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In MCMC methods, such as the Metropolis-Hastings (MH) algorithm, the Gibbs sampler, or recent adaptive methods, many different strategies can be proposed, often associated in practice to unknown rates of convergence. In this paper we propose a simulationbased methodology to compare these rates of convergence, grounded on an entropy criterion computed from parallel (i.i.d.) simulated Markov chains coming from each candidate strategy. Our criterion determines the most efficient strategy among the candidates. Theoretically, we give for the MH algorithm general conditions under which its successive densities satisfy adequate smoothness and tail properties, so that this entropy criterion can be estimated consistently using kernel density estimate and Monte Carlo integration. Simulated and actual examples in moderate dimensions are provided to illustrate this approach.

Introduction

A Markov Chain Monte Carlo (MCMC) method generates an ergodic Markov chain x (t) for which the stationary distribution is a given probability density function (pdf) f over a state space Ω ⊆ R s . In situations where direct simulation from f is not tractable, or where integrals like E f [h] = h(x)f (x) dx are not available in closed form, MCMC method is appropriate since, for T large enough, x (T ) is approximately f distributed, and E f [h] can be approximated by ergodic averages from the chain. A major context is Bayesian inference, where f is a posterior distribution, usually known only up to a multiplicative normalization constant.

The Metropolis-Hastings (MH) algorithm [START_REF] Hastings | Monte Carlo sampling methods using Markov Chains and their applications[END_REF]) is one of the most popular algorithm used in MCMC methods. Another commonly used MCMC methods is the Gibbs sampler (first introduced by [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF]; see also [START_REF] Gelfand | Sampling based approaches to calculating marginal densities[END_REF]). An account of definitions and convergence properties of Gibbs and MH algorithms can be found, e.g., in [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF].

In this paper, the theoretical developments will be focused on the MH algorithm, since the generic form of its kernel allows for a general study, as indicated below. However, our proposed methodology can be applied empirically to any MCMC algorithm (e.g., to the Gibbs sampler). It can also be applied to compare the various recent adaptive methods, which is an area of current and growing research in MCMC.

For the MH algorithm, the "target" pdf f needs to be known only up to a (normalizing) multiplicative constant. Each step is based on the generation of the proposed next move y from a general conditional density q(y|x), called the instrumental distribution or proposal density (hence a practical requirement is that simulations from q should be done easily). For a starting value x (0) ∼ p 0 , the n-th step x (n) → x (n+1) of the algorithm is as follows:

1. generate y ∼ q(•|x (n) ) 2. compute α(x (n) , y) = min 1, f (y)q(x (n) |y) f (x (n) )q(y|x (n) ) 3. take x (n+1) = y with probability α(x (n) , y), x (n) with probability 1α(x (n) , y).

Two well-known MH strategies are (i) the (so-called) Independence Sampler (IS), i.e. the MH algorithm with proposal distribution q(y|x) = q(y) independent of the current position, and (ii) the Random Walk MH algorithm (RWMH), for which the proposal is a random perturbation u of the current position, y = x (n) + u. The usual choice for the latter is a gaussian perturbation with a fixed variance matrix (e.g., in the one-dimensional case, q(y|x) is the pdf of N (x, σ 2 ) where σ 2 is the scaling parameter of the perturbation, that has to be tuned).

Ergodicity and convergence properties of the MH algorithm have been intensively studied in the literature, and conditions have been given for its geometric convergence (see, e.g., [START_REF] Mengersen | Rates of convergence of the Hastings Metropolis algorithms[END_REF], or [START_REF] Roberts | Geometric convergence and Central Limit Theorems for multidimensional Hastings and Metropolis algorithms[END_REF]). In particular, Mengersen and Tweedie proved geometric convergence in total variation norm of the IS, under the condition q(y) ≥ af (y) for some a > 0. The associated geometric rate is (1a) n , not surprisingly pointing out the link between the convergence rate and the proximity of q to f . To actually implement the MH algorithm, a virtually unlimited number of choices for the instrumental distribution can be made, with the goal of improving mixing and convergence properties of the resulting Markov chain. If one wants to use the IS strategy, selection of a reasonably "good" proposal density can be done using several procedures, among which: numerical analysis or a priori knowledge about the target to approximate the shape of f (modes,. . . ); preliminary MCMC experiment, or adaptive methods to dynamically build a proposal density on the basis of the chain(s) history [START_REF] Gelfand | On Markov chain Monte Carlo acceleration[END_REF], [START_REF] Gilks | Adaptive direction sampling[END_REF] and (1998), [START_REF] Chauveau | Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal[END_REF], [START_REF] Haario | An adaptive Metropolis Algorithm[END_REF]). If one wants to use the RWMH strategy, "good" scaling constants must be found, since the mixing depends dramatically on the variance matrix of the perturbation (see, e.g., [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF]). However, these various choices are associated in general to unknown rates of convergence, because of the complexity of the kernel, and of the associated theoretical computations of bounds.

The Gibbs sampler [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF]) is defined in a multidimensional setup (s > 1). It consists in simulating a Markov chain x (n) = (x

(n) 1 , . . . , x (n) 
s ) by simulating each (not necessarily scalar) coordinate according to a decomposition of f in a set of its full conditional distributions. In the case of a decomposition in s scalar coordinates, the nth step of the Gibbs sampler is:

