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ON A CLASS OF DANIELEWSKI SURFACES IN AFFINE 3-SPACE

ADRIEN DUBOULOZ AND PIERRE-MARIE POLONI

ABSTRACT. In [16] and [17], L. Makar-Limanov computed the automorphism groups of surfaces
in C3 defined by the equations ™z — P (y) = 0, where n > 1 and P (y) is a nonzero polynomial.
Similar results have been obtained by A. Crachiola [3] for surfaces defined by the equations
z"z —y? — o (x)y = 0, where n > 2 and o (0) # 0, defined over an arbitrary base field. Here
we consider the more general surfaces defined by the equations z"z — Q (z,y) = 0, where n > 2
and Q (z,y) is a polynomial with coefficients in an arbitrary base field k. We characterise
among them the ones which are Danielewski surfaces in the sense of [8], and we compute their
automorphism groups. We study closed embeddings of these surfaces in affine 3-space. We
show that in general their automorphisms do not extend to the ambient space. Finally, we give
explicit examples of C*-actions on a surface in A% which can be extended holomorphically but
not algebraically to C*-actions on A(:é.

INTRODUCTION

Since they appeared in a celebrated counterexample to the Cancellation Problem due to W.
Danielewski [5], the surfaces defined by the equations 7z —y (y — 1) = 0 and 2%z —y (y — 1) =0
in C3 and their natural generalisations, such as surfaces defined by the equations 2"z — P (y) =
0, where P (y) is a nonconstant polynomial, have been studied in many different contexts. Of
particular interest is the fact that they can be equipped with nontrivial actions of the additive
group C,. The general orbits of these actions coincide with the general fibers of Al-fibrations
m: 8 — A, that is, surjective morphisms with generic fiber isomorphic to an affine line. Normal
affine surfaces S equipped with an A'-fibration 7 : S — A! can be roughly classified into two
classes according the following alternative : either w : S — Al is a unique A!-fibration on S up to
automorphisms of the base, or there exists a second Al-fibration 7’ : § — A! with general fibers
distinct from the ones of .

Due to the symmetry between the variables z and z, a surface defined by the equation zz —
P (y) = 0 admits two distinct A'-fibrations over the affine line. In contrast, it was established
by L. Makar-Limanov [17] that on a surface Sp,, defined by the equation 2"z — P (y) = 0 in C3,
where n > 2 and where P (y) is a polynomial of degree r > 2, the projection pr, : Sp, — C
is a unique A!-fibration up to automorphisms of the base. In his proof, L. Makar-Limanov used
the correspondence between algebraic C,-actions on an affine surface S and locally nilpotent
derivations of the algebra of regular functions on S. It turns out that his proof is essentially
independent of the base field k provided that we replace locally nilpotent derivations by suitable
systems of Hasse-Schmidt derivations when the characteristic of k is positive (see e.g., [3]).

The fact that an affine surface S admits a unique A'-fibration 7 : S — A! makes its study
simpler. For instance, every automorphism of S must preserve this fibration. In this context, a
result due to J. Bertin [2] asserts that the identity component of the automorphisms group of such
a surface is an algebraic pro-group obtained as an increasing union of solvable algebraic subgroups
of rank < 1. For surfaces defined by the equations 2"z — P (y) = 0 in C3, the picture has been
completed by L. Makar-Limanov [17] who gave explicit generators of their automorphisms groups.
Similar results have been obtained over arbitrary base fields by A. Crachiola [3] for surfaces defined
by the equations 2"z — y? — o (z) y = 0, where o (2) is a polynomial such that o (0) # 0.
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The latter surfaces are particular examples of a general class of Al-fibred surfaces called
Danielewski surfaces [8], that is, normal integral affine surface S equipped with an Al-fibration
7 :S — A} over an affine line with a fixed k-rational point o, such that every fiber 7=! (), where
z € A} \ {0}, is geometrically integral, and such that every irreducible component of 7! (0) is
geometrically integral. In this article, we consider Danielewski surfaces Sg ,, in A} defined by an
equation of the form 2"z — @ (z,y) = 0, where n > 2 and where Q (z,y) € k [z, y] is a polynomial
such that @ (0,y) splits with » > 2 simple roots in k. This class contains most of the surfaces
considered by L. Makar-Limanov and A. Crachiola.

The paper is organised as follows. First, we briefly recall definitions about weighted rooted
trees and the notion of equivalence of algebraic surfaces in an affine 3-space. In section 2, we recall
from [8] the main facts about Danielewski surfaces and we review the correspondence between
these surfaces and certain classes of weighted trees in a form appropriate to our needs. We also
generalise to arbitrary base fields & some results which are only stated for fields of characteristic
zero in [7] and [8]. In particular, the case of Danielewski surfaces which admit two Al-fibrations
with distinct general fibers is studied in Theorem 2.11. We show that these surfaces correspond
to Danielewski surfaces S () defined by the fine k-weighted trees v which are called combs and
we give explicit embeddings of them. This result generalises Theorem 4.2 in [9].

In section 3, we classify Danielewski surfaces Sg, in A} defined by equations of the form
2"z — Q(z,y) = 0 and determine their automorphism groups. We remark that such a surface
admits many embeddings as a surface Sg . In particular, we establish in Theorem 3.2 that
these surfaces can always be embedded as surface S, defined by an equation of the form z"z —
[Ii=; (y — i (x)) = 0 for a suitable collection of polynomials o = {0; ()},_, . We say that
these surfaces S,,;, are standard form of Danielewski surfaces Sg 5. Next, we compute ( Theorem
3.10) the automorphism groups of Danielewski surfaces in standard form. We show in particular
that any of them comes as the restriction of an algebraic automorphism of the ambient space.

Finally we consider the problem of extending automorphisms of a given Danielewski surface S¢ »
to automorphisms of the ambient space A7. We show that this is always possible in the holomorphic
category but not in the algebraic one. We give explicit examples which come from the study of
multiplicative group actions on Danielewski surfaces. For instance, we prove that every surface
S C A2 defined by the equation 2"z — (1 — x) P (y) = 0, where h > 2 and where P (y) has r > 2
simple roots, admits a nontrivial C*-action which is algebraically inextendable but holomorphically
extendable to A. In particular, even the involution of the surface S defined by the equation 2%z —
(1 —z) P (y) = 0 induced by the endomorphism J (x,y,2) = (—z,y, (1 +z) (1 +z) 2+ P (y))) of
A? does not extend to an algebraic automorphism of A3.

1. PRELIMINARIES

1.1. Basic facts on weighted rooted trees.

Definition 1.1. A ¢ree is a nonempty, finite, partially ordered set I' = (T, <) with a unique min-
imal element eg called the root, and such that for every e € I' the subset (] e)p = {e’ € T, €’ < e}
is a chain for the induced ordering.

1.2. A minimal sub-chain ¢’e — {€¢/ < e} with two elements of a tree I is called an edge of T". We
denote the set of all edges in I by E(I'). An element e € I" such that Card (] ) = m is said
to be at level m. The maximal elements e; = €; ,,,, where m; = Card (] e;);. of I are called the
leaves of T'. We denote the set of those elements by L (I'). The maximal chains of I" are the chains

(1].) Fei,mi = (l eiﬁmi)r = {6@0 =ep <1 << ei,mi}; €i.m; cL (F) .
We say that T" has height h = max (m;). The children of an element e € T" are the elements of T’

at relative level 1 with respect to e, i.e., the maximal elements of the subset {¢' € T', ¢’ > e} of T.

Definition 1.3. A fine k-weighted tree v = (I',w) is a tree I' equipped with a weight function

w : E(T') — k with values in a field k, which assigns an element w ((e’.e) of k to every edge (e’.e
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— —
of T, in such a way that w (e’el) #w (e’eg) whenever e; and ey are distinct children of a same

element ¢’.
In what follows, we frequently consider the following classes of trees.

Definition 1.4. Let I" be a rooted tree.

a) If all the leaves of I are at the same level A > 1 and if there exists a unique element g € T’
for which T'"\ {€p} is a nonempty disjoint union of chains then we say that I is a rake.

b) If T'\ L (T) is a chain then we say that I" is a comb. Equivalently, I is a comb if and only if
every e € I'\ L (T") has at most one child which is not a leaf of T.

