, φ is also birational as y−1 indu
es an isomorphism π−1
(

A
1 \ {o}

) ∼
→

Spec
(

k
[

x, x−1
]

[y−1]
). Sin
e SP0,...,Ph−1

is nonsingular, we 
on
lude that φ an isomorphism byvirtue of Zariski Main Theorem (see e.g., 4.4.9 in [14℄). �2.3. Spe
ial Danielewski surfa
es.It follows from Adjun
tion Formula that every Danielewski surfa
e S in A3
k has a trivial 
anoni
alsheaf ωS/k = Λ2Ω1

S/k. More generally, a Danielewski surfa
e π : S → A1
k with a trivial 
anoni
alsheaf, or equivalently with a trivial sheaf of relative di�erential forms Ω1

S/A1

k

, will be 
alled spe
ial.2.12. These surfa
es 
orrespond to a distinguished 
lass of weighted trees γ. Indeed, it followsfrom the gluing 
onstru
tion given in 2.5 above that a Danielewski surfa
e S (γ) admits a nowherevanishing di�erential 2-form if and only if all the leaves of γ are at the same level. In turn, thismeans that these surfa
es S are the total spa
e of A1-bundles ρ : S → X (r) over X (r) de�ned bymeans of transition isomorphisms
τij : k

[

x, x−1
]

[ui]→ k
[

x, x−1
]

[uj] , ui 7→ uj + gij (x) , i, j = 1, . . . , r,where g = {gij}i,j ∈ C1
(

X (r) ,OX(r)

)

≃ C
[

x, x−1
]2r is a �e
h 
o
y
le with values in thesheaf OX(r) for the 
anoni
al open 
overing Ur. So they 
an be equivalently 
hara
terised amongDanielewski surfa
es by the fa
t that the underlying A1-bundle ρ : S → X (r) is a
tually thestru
tural morphism of a prin
ipal homogeneous Ga-bundle.2.13. To determine isomorphism 
lasses of spe
ial Danielewski surfa
es, we 
an exploit the fa
tthat the group Aut (X (r)) ≃ Aut (A1

k \ {o}
)

×Sr a
ts on the set PH1
(

X (r) ,OX(r)

) of isomor-phism 
lasses of A1-bundles as above. Indeed, for every φ ∈ Aut (X (r)), the image φ · [g] of a
lass [g] ∈ PH1
(

X (r) ,OX(r)

) represented by a bundle ρ : S → X (r) is the isomorphism 
lass ofthe �ber produ
t bundle pr2 : φ∗S = S ×X(r) X (r) → X (r). The following 
riterion generalisesa result of J. Wilkens [19℄.Theorem 2.14. Two spe
ial Danielewski surfa
es π1 : S1 → A1
k and π2 : S2 → A1

k with underlying
A1-bundle stru
tures ρ1 : S1 → X (r1) and ρ2 : S2 → X (r2) are isomorphi
 as abstra
t surfa
es ifand only if r1 = r2 = r and their isomorphism 
lasses in PH1

(

X (r) ,OX(r)

) belongs to the sameorbit under the a
tion of Aut (X (r)).Proof. The 
ondition guarantees that S1 and S2 are isomorphi
. Suppose 
onversely that thereexists an isomorphism Φ : S1
∼
→ S2. The divisor 
lass group of a spe
ial Danielewski surfa
e

π : S → A1
k is generated by the 
lasses of the 
onne
ted 
omponents C1, . . . , Cr of π−1 (o) modulothe relation C1+· · ·+Cr = π−1 (o) ∼ 0, when
e is isomorphi
 to Zr−1. Therefore, r1 = r2 = r for a
ertain r ≥ 1. If one of the Si's, say S1 is isomorphi
 to a surfa
e SP,1 ⊂ A3

k de�ned by the equation
xz − P (y) = 0, then the result follows from [17℄. Otherwise, we dedu
e from Theorem 2.11 thatthe A1-�brations π1 : S1 → A1

k and π2 : S2 → A1
k are unique up to automorphisms of the base.In turn, this implies that Φ indu
es an isomorphism φ : X (r)

∼
→ X (r) su
h that φ ◦ ρ1 = ρ2 ◦ Φ.Therefore, Φ : S1

∼
→ S2 fa
tors through an isomorphism of A

1-bundles φ̃ : S1
∼
→ φ∗S2, where φ∗S2denotes the the �ber produ
t A1-bundle pr2 : φ∗S2 = S2×X(r)X (r)→ X (r). This 
ompletes theproof as φ∗S2 ≃ S2. �3. Danielewski surfa
es in A3

k defined by an equation of the form xhz −Q (x, y) = 0and their automorphismsIn this se
tion, we study Danielewski surfa
es π : S → A1
k non isomorphi
 to A2

k admittinga 
losed embedding i : S →֒ A3
k in the a�ne 3-spa
e as a surfa
e SQ,h de�ned by the equation7



xhz − Q (x, y) = 0. We show that a same abstra
t Danielewski surfa
e may admit many su
h
losed embeddings. In parti
ular, we establish that S 
an be embedded as a surfa
e Sσ,h de�nedby an equation of the form xhz −
∏r

i=1 (y − σi (x)) = 0 for a suitable 
olle
tion of polynomials
σ = {σi (x)}i=1,...,r. Next we study the automorphism groups of the above surfa
es S. We showthat, in a 
losed embedding as a surfa
e Sσ,h, every automorphism of S expli
itly arises as therestri
tion of an automorphism of the ambient spa
e. We will show on the 
ontrary in the nextse
tion that it is not true for a general embedding as a surfa
e SQ,h.3.1. Danielewski surfa
es SQ,h.A surfa
e S = SQ,h in A3

k de�ned by the equation xhz − Q (x, y) = 0 is a Danielewski surfa
e
π = prx |S : S → A1

k if and only if the polynomial Q (0, y) splits with simple roots y1, . . . , yr ∈ k,where r = degy (Q (0, y)). If r = 1, then π−1 (o) ≃ A1
k and π : S → A1

k is isomorphi
 to a trivial
A1-bundle. Thus S is isomorphi
 to the a�ne plane. Otherwise, if r ≥ 2, then S is not isomorphi
to A2

k, as follows for instan
e from the fa
t that the divisor 
lass group Div (S) of S is isomorphi
to Zr−1, generated by the 
lasses of the 
onne
ted 
omponents C1, . . . , Cr of π−1 (o), with a uniquerelation C1 + . . .+ Cr = div (π∗x) ∼ 0.The above 
lass of Danielewski surfa
es 
ontains a�ne surfa
es SP,h in A3
k de�ned by an equationof the form xhz −P (y) = 0, where P (y) is a polynomial whi
h splits with simple roots y1, . . . , yrin k. Repla
ing the 
onstants yi ∈ k by suitable polynomials σi (x) ∈ k [x] leads to the followingmore general 
lass of examples.Example 3.1. Let h ≥ 1 be an integer and let σ = {σi (x)}i=1,...,r be a 
olle
tion of r ≥ 2polynomials σi (x) =