1. x (n+1) 1 ∼ f 1 x 1 |x (n) 2 , . . . , x (n) s 2. x (n+1) 2 ∼ f 2 x 2 |x (n+1) 1 , x (n) 3 , . . . , x (n) s ... s. x (n+1) s ∼ f s x s |x (n+1) 1 , . . . , x (n+1) s-1 .
Their exists formally many possible decomposition of f in a set of full conditionals, each of which resulting in a different Gibbs sampler. In addition, data augmentation schemes (see [START_REF] Tanner | The calculation of posterior distributions by data augmentation[END_REF]) may be used to sample from f , which gives even more possibilities, resulting here also in several simulation strategies that lead to generally unknown rates of convergence. Hence our entropy criterion may be used also in this setup to compare different Gibbs samplers, or to compare Gibbs samplers against MH algorithms or other strategies for the same target f . The motivation of this paper is thus to propose a method to compare the rates of convergence of several candidate simulation algorithms (designed for the same target f ), solely on the basis of the simulated output from each Markov chain. Note that the question of selecting an efficient MH strategy among a family of proposal densities is the subject of recent developments (see, e.g., [START_REF] Gåsemyr | On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution[END_REF] for a heuristical solution using adaptation, [START_REF] Mira | Ordering and improving the performance of Monte Carlo Markov chains[END_REF] for an ordering of MCMC algorithms based on their asymptotic precisions, or [START_REF] Rigat | Markov chain Monte Carlo inference using parallel hierarchical sampling[END_REF]).

We suggest the use of an entropy criterion between the pdf of each algorithm at time n and the target density f . The computation of an estimate of this criterion requires the simulation, for a moderate (see later) duration n 0 , of N parallel (i.i.d.) chains coming from each strategy. This can be seen as a pre-run, to determine the best algorithm before running it for the long duration required by the MCMC methodology.

More precisely, assume we have two simulation strategies, generating two MCMC algorithms with densities denoted by p n 1 and p n 2 at time (iteration) n. For the comparison, both algorithms are started with the same initial distribution, i.e. p 0 1 = p 0 2 . Define the relative entropy of a probability density p by

H(p) = p(x) log p(x) dx. (1) 
A natural measure of the algorithm's quality is the evolution in time (n) of the Kullback-Leibler "divergence" between p n i , i = 1, 2, and f , given by

K(p n i , f ) = log p n i (x) f (x) p n i (x) dx = H(p n i ) -E p n i [log f ].
The behavior of the application n → K(p n i , f ) will be detailed in section 2. When f is analytically known, an a.s. consistent estimation of E p n i [log f ] is obtained easily by Monte-Carlo integration using N i.i.d. realisations from the algorithm at time n. Unfortunately in the MCMC setup, f is usually the posterior density of a Bayesian model, so that f (•) = Cϕ(•) where the normalization constant C cannot be computed, hence this direct estimation cannot be done. However, if we want to compare two strategies, knowing C is not needed to estimate the difference of the divergences with respect to f . Define

D(p n 1 , p n 2 , f ) = K(p n 1 , f ) -K(p n 2 , f ) = H(p n 1 ) -H(p n 2 ) + E p n 2 [log ϕ] -E p n 1 [log ϕ]. (2) 
The Kullback criterion is the only divergence insuring this property, hence it motivates our choice for applying it. One may think of other distances, such as L 1 or L 2 , but estimating such distances requires regularity conditions similar to ours (see, e.g., [START_REF] Devroye | The equivalence of weak, strong and complete convergence in L 1 for kernel density estimates[END_REF]). In addition, using other divergences would require an estimation of C by other techniques, which is typically not feasible in actual MCMC situations. Note also that the Kullback divergence is currently used as a criterion in other simulation approaches (see Douc et al. (2006)).

We propose to use the N i.i.d. simulations from each of the two strategies at time n,

(X i,n 1 , . . . , X i,n N ) i.i.d. ∼ p n i , i = 1, 2.
These simulations are first used to estimate E p n i [log ϕ] via Monte-Carlo integration. Denote these estimates by

p n i (log ϕ) N = 1 N N j=1 log ϕ(X i,n j ) a.s. -→ E p n i [log ϕ], (3) 
where the convergence comes from the strong law of large numbers.

The remaining problem is then the estimation of the entropies H(p n i ), i = 1, 2. One classical approach is to build a nonparametric kernel density estimate of p n i , and to compute the Monte-Carlo integration of this estimate. Techniques based on this approach have been suggested by [START_REF] Ahmad | A nonparametric estimation of the entropy for absolutely continuous distributions[END_REF], and studied by several authors under different assumptions (see, e.g., [START_REF] Ahmad | A nonparametric estimation of the entropy for absolutely continuous distributions[END_REF], [START_REF] Eggermont | Best asymptotic Normality of the Kernel Density Entropy Estimator for Smooth Densities[END_REF], [START_REF] Mokkadem | Estimation of the entropy and information of absolutely continuous random variables[END_REF]). Another appproach to estimate H(p n i ) in Markov chains setup has been proposed by [START_REF] Chauveau | A Monte Carlo estimation of the entropy for Markov chains[END_REF]. This approach is based on a "double" Monte-Carlo integration, and does not require the regularity assumptions needed for the kernel density methods. Unfortunately, this estimate cannot be applied in the Metropolis Hastings case since its kernel has a point mass in the current position (see Section 3).

An interesting point is that in our setup, we can "recycle" the simulations already used to compute the p n i (log ϕ) N 's. We denote in the sequel our entropy estimate of H(p n i ) by H N (p n i ), which will be defined and studied in Section 4. We define accordingly

D N (p n 1 , p n 2 , f ) = H N (p n 1 ) -H N (p n 2 ) + p n 2 (log ϕ) N -p n 1 (log ϕ) N .
Our methodology can be applied in actual situations in the following way: assume we have k possible simulation strategies s 1 , . . . , s k to sample from f , resulting in k successive densities p n i , i = 1, . . . , k, n ≥ 0. Let p 0 i = p 0 be the common initial distribution for the k algorithms. The determination of the best algorithm among the k candidates can be done using the steps below:

1. select the best strategy s b between s 1 and s 2 , on the basis of the sign of (the plot of) n → D N (p n 1 , p n 2 , f ), for n = 1, . . . , n 0 , where n 0 is the simulation duration (disscussed below); 2. store the sequence of estimates {H N (p n b )p n b (log ϕ) N } 1≤n≤n 0 ;