€o €0 €o

A rake rooted in eg. A comb rooted in eg.

1.2. Algebraic and analytic equivalence of closed embeddings.
Here we briefly discuss the notions of algebraic and analytic equivalences of closed embeddings of
a given affine algebraic surface in an affine 3-space.

Let S be an irreducible affine surface and let ip, : S < A? and ip, : S < A} be embeddings
of S in a same affine 3-space as closed subschemes defined by polynomial equations P, = 0 and
P, = 0 respectively.

Definition 1.5. In the above setting, we say that the closed embeddings ip, and ip, are alge-
braically equivalent if one of the following equivalent conditions is satisfied:
1) There exists an automorphism ® of A? such that ip, = ip, o ®.
2) There exists an automorphism @ of A% and a nonzero constant A € k* such that ®*P; = \P.
3) There exists automorphisms ® and ¢ of A? and A} respectively such that P, o ® = ¢o P;.

1.6. Over the field £ = C of complex numbers, one can also consider holomorphic automorphisms.
With the notation of definition 1.5, two closed algebraic embeddings ip, and ip, of a given affine
surface S in A are called holomorphically equivalent if there exists a biholomorphism ® : A% — A2
such that ip, = ip, o ®. Clearly, the embeddings ip, and ip, are holomorphically equivalent if and
only if there exists a biholomorphism ® : A% — A2 such that ®* (P;) = AP, for a certain nowhere
vanishing holomorphic function A. Since there are many nonconstant holomorphic functions with
this property on A2, ® need not preserve the algebraic families of level surfaces P : A2 — A{ and
P, : A — Al. So holomorphic equivalence is a weaker requirement than algebraic equivalence.

2. DANIELEWSKI SURFACES

For certain authors, a Danielewski surface is an affine surface S which is algebraically isomorphic
to a surface in C? defined by an equation of the form 2"z —P (y) = 0, where n > 1 and P (y) € C[y].
These surfaces come equipped with a surjective morphism 7 = pr, |g: S — A! restricting to a
trivial Al-bundle over the complement of the origin. Moreover, if the roots y1, ..., y, € C of P (y)
are simple, then the fibration m = pr,, |s: S — A! factors through a locally trivial fiber bundle over
the affine line with an r -fold origin (see e.g., [5] and [11]). In [8], the first author used the term
Danielewski surface to refer to an affine surface S equipped with a morphism 7 : § — Al which
factors through a locally trivial fiber bundle in a similar way as above. In what follows, we keep
this point of view, which leads to a natural geometric generalisation of the surfaces constructed
by W. Danielewski [5]. We recall that an Al-fibration over an integral scheme Y is a faithfully
flat (i.e., flat and surjective) affine morphism 7 : X — Y with generic fiber isomorphic to the
affine line Ak(y) over the function field K (Y') of Y. The following definition is a generalisation
to arbitrary base fields k of the one introduced in [8].
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Definition 2.1. A Danielewski surface is an integral affine surface S defined over a field k,
equipped with an Al-fibration 7 : S — A} restricting to a trivial A'-bundle over the complement
of the a k-rational point o of A}, and such that the fiber 77! (0) is reduced, consisting of a disjoint
union of affine lines A}, over k.

Notation 2.2. In what follows, we fix an isomorphism A} ~ Spec (k [z]) and we assume that the
k-rational point o is simply the "origin" of A}, that is, the closed point (z) of Spec (k [z]).

2.3. In the following subsections, we recall the correspondence between Danielewski surfaces
and weighted rooted trees established by the first author in [8] in a form appropriate to our
needs. Although the results given in loc. cit. are formulated for surfaces defined over a field
of characteristic zero, most of them remain valid without any changes over a field of arbitrary
characteristic. We provide full proofs only when additional arguments are needed. Then we
consider Danielewski surfaces S with a trivial canonical sheaf wg/, = A2Q§ Ik We call them
special Danielewski surfaces. We give a complete classification of these surfaces in terms of their
associated weighted trees.

2.1. Danielewski surfaces and weighted trees.

Here we review the correspondence which associates to every fine k-weighted tree v = (', w) a
Danielewski surface 7 : S (y) — A} = Spec (k [z]) which is the total space of an Al-bundle over
the scheme § : X (r) — A} obtained from A} by replacing its origin o by r > 1 k-rational points
O1y...,0p.

Notation 2.4. In what follows we denote by U, = (X; (r)),_, . the canonical open covering of
X (r) by means of the subsets X; (r) = 67! (A} \ {o}) U{o;} ~ A}

2.5. Let v = (', w) be a fine k-weighted tree v = (T', w) of height h, with leaves e; at levels n; <h,

i=1,...,r. To every maximal sub-chain v; = (] e;) of v (see 1.2 for the notation) we associate a
polynomial
n;—1
o (z) = Z w(e e +1)a €klz], i=1,...,7
j=0

Welet p: S (7) — X (r) be the unique A'-bundle over X (r) which becomes trivial on the canonical
open covering U,., and is defined by pairs of transition functions

(fij» 9i5) = (:E"f_"i,:c_"i (0j () — 0y (:c))) ck [:c,x_lf, ,j=1,...,r.

This means that S () is obtained by gluing n copies S; = Spec (k [z] [u;]) of the affine plane
Af over A} \ {0} ~ Spec (k [z,z7']) by means of the transition isomorphisms induced by the
k [z, z~!]-algebras isomorphisms

koo™ fu] Sk [z,a7 ] [u], e 2™ "y + 27" (0 (@) — 04 (2)) i £ 4, =1,...,r

This definition makes sense as the transition functions g;; satisfy the twisted cocycle relation
gik = gij + & Mg in k [z, 27| for every triple of distinct indices 4, j and k. Since v is a
fine weighted tree, it follows that for every pair of distinct indices ¢ and j, the rational function
gi; = x " (0 (x) —0i(x)) € k[z,27!] does not extend to a regular function on Aj. This
condition guarantees that S () is a separated scheme, whence an affine surface by virtue of
Fieseler’s criterion (see proposition 1.4 in [11]). Therefore, 7, = dop: S (y) — A} = Spec (k [z])
is a Danielewski surface, the fiber 7=1 (0) being the disjoint union of affine lines
Ci =7, (0)NS; ~Spec (k[u]), i=1,...,r

Y

2.6. A Danielewski surface m : S (y) — A} above comes canonically equipped with a birational
morphism (7,v,) : S — A} x Aj = Spec (k [z] [t]) restricting to an isomorphism over A} \ {o}.
Indeed, this morphism corresponds to the unique regular function 1, on S () whose restrictions
to the open subsets S; ~ Spec (k [z] [u;]) of S are given by the polynomials

Uy =a"u; + o0y (x) € klz][u], i=1,...,r
4



This function is referred to as the canonical function on S (7). The morphism (m,,v.) : S (v) — A
is called the canonical birational morphism from S (v) to AZ.

2.7. Tt turns out that there exists a one-to-one correspondence between pairs (.5, (7, 1)) consisting
of a Danielewski surface 7 : S — A} and a birational morphism (7,1) : S — AZ restricting to an
isomorphism outside the fiber 7=! (0) and fine k-weighted trees v. In particular, Proposition 3.4
in [8], which remains valid over arbitrary base fields k, implies the following result.

Theorem 2.8. For every pair consisting of a Danielewski surface = : S — A} and a birational
morphism (m,1) : S — A} x A}, restricting to an isomorphism over A} \ {o}, there exists a unique
fine k-weighted tree v and an isomorphism ¢ : S = S (v) such that ¢ = Py 0 .

Remark 2.9. If v = (T',w) is not the trivial tree with one element then the canonical function
¥y : S(y) — A}, on the corresponding Danielewski surface 7 : S (y) — A} is locally constant on
the fiber 771 (0). It takes the same value on two distinct irreducible components of 7~! (o) if and
only if the corresponding leaves of v belong to a same subtree of v rooted in an element at level
1. Since every Danielewski surface nonisomorphic to A7 admits a birational morphism (mr, 1)) for
which v is locally constant but not constant on the fiber 7= (0), it follows that every such surface
correspond to a tree v with at least two elements at level 1.