∑h−1
j=0 σi,jx

j ∈ k [x] su
h that σi (0) 6= σj (0) for every i 6= j. The surfa
e
S = Sσ,h in A3

k = Spec (k [x, y, z]) de�ned by the equation
xhz −

r
∏

i=1

(y − σi (x)) = 0is a Danielewski surfa
e π = prx |S : S → A1
k. The �ber π−1 (o) 
onsists of r 
opies Ci of the a�neline de�ned by the equations {x = 0, y = σi (0)}i=1,...,r respe
tively. For every index i = 1, . . . , r,the open subset Si = S \

⋃

j 6=i Ci of S is isomorphi
 to the a�ne plane A2
k = Spe
 (k [x, ui]), where

ui denotes the regular fun
tion on Si indu
ed by the rational fun
tion
ui = x−h (y − σi (x)) = z

∏

j 6=i

(y − σj (x))
−1
∈ k (S)on S. It follows that π : S → A

1
k fa
tors through an A

1-bundle ρ : S → X (r) isomorphi
 tothe one with transition pairs (fij , gij) =
(

1, x−h (σj (x)− σi (x))
), i, j = 1, . . . , r. The 
olle
tion

σ = {σi (x)}i=1,...,r is exa
tly the one asso
iated with the following �ne k-weighted tree γ = (Γ, w).
σ1,0

σ1,1

σ1,h−1

σ2,0

σ2,1

σ2,h−1

σr−1,0

σr−1,1

σr−1,h−1

σr,0

σr,1

σr,h−1

r

h

So S is isomorphi
 to the 
orresponding Danielewski surfa
e πγ : S (γ) → A1
k. By de�nition(see 2.6 above), the 
anoni
al fun
tion ψγ on S (γ) is the unique regular fun
tion restri
ting tothe polynomial fun
tion ψγ,i = xhui + σi (x) ∈ k [x, ui] on the trivialising open subsets Si ≃ A2

k,
i = 1, . . . , r of S (γ). So it 
oin
ides with the restri
tion of y on S under the above isomorphism. In8



the setting of Theorem 2.8, this means that γ 
orresponds to the Danielewski surfa
e S equippedwith the birational morphism prx,y : S → A2
k.It turns out that up to isomorphisms, the above 
lass of Danielewski surfa
es Sσ,h 
ontains allpossible Danielewski surfa
es SQ,h, as shown by the following result.Theorem 3.2. Let SQ,h be a Danielewski surfa
e in A3

k de�ned by the equation xhz−Q (x, y) = 0,where Q (x, y) ∈ k [x, y] is a polynomial su
h that Q (0, y) splits with r ≥ 2 simples roots in k.Then there exists a 
olle
tion σ = {σi (x)}i=1,...,r of polynomials of degrees deg (σi (x)) < h su
hthat SQ,h is isomorphi
 to the surfa
e Sσ,h de�ned by the equation xhz −
∏r

i=1 (y − σi (x)) = 0.Proof. Sin
e Q (0, y) splits with simple roots y1, . . . , yr in k, a variant of the 
lassi
al HenselLemma (see e.g., Theorem 7.18 p. 208 in [10℄) guarantees that the polynomial Q(x, y) 
an bewritten in a unique way as
Q (x, y) = R1 (x, y)

r
∏

i=1

(y − σi (x)) + xhR2 (x, y) ,where R1 (x, y) ∈ k [x, y]\
(

xhk [x, y]
) is a polynomial su
h that R1 (0, y) is a nonzero 
onstant andwhere σ = {σi (x)}i=1,...,r is a 
olle
tion of polynomials of degree stri
tly lower than h su
h that

σi (0) = yi for every index i = 1, . . . , r. Sin
e yi 6= yj for every i 6= j and R1 (0, y) is a nonzero
onstant, it follows that for every index i = 1, . . . , r, the rational fun
tion
ui = x−h (y − σi (x)) =

∏

j 6=i

(y − σj (x))
−1
R1 (x, y)

−1
(z −R2 (x, y))on SQ,h restri
ts to a regular fun
tion on the 
omplement Si in SQ,h of the irredu
ible 
omponentsof the �ber pr−1

x (0) de�ned by the equations {x = 0, y = yj}j 6=i and indu
es an isomorphism Si ≃

Spec (k [x, ui]). Therefore, the 
olle
tion σ = {σi (x)}i=1,...,r is pre
isely the one asso
iated with the�ne k-weighted rake γ = (Γ, w) with all its leaves at a same level h 
orresponding to the Danielewskisurfa
e prx : SQ,h → A1
k equipped with the birational morphism ψ = prx,y : SQ,h → A2

k (see 2.8and 2.12 above). In turn, we dedu
e from example 3.1 that the Danielewski surfa
e S (γ) asso
iatedwith γ embeds as the surfa
e Sσ,h in A3
k de�ned by the equation xhz−

∏r
i=1 (y − σi (x)) = 0. This
ompletes the proof. �De�nition 3.3. Given a Danielewski surfa
e S isomorphi
 to a 
ertain surfa
e SQ,h in A3

k, a
losed embedding is : S →֒ A3
k of S in A3

k as a surfa
e Sσ,h de�ned by the equation
xhz −

r
∏

i=1

(y − σi (x)) = 0is 
alled a standard embedding of S. We say that Sσ,h is a standard form of S in A
3
k.3.4. It follows from the above dis
ussion that every Danielewski surfa
e S isomorphi
 to a 
ertainsurfa
e SQ,h in A3

k admits a standard embedding in A3
k. Following the proof of Theorem 3.2, we
an in fa
t 
onstru
t expli
itly the isomorphisms between a Danielewski surfa
e SQ,h and one ofits standard forms Sσ,h. Let Q(x, y) = R1(x, y)