3. for i = 3, . . . , k, (a) select the best strategy between s b and s i , as in step 1. Notice that the computation of

D N (p n b , p n i , f ) just requires now that of {H N (p n i ) - p n i (log ϕ) N } 1≤n≤n 0 ; (b) update b and the sequence {H N (p n b ) -p n b (log ϕ) N } 1≤n≤n 0 .
In practice, n 0 can be chosen small or moderate in comparison with the duration for which the best strategy will finally be simulated to compute the desired estimates (see standard MCMC setup). Actually, a "good" choice for n 0 can be determined data-driven, by computing, say, D N (p n 1 , p n 2 , f ) up to its stabilization around zero. This is a way to avoid comparing the strategies only in their transient phases, but instead to capture the difference between the entropy contraction rate of each strategy. It is also important to notice that often the time of this stabilization around zero is a good indication of the convergence diagnostic of the compared MCMC strategies, even if there is always a possibility that both algorithms are stabilized in a transient phase.

For instance, for the one or two dimensional toy examples simulated in Section 5, we have observed that values of n 0 ≤ 1000 are often sufficient (this depends obviously on the performances of the competing strategies). For more realistic models in moderate dimension, comparisons during about 5000 iterations have been necessary to compare the strategies (see Section 5).

Storing at each step the sequence of estimates of the best strategy {H N (p n b )p n b (log ϕ) N } 1≤n≤n 0 clearly saves computing time; the total number of simulations required is thus N × k × n 0 . Concerning the computer investment, a C program and R graphical output for doing the parallel (i.i.d.) simulations together with entropy estimation for a generic MCMC algorithm is available from the first author as a starting point.

As stated previously, the technical part of the paper focus on the MH algorithm. Section 2 outlines some links between ergodicity and convergence to zero of K(p n , f ) as n → ∞. In Section 3, we establish assumptions on the proposal density q, f and the initial density p 0 to insure that, at each time n, adequate smoothness conditions hold for the successive densities p n , n ≥ 0. These conditions are stated for the general (multi-dimensional) case, and detailed precisely in the Appendix for the one-dimensional situation, for which practical examples are given. In Section 4, these conditions are used to define an estimate of H(p n ) on the basis of the i.i.d. simulation output. Finally, Section 5 illustrates the behavior of our methodology for synthetic one and two-dimensional examples.

We provide in Section 4 theoretical conditions under which our criterion is proved to converge, and check in the appendix that these conditions are satisfied in some classical simple situations, to show that it can reasonably be expected to be a good empirical indicator in general situations for which the technical conditions are hard to verify. However, it is important to insist on the fact that, from the methodological point of view, our comparison criterion may be applied to far more general MCMC situations than the MH algorithm. For example, the homogeneous Markov property of the simulated processes does not play any role in the convergence of the entropy estimates of H(p n i ), since these estimates are based on i.i.d. copies at time n. Hence our methodology may be applied to compare the different adaptive sampling schemes proposed in recent literature (see, e.g., [START_REF] Haario | An adaptive Metropolis Algorithm[END_REF], [START_REF] Atchadé | On adaptive Markov chain Monte Carlo algorithms[END_REF], [START_REF] Pasarica | Adaptively scaling the Metropolis algorithm using squared jumped distance[END_REF]). Indeed, we empirically used a preliminary version of this criterion to evaluate the adaptive MCMC method proposed in [START_REF] Chauveau | Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal[END_REF], and we apply it successfully in Section 5 to another adaptive MH algorithm.

Kullback divergence to stationarity

In this section we show a property of the evolution in time of the Kullback-Leibler divergence between the distibutions p n of the MH algorithm and the target distribution f . It has been proved (see, e.g., [START_REF] Miclo | Remarques sur l'hypercontractivité et l'évolution de l'entropie des chaînes de Markov finies[END_REF]) that for countable discrete Markov chains, the Kullback-Leibler divergence between the measure at time n and the stationary measure with density f (also denoted f ) decreases with time, i.e. that K(mP, f ) ≤ K(m, f ), where mP is the transportation of a measure m with the Markov kernel P , defined by mP (•) = m(dx)P (x, •).

We denote in the sequel the supremum norm of a real-valued function ϕ by

||ϕ|| ∞ := sup x∈Ω |ϕ(x)|. (4) 
We first recall a result due to [START_REF] Holden | Geometric Convergence of the Metropolis-Hastings Simulation Algorithm[END_REF] assessing the geometric convergence of the MH algorithm under a uniform minoration condition:

If there exists a ∈ (0, 1) such that q(y|x) ≥ af (y) for all x, y ∈ Ω, then:

∀y ∈ Ω, p n (y) f (y) -1 ≤ (1 -a) n p 0 f -1 ∞ . (5) 
We use this result to show that the Kullback-Leibler divergence between p n and f decreases geometrically fast in this case:

Proposition 1 If the proposal density of the Metropolis-Hastings algorithm satifies q(y|x) ≥ af (y), for all x, y ∈ Ω, and a ∈ (0, 1), then

K(p n , f ) ≤ κρ n (1 + κρ n ), (6) 
where κ = ||p 0 /f -1|| ∞ > 0, and ρ = (1a).

Proof. Using equation 5, we have:

K(p n , f ) = log p n (y) f (y) p n (y) dy ≤ log p n (y) f (y) -1 + 1 p n (y) f (y) -1 + 1 f (y) dy ≤ log(κρ n + 1)(κρ n + 1) ≤ κρ n (κρ n + 1).
More generally, the question of the convergence in entropy of a Markov process is an active field of current research; see, e.g., [START_REF] Ball | Entropy jumps in the presence of a spectral gap[END_REF][START_REF] Moral | Contraction properties of Markov kernels[END_REF], and [START_REF] Chauveau | A Monte Carlo estimation of the entropy for Markov chains[END_REF].