2.2. Al-fibrations on Danielewski surfaces.

Suppose that the structural Al-fibration 7 : S — A on a Danielewski surface S is unique up to
automorphisms of the base. Then a second Danielewski surface 7/ : S’ — A} will be isomorphic
to S as an abstract surface if and only if it is isomorphic to S as a fibered surface, that is, if and
only if there exists a commutative diagram

S—N>S'

1~ 1
Ay — Ap,
where ® : S = S’ is an isomorphism and ¢ is an automorphism of A}C preserving the origin o.

2.10. So it is useful to a have characterisation of those Danielewski surfaces admitting two Al-
fibrations with distinct general fibers. The first result toward such a classification has been ob-
tained by T. Bandman and L. Makar-Limanov [1] who established that a complex Danielewski
surface S with a trivial canonical sheaf wg admits two Al-fibrations with distinct general fibers if
and only if it is isomorphic to a surface Sp; in A defined by the equation xz — P (y) = 0, where
P is a polynomial with simple roots. Over a field of characteristic zero, a complete classification
has been given by the first author in [8] and [9]. It turns out that the main result of [9] remains
valid over arbitrary base fields. This leads to the following characterisation.

Theorem 2.11. For a Danielewski surface ™ : S — Aj, the following are equivalent :

1) S admits two Al-fibrations with distinct general fibers.

2) S is isomorphic to a Danielewski surface S () defined by a fine k-weighted comb v = (T', w).

3) There exists an integer h > 1 and a collection of monic polynomials Py, ..., P,_1 € k[t]
with simple roots a; ; € k*,1=0,...,h—1, j=1,...,deg, (P;), such that S is isomorphic to the
surface Sp,.... .p,_, C Spec(k|x][y—1,...,yn—2][2]) defined by the equations

h—1
xz — yh72HPl (y1-1) =0
1=0
h—1 [
2Yi—1 — YiYh—2 H P (y1-1)=0 xy; — y¢71HPl (yi—1) =0 0<i<h-2
I=it1 =0
J
Yi-1Y5 — Yi¥ji—1 HPl(ylfl)ZO 0<i<j<h-2
l=it1



Proof. One checks in a similar way as in the proof of Theorem 2.9 in [9] that a surface S =
Spy....P,_, is a Danielewski surface 7 = pr, |s: S — A}c. Furthermore, the projection 7’ =
pr, |s: S — A} is a second A'-fibration on S restricting to a trivial A'-bundle ()" (A} \ {0}) ~
Spec (k [z, 271 [yn—2]) over A} \ {0}. So 3) implies 1). To show that 1) implies 2) we use the
following fact, which is a consequence of a result due to M.H. Gizatullin [13] : if a nonsingular affine
surface S defined over an algebraically closed field k£ admits an Al-fibration ¢ : S — A}, then this
fibration is unique up to automorphisms of the base if and only if .S does not admit a completion by
a nonsingular projective surface S for which the boundary divisor S\ S is a zigzag, that is, a chain
of nonsingular proper rational curves. In [8], the first author constructed canonical completions
S of a Danielewski surface S () defined by a fine k-weighted tree v = (I',w) for which the dual
graph I of the boundary divisor S\ S (7) is isomorphic to the tree obtained from I' be deleting its
leaves and replacing its root by a chain with two elements. Clearly, S\ S (7) is a zigzag if and only
if I' is a comb. The construction given in loc. cit. only depends on the existence of an Al-bundle
structure p : S () — X (r) on a Danielewski surface S (). So it remains valid over an arbitrary
base field k. Now let S = S () be a Danielewski surface admitting two distinct A!-fibrations.
Given an algebraic closure k of k, the surface S; = S X Spec(k) OPeC (l_c) is a Danielewski surface
isomorphic to the one defined by the tree v consider as a fine k-weighted tree via the inclusion
k C k. Since every Al-fibration 7 : S — A} lifts to an A'-fibration 7 : S; — Al it follows that
S} admits two Al-fibrations with distinct general fibers. So we deduce from Gizatullin’s criterion
above that v is a comb. Thus 1) implies 2).

It remains to show that every Danielewski surface m : S = S(y) — A} defined by a fine
k-weighted comb ~ of height A > 1 admits a closed embedding in an affine space as a surface
Sp,....p,_,- This follows from a general construction described in A§4.6 of [9] that can be simplified
in our more restrictive context. For the convenience of the reader, we indicate below the main
steps of the proof. If v is a chain, then S () is isomorphic to the affine plane A7 which embeds in
AZ+2 as a surface Sp,.... p, , for which all the polynomials F;, ¢ = 0,...,h — 1 have degree one.
We assume from now on that + has at least two elements at level 1 (see Remark 2.9 above). We
denote by eg o < e1,0 < --+ < ep—1,0 the elements of the sub-chain C =T\ L (T') of I" consisting of
elements of I' which are not leaves of I'. For every [ = 1,...,h, the elements of I" at level [ distinct
from e; o are denoted by e;1,..., e, provided that they exist. Since 7 is a comb, it follows from
2.5 above that S is isomorphic to the surface associated with a certain fine k-weighted tree with
the same underlying tree I as v and equipped with a weight function w such that w (€; 0€i4+1,0) = 0

for every index ¢ = 0,..., h—2 and such that w (€;,-1 gen—1.1) = 0. We consider S as an Al-bundle
p: S — X (r) and we denote by S; = Spec (k [] [u;]) the trivialising open subsets of S over X (r).
Foreveryl =0,...,h—1andeveryi=1,...,s, welet 7; (x,u;) = zu; +w (e1-1 0€1,;) € k [z] [us].

With this notation, the canonical function ¥ on S restricts on an open subset S; corresponding to
aleaf e, ; of T at level [ to the polynomial 2! =17, ; (x,u;) € k [x] [u;]. Therefore, y_; = v is constant
with the value ap; = w (g €1.;) € k* on the irreducible component 7~! (0) corresponding to a
leaf ey ;, i = 1,...,71, at level 1. It vanishes identically on every irreducible component of 7! (0)
corresponding to a leaf of v at level [ > 2. More generally, direct computations show that there
exists a unique datum consisting of regular functions y_1, ..., yn—2 and y,_1 on S and polynomials
P, ek[t],i=0,...,h— 1 satisfying the following conditions :

a) For every | = 0,...,h — 1, and every | < m < h , y;_1 restricts on an open subset S;
corresponding to a leaf e, ; of v at level m to a polynomial y;_1,; € k [z] [u;] such that

Ly (u;) mod x ifm=1
Yi—1,5 = ar; +xLiy g (u;) mod 2 fm=1[0+1
Ena™ T (2, u) 4 Vg™ mod 2™ ifm > 141,

where Ly ; (u;), Lit1, (u;) € k[u;] are polynomials of degree 1, a;;,&m € k* and vp,; € k. Fur-
thermore a;; # a; ; for every pair of distinct indices ¢ and j.
b) For every I =0, ...,h—1, P, is the unique monic polynomial with simple roots a; 1, ..., a;,
such that 2~y [[.Z¢ P (¥i—1) P (y1—1) is a regular function on S.
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By construction, these functions y_1,...,yr—2,yn—1 = z distinguish the irreducible components
of the fiber 771 (0) and induce coordinate functions on them. It follows that the morphism
i = (MY-1y--sYn—1,2) : S — AZ+2 is an embedding. The same argument as in the proof
of Lemma 3.6 in [9] shows that ¢ is actually a closed embedding whose image is contained in
the surface Sp, .. .p,_, C AZ” defined in Theorem 2.11 above. One checks that the induced
morphism ¢ : S — Sp,,.. p, , defines a bijection between the sets of closed points of S and
Spy....p,_,- Furthermore, ¢ is also birational as y_; induces an isomorphism 71 (Al \ {0}) =
Spec (k [z,x_l} [y,l]). Since Sp,,... p, , is nonsingular, we conclude that ¢ an isomorphism by
virtue of Zariski Main Theorem (see e.g., 4.4.9 in [14]). O

2.3. Special Danielewski surfaces.
It follows from Adjunction Formula that every Danielewski surface S in A} has a trivial canonical
sheaf wg/, = A*Qg /i~ More generally, a Danielewski surface  : S — A} with a trivial canonical

sheaf, or equivalently with a trivial sheaf of relative differential forms le / will be called special.