∏r
i=1 (y − σi (x))+xhR2(x, y) be as in the proof ofTheorem 3.2. Then, the endomorphism Φs of A3

k de�ned by (x, y, z) 7→ (x, y,R1 (x, y) z +R2 (x, y))indu
es an isomorphism φs between Sσ,h and SQ,h. One 
he
ks 
onversely that for every pair (f, g)of polynomials su
h that R1 (x, y) f (x, y)+xhg (x, y) = 1, the endomorphism Φs of A
3
k de�ned by

(x, y, z) 7→

(

x, y, f (x, y) z + g (x, y)

r
∏

i=1

(y − σi (x))− f (x, y)R2 (x, y)

)indu
es an isomorphism φs between SQ,h and Sσ,h su
h that φs ◦φs = idSQ,h
and φs ◦φ

s = idSσ,h
.Note that sin
eR1 (0, y) is a nonzero 
onstant, the regular fun
tion ξ = x−h(R1

∏r
i=1 (y − σi (x)))+

R2 on Sσ,h still indu
es a 
oordinate fun
tion on every irredu
ible 
omponent of the �ber π−1 (o)of the morphism π = prx : Sσ,h → A1
k, and the regular fun
tions π, y and ξ de�ne a new 
losedembedding of Sσ,h in A3

k indu
ing an isomorphism between Sσ,h and the surfa
e SQ,h. This 
an9



be interpreted by saying that a 
losed embedding iQ,h : S →֒ A3
k of a Danielewski surfa
e S in

A3
k as a surfa
e SQ,h is a twisted form of a standard embedding of S obtained by modifying thefun
tion indu
ing a 
oordinate on every irredu
ible 
omponent of the �ber π−1 (o).3.5. Using standard forms makes the study of isomorphism 
lasses of Danielewski surfa
es SQ,hsimpler. For instan
e, we have the following 
hara
terisation whi
h generalises a result due to L.Makar-Limanov [17℄ for 
omplex surfa
es SP,h de�ned by the equations xhz − P (y) = 0.Proposition 3.6. Two Danielewski surfa
es Sσ1,h1

and Sσ2,h2
in A3

k de�ned by the equations
xh1z = P1 (x, y) =

r1
∏

i=1

(y − σ1,i (x)) and xh2z = P2 (x, y) =

r2
∏

i=1

(y − σ2,i (x))are isomorphi
 if and only if h1 = h2 = h, r1 = r2 = r and there exists a triple (a, µ, τ (x)) ∈
k∗ × k∗ × k [x] su
h that P2 (ax, y) = µrP1

(

x, µ−1y + τ (x)
).Proof. The 
ondition is su�
ient. Indeed, one 
he
ks that the automorphism

(x, y, z) 7→
(

ax, µ (y − τ (x)) , µra−2z
)of A3

k indu
es an isomorphism between Sσ1,h and Sσ2,h. Conversely, suppose that S1 = Sσ1,h1and S2 = Sσ2,h2
are isomorphi
. Then h1 = h2 = h and r1 = r2 = r by virtue of Theorem2.14 above. If h = 1 then the result follows from [17℄. Otherwise, if h ≥ 2 then it follows fromTheorem 2.11 and example 3.1 above that the underlying A

1-bundle stru
tures ρ1 : S1 → X (r)and ρ2 : S2 → X (r) 
orresponding to the transition fun
tions
{

g1,ij = x−h (σ1,j (x)− σ1,i (x))
}

i,j=1,...,r
and {g2,ij = x−h (σ2,j (x)− σ2,i (x))

}

i,j=1,...,rrespe
tively are unique su
h stru
tures on S1 and S2 up to automorphisms of the base X (r).Therefore, every isomorphism Φ : S1
∼
→ S2 indu
es an automorphism φ of X (r) su
h that ρ2 ◦Φ =

φ◦ρ1. Consequently, every su
h isomorphism Φ is determined by a 
olle
tion of lo
al isomorphisms
Φi : S1,i

∼
→ S2,α(i) where α ∈ Sr, de�ned by k-algebra isomorphisms

Φ∗
i : k [x]

[

u2,α(i)

]

−→ k [x] [u1,i] , x 7→ aix, u2,α(i) 7→ λiu1,i + bi (x) , i = 1, . . . , rwhere ai, λi ∈ k∗ and where bi ∈ k [x]. These lo
al isomorphisms glue to a global one if andonly if ai = a and λi = λ for every index i = 1, . . . , r, and the relation λg1,ij (x) + bi (x) =
g2,α(i)α(j) (ax)+bj (x) holds in k [x, x−1

] for every indi
es i, j = 1, . . . , r. Sin
e the σ1,i's and σ2,i'shave degrees stri
tly lower than h, we 
on
lude that the latter 
ondition is equivalent to the fa
tthat bi (x) = b (x) for every i = 1, . . . , r and that the polynomial c (x) = σ2,α(i) (ax) − λahσ1,i (x)does not depend on the index i. Letting µ = λah and τ (x) = µ−1c (x), this means exa
tly that
P2 (ax, y) = µrP1

(

x, µ−1y + τ (x)
). �3.7. The proof above implies in parti
ular that all standard embeddings of a same Danielewskisurfa
e are algebrai
ally equivalent. It is natural to ask if a 
losed embedding iQ,h : S →֒ A3

k ofDanielewski surfa
e S as a surfa
e SQ,h is algebrai
ally equivalent to a standard one.If so, thenwe say that the embedding iQ,h is re
ti�able. The fa
t that the endomorphisms Φs and Φs of
A3

k 
onstru
ted in 3.4 are not invertible in general may lead one to suspe
t that there exists non-re
ti�able embeddings of Danielewski surfa
es nonisomorphi
 to the a�ne plane. This is a
tuallythe 
ase, and the �rst known examples have been re
ently dis
overed by G. Freudenburg andL. Moser-Jauslin [12℄. For instan
e, they established that the surfa
e S1 in A3
C
de�ned by theequation f1 = x2z − (1− x)

(

y2 − 1
)

= 0 is a non-re
ti�able embedding of a Danielewski surfa
e.Indeed, a standard form for S1 would be the Danielewski surfa
e S0 de�ned by the equation
f0 = x2z −