Smoothness of MCMC algorithms densities

For estimating the entropy of a MCMC algorithm successive densities p n , n ≥ 0, we have to check that appropriate smoothness and tails technical conditions on these successive densities hold. In our setup, it appears tractable to apply results on entropy estimation based on a Lipschitz condition. Remember that a function

ϕ : Ω → R is called c-Lipschitz if there exists a constant c > 0 such that, for any y, z ∈ Ω, |ϕ(y) -ϕ(z)| ≤ c||y -z||.
As stated in the introduction, we will essentially focus on the MH case, essentially because its kernel is "generic", depending only on q and f . However, there is a major difficulty in this case, coming from the fact that the MH kernel has a point mass at the current position.

The difficulty for the Gibbs sampler is that its successive densities are given by

p n+1 (y) = p n (x)g(x, y) dx,
where g is the density of the Gibbs kernel,

g(x, y) = f 1 (y 1 |x 2 , . . . , x s ) × f 2 (y 2 |y 1 , x 3 , . . . , x s ) × • • • × f s (y s |y 1 , . . . , y s-1 ) (7)
and Lipschitz condition on p n depends heavily of the decomposition of f . We indeed obtained a Lipschitz condition for the first iterations in the case of a toy-size Gibbs sampler (s=2), but stating conditions at a reasonably general level seems not possible.

The MH Independence Sampler case

From the description of the MH algorithm in Section 1, we define the off-diagonal transition density of the MH kernel at step n by:

p(x, y) = q(y|x)α(x, y) if x = y, 0 if x = y, (8) 
and set the probability of staying at x, r(x) = 1p(x, y)dy.

The MH kernel can be written as:

P (x, dy) = p(x, y)dy + r(x)δ x (dy), (9) 
where δ x denotes the point mass at x.

We focus first on the IS case (q(y|x) ≡ q(y)) since it allows for simpler conditions. We will see that the minorization condition q(x) ≥ af (y) which implies geometric convergence of the IS is also needed for our regularity conditions. One may argue that, in this case, it is also possible to use an importance sampling scheme (see, e.g., Douc et al. (2006)). This strategy garanties i.i.d. simulated values for f , but requires the normalization of the estimate (since the normalization constant C is unknown), which may lead to large variance. Let p 0 be the density of the initial distribution of the MH algorithm, which will be assumed to be "sufficiently smooth", in a sense that will be stated later. We will assume also that the proposal density q and the target p.d.f. f are also sufficiently smooth.

From ( 9), the successive densities of the IS are given by the recursive formula

p n+1 (y) = q(y) p n (x)α(x, y) dx + p n (y) q(x)(1 -α(y, x)) dx (10) = q(y)I n (y) + p n (y) (1 -I(y)) , (11) 
where

I n (y) = p n (x)α(x, y) dx, n ≥ 0 (12) I(y) = q(x)α(y, x) dx. (13) 
For convenience, we introduce the notations

α(x, y) = φ(x, y) ∧ 1, φ(x, y) = h(x) h(y) , h(x) = q(x) f (x) .
We consider the first iteration of the algorithm. From (11), the regularity properties of the density p 1 are related to the regularity properties of the two parameterdependent integrals I 1 and I. Regularity properties of such integrals are classically handled by the theorem of continuity under the integral sign (see, e.g., Billingsley (1995) Theorem 16.8 p. 212). Continuity is straightforward here:

Lemma 1 If q and f are strictly positive and continuous on Ω ⊆ R s , and p 0 is continuous, then p n is continuous on Ω for n ≥ 1.

Proof. It suffices to prove continuity for p 1 (y) at any y 0 ∈ Ω. The integrand of I 0 , p 0 (x)α(x, y), is continuous in y at y 0 for any x ∈ Ω, and

|p 0 (x)α(x, y)| ≤ p 0 (x), ∀x, y ∈ Ω.
Then I 0 is continuous at y by the Lebesgue's dominated convergence theorem (since Ω is a metric space, so that continuity can be stated in term of limit of sequence). The same reasonning applies to I(y) by using q for the dominating function.

From equation ( 11), we have directly that

|p n+1 (y) -p n+1 (z)| ≤ ||q|| ∞ |I n (y) -I n (z)| + ||I n || ∞ |q(y) -q(z)| + ||1 -I|| ∞ |p n (y) -p n (z)| + ||p n || ∞ |I(y) -I(z)|, (14) 
so that, to prove recursively that p n+1 is Lipschitz, we have first to prove that I n and I are both Lipschitz.

Lemma 2 If f /q is c 1 -Lipschitz, and p 0 h < ∞, then for all n ≥ 1:

(i) p n h < ∞; (ii) I n is (c 1 p n h)-Lipschitz.
Proof. first we have to check that p 0 h < ∞ can be iterated. This comes directly from the recursive definition (10) (since 0 ≤ r(x) ≤ 1):

p 1 (y)h(y) dy = p 0 (x)p(x, y) dx + p 0 (y)r(y) h(y) dy ≤ q(y) 2 f (y) p 0 (x)φ(x, y) dx dy + p 0 (y) q(y) f (y) dy = 2 p 0 (y)h(y) dy < ∞.
Hence p 0 h < ∞ ⇒ p n h < ∞ for n ≥ 1. Then, we have

|I n (y) -I n (z)| ≤ p n (x)|α(x, y) -α(x, z)| dx ≤ p n (x)|φ(x, y) -φ(x, z)| dx ≤ p n (x)h(x) f (y) q(y) - f (z) q(z) dx ≤ c 1 p n h ||y -z||.
Note that the hypothesis that f /q is Lipschitz is reasonable in the IS context. Indeed, one has to choose a proposal density q with adequate tails for the MH to be efficient, i.e. to converge quickly. As recalled in the introduction, it has been proved that the IS is uniformly geometrically ergodic if q(y) ≥ af (y) for some a > 0 [START_REF] Mengersen | Rates of convergence of the Hastings Metropolis algorithms[END_REF]). Actually, these authors also proved that the IS is not even geometrically ergodic if this condition is not satisfied. But satisfying this minoration condition requires q to have tails heavier than the tails of the target f . Hence, common choices for implementing the IS make use of heavy-tailed proposal densities (e.g., mixtures of multidimensional Student distributions with small degrees of freedom parameters), so that f /q is typically a continuous and positive function which goes to zero when ||x|| → ∞. It can then reasonably be assumed to be Lipschitz. This condition in lemma 2 may thus be viewed as a consequence of the following assumption, which will be used below:

