How to compare MCMC simulation strategies? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

How to compare MCMC simulation strategies?

Résumé

In MCMC methods, such as the Metropolis-Hastings (MH) algorithm, the Gibbs sampler, or recent adaptive methods, many different strategies can be proposed, often associated in practice to unknown rates of convergence. In this paper we propose a simulation-based methodology to compare these rates of convergence, grounded on an entropy criterion computed from parallel (i.i.d.) simulated Markov chains coming from each candidate strategy. Our criterion determines the most efficient strategy among the candidates. Theoretically, we give for the MH algorithm general conditions under which its successive densities satisfy adequate smoothness and tail properties, so that this entropy criterion can be estimated consistently using kernel density estimate and Monte Carlo integration. Simulated and actual examples in moderate dimensions are provided to illustrate this approach.
Fichier principal
Vignette du fichier
Chauveau_EHM_07.pdf (539.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00019174 , version 1 (17-02-2006)
hal-00019174 , version 2 (10-05-2006)
hal-00019174 , version 3 (10-04-2007)

Identifiants

Citer

Didier Chauveau, Pierre Vandekerkhove. How to compare MCMC simulation strategies?. 2007. ⟨hal-00019174v3⟩
288 Consultations
1354 Téléchargements

Altmetric

Partager

More