(

y2 − 1
)

= 0. We observe that the level surfa
e f−1
0 (1) of f0 is a singular surfa
e. Onthe other hand, all the level surfa
es of f1 are nonsingular as follows for instan
e from the Ja
obianCriterion. Therefore, 
ondition 3) in De�nition 1.5 
annot be satis�ed and so, it is impossible to�nd an automorphism of A3

C
mapping S1 isomorphi
ally onto S0.The 
lassi�
ation of these embeddings up to algebrai
 equivalen
e is a di�
ult problem ingeneral (see [18℄ for the 
ase h = r = 2). However, if k = C, the following result shows that thingsbe
ome simpler if one works in the holomorphi
 
ategory.10



Theorem 3.8. The embeddings iQ,h : S →֒ A3
C
of a Danielewski surfa
e S as a surfa
e de�ned bythe equation xhz −Q (x, y) = 0 are all analyti
ally equivalent.Proof. It su�
es to show that every embedding iQ,h is analyti
ally equivalent to a standard one

iσ,h. In view of the proof of Theorem 3.2, we 
an let Q (x, y) = R1 (x, y)
∏r

i=1 (y − σi (x)) +

xhR2(x, y). It is enough to 
onstru
t an holomorphi
 automorphism Ψ of A3
C
su
h that

Ψ∗

(

xhz −
r
∏

i=1

(y − σi (x))

)

= α
(

xhz −Q (x, y)
)for a suitable invertible holomorphi
 fun
tion α on A3

C
. We let R1 (0, y) = λ ∈ C∗ and we let

f (x, y) ∈ C [x, y] be a polynomial su
h that λ exp (xf (x, y)) ≡ R1 (x, y) mod xh. Now the resultfollows from the fa
t that the holomorphi
 automorphism Ψ of A3
C
de�ned by

Ψ (x, y, z) =

(

x, y, λ exp (xf (x, y)) z − x−h[λ exp (xf (x, y))−R1 (x, y)]

r
∏

i=1

(y − σi (x)) +R2(x, y)

)satis�es Ψ∗
(

xhz −Q (x, y)
)

= λ exp (xf (x, y))
(

xhz −
∏r

i=1 (y − σi (x))
). �Example 3.9. We observed in 3.7 that the surfa
es S0 and S1 de�ned by the equations f0 =

x2z −
(

y2 − 1
)

= 0 and f1 = x2z − (1− x)
(

y2 − 1
)

= 0 are algebrai
ally inequivalent embeddingsof a same surfa
e S. However, they are analyti
ally equivalent via the automorphism (x, y, z) 7→
(

x, y, e−xz − x−2 (e−x − 1 + x) (y2 − 1)
) of A3

C
.3.2. Automorphisms of Danielewski surfa
es SQ,h in A3

k.In [16℄ and [17℄, Makar-Limanov 
omputed the automorphism groups of surfa
es in A3 de�nedby the equation xhz − P (y) = 0, where h ≥ 1 and where P (y) is an arbitrary polynomial. Inparti
ular, he established that every automorphism of su
h a surfa
e is indu
ed by the restri
tionof an automorphism of the ambient spa
e. Re
ently, A. Cra
hiola [3℄ established that this alsoholds for surfa
es de�ned by the equations xhz − y2 − r (x) y = 0, where h ≥ 1 and where r (x) isan arbitrary polynomial su
h that r (0) 6= 0. This subse
tion is devoted to the proof of the moregeneral stru
ture Theorem 3.15 below. We begin with the 
ase of Danielewski surfa
es in standardform.Theorem 3.10. The automorphism group of a Danielewski surfa
e Sσ,h de�ned by the equation
xhz − P (x, y) = 0, where P (x, y) =

r
∏

i=1

(y − σi (x))is indu
ed by the restri
tion of an automorphism of A3
k belonging to the subgroup Gσ,h of Aut

(

A3
k

)generated by the following automorphisms:(a) ∆b (x, y, z) =
(

x, y + xhb (x) , z + x−h
(

P
(

x, y + xhb (x)
)

− P (x, y)
)), where b (x) ∈ k [x].(b) If there exists a polynomial τ (x) su
h that P (x, y + τ (x)) = P̃ (y) then the automorphisms

Ha (x, y, z) =
(

ax, y + τ (ax)− τ (x) , a−hz
), where a ∈ k∗ should be added.(
) If there exists a polynomial τ (x) su
h that P (x, y + τ (x)) = P̃ (xq0 , y), then the 
y
li
automorphisms H̃a (x, y, z) =

(

ax, y + τ (ax)− τ (x) , a−hz
), where a ∈ k∗ and aq0 = 1 should beadded.(d) If there exists a polynomial τ (x) su
h that P (x, y + τ (x)) = yiP̃ (x, ys), where i = 0, 1 and

s ≥ 2, then the 
y
li
 automorphisms Sµ (x, y, z) =
(

x, µy + (1− µ) τ (x) , µiz
), where µ ∈ k∗ and

µs = 1 should be added.(e) If 
har (k) = s > 0 and P (x, y) = P̃
(

ys − c (x)s−1
y
) for a 
ertain polynomial c (x) ∈ k [x]su
h that c (0) 6= 0, then the automorphism Tc (x, y, z) = (x, y + c (x) , z) should be added.(f ) If h = 1, then the involution I (x, y, z) = (z, y, x) should be added.Remark 3.11. Automorphisms of type a) in Theorem 3.10 
orrespond to algebrai
 a
tions ofthe additive group Ga on the surfa
e Sσ,h. More pre
isely, for every polynomial b ∈ k [x], thesubgroup {∆tb(x), t ∈ k