Assumption A: q and f are strictly positive and continuous densities on Ω, and q has heavier tails than f , so that lim ||y||→∞ h(y) = +∞.

We turn now to the second integral I(y) = q(x)α(y, x) dx. The difficulty here comes from the fact that the integration variable is now the second argument of α(•, •). Hence, applying the majoration used previously gives

|I(y) -I(z)| ≤ q(x)|φ(y, x) -φ(z, x)| dx = f (x)|h(y) -h(z)| dx,
and since we have made the "good" choice for the proposal density (assumption A), 11) and ( 13)) is needed here. Consider a fixed x ∈ Ω in the sequel. Clearly, there exists by (A) a compact set K(x) such that for any y / ∈ K(x), h(y) ≥ h(x). This entails that ∀y / ∈ K(x), α(y, x) = 1. Now, for any y ∈ K(x), α(y, x) is a continuous function truncated at one, so that it is uniformly continuous. If we assume slightly more, i.e. that α(•, x) is c(x)-Lipschitz, we have proved the following Lemma:

h = q/f is obviously not Lipschitz. A direct study of α(•, x) = [h(•)/h(x)] ∧ 1, as it appears in I(y) (equations (
Lemma 3 If assumption A holds, and if for each x there exists c(x) < ∞ such that

∀y, z ∈ K(x), |α(y, x) -α(z, x)| ≤ c(x)||y -z||, (15) 
where c(x) satisfies

q(x)c(x) dx < ∞, (16) 
then I satisfies the Lipschitz condition:

∀(y, z) ∈ Ω 2 , |I(y) -I(z)| ≤ q(x)c(x) dx ||y -z||.
Examples where lemma 3 holds will be given in the Appendix, for the one-dimensional situation.

Proposition 2 If conditions of Lemmas 1, 2 and 3 hold, and if

(i) ||q|| ∞ = Q < ∞ and q is c q -Lipschitz; (ii) ||p 0 || ∞ = M < ∞ and p 0 is c 0 -Lipschitz;
then the successive densities of the Independance Sampler satisfy a Lipschitz condition, i.e. for any n ≥ 0, there exists k(n) < ∞ such that

∀(y, z) ∈ Ω 2 , |p n (y) -p n (z)| ≤ k(n) ||y -z||. ( 17 
)
Proof. Using equation ( 14), and the fact that

||I n || ∞ ≤ p n (x) dx = 1, ||I|| ∞ ≤ q(x) dx = 1,
and

||p n || ∞ ≤ Q||I n-1 || ∞ + ||p n-1 || ∞ ||1 -I(y)|| ∞ ≤ nQ + M,
we obtain

|p n+1 (y) -p n+1 (z)| ≤ Q|I n (y) -I n (z)| + |q(y) -q(z)| +|p n (y) -p n (z)| + (nQ + M )|I(y) -I(z)|.
Thus, applying this recursively, ( 17) is satisfied, with

k(n) = Qc 1 p n (x)h(x) dx + c q +((n -1)Q + M ) q(x)c(x) dx + k(n -1), n ≥ 2 k(1) = Qc 1 p 0 (x)h(x) dx + c q + M q(x)c(x) dx + c 0 .

The general Metropolis-Hastings case

When the proposal density is of the general form q(y|x) depending on the current position of the chain, the successive densities of the MH algorithm are given by

p n+1 (y) = p n (x)q(y|x)α(x, y) dx + p n (y) q(x|y)(1 -α(y, x)) dx = J n (y) + p n (y) (1 -J(y)) , (18) 
where

J n (y) = p n (x)q(y|x)α(x, y) dx, (19) 
J(y) = q(x|y)α(y, x) dx. ( 20 
)
In comparison with the IS case, the continuity already requires some additional conditions. Let B(y 0 , δ) denotes the closed ball centered at y 0 ∈ Ω, with radius δ.

Lemma 4 If q(x|y) and f are strictly positive and continuous everywhere on both variables, and p 0 is continuous, and if:

(i) sup x,y q(x|y) ≤ Q < ∞ ;
(ii) for any y 0 ∈ Ω and some δ > 0, sup y∈B(y 0 ,δ) q(x|y) ≤ ϕ y 0 ,δ (x), where ϕ y 0 ,δ is integrable;

then p n is continuous on Ω for n ≥ 1.

Proof. As for Lemma 1, it is enough to check the dominating conditions of, e.g., [START_REF] Billingsley | Probability and Measure[END_REF], p.212. However, for J, we need the local condition (ii) to prove the continuity of J(y) at any y 0 ∈ Ω.

Note that the additional condition (ii) is reasonable. For instance, we refer to the most-used case of the RWMH with gaussian perturbation of scale parameter σ 2 > 0. In the one-dimensional case, q(x|y) is the pdf of N (y, σ 2 ) evaluated at x, and one can simply take for condition (ii)

ϕ y 0 ,δ (x) = q(x|y 0 -δ)I x<y 0 -δ + q(y 0 -δ|y 0 -δ)I [y 0 -δ,y 0 +δ] (x) +q(x|y 0 + δ)I x>y 0 +δ , (21) 
(i.e. the tail of the leftmost gaussian pdf on the left side, the tail of the rightmost gaussian pdf on the right side, and the value of the gaussian at the mode inside [y 0δ, y 0 + δ]).