Al
2.12. These surfaces correspond to a distinguished class of weighted trees . Indeed, it follows
from the gluing construction given in 2.5 above that a Danielewski surface S () admits a nowhere
vanishing differential 2-form if and only if all the leaves of v are at the same level. In turn, this
means that these surfaces S are the total space of Al-bundles p: S — X (r) over X (r) defined by
means of transition isomorphisms

Tij :k[xv'r—l} [uz] *)k['rv'r_l} [uj]a Ui = Uj + Gij (‘r)ﬂ ,j=1,...,m

where g = {gi;},, € C' (X (r),0x()) ~ C [m,x_lfr is a Cech cocycle with values in the
sheaf O, for the canonical open covering U,.. So they can be equivalently characterised among
Danielewski surfaces by the fact that the underlying Al-bundle p : S — X (r) is actually the
structural morphism of a principal homogeneous G,-bundle.

2.13. To determine isomorphism classes of special Danielewski surfaces, we can exploit the fact
that the group Aut (X (r)) ~ Aut (A} \ {o}) x &, acts on the set PH* (X (r),Ox()) of isomor-
phism classes of Al-bundles as above. Indeed, for every ¢ € Aut (X (r)), the image ¢ - [g] of a
class [g] € PH' (X (r),Ox(y)) represented by a bundle p: S — X (r) is the isomorphism class of
the fiber product bundle pry : ¢*S = S x x(y X (r) — X (r). The following criterion generalises
a result of J. Wilkens [19].

Theorem 2.14. Two special Danielewski surfaces 1 : S1 — A}, and 7y : So — A} with underlying
Al-bundle structures p; : S1 — X (r1) and ps : So — X (o) are isomorphic as abstract surfaces if
and only if 11 = ro = r and their isomorphism classes in PH* (X (r), OX(T)) belongs to the same
orbit under the action of Aut(X (r)).

Proof. The condition guarantees that S; and Sy are isomorphic. Suppose conversely that there
exists an isomorphism ® : S; = Sy. The divisor class group of a special Danielewski surface
7: S — Al is generated by the classes of the connected components C1, ..., C, of 7~! (0) modulo
the relation C;+- - -+C,. = 71 (0) ~ 0, whence is isomorphic to Z"~1. Therefore, r; = o = r for a
certain 7 > 1. If one of the S;’s, say S is isomorphic to a surface Sp; C A} defined by the equation
xz — P (y) = 0, then the result follows from [17]. Otherwise, we deduce from Theorem 2.11 that
the Al-fibrations m : S; — A} and 7 : So — A} are unique up to automorphisms of the base.
In turn, this implies that ® induces an isomorphism ¢ : X (r) = X (r) such that ¢ o p; = pg o ®.
Therefore, ® : S; = S, factors through an isomorphism of A'-bundles ¢ : 51 = ¢*Ss, where ¢* S,
denotes the the fiber product A'-bundle pr, : ¢* S5 = S X x () X (r) — X (r). This completes the
proof as ¢*Sy ~ Ss. O

. Xr'z — X =
3. DANIELEWSKI SURFACES IN A? DEFINED BY AN EQUATION OF THE FORM z” ,y) =0
AND THEIR AUTOMORPHISMS

In this section, we study Danielewski surfaces 7 : S — A} non isomorphic to A? admitting
a closed embedding i : S < A? in the affine 3-space as a surface S defined by the equation
7



2"z — Q(z,y) = 0. We show that a same abstract Danielewski surface may admit many such

closed embeddings. In particular, we establish that S can be embedded as a surface S, j, defined
by an equation of the form z"z — [[/_; (y — 0; (z)) = 0 for a suitable collection of polynomials
o ={o;i(x)},_, - Next we study the automorphism groups of the above surfaces S. We show
that, in a closed émbedding as a surface S, ;, every automorphism of S explicitly arises as the
restriction of an automorphism of the ambient space. We will show on the contrary in the next
section that it is not true for a general embedding as a surface Sq .

3.1. Danielewski surfaces S¢ j.

A surface S = Sg,, in A} defined by the equation 2"z — Q (z,y) = 0 is a Danielewski surface
7 =pr, |s: S — Al if and only if the polynomial @ (0,y) splits with simple roots y1,...,y, € k,
where 7 = deg, (Q (0,y)). If r = 1, then 77" (0) ~ A} and 7 : S — A} is isomorphic to a trivial
Al-bundle. Thus S is isomorphic to the affine plane. Otherwise, if > 2, then S is not isomorphic
to AZ, as follows for instance from the fact that the divisor class group Div (S) of S is isomorphic
to Z"~1, generated by the classes of the connected components C1, ..., C, of 77! (0), with a unique
relation Cy + ...+ C, = div (7*z) ~ 0.

The above class of Danielewski surfaces contains affine surfaces Sp j, in A} defined by an equation
of the form 2"z — P (y) = 0, where P (y) is a polynomial which splits with simple roots y1, ..., ¥y,
in k. Replacing the constants y; € k by suitable polynomials o; () € k [z] leads to the following
more general class of examples.

Example 3.1. Let h > 1 be an integer and let o = {o; (z)},_
polynomials o; (z) = Z?;& 0, jx) € k[x] such that o; (0) # o;(0) for every i # j. The surface
S =S, in A} = Spec (k[z,y, z]) defined by the equation

~ be a collection of r > 2

T
zhz—H(yfoi(:c)) =0
i=1
is a Danielewski surface 7 = pr, |s: S — A}. The fiber 7! (0) consists of r copies C; of the affine
line defined by the equations {z = 0,y = 0; (0)},_, . respectively. For every index i =1,...,r,
the open subset S; = 5\ |J;,; C; of S is isomorphic to the affine plane A? = Spec (k [z, u;]), where
u; denotes the regular function on .S; induced by the rational function

ui=a"(y—oi(2)=z][(y—o0; ()" €k(S)
J#i
on S. It follows that 7w : S — Aj factors through an A'-bundle p : S — X (r) isomorphic to
the one with transition pairs (fi;,g:;;) = (1,27" (0 (z) — 05 (2))), 4,5 = 1,...,7. The collection
o={o;(x)},_; , isexactly the one associated with the following fine k-weighted tree v = (I', w).

.....

01,0 02,(0r—1,(0r,0

¢ v T
I T B

h

|
|
|
01,h—1 02,h—1 Or—1,h—1 Or,

® ¢ ®
L r

O
.

So S is isomorphic to the corresponding Danielewski surface 7, : S(y) — A}. By definition

(see 2.6 above), the canonical function 1, on S (v) is the unique regular function restricting to

the polynomial function ¢, ; = 2u; + o; (¥) € k [z, u;] on the trivialising open subsets S; ~ A2,

i=1,...,7of S(v). Soit coincides with the restriction of y on S under the above isomorphism. In
8



the setting of Theorem 2.8, this means that -y corresponds to the Danielewski surface S equipped
with the birational morphism pr, , : S — AZ.

It turns out that up to isomorphisms, the above class of Danielewski surfaces S, contains all
possible Danielewski surfaces S 5, as shown by the following result.

Theorem 3.2. Let Sq , be a Danielewski surface in A} defined by the equation 2"z —Q (z,y) =0,
where Q (z,y) € k[z,y] is a polynomial such that Q (0,y) splits with r > 2 simples roots in k.
Then there exists a collection o = {0 (v)},_, . of polynomials of degrees deg (o; (v)) < h such

that Sq.p, is isomorphic to the surface Sy, defined by the equation z"z —[]._, (y — o; (z)) = 0.