} of Aut (Sσ,h) is isomorphi
 to Ga, the 
orresponding Ga-a
tion on Sσ,h11



being de�ned by t ⋆ (x, y, z) = ∆tb(x) (x, y, z). Similarly, automorphisms of type b) 
orrespond toalgebrai
 a
tions of the multipli
ative group Gm.Proof. It is 
lear that every automorphism of A3
k of types (a)-(f) above leaves Sσ,h invariant, when
eindu
es an automorphism of Sσ,h. If h = 1, then the 
onverse follows from [16℄. Otherwise, if

h ≥ 2, then the same argument as the one used in the proof of Proposition 3.6 above showthat every automorphism of Sσ,h is determined by a datum AΦ = (α, µ, a, b (x)) su
h that thatthe polynomial c (x) = σα(i) (ax) − µσi (x) + xhb (x) does not depend on the index i = 1, . . . , r.Furthermore, it follows from the 
onstru
tion of the 
losed embedding of Sσ,h in A3
k given inExample 3.1 that every su
h 
olle
tion 
orrespond to an automorphism of Sσ,h indu
ed by therestri
tion of the following automorphism Ψ of A3

k:
Ψ (x, y, z) =

(

ax, µy + c (x) , a−hµrz + (ax)
−h

(

r
∏

i=1

(µy + c (x)− σi (ax))− µr
r
∏

i=1

(y − σi (x)))

)

.One 
he
ks easily using this des
ription that the 
omposition of two automorphisms Φ1 and Φ2 of
Sσ,h de�ned by data AΦ1

= (α1, µ1, a1, b1) and AΦ2
= (α2, µ2, a2, b2) is the automorphism with
orresponding datum AΦ =

(

α2 ◦ α1, µ2µ1, a2a1, a
−h
2 µ2b1 (x) + b2 (a1x)

).Clearly, automorphisms of type (a) 
oin
ide with the ones determined by dataA = (Id, 1, 1, b (x)),where b (x) ∈ k [x]. In view of the 
omposition rule above, it su�
es to 
onsider from now onautomorphisms 
orresponding to data A = (α, µ, a, 0).1Â◦) If α is trivial, then µ = 1 by virtue of Lemma 3.13 below, and so A = (Id, 1, a, 0). Then,the relation c (x) = σi (ax)− σi (x) holds for every i = 1, . . . , r.1Â◦a) If aq 6= 1 for every q = 1, . . . , h− 1, then there exists a polynomial τ (x) ∈ k [x] su
h that
σi (x) = σi (0) + τ (x) for every i = 1, . . . , r. Thus c (x) = τ (ax) − τ (x) and P (x, y + τ (x)) =

P̃ (y) =
∏r

i=1 (y − σi (0)) and the 
orresponding automorphism is of type (b).1Â◦b) If a 6= 1 but aq0 = 1 for a minimal q0 = 2, . . . , h− 1, then there exists polynomials τ (x)and σ̃i (x), i = 1, . . . , r, su
h that σi (x) = σ̃i (xq0 ) + τ (x) for every i = 1, . . . , r. So there existsa polynomial P̃ su
h that P (x, y + τ (x)) = P̃ (xq0 , y). Moreover, c (x) = τ (ax) − τ (x) and the
orresponding automorphism is of type (
).2Â◦) If α is not trivial then µs = 1. Sin
e Φ = Φ2 ◦ Φ1, where Φ1and Φ2 denote the automor-phisms with data AΦ1
= (Id, 1, a, 0) and AΦ2

= (α, µ, 1, 0) respe
tively, it su�
es to 
onsider thesituation that Φ is determined by a datum AΦ = (α, µ, 1, 0), where µ ∈ k∗ and µs = 1. So therelation σα(i) (x) = µσi (x) + c (x) holds for every i = 1, . . . , r.2Â◦a) If µs = 1 but µs′

6= 1 for every s′ = 1, . . . , s− 1, then, letting τ (x) = (1− µ)−1
c (x) and

σ̃i (x) = σi (x)− τ (x) for every i = 1, . . . , r, we arrive at the relation σ̃α(i) (x) = µσ̃i (x) for every
i = 1, . . . , r. Furthermore, if i0 is a unique �xed point of α then σ̃i0 (x) = 0 as σi0 (x) = τ (x). Sowe 
on
lude that P (x, y + τ (x)) = yiP̃ (x, ys) where i = 0, 1 and where s denotes the length ofthe nontrivial 
y
les in α. The 
orresponding automorphism is of type (d).2Â◦b) If µ = 1 then α is �xed point free by virtue of Lemma 3.13 and 
har (k) = s, where
s denotes the 
ommon length's of the 
y
les o

urring in α. Moreover, s′ · c (0) 6= 0 for every
s′ = 1, . . . , s − 1 and σim

(x) = σi1 (x) + (m− 1) · c (x) for every index im o

urring in a 
y
le
(i1, . . . , is) of length s in α. Letting r = ds, we may suppose up to a reordering that α de
omposesas the produ
t of the standard 
y
les (is+ 1, is+ 2 . . . , (i+ 1) s), where i = 0, . . . , d− 1. Letting
R (x, y) =

∏s
m=1 (y −m · c (x)) = ys − c (x)

s−1
y, we 
on
lude that

P (x, y) =

d−1
∏

i=0

R (x, y − σis (x)) = P̃
(

x, ys − c (x)
s−1

y
)for a suitable polynomial P̃ (x, y) ∈ k [x, y]. The 
orresponding automorphism is of type (e).

�3.12. In the proof of Theorem 3.10 above, we used the fa
t that every automorphism Φ of aDanielewski surfa
e S = Sσ,h, where h ≥ 2, is determined by a 
ertain datumAΦ = (α, µ, a, b (x)) ∈12



Sr × k
∗ × k∗ × k [x] for whi
h the polynomial c̃(x) = σα(i) (ax)− µσi (x) ∈ k [x] does not dependon the index i. A
tually, we needed the following more pre
ise result.Lemma 3.13. The elements in a datum AΦ = (α, µ, a, b (x)) 
orresponding to an automorphism

Φ of S satisfy the following additional properties1 ) The permutation α is either trivial or has at most a unique �xed point. If it is nontrivialthen all nontrivial 
y
les with disjoint support o

urring in a de
omposition of α have the samelength s ≥ 2.2 ) If α is trivial then µ = 1 and the 
onverse also holds provided that 
har (k) 6= s. Otherwise,if α is nontrivial and 
har (k) 6= s then µs = 1 but µs′