To prove that the successive densities p n of the general MH algorithm are Lipschitz, we proceed using conditions at a higher level than for the IS case, because the successive densities are more complicated to handle Proposition 3 If conditions of Lemma 4 hold, and if

(i) ||p 0 || ∞ = M < ∞ and p 0 is c 0 -Lipschitz; (ii) q(•|x)α(x, •) is c 1 (x)-Lipschitz, with p n (x)c 1 (x) dx < ∞, (iii) J(•) is c 2 -Lipschitz,
then the successive densities of the general MH satisfy a Lipschitz condition, i.e. for any n ≥ 0, there exists ℓ(n) < ∞ such that

∀(y, z) ∈ Ω 2 , |p n (y) -p n (z)| ≤ ℓ(n) ||y -z||. ( 22 
)
Proof.

First, it is easy to check that, similarly to the IS case, 22) is clearly a direct consequence of conditions (ii) and (iii), and the ℓ(n)'s can be determined recursively as in the proof of Proposition 2.

||J n || ∞ ≤ Q, ||J|| ∞ ≤ 1, and ||p n || ∞ ≤ nQ + M . Then, using the decomposition |p n+1 (y) -p n+1 (z)| ≤ |J n (y) -J n (z)| + 2|p n (y) -p n (z)| +||p n || ∞ |J(y) -J(z)|, equation (
Proposition 3 may look artificial since the conditions are clearly "what is needed" to insure the Lipschitz property for p n . However, we show in the Appendix (section 7.2) that these conditions are reasonable, in the sense that they are satisfied, e.g., in the one-dimensional case for usual RWMH algorithms with gaussian proposal densities.

Relative entropy estimation

Let X N = (X 1 , . . . , X N ) be an i.i.d. N -sample of random vectors taking values in R s , s ≥ 1, with common probability density function p. Suppose we want to estimate the relative entropy of p, H(p) given by (1), assuming that it is well defined and finite. Various estimators for H(p) based on X N have been proposed and studied in the literature, mostly for the case s = 1. One method to estimate H(p) consists in obtaining a suitable density estimate pN for p, and then susbtituting p by p N in an entropy-like functional of p. This approach have been adopted by Dmitriev andTarasenko (1973a) (1973b), Ahmad andLin (1976) (1989), Györfi andVan Der Meulen (1987) (1989), and [START_REF] Mokkadem | Estimation of the entropy and information of absolutely continuous random variables[END_REF] who prove strong consistency of their estimators in various framework. More recently [START_REF] Eggermont | Best asymptotic Normality of the Kernel Density Entropy Estimator for Smooth Densities[END_REF] prove, that they get the best asymptotic normality for the Ahmad and Lin's estimator for s = 1, this property being lost in higher dimension. Another method used to estimate H(p) is based on considering the sum of logarithms of spacings of order statistics. This approach was considered by [START_REF] Tarasenko | On the evaluation of an unknown probability density function, the direct estimation of the entropy from independent observations of a continuous random variable, and the distribution-free entropy test of goodness-of-fit[END_REF]Dudewicz and[START_REF] Dudevicz | Entropy-based tests of uniformity[END_REF].

In our case, and due to the rather poor smoothness properties that can be proved for the densities p n we have to consider, we use the entropy estimate proposed by [START_REF] Györfi | An entropy estimate based on a kernel density estimation[END_REF], but with smoothness conditions of [START_REF] Ivanov | Properties of the statistical estimate of the entropy of a random vector with a probability density[END_REF]: a Lipschitz condition which appeared tractable in our setup, as shown in Section 3.

Following [START_REF] Györfi | An entropy estimate based on a kernel density estimation[END_REF], we decompose the sample X N into two subsamples Y N = {Y i } and Z N = {Z i }, defined by

Y i = X 2i for i = 1, . . . , [N/2] ( 23 
)
Z i = X 2i-1 for i = 1, . . . , [(N + 1)/2], (24) 
where [N ] denotes the largest integer inferior to N .

Let pN (x) = pN (x, Z N ) be the Parzen-Rosenblatt kernel density estimate given by pN

(x) = 1 h s N (N + 1)/2 [(N +1)/2] i=1 K h N x -Z i h N , x ∈ R s , (25) 
where the kernel K is a density and h N > 0 with lim N →∞ h N = 0, and lim [START_REF] Györfi | An entropy estimate based on a kernel density estimation[END_REF], is then defined by:

N →∞ N h s N = ∞. The entropy estimate H N (p) = H N,Y,Z (p) introduced by
H N (p) = 1 [N/2] [N/2] i=1 log pN (Y i )I {p N (Y i )≥a N } (26) 
where 0 < a N < 1 and lim N →∞ a N = 0.

Theorem 1 Assume that H(f ) < ∞. For all n ≥ 0, let X n N be a N-sample from p n , the p.d.f. of the MH algorithm at time n, and consider the kernel density estimate p n N given in (25), based on the subsample Z n N defined in (24). Let the kernel K be a bounded density, vanishing outside a sphere S r of radius r > 0, and set h N = N -α , 0 < α < 1/s. Consider the entropy estimate H N defined in (26) with

a N = (log N ) -1 . ( 27 
)
Assume that there are positive constants C, r 0 , a, A and ǫ, such that either:

(i) in the case of the Independance Sampler: f , q and p 0 satisfy conditions of Proposition 2; q satisfies the minoration condition q(y) ≥ af (y), and f satisfies the tail condition

f (y) ≤ C ||y|| s (log ||y||) 2+ǫ , for ||y|| > r 0 ; (28) 
(ii) in the general MH case: f , q and p 0 satisfy conditions of Proposition 3; q is symmetric (q(x|y) = q(y|x)); p 0 /f ∞ ≤ A, and f satisfies the tail condition

f (y) ≤ C 1 + ||y|| s+ǫ . ( 29 
)
Then, for all n ≥ 0, H N (p n ) a.s.