Proof. Since Q (0,y) splits with simple roots y1,...,y, in k, a variant of the classical Hensel
Lemma (see e.g., Theorem 7.18 p. 208 in [10]) guarantees that the polynomial Q(z,y) can be
written in a unique way as
Q(@,y) = Ri (.9 [[(v—0: (@) + 2" R (w,9),
i=1

where Ry (z,y) € k[z,y]\ (:chk: [z, y]) is a polynomial such that Ry (0,y) is a nonzero constant and
where 0 = {0; (z)},_; is a collection of polynomials of degree strictly lower than h such that
0; (0) = y; for every index ¢ = 1,...,7. Since y; # y; for every i # j and R, (0,y) is a nonzero

constant, it follows that for every index ¢ = 1,...,r, the rational function
wi=a"(@y—0i(2)=[[(-0; @) Ri(2,9)7" (z = Ra(x,y))
J#i

on Sg . restricts to a regular function on the complement S; in Sq 5, of the irreducible components
of the fiber pr;* (0) defined by the equations {z = 0,y = y; }#i and induces an isomorphism S; ~
Spec (k [x,u;]). Therefore, the collection o = {o; (x)},_; . is precisely the one associated with the
fine k-weighted rake v = (T, w) with all its leaves at a same level h corresponding to the Danielewski
surface pr, : Sgn — A} equipped with the birational morphism ¢ = Pry, S — AZ (see 2.8
and 2.12 above). In turn, we deduce from example 3.1 that the Danielewski surface S () associated
with v embeds as the surface S, 5, in A} defined by the equation 2"z —[[;_, (y — 0; (z)) = 0. This
completes the proof. O
Definition 3.3. Given a Danielewski surface S isomorphic to a certain surface Sg p, in A3, a
closed embedding i : S < A3 of S in A} as a surface S, defined by the equation
T
:chz—H(y—ai(x)) =0
i=1
is called a standard embedding of S. We say that S, is a standard form of S in A}.

3.4. It follows from the above discussion that every Danielewski surface S isomorphic to a certain
surface S, in A? admits a standard embedding in A}. Following the proof of Theorem 3.2, we
can in fact construct explicitly the isomorphisms between a Danielewski surface Sg ; and one of
its standard forms S, 5. Let Q(z,y) = Ri(z,y) [[;—; (v — 0i (z)) + 2" Ra(x, y) be as in the proof of
Theorem 3.2. Then, the endomorphism ®* of A} defined by (z,y,2) — (z,y, R1 (z,y) z + Ra (2, y))
induces an isomorphism ¢* between S, ;, and Sg 5. One checks conversely that for every pair (f, g)
of polynomials such that Ry (z,y) f (z,y) +2"g (z,y) = 1, the endomorphism ®; of A} defined by

s
(2,y,2) — (my fay)z+g@y [[w-oi(2) - f(zy) R, (w,y)>

i=1
induces an isomorphism ¢, between Sg 5 and S, p, such that ¢°o ¢, = ids, , and ¢50¢° =ids, .
Note that since Ry (0,y) is a nonzero constant, the regular function ¢ = 2 ="(Ry [[;_, (y — 0; (z)))+
Ry on S, p, still induces a coordinate function on every irreducible component of the fiber a1 (0)
of the morphism 7 = pr, : S, , — A}, and the regular functions 7, y and ¢ define a new closed
embedding of S, 5, in A} inducing an isomorphism between S, j, and the surface Sg ;. This can

9



be interpreted by saying that a closed embedding ig  : S < A3 of a Danielewski surface S in
A? as a surface S, is a twisted form of a standard embedding of S obtained by modifying the
function inducing a coordinate on every irreducible component of the fiber 771 (o).

3.5. Using standard forms makes the study of isomorphism classes of Danielewski surfaces Sg,p,
simpler. For instance, we have the following characterisation which generalises a result due to L.
Makar-Limanov [17] for complex surfaces Sp, defined by the equations 2z — P (y) = 0.

Proposition 3.6. Two Danielewski surfaces Sy, p, and Sy, b, in Ai defined by the equations
My =P (x,y) = H (y—o1i(x)) and z"2=Py(2,y) = H (y — 02, ()
i=1 i=1
are isomorphic if and only if hy = ha = h, 11 = ro = r and there exists a triple (a,p, 7 (2)) €
k* x k* x k[z] such that P (ax,y) = p"P1 (z, p~ 'y + 7 (2)).
Proof. The condition is sufficient. Indeed, one checks that the automorphism
(ZL', Y, Z) = (ax, 14 (y - T (:L')) 7#7604722)
of Ai induces an isomorphism between Sy, 5, and S,, . Conversely, suppose that S1 = Sy, 1,
and Sy = S, n, are isomorphic. Then hy = hy = h and r; = ro = r by virtue of Theorem
2.14 above. If h = 1 then the result follows from [17]. Otherwise, if h > 2 then it follows from

Theorem 2.11 and example 3.1 above that the underlying A'-bundle structures p; : S; — X (r)
and pg : So — X (r) corresponding to the transition functions

respectively are unique such structures on S; and Ss up to automorphisms of the base X (7).
Therefore, every isomorphism ® : S; = S, induces an automorphism ¢ of X (r) such that pyo® =
¢opi. Consequently, every such isomorphism & is determined by a collection of local isomorphisms
®; : S1,i = Sz a(;) where a € &, defined by k-algebra isomorphisms

, T

@: ik [ZL'] [’LLQ,Q(Z-)} —s k [SC] [ulﬁi] 5 T = a;x, U’Q,a(i) = )\iulﬁi + b1 (ZL') , 1= 1, e
where a;, \; € k* and where b; € k[z]. These local isomorphisms glue to a global one if and
only if a; = @ and \; = X for every index ¢ = 1,...,r, and the relation A\g1 ;; (z) + b; (z) =
92,a(i)a(y) (@r)+bj (z) holds in &k [z, zfl] for every indices ¢,j = 1,...,r. Since the o; ;’s and 03 ;s
have degrees strictly lower than h, we conclude that the latter condition is equivalent to the fact
that b; () = b(x) for every i = 1,...,r and that the polynomial ¢ (z) = 05 4(;) (az) — Aa"o1; (2)
does not, depend on the index i. Letting u = A\a” and 7 (x) = u~'c(z), this means exactly that
Py (az,y) = p" Py (z, 0ty + 7 (). O

3.7. The proof above implies in particular that all standard embeddings of a same Danielewski
surface are algebraically equivalent. It is natural to ask if a closed embedding igp : S — A} of
Danielewski surface S as a surface Sg ;, is algebraically equivalent to a standard one.If so, then
we say that the embedding iqg p is rectifiable. The fact that the endomorphisms ®° and ®, of
A} constructed in 3.4 are not invertible in general may lead one to suspect that there exists non-
rectifiable embeddings of Danielewski surfaces nonisomorphic to the affine plane. This is actually
the case, and the first known examples have been recently discovered by G. Freudenburg and
L. Moser-Jauslin [12]. For instance, they established that the surface S; in A defined by the
equation f; = 2%z — (1 —x) (y2 - 1) = 0 is a non-rectifiable embedding of a Danielewski surface.
Indeed, a standard form for S; would be the Danielewski surface Sy defined by the equation
fo =22z~ (y? — 1) = 0. We observe that the level surface f; ' (1) of fo is a singular surface. On
the other hand, all the level surfaces of f; are nonsingular as follows for instance from the Jacobian
Criterion. Therefore, condition 3) in Definition 1.5 cannot be satisfied and so, it is impossible to
find an automorphism of A% mapping S; isomorphically onto Sp.

The classification of these embeddings up to algebraic equivalence is a difficult problem in
general (see [18] for the case h = r = 2). However, if k = C, the following result shows that things
become simpler if one works in the holomorphic category.
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Theorem 3.8. The embeddings iq p, : S — A} of a Danielewski surface S as a surface defined by
the equation z"z — Q (x,y) = 0 are all analytically equivalent.

Proof. 1t suffices to show that every embedding ig 5 is analytically equivalent to a standard one
io,h- In view of the proof of Theorem 3.2, we can let Q (z,y) = Ri(z,y)[[._, (y —os (x)) +
2" Ry(z,y). Tt is enough to construct an holomorphic automorphism ¥ of A2 such that

& (zhz - H (y — oy (:c))) =a ("2 - Q(z,y))
i=1
for a suitable invertible holomorphic function a on A}. We let Ry (0,y) = A € C* and we let
f (z,y) € C[z,y] be a polynomial such that Aexp (zf (z,y)) = Ry (z,y) mod z". Now the result
follows from the fact that the holomorphic automorphism ¥ of A% defined by

satisfies U* (z'z — Q (z,y)) = Xexp (zf (z,9)) (z"z — I, (y — 0i (2)))- O

Example 3.9. We observed in 3.7 that the surfaces Sy and S; defined by the equations fy =
22— (y?—1) =0and f1 =22z — (1 — z) (y* — 1) = 0 are algebraically inequivalent embeddings
of a same surface S. However, they are analytically equivalent via the automorphism (z,y, z) —
(z,y,e ™z —a 2 (e — 14 a) (y> — 1)) of A}.