6= 1 for every 1 ≤ s′ < s.Proof. To simplify the notation, we let yi = σi (0) for every i = 1, . . . , r. Note that by hypothesis,
yi 6= yj for every i 6= j. If α ∈ Sr has at least two �xed points, say i0 and i1, then yi0 (1− µ) =
yi1 (1− µ) = c̃ (0), and so, µ = 1 and c̃ (0) = 0 as yi0 6= yi1 . In turn, this implies that α is trivial.Indeed, otherwise there would exist an index i su
h that α (i) 6= i but yα(i) = yi, in 
ontradi
tionwith our hypothesis. Suppose from now that α is nontrivial and let s ≥ 2 be the in�mum ofthe length's of the nontrivial 
y
les o

urring in de
omposition of α into a produ
t of 
y
les withdisjoint supports. We dedu
e that yi (1− µs) = yj (1− µs) for every pair of distin
t indi
es i and
j in the support of a same 
y
le of length s. Thus µs = 1 as yi 6= yj for every i 6= j. If µ = 1 then
s′ · c̃ (0) 6= 0 for every s′ = 1, . . . , s−1. Indeed, otherwise we would have yαs′(i) = yi +s′ · c̃ (0) = yifor every index i = 1, . . . , r whi
h is impossible sin
e α is nontrivial. In parti
ular, α is �xed-pointfree. On the other hand s · c̃ (0) = 0 as yi = yαs(i) = yi + s · c̃ (0) for every index i in the supportof a 
y
le of length s in α. This is possible if and only if the 
hara
teristi
 of the base �eld k isexa
tly s. We also 
on
lude that every 
y
le in α have length s for otherwise there would exist anindex i su
h that αs (i) 6= i but yαs(i) = yi + s · c̃ (0) = yi in 
ontradi
tion with our hypothesis.If µ 6= 1 then µs′

6= 1 for every s′ < s. Indeed, otherwise there would exist an index i su
h that
αs′

(i) 6= i but yαs′(i) = µs′

yi + c̃ (0)
∑s′−1

p=0 µ
p = yi, whi
h is impossible. The same argument alsoimplies that all the nontrivial 
y
les in α have length s. �3.14. By 
ombining Theorems 3.2 and 3.10, we obtain the following des
ription of the automor-phisms groups of Danielewski surfa
es SQ,h.Theorem 3.15. Let SQ,h be the Danielewski surfa
e in A3

k de�ned by the equation xhz−Q(x, y) =
0 and let Sσ,h be one of its standard forms. Then, every automorphism of SQ,h is of the form
Φs ◦ ψ ◦ Φs, where ψ belongs to the subgroup Gσ,h of the automorphisms group of A

3
k de�ned inTheorem 3.10 and Φs and Φs are the endomorphisms of A3

k de�ned in 3.4.3.16. We have seen in 3.7 that the embeddings iQ,h are not re
ti�able in general and so thatthe isomorphisms φs and φs do not extend to algebrai
 automorphisms of A
3
k. Therefore, in
ontrast with the 
ase of standard embeddings is for whi
h every automorphisms of a Danielewskisurfa
e S ≃ Sσ,h arises as the restri
tion of an automorphism of the ambient spa
e A3

k, the aboveresult may lead one to suspe
t that for a general embedding iQ,h of S as a surfa
e SQ,h, 
ertainautomorphisms of S do not extend to algebrai
 automorphisms A3
k. In the next se
tion we giveexamples of embeddings for whi
h this phenomenon o

urs. However, if k = C, Theorem 3.8 leadson the 
ontrary the following result.Corollary 3.17. Every algebrai
 automorphism of a Danielewski surfa
e SQ,h in A3

C
is extendableto a holomorphi
 automorphism of A

3
C
.4. Spe
ial Danielewski surfa
es and multipli
ative group a
tionsIn this se
tion, we �x a base �eld k of 
hara
teristi
 zero and we 
onsider spe
ial Danielewskisurfa
es S admitting a nontrivial a
tion of the multipli
ative group Gm = Gm,k. We establishthat every su
h surfa
e is isomorphi
 to a Danielewski surfa
e SQ,h whi
h admits a standardembedding in A3

k as a surfa
e de�ned by an equation of the form xhz − P (y) = 0 for a suitable13



polynomial P (y) ∈ k [y]. In this embedding, every multipli
ative group a
tion on S arises as therestri
tion of a linear Gm-a
tion on A3
k. We show on the 
ontrary that this is not the 
ase for ageneral embedding of S as a surfa
e SQ,h.4.1. Multipli
ative group a
tions on spe
ial Danielewski surfa
es.Every Danielewski surfa
e isomorphi
 to a surfa
e SP,h in A3

k de�ned by an equation of the form
xhz − P (y) = 0 for a 
ertain polynomial P (y) admits an nontrivial a
tion of the multipli
ativegroup Gm whi
h arises as the restri
tion of the Gm-a
tion Ψ on A3

k de�ned by Ψ (a;x, y, z) =
Ha (x, y, z) =

(

ax, y, a−hz
). In the setting of Lemma 3.13 above, the automorphisms Ha 
or-respond to data Aφa

= (1, 1, a, 0), where a ∈ k∗. Here we establish that Danielewski surfa
esisomorphi
 to a surfa
e SP,h in A
3
k are 
hara
terised by the fa
t that they admit su
h a nontrivial

Gm-a
tion.4.1. By virtue of example 3.1 above, the 
olle
tion of polynomials σi (x), i = 1, . . . , r, 
orre-sponding to a Danielewski surfa
e SP,h ⊂ A3
k is given by σi (x) = yi for every i = 1, . . . , r, where

y1, . . . , yr denote the roots of the polynomial P . In turn, we dedu
e from Theorem 2.14 and Propo-sition 3.6 above that a Danielewski surfa
e SQ,h with a standard form Sσ,h de�ned by a datum
(

r, h, σ = {σi (x)}i=1,...,r

) is isomorphi
 to a surfa
e SP,h as above if and only if there exists apolynomial τ (x) ∈ k [x] su
h that σi (x) = σi (0) + τ (x) for every i = 1, . . . , r. So we 
on
ludethat every su
h surfa
e 
orrespond to a �ne k-weighted rake γ of the following type.
y1

τ1

τh−1

y2

τ1

τh−1

yr−1

τ1

τh−1

yr

τ1

τh−1

r

h

4.2. One 
an easily dedu
e from the des
ription of the automorphism group of a Danielewskisurfa
e Sσ,h given Theorem 3.10 above that su
h a surfa
e admits a nontrivial Gm-a
tion if andonly if it is isomorphi
 to a surfa
e SP,h. More generally, we have the following result.Theorem 4.3. A spe
ial Danielewski surfa
e S admits a nontrivial a
tion of the multipli
ativegroup Gm if and only if it is isomorphi
 to a surfa
e SP,h in A3
k de�ned by the equation xhz−P (y) =