-→ H(p n ), as N → ∞.

Proof. This result uses directly the Theorem given in [START_REF] Györfi | An entropy estimate based on a kernel density estimation[END_REF] p. 231. Conditions ( 28) or ( 29) and the fact that H(f ) < ∞ implies, for all n ≥ 0, the same conditions on the densities p n in either cases (i) or (ii). Actually, H(f ) < ∞ is a direct consequence of (1) and of the positivity of K. For the tail condition (28), case (i), it suffices to notice that from (5) we have for all x ∈ Ω:

0 ≤ p n (x) ≤ f (x) + κρ n f (x) ≤ C(1 + κρ n ) ||x|| s (log ||x||) 2+ǫ .
The tail condition for the general case (ii) comes directly from the recursive formula (18) since p 1 (y) = J 0 (y) + p 0 (y)(1 -J(y)) ≤ p 0 (x)q(y|x)α(x, y) dx + p 0 (y)

≤ p 0 (x)q(y|x) f (y) f (x) dx + p 0 (y) ≤ Af (y) q(x|y) dx + p 0 (y) ≤ 2Af (y).
Applying this recursively gives

p n (y) ≤ 2 n Af (y) ≤ 2 n AC 1 + ||y|| s+ǫ ,
which is stricter than Györfi and Van Der Meulen's tail condition. As to smoothness, the conditions of our Proposition 2 for case (i), and Proposition 3 for case (ii) give the Lipschitz condition of [START_REF] Ivanov | Properties of the statistical estimate of the entropy of a random vector with a probability density[END_REF] for p n , which in turn is stricter than Györfi and Van Der Meulen's smoothness condition, as stated in [START_REF] Györfi | An entropy estimate based on a kernel density estimation[END_REF].

Examples

We give in this section several examples for synthetic models, with target densities that are one and two-dimensional mixtures of gaussian distributions, and for an actual Bayesian model in moderate dimension.

Synthetic models

The advantage of taking a mixture is that it is an easy way to build multimodal target densities with "almost disconnected" modes, i.e. separated modes with regions of low probability in between (see figures 1 and 5). The difficulty for classical RWMH algorithm is then to properly calibrate the variance of the random walk to propose jumps under all the modes in a reasonable amount of time. The difficulty for the IS is to use a good proposal density q, hopefully allowing sufficient mass over the modal regions.

It is important to understand that in all the examples below, the target density is completely known so that, instead of estimating the difference K(p n 1 , f ) -K(p n 2 , f ) between any two given strategies, we are able to estimate directly K(p n i , f ) for each strategy i leading to the successive densities p n i separately. Actually, we can compute the strongly consistent estimate

K N (p n i , f ) = H N (p n i ) - 1 N N j=1 log f (X i,n j ),
where the X i,n j 's, j = 1, . . . , N are i.i.d. ∼ p n i . We give the results in terms of these estimates, since they provide easier comparisons and illustrate more clearly the behaviour of our method. However, one should keep in mind that in real-size situations, only the plots of the differences are accessible to computation. This is not a flaw in the method since clearly, the better algorithm can be deducted from these plots, as we will see later in Section 5.2, where the plots of n → D(p n 1 , p n 2 , f ) will only be available. The only information not always provided by the plot of the difference is the "convergence time" of each chain (in the sense of the convergence assessment of MCMC, see, e.g., [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF]). Indeed, even if the difference goes about zero at time n, there is always a possibility that both MH algorithms fail to converge at that time, with K(p n 1 , f ) ≈ K(p n 2 , f ), as stated in the introduction.

Since the models are quite simple here, we could ran a large number of i.i.d. Markov chains to obtain precise estimates. So we tried up to N = 1000 chains for the one-dimensional model, and up to N = 200 chains for the two-dimensional model. This number of parallel chains can be reduced without compromising the decision for real-size applications (we tried N = 100 chains with satisfactory results). Note also that the computing time needed, even with large N , is not long since the duration n 0 of the parallel simulation is itself short: the best algorithm is quickly detected, as shown in the figures below. Finally, for computing the estimate of entropy ( 26), we used a treshold a N = O(log(N ) -1 ) instead of ( 27), to avoid rejection of too many observations for small values of N .

A one-dimensional example

To illustrate the relevance of our comparison of the convergence rates, we first choose a very simple but meaningful situation, consisting in MH algorithms for simulation from a mixture of 3 gaussian distributions, with density

f (x) = 3 i=1 α i ϕ(x; µ i , σ 2 i ), ( 30 
)
where ϕ( • ; µ, σ 2 ) is the pdf of N (µ, σ 2 ). The chosen parameters α 1 = 0.5, α 2 = 0.3, µ 1 = 0, µ 2 = 9, µ 3 = -6, σ 2 1 = 2, and σ 2 2 = σ 2 3 = 1, result in the trimodal pdf depicted in figure 1. Independence Sampler We first ran the independence sampler with a gaussian proposal density q = N (0, σ 2 ), for several settings of the variance parameter. None of these MH are optimal, since q does not have modes at -6 and 9, whereas f has. If the variance is too small (e.g., σ ≤ 1), the algorithm can "almost never" propose jumps outside, say, [-4; +4], so that it can (almost) never visit the right or left modes.

The algorithm requires then a dramatically long time to converge. Our Kullback divergence estimate reflect this fact (figure 2, left). For more adapted settings like, e.g., σ = 3, the algorithm converges faster, and the convergence again deteriorates as σ increases above, say, 10, since the proposal density is then overdispersed (see figure 2, right).