U (z,y,2) = (fc y Aexp (zf (2,y) z — o "Nexp (f (2,9)) = Ri (@,9)] [ [ (v — o1 (2)) + Rz, y))

3.2. Automorphisms of Danielewski surfaces Sp j, in A3.

In [16] and [17], Makar-Limanov computed the automorphism groups of surfaces in A% defined
by the equation z"z — P (y) = 0, where h > 1 and where P (y) is an arbitrary polynomial. In
particular, he established that every automorphism of such a surface is induced by the restriction
of an automorphism of the ambient space. Recently, A. Crachiola [3] established that this also
holds for surfaces defined by the equations 2"z — y? — r () y = 0, where h > 1 and where r (z) is
an arbitrary polynomial such that r (0) # 0. This subsection is devoted to the proof of the more
general structure Theorem 3.15 below. We begin with the case of Danielewski surfaces in standard
form.

Theorem 3.10. The automorphism group of a Danielewski surface Sy, defined by the equation
hz — P(z,9) =0, where P (x,y) = H(yfai (2))
i=1
is induced by the restriction of an automorphism of A3} belonging to the subgroup G, 5 of Aut (Ai)
generated by the following automorphisms:

(a) Ay (z,y,2) = (z,y +2"b(2), 2+ 27" (P (z,y + 2"b(2)) — P(x,y))), where b(z) € k [z].

(b) If there exists a polynomial T () such that P (x,y + 7 (x)) = P (y) then the automorphisms
H, (z,y,2) = (az,y + 7 (az) — 7 (x) ,a"2), where a € k* should be added.

(c) If there exists a polynomial T (x) such that P (x,y+ 7 (x)) = P (x%,y), then the cyclic
automorphisms H, (x,y, z) = (ax,y + 7 (ax) — 7 () ,a’hz), where a € k* and a? = 1 should be
added.

(d) If there ezists a polynomial T (x) such that P (z,y + 7 (z)) = y'P (x,y*), where i = 0,1 and
s > 2, then the cyclic automorphisms S, (z,y,2) = (@, py + (1 — p) 7 () , u'z), where p € k* and
w® =1 should be added.

(e) If char (k) = 5 > 0 and P (z,y) = P (ys —c(z)! y) for a certain polynomial c (z) € k [z]
such that ¢ (0) # 0, then the automorphism T, (z,y,z) = (z,y + c(x), z) should be added.

(f) If h =1, then the involution I (x,y,z) = (z,y,x) should be added.

Remark 3.11. Automorphisms of type a) in Theorem 3.10 correspond to algebraic actions of

the additive group G, on the surface S, 5. More precisely, for every polynomial b € k[z], the

subgroup {Atb(z), te k} of Aut (S,,) is isomorphic to G,, the corresponding G,-action on S,
11



being defined by t x (2,¥, 2) = Au(a) (¢,y, 2). Similarly, automorphisms of type b) correspond to
algebraic actions of the multiplicative group G,,.

Proof. Tt is clear that every automorphism of A} of types (a)-(f) above leaves S, j, invariant, whence
induces an automorphism of S, . If h = 1, then the converse follows from [16]. Otherwise, if
h > 2, then the same argument as the one used in the proof of Proposition 3.6 above show
that every automorphism of S, j is determined by a datum Ag¢ = («, i, a,b(x)) such that that
the polynomial ¢ (z) = 04 (ax) — po; (z) + 2"b () does not depend on the index i = 1,...,7.
Furthermore, it follows from the construction of the closed embedding of S, in A} given in
Example 3.1 that every such collection correspond to an automorphism of S, ; induced by the
restriction of the following automorphism ¥ of A}:

U (z,y,2) = (aw, py +c(@),a”" "z + (ax) ™" ([ (ny + c (@) — 03 (a2) = " [[ (v — o (iC)))) :
i=1 i=1

One checks easily using this description that the composition of two automorphisms ®; and &5 of

So.n defined by data Ag, = (a1, p1,a1,b1) and Ag, = (o, 12, az, b2) is the automorphism with

corresponding datum Ag = (042 o, tafil, a2aq, a;hMle (z) + by (alsc)).

Clearly, automorphisms of type (a) coincide with the ones determined by data A = (Id, 1, 1,b (z)),
where b (z) € k[z]. In view of the composition rule above, it suffices to consider from now on
automorphisms corresponding to data A = («a, p, a,0).

1A°) If o is trivial, then p = 1 by virtue of Lemma 3.13 below, and so A = (Id, 1,a,0). Then,
the relation ¢ (z) = o; (ax) — o; (z) holds for every i = 1,...,r.

1A°a) If a? # 1 for every ¢ = 1,...,h— 1, then there exists a polynomial 7 (x) € k [z] such that
o; () = 04 (0) + 7 (z) for every i = 1,...,7. Thus ¢(x) = 7 (ax) — 7 (z) and P (z,y + 7 (x)) =
P (y) = [I/—, (y — i (0)) and the corresponding automorphism is of type (b).

1A°b) Tf a # 1 but a% = 1 for a minimal ¢y = 2,...,h — 1, then there exists polynomials 7 (z)
and &; (x), i = 1,...,r, such that o; () = &; (%) + 7 (z) for every i = 1,...,7. So there exists
a polynomial P such that P (z,y+ 7 (z)) = P (z%,y). Moreover, ¢ (z) = 7 (az) — 7 (z) and the
corresponding automorphism is of type (c).

2A°) If « is not trivial then p® = 1. Since ® = ®5 o &1, where ®1and P35 denote the automor-
phisms with data A¢, = (Id, 1, a,0) and Ag, = (o, u, 1, 0) respectively, it suffices to consider the
situation that ® is determined by a datum Ag¢ = (o, p,1,0), where p € k* and p® = 1. So the
relation o4 ;) (2) = po; (x) + ¢ (x) holds for every i = 1,...,r.

2A°a) If p* =1 but p¥ # 1 for every ' = 1,...,s— 1, then, letting 7 (z) = (1 — p) ' ¢ (z) and
i (x) = 0; (x) — 7 (x) for every i = 1,...,r, we arrive at the relation G,(;) (x) = pud; (z) for every
i=1,...,r. Furthermore, if i is a unique fixed point of « then &;, (x) = 0 as oy, (x) = 7 (z). So
we conclude that P (z,y+ 7 (z)) = y*P (x,y°) where i = 0,1 and where s denotes the length of
the nontrivial cycles in a. The corresponding automorphism is of type (d).

2A°b) If 4 = 1 then « is fixed point free by virtue of Lemma 3.13 and char (k) = s, where
s denotes the common length’s of the cycles occurring in a. Moreover, s’ - ¢(0) # 0 for every
s =1,....,s—1and oy, () = 04, (x) + (m —1) - ¢(z) for every index i,, occurring in a cycle
(i1,...,1s) of length s in a. Letting r = ds, we may suppose up to a reordering that o decomposes
as the product of the standard cycles (is+1,is+2...,(i+1)s), where i = 0,...,d — 1. Letting
R(z,y) =TI} _, (y—m-c(z)) =y* —c(x)* 'y, we conclude that

d—1
P(z,y) = H R(z,y — 04 (x)) = P (:c,yS — c(:v)sf1 y)
i=0

for a suitable polynomial P (x,y) € k[z,y]. The corresponding automorphism is of type (e).
[l

3.12. In the proof of Theorem 3.10 above, we used the fact that every automorphism & of a
Danielewski surface S = S, 5, where h > 2, is determined by a certain datum Ag¢ = (o, 1, a,b (z)) €
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&, x k* x k* x k[x] for which the polynomial é(z) = 04 (ax) — po; (z) € k[x] does not depend
on the index i. Actually, we needed the following more precise result.