0.Proof. We may suppose that S = S (γ) is the Danielewski surfa
e asso
iated with a �ne k-weightedtree γ = (Γ, w) with r ≥ 2 elements at level 1 and with all its leaves at level h ≥ 1. We denote by
σ = {σi (x)}i=1,...,r the 
olle
tion of polynomial asso
iated with γ (see 2.5). By virtue of Theorem2.14 above, the 
olle
tion σ̃ de�ned by

σ̃i (x) = σi (x) −
1

r

r
∑

i=1

σi (x) i = 1, . . . , rleads to a Danielewski surfa
e isomorphi
 to S. So we may suppose from the beginning that
σ1 (x) + · · · + σr (x) = 0. If h = 1 then it follows that S is isomorphi
 to a surfa
e in A

3
kde�ned by an equation of the form xz − P (y) = 0, and so, the assertion follows from the abovedis
ussion. Otherwise, if h ≥ 2 then it follows from Theorem 2.11 that the stru
tural A1-�bration14



π = πγ : S = S (γ) → A1
k is unique up to automorphisms of the base. We 
onsider S as an

A1-bundle ρ : S → X (r) de�ned by the transition 
o
y
le
g =

{

gij = x−h (σj (x)− σi (x))
}

i,j=1,...,r
.The same argument as in the proof of Theorem 3.6 implies that every automorphism Φ of S isdetermined by a datum AΦ = (α, µ, a, b (x)) ∈ Sr × k

∗ × k∗ × k [x] for whi
h the polynomial
σα(i) (ax)− µσi (x) ∈ k [x] does not depend on the index i. In view of the 
omposition rule givenin the same proof, we dedu
e that an automorphism Φ of S may belong to a subgroup of Aut (S)isomorphi
 to Gm only if its asso
iated datum is of the form AΦ = (α, µ, a, 0). Suppose that thereexists a nontrivial automorphism Φ determined by su
h a datum AΦ. Then, sin
e α ∈ Sr, thereexists an integer N ≥ 1 su
h that the polynomial c (x) = σi

(

aNx
)

− µNσi (x) does not dependon the index i = 1, . . . , r. Sin
e σ1 (x) + · · · + σr (x) = 0 by hypothesis, we 
on
lude that theidentity σi

(

aNx
)

= µNσi (x) holds for every index i = 1, . . . , r. In parti
ular, it follows that
σi (0) = µNσi (0) for every index i = 1, . . . , r. Thus µN = 1 sin
e γ is a �ne k-weighted tree withat least two elements at level 1. Suppose that one of the polynomials σi is not 
onstant. Then theabove identity implies that aNp = 1 for a 
ertain integer p. Therefore, every automorphism Φ of
S with asso
iated datum (α, µ, a, 0) is 
y
li
 and Aut (S) 
an not 
ontain a subgroup isomorphi
to Gm. So, S admits a nontrivial Gm-a
tion only if the polynomials σi, i = 1, . . . , r are 
onstant.This 
ompletes the proof sin
e these �ne k-weighted trees 
orrespond to Danielewski surfa
es SP,hby virtue of 4.1 above. �4.2. Extensions of multipli
ative group a
tions on a Danielewski surfa
e.It follows from Theorem 3.10 that every spe
ial Danielewski surfa
e S equipped with a nontrivial
Gm-a
tion admits an equivariant embedding in A3

k as a surfa
e SP,h de�ned by an equation of theform xhz − P (y) = 0. In this embedding, the Gm-a
tion on S even arises as the restri
tion of alinear Gm-a
tion on A
3
k 
orresponding to automorphisms of type b) in 3.10. On the other hand, asurfa
e S isomorphi
 to a surfa
e SP,h admits 
losed embeddings iQ,h : S →֒ A3

k in A3
k as surfa
es

SQ,h de�ned by equations of the form xhz − R (x, y)P (y) = 0 (see Theorem 3.2). It is naturalto ask if there always exists Gm-a
tions on A3
k making these general embeddings equivariant.Clearly, this holds if the embedding iQ,h is algebrai
ally equivalent to a standard embedding of Sas a surfa
e SP,h. The following result shows that there exists non re
ti�able 
losed embeddings

iQ,h of S for whi
h no nontrivial Gm-a
tion on S 
an be extended to an a
tion on the ambientspa
e.Theorem 4.4. Every Danielewski surfa
e S ⊂ A3
k de�ned by the equation xhz−(1− x)P (y) = 0,where h ≥ 2 and where P (y) has r ≥ 2 simple roots, admits a nontrivial Gm-a
tion θ̃ : Gm ×

S → S whi
h is not algebrai
ally extendable to A3
k. More pre
isely, for every a ∈ k \ {0, 1} theautomorphism θ̃a = θ̃ (a, ·) of S do not extend to an algebrai
 automorphism of A3

k.Proof. The endomorphisms Φs and Φs of A
3
k de�ned by Φs (x, y, z) = (x, y, (1− x) z) and Φs (x, y, z) =

(

x, y, (
∑h−1

i=0 x
i)z + P (y)

) indu
e isomorphisms φs and φs between S and the surfa
e SP,h de�nedby the equation xhz − P (y) = 0 (see 3.4). The latter admits an a
tion θ : Gm × SP,h → SP,hof the multipli
ative group Gm de�ned by θ (a, x, y, z) = Ha (x, y, z) =
(

ax, y, a−hz
) for every

a ∈ k∗. The 
orresponding a
tion θ̃ on S is therefore de�ned by θ̃ (a, x, y, z) = θ̃a (x, y, z) =

φs ◦Ha (x, y, z) |SP,h
◦φs. Sin
e by 
onstru
tion, θ̃∗a (x) = ax for every a ∈ k∗, the assertion is a
onsequen
e of the following Lemma whi
h guarantees that the automorphisms θ̃a of S are notalgebrai
ally extendable to an automorphism of A3

k for every a ∈ k∗ \ {1}. �Lemma 4.5. If Φ is an algebrai
 automorphism of A3
k extending an automorphism of S, then