Lemma 3.13. The elements in a datum Age = («, p,a,b(x)) corresponding to an automorphism
D of S satisfy the following additional properties

1) The permutation « is either trivial or has at most a unique fized point. If it is nontrivial
then all nontrivial cycles with disjoint support occurring in a decomposition of o have the same
length s > 2.

2) If « is trivial then p =1 and the converse also holds provided that char (k) # s. Otherwise,
if o is nontrivial and char (k) # s then p* =1 but p* # 1 for every 1 < s' < s.

Proof. To simplify the notation, we let y; = o; (0) for every ¢ = 1,...,r. Note that by hypothesis,
y; # y; for every ¢ # j. If o € &, has at least two fixed points, say i and i1, then y;, (1 —p) =
¥i, (1 —p) =¢(0), and so, 4 =1 and ¢(0) = 0 as y;, # yi,- In turn, this implies that « is trivial.
Indeed, otherwise there would exist an index 4 such that « (i) # i but y,;) = ¥, in contradiction
with our hypothesis. Suppose from now that « is nontrivial and let s > 2 be the infimum of
the length’s of the nontrivial cycles occurring in decomposition of « into a product of cycles with
disjoint supports. We deduce that y; (1 — p*) = y; (1 — p®) for every pair of distinct indices ¢ and
Jj in the support of a same cycle of length s. Thus * =1 as y; # y; for every i # j. If u =1 then
s'-¢(0) # 0 for every s’ = 1,...,s— 1. Indeed, otherwise we would have y,,. ;) = y; +5"-¢(0) = y;
for every index 4 = 1,...,r which is impossible since « is nontrivial. In particular, « is fixed-point
free. On the other hand s-¢(0) = 0 as y; = Yas(;) = yi + 5 - ¢(0) for every index 7 in the support
of a cycle of length s in . This is possible if and only if the characteristic of the base field k is
exactly s. We also conclude that every cycle in « have length s for otherwise there would exist an
index i such that o (i) # i but yas(;) = y; +5-¢(0) = y; in contradiction with our hypothesis.
If p # 1 then usl # 1 for every s’ < s. Indeed, otherwise there would exist an index 7 such that
o (i) # i but Yos! (5) = 1 yi +¢(0) Z;:Ol (P = y;, which is impossible. The same argument also
implies that all the nontrivial cycles in « have length s. O

3.14. By combining Theorems 3.2 and 3.10, we obtain the following description of the automor-
phisms groups of Danielewski surfaces Sq p.

Theorem 3.15. Let Sg 5, be the Danielewski surface in A3 defined by the equation 2l —Q(x,y) =
0 and let S, be one of its standard forms. Then, every automorphism of Sq. is of the form
®° o) o &g, where 1) belongs to the subgroup G, p, of the automorphisms group of A% defined in
Theorem 3.10 and ®° and ®, are the endomorphisms of A} defined in 3.4.

3.16. We have seen in 3.7 that the embeddings ig  are not rectifiable in general and so that
the isomorphisms ¢° and ¢, do not extend to algebraic automorphisms of Aj. Therefore, in
contrast with the case of standard embeddings is for which every automorphisms of a Danielewski
surface S ~ S, j, arises as the restriction of an automorphism of the ambient space A3, the above
result may lead one to suspect that for a general embedding i, of S as a surface Sg , certain
automorphisms of S do not extend to algebraic automorphisms A?. In the next section we give
examples of embeddings for which this phenomenon occurs. However, if kK = C, Theorem 3.8 leads
on the contrary the following result.

Corollary 3.17. Every algebraic automorphism of a Danielewski surface Sq , in AL is extendable
to a holomorphic automorphism of A%.

4. SPECIAL DANIELEWSKI SURFACES AND MULTIPLICATIVE GROUP ACTIONS

In this section, we fix a base field k of characteristic zero and we consider special Danielewski

surfaces S admitting a nontrivial action of the multiplicative group G,, = G,, ;. We establish

that every such surface is isomorphic to a Danielewski surface Sg; which admits a standard

embedding in A} as a surface defined by an equation of the form 2z — P (y) = 0 for a suitable
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polynomial P (y) € k [y]. In this embedding, every multiplicative group action on S arises as the
restriction of a linear G,,-action on Aj. We show on the contrary that this is not the case for a
general embedding of S as a surface Sg j.

4.1. Multiplicative group actions on special Danielewski surfaces.

Every Danielewski surface isomorphic to a surface Spj, in A} defined by an equation of the form
2z — P (y) = 0 for a certain polynomial P (y) admits an nontrivial action of the multiplicative
group G,, which arises as the restriction of the G,,-action ¥ on A} defined by ¥ (a;z,y,2) =
H,(z,y,z) = (ax,y,a’hz). In the setting of Lemma 3.13 above, the automorphisms H, cor-
respond to data Ag, = (1,1,a,0), where a € k*. Here we establish that Danielewski surfaces
isomorphic to a surface Sp, in Az are characterised by the fact that they admit such a nontrivial
G,,-action.

4.1. By virtue of example 3.1 above, the collection of polynomials o; (z), ¢ = 1,...,r, corre-
sponding to a Danielewski surface Spj, C A} is given by o; (z) = y; for every i = 1,...,r, where
Y1, ...,y denote the roots of the polynomial P. In turn, we deduce from Theorem 2.14 and Propo-

sition 3.6 above that a Danielewski surface Sg ; with a standard form S, ; defined by a datum
(r, hyo={oi(z)},_; T) is isomorphic to a surface Spj as above if and only if there exists a

polynomial 7 (x) € k[z] such that o; (z) = 0; (0) + 7 () for every i = 1,...,r. So we conclude
that every such surface correspond to a fine k-weighted rake ~ of the following type.
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4.2. One can easily deduce from the description of the automorphism group of a Danielewski
surface Sy, given Theorem 3.10 above that such a surface admits a nontrivial G,,-action if and
only if it is isomorphic to a surface Sp . More generally, we have the following result.

Theorem 4.3. A special Danielewski surface S admits a nontrivial action of the multiplicative
group G, if and only if it is isomorphic to a surface Sp, in A3 defined by the equation x"z—P(y) =
0.

Proof. We may suppose that S = S () is the Danielewski surface associated with a fine k-weighted
tree v = (T, w) with r > 2 elements at level 1 and with all its leaves at level h > 1. We denote by
o = {0 (z)};—; ., the collection of polynomial associated with + (see 2.5). By virtue of Theorem
2.14 above, the collection ¢ defined by

&i(z)zoi(x)f%-zgi(x) i=1,...,r

leads to a Danielewski surface isomorphic to S. So we may suppose from the beginning that

o1(x) + - +o,(x) = 0. If h =1 then it follows that S is isomorphic to a surface in A}

defined by an equation of the form 2z — P (y) = 0, and so, the assertion follows from the above

discussion. Otherwise, if h > 2 then it follows from Theorem 2.11 that the structural A!-fibration
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T=mny:5=58() — A} is unique up to automorphisms of the base. We consider S as an
Al-bundle p: S — X (r) defined by the transition cocycle

The same argument as in the proof of Theorem 3.6 implies that every automorphism ® of S is
determined by a datum As = (o, u,a,b(z)) € &, x k* x k* x k[z] for which the polynomial
Ou(i) (ax) — po; (v) € k[z] does not depend on the index i. In view of the composition rule given
in the same proof, we deduce that an automorphism ® of S may belong to a subgroup of Aut (.5)
isomorphic to G, only if its associated datum is of the form A¢ = (o, u, a,0). Suppose that there
exists a nontrivial automorphism ® determined by such a datum Ag. Then, since a € &,., there
exists an integer N > 1 such that the polynomial ¢ (z) = o; (a™z) — pNo; (z) does not depend
on the index ¢ = 1,...,r. Since o1 () 4+ --- 4+ o, () = 0 by hypothesis, we conclude that the
identity o; (aNz) = uNo; (z) holds for every index i = 1,...,7. In particular, it follows that
0; (0) = u™No; (0) for every index i = 1,...,r. Thus g = 1 since 7 is a fine k-weighted tree with
at least two elements at level 1. Suppose that one of the polynomials ¢; is not constant. Then the
above identity implies that a’¥? = 1 for a certain integer p. Therefore, every automorphism ® of
S with associated datum (c, y, a,0) is cyclic and Aut (S) can not contain a subgroup isomorphic

to G,,. So, S admits a nontrivial G,,-action only if the polynomials o;, i = 1,...,r are constant.
This completes the proof since these fine k-weighted trees correspond to Danielewski surfaces Sp,p,
by virtue of 4.1 above. O

4.2. Extensions of multiplicative group actions on a Danielewski surface.

It follows from Theorem 3.10 that every special Danielewski surface S equipped with a nontrivial
Gp-action admits an equivariant embedding in A} as a surface Sp, defined by an equation of the
form 2"z — P (y) = 0. In this embedding, the G,,-action on S even arises as the restriction of a
linear G,,-action on A} corresponding to automorphisms of type b) in 3.10. On the other hand, a
surface S isomorphic to a surface Spj admits closed embeddings i, : S — Az in Ai as surfaces
Sq.n defined by equations of the form 2"z — R (x,y) P (y) = 0 (see Theorem 3.2). It is natural
to ask if there always exists G,,-actions on A? making these general embeddings equivariant.
Clearly, this holds if the embedding i¢ j is algebraically equivalent to a standard embedding of S
as a surface Spj. The following result shows that there exists non rectifiable closed embeddings
ig,n of S for which no nontrivial G,,-action on S can be extended to an action on the ambient
space.

Theorem 4.4. Every Danielewski surface S C A} defined by the equation 2"z — (1 —x) P (y) = 0,
where h > 2 and where P (y) has r > 2 simple roots, admits a nontrivial G,,-action 0 Gy, X
S — S which is not algebraically extendable to A}. More precisely, for every a € k\ {0,1} the
automorphism 0, = é(a, -) of S do not extend to an algebraic automorphism of A}.

Proof. The endomorphisms ®° and ®; of A? defined by ®° (z,y,2) = (z,y, (1 — z) 2) and &, (v, y, 2) =
(m, Y, (2?2_01 )2+ P (y)) induce isomorphisms ¢* and ¢, between S and the surface Spj, defined

by the equation 2"z — P (y) = 0 (see 3.4). The latter admits an action 0 : G,, x Spn — Spn
of the multiplicative group G,, defined by 0 (a,z,y,2) = H, (z,y,2) = (az,y,a*hz) for every
a € k*. The corresponding action 6 on S is therefore defined by 0 (a,z,y,2) = 0, (z,y,2) =
¢° o Hy (2,9,2) |sp, ©o¢s. Since by construction, 0% (x) = ax for every a € k*, the assertion is a
consequence of the following Lemma which guarantees that the automorphisms 0, of S are not
algebraically extendable to an automorphism of A} for every a € k* \ {1}. O

Lemma 4.5. If ® is an algebraic automorphism of A} extending an automorphism of S, then
O* (z) = x.

Proof. Our proof is similar to the one of Theorem 2.1 in [18]. We let ® be an automorphism of

A? extending an arbitrary automorphism of S. Since f; = 2"z — (1 —z) P (y) is an irreducible

polynomial, there exists p € k* such that ®* (f1) = pfi. Therefore, for every ¢t € k, the au-

tomorphism ® induces an isomorphism between the level surfaces f; ' (t) and f; ' (u='t) of f1.
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There exists an open subset U C A}, such that for every ¢ € U, f; ' (t) is a special Danielewski
surfaces isomorphic to a one defined by a fine k-weighted rake v whose underlying tree I is iso-
morphic to the one associated with S. Since I' is not a comb, it follows from Theorem 2.11 that
for every t € U, the projection pr, : f; ' (t) — Al is a unique A'-fibration on ft(t) up to au-
tomorphisms of the base. Furthermore, pr,, : fi ! (t) — A}, has a unique degenerate fiber, namely
pr; ! (0). Therefore, for every t € U, the image of the ideal (z, fi —t) of k[z,y, 2] by ®* is con-
tained in the ideal (z,puf1 —t) = (z, P (y) + p~'t), and so ®* (z) € N,y (@, P (y) + p~1t) = (2).
Since @ is an automorphism of A?, we conclude that there exists ¢ € k* such that ®* (z) = ca.
In turn, this implies that for every ¢,u € k, ® induces an isomorphism between the surfaces
Sy and gt,u defined by the equations f; +tx +u = 2"z — (1 —-2)P(y) +tr +u = 0 and
fi+ptetr +ptu =22 — (1 —2) P(y) + p~tete + p~tu = 0 respectively. Since deg (P) > 2
there exists yo € k such that P’ (yo) = 0. Note that yo is not a root of P as these ones are
simple. We let t = —u = —P (yp). Since h > 2, it follows from the Jacobian Criterion that Sy, is
singular, and even non normal along the nonreduced component of the fiber pr;* (0) defined by
the equation {x = 0; y = yo}. Therefore S’tvu must be singular along a multiple component of the
fiber pr; ! (0). This the case if and only if the polynomial P (y) — u~tcP (yo) has a multiple root,
say y1, such that P (y;) —pu~ 1P (yo) = 0. Since P (yo) # 0 this condition is satisfied if and only if
¢ = 1. This completes the proof. O

Example 4.6. In particular, even the involution of the surface S defined by the equation z2z —
(1 —2) P (y) = 0 induced by the endomorphism J (x,y,2) = (—z,y, (1 +z) (1 +z) 2+ P (y))) of
A? does not extend to an algebraic automorphism of A?.

It turns out that this kind of phenomenon does not occur with additive group actions. More
precisely, we have the following result.

Proposition 4.7. Let Sq; be the Danielewski surface in A3 defined by the equation z"z —

Q(z,y) = 0. Then, every Gq-action on Sg ., arrises as the restriction of a G,-action on A} defined
by A (t,z,y,2) = (x, y+zhb(x)t, 2 + 27 M(Q(x,y + 2"b(x)t) — Q(w, y)))), for a certain polynomial
b(z) € k[z].

Proof. With the notation of Remark 3.11, it follows from Theorem 3.15 that every additive group
action on Sg p, is induced by the restriction to Sg p, of a collection of endomorphisms of A} of the
form s, = ®° 0 Ay 0 s, where b € k[z]. One checks that

(@ y,2) = (zy+2"b(@)t, 2 +27"(Qx,y + 2"b(2)t) — Q(x,)) + alx,y) ("2 — Q(x,y))),

for a certain polynomial a(x,y) € k[z,y]. Note that if o (z,y) # 0, these endomorphisms d; ; do
not define a G,-action on A}. However, they induce an action on Sg j, which coincides with the
one induced by the G,-action A above. O

4.8. If £k = C, Corollary 3.17 implies in particular that every automorphism of S extends to
an holomorphic automorphism of A3. This leads the following result which contrasts with an
example, given by H. Derksen, F. Kutzschebauch and J. Winkelmann in [6], of a non-extendable
C-action on an hypersurface in A2 which is even holomorphically inextendable .

Proposition 4.9. Every surface S C A2 defined by the equation 2"z — (1 —x) P (y) = 0, where
h > 2 and where P (y) has r > 2 simple roots, admits a nontrivial C*-action which is algebraically
ineztendable but holomorphically extendable to Ad.

Proof. We let  : C* x S — S be the C*-action on the surface S C A2 defined by the equa-
tion 2%z — (1 —z) P(y) = 0 constructed in the proof of Theorem 4.4. For every a € C*,
the automorphism é(a,-) of S maps a closed point (z,y,z) € S to the point é(a,x,y,z) =
(az,y,a? (1 —ax) (1 +x) z+ P (y))). One checks that the holomorphic automorphism ®, of

A} such that ®, |s= 0 (a,") is the following one:

b, (z,y,2) = (a:c, y,a 2192 4 (az)"? P (y) (e(lfa)x (x—1) —azx+ 1)) .
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Clearly, the holomorphic map ® : C* x A% — A2, (a,(z,y,2)) — @, (x,y, 2) defines a C*-action
on A} extending the one 6 on S. O
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