Φ∗ (x) = x.Proof. Our proof is similar to the one of Theorem 2.1 in [18℄. We let Φ be an automorphism of
A3

k extending an arbitrary automorphism of S. Sin
e f1 = xhz − (1− x)P (y) is an irredu
iblepolynomial, there exists µ ∈ k∗ su
h that Φ∗ (f1) = µf1. Therefore, for every t ∈ k, the au-tomorphism Φ indu
es an isomorphism between the level surfa
es f−1
1 (t) and f−1

1

(

µ−1t
) of f1.15



There exists an open subset U ⊂ A1
k su
h that for every t ∈ U , f−1

1 (t) is a spe
ial Danielewskisurfa
es isomorphi
 to a one de�ned by a �ne k-weighted rake γ whose underlying tree Γ is iso-morphi
 to the one asso
iated with S. Sin
e Γ is not a 
omb, it follows from Theorem 2.11 thatfor every t ∈ U , the proje
tion prx : f−1
1 (t) → A

1
C
is a unique A

1-�bration on f−1
1 (t) up to au-tomorphisms of the base. Furthermore, prx : f−1

1 (t)→ A1
k has a unique degenerate �ber, namely

pr−1
x (0). Therefore, for every t ∈ U , the image of the ideal (x, f1 − t) of k [x, y, z] by Φ∗ is 
on-tained in the ideal (x, µf1 − t) =

(

x, P (y) + µ−1t
), and so Φ∗ (x) ∈

⋂

t∈U

(

x, P (y) + µ−1t
)

= (x).Sin
e Φ is an automorphism of A3
k, we 
on
lude that there exists c ∈ k∗ su
h that Φ∗ (x) = cx.In turn, this implies that for every t, u ∈ k, Φ indu
es an isomorphism between the surfa
es

St,u and S̃t,u de�ned by the equations f1 + tx + u = xhz − (1− x)P (y) + tx + u = 0 and
f1 + µ−1ctx + µ−1u = xhz − (1− x)P (y) + µ−1ctx + µ−1u = 0 respe
tively. Sin
e deg (P ) ≥ 2there exists y0 ∈ k su
h that P ′ (y0) = 0. Note that y0 is not a root of P as these ones aresimple. We let t = −u = −P (y0). Sin
e h ≥ 2, it follows from the Ja
obian Criterion that St,u issingular, and even non normal along the nonredu
ed 
omponent of the �ber pr−1

x (0) de�ned bythe equation {x = 0; y = y0}. Therefore S̃t,u must be singular along a multiple 
omponent of the�ber pr−1
x (0). This the 
ase if and only if the polynomial P (y)− µ−1cP (y0) has a multiple root,say y1, su
h that P (y1)− µ

−1P (y0) = 0. Sin
e P (y0) 6= 0 this 
ondition is satis�ed if and only if
c = 1. This 
ompletes the proof. �Example 4.6. In parti
ular, even the involution of the surfa
e S de�ned by the equation x2z −
(1− x)P (y) = 0 indu
ed by the endomorphism J (x, y, z) = (−x, y, (1 + x) ((1 + x) z + P (y))) of
A3

k does not extend to an algebrai
 automorphism of A3
k.It turns out that this kind of phenomenon does not o

ur with additive group a
tions. Morepre
isely, we have the following result.Proposition 4.7. Let SQ,h be the Danielewski surfa
e in A3

k de�ned by the equation xhz −
Q(x, y) = 0. Then, every Ga-a
tion on SQ,h arrises as the restri
tion of a Ga-a
tion on A3

k de�nedby ∆̃ (t, x, y, z) =
(

x, y + xhb(x)t, z + x−h(Q(x, y + xhb(x)t) −Q(x, y))
)

), for a 
ertain polynomial
b (x) ∈ k[x].Proof. With the notation of Remark 3.11, it follows from Theorem 3.15 that every additive groupa
tion on SQ,h is indu
ed by the restri
tion to SQ,h of a 
olle
tion of endomorphisms of A3

k of theform δt,b = Φs ◦∆tb(x) ◦ Φs, where b ∈ k [x]. One 
he
ks that
δt,b(x, y, z) = (x, y + xhb(x)t, z + x−h(Q(x, y + xhb(x)t)−Q(x, y)) + α(x, y)(xhz −Q(x, y))),for a 
ertain polynomial α(x, y) ∈ k[x, y]. Note that if α (x, y) 6= 0, these endomorphisms δt,b donot de�ne a Ga-a
tion on A3

k. However, they indu
e an a
tion on SQ,h whi
h 
oin
ides with theone indu
ed by the Ga-a
tion ∆̃ above. �4.8. If k = C, Corollary 3.17 implies in parti
ular that every automorphism of S extends toan holomorphi
 automorphism of A3
C
. This leads the following result whi
h 
ontrasts with anexample, given by H. Derksen, F. Kutzs
hebau
h and J. Winkelmann in [6℄, of a non-extendable

C+-a
tion on an hypersurfa
e in A5
C
whi
h is even holomorphi
ally inextendable .Proposition 4.9. Every surfa
e S ⊂ A3

C
de�ned by the equation xhz − (1− x)P (y) = 0, where

h ≥ 2 and where P (y) has r ≥ 2 simple roots, admits a nontrivial C∗-a
tion whi
h is algebrai
allyinextendable but holomorphi
ally extendable to A
3
C
.Proof. We let θ̃ : C∗ × S → S be the C∗-a
tion on the surfa
e S ⊂ A3

C
de�ned by the equa-tion x2z − (1− x)P (y) = 0 
onstru
ted in the proof of Theorem 4.4. For every a ∈ C∗,the automorphism θ̃ (a, ·) of S maps a 
losed point (x, y, z) ∈ S to the point θ̃ (a, x, y, z) =

(

ax, y, a−2 (1− ax) ((1 + x) z + P (y))
). One 
he
ks that the holomorphi
 automorphism Φa of

A3
C
su
h that Φa |S= θ̃ (a, ·) is the following one:

Φa (x, y, z) =
(

ax, y, a−2e(1−a)xz + (ax)
−2
P (y)

(

e(1−a)x (x− 1)− ax+ 1
))

.16



Clearly, the holomorphi
 map Φ : C∗ × A3
C
→ A3

C
, (a, (x, y, z)) 7→ Φa (x, y, z) de�nes a C∗-a
tionon A

3
C
extending the one θ̃ on S. �Referen
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