To check our estimates with heavy-tailed proposal densities, we also ran the independence sampler with a Student proposal density t(d), for d = 1 (the Cauchy distribution), up to d = 100 (for which the Student is almost the normal distribution). As expected, the algorithms converge faster when they use Student distributions with heavier tails, since in that case they can still propose jumps in the left or right mode. When d → ∞, the proposal converges to the N (0, 1), and the IS shows the same behavior as the previous one, with σ = 1 (compare figure 2, left with figure 3, right). Figure 3 shows clearly that our method provides an ordering of the algorithms in terms of efficiency.

RWMH We also ran on the same example a random walk MH algorithm with a gaussian proposal q(•|x) ≡ N (x, σ 2 ), and several settings for σ 2 . As expected in view of the region of interest for the target f , a good choice is about σ = 10. For too small settings (e.g., σ = 0.1), the jumps of the random walk (of order ±3σ) are too small, so that the chain needs a dramatically long time to reach the rightmost mode. This is clearly indicated by our estimate in figure 4, right, where up to n = 600 iterations are needed for this inefficient algorithm to converge. left: σ = 1 (dashed) vs. σ = 10 (solid); right: σ = 0.1 (dashed) vs. σ = 10 (solid).

A two-dimensional example and adaptive strategy

We also tried for the target density a two-dimensional gaussian mixture, depicted in figure 5, left (the true parameters are not given for brevity). For this example, we compare three "good" strategies of different types: (i) An IS with a uniform proposal density over the compact [-20; 20] 2 ; this algorithm is "almost geometric" since the mass of the tails of f outside the compact are negligible (the minoration condition q ≥ af is fulfilled on the compact). (ii) A RWMH with a bivariate gaussian proposal q(•|x) = N (x, σ 2 I), with a "good" setting σ = 17, founded using our Kullback divergence method. (iii) An adaptive MH algorithm following the ideas in [START_REF] Chauveau | Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal[END_REF]. In short, parallel chains started with the IS (i) are ran and kernel density estimates are built at some specified times using the past of these i.i.d. chains. For example, the proposal density built at time n = 48 is depicted in figure 5, right.

The estimates of K(p n , f ) for this setup (and N = 200 chains) are given in figure 6. As expected, the IS with the uniform proposal density performs better than the calibrated RWMH. But the adaptive proposal is even better than the two others. The times at which the adaptive proposal density is updated (n = 5 and 9), are even visible in the plot of K(p n , f ) for this strategy, which means that it has an immediate effect on this divergence. 

The Bayesian Logit model

We have finally tried our criterion on an actual, standard qualitative regression model: the Logit model, where the distribution of y conditionally to the explanatory variables X ∈ R p is, for θ ∈ R p :

P θ (y = 1) = 1 -P θ (y = 0) = exp(X t θ) 1 + exp(X t θ) .
We consider the particular (s + 1)-dimensional case where X = (1, X 1 , . . . , X s ) and θ = (α, β 1 , . . . , β s ). The binary variables y i 's in {0, 1} are associated with the explanatory variables X j i 's and modelled following a Bernoulli law of conditional probability:

y i |x i ∼ B exp(α + s j=1 β j X j i ) 1 + exp(α + s j=1 β j X j i ) , i = 1, . . . , d. (31) 
Given a prior π(θ), the posterior law of θ comes from the Bayes's theorem:

π(θ | y, X) ∝ π(θ) d i=1 exp[(α + s j=1 β j X j i )y i ] 1 + exp(α + s j=1 β j X j i ) . ( 32 
)
We have simulated d = 100 data from this model for s = 4, i.e. in the 5dimensional case, with the true parameter set arbitrary to

θ = (α = 3, β 1 = -5, β 2 = 6, β 3 = 20, β 4 = -30).
For simplicity, the prior for θ has been chosen gaussian independent:

π(θ) = φ 0,v (α) 4 j=1 φ 0,v (β j ),
where φ µ,v (x) is the pdf of N (µ, v) at point x, and µ = 0 and v = 400 are the hyperparameters. A large variance has been chosen to allow for a dispersed prior distribution on all the scalar parameters.

We have only compared with the entropy criterion several Random Walk MH strategies for 5-dimensional gaussian perturbation N 5 (0, vI) and diagonal variance matrices vI with identical diagonal terms v (I denotes the 5 × 5 identity matrix here). As pointed out before, we did not checked the theoretical conditions of theorem 1. However, we have run the estimation procedure for a large number of parallel chains (up to N = 500 chains), to achieve numerical evidence of convergence of D N (p n j , p n k , f ). The i.i.d. chains have been started uniformly on a compact subspace of R 5 enclosing the true values (known in this case). Since this example is just for illustrating our criterion, we did not try to find the best RWMH strategy, but merely to compare a range of different settings for v. Hence we have computed D N (p n j , p n k , f ), where the p n j 's come from strategy v j (i.e. RWMH with variance matrix v j I), for 0 < v j < v k < 200. We provide for illustration only two comparisons: Figure 7 compares v 1 = 50 against v 2 = 100; Figure 8 compares v 1 = 1 against v 2 = 50. Each figure provides histograms of each 5 marginals computed from the path of one Markov chain coming from each strategy, and the plot of the estimate n → D N (p n j , p n k , f ) based on the N parallel chains. Note that even for this 5-dimensional model, for N = 500 chains and n = 10, 000 iterations, the C program (available) required less than 60mn of computing time on an average personal computer.

First, both plots highlight the fact that our criterion summarizes in one plot the information concerning the efficiency of the strategies, in a better and simplest way than classical exploratory tools such as marginal histograms, plots of sample paths,. . . , that are more and more difficult to handle has dimension increases.

To be more precise about the two examples provided here, Figure 7 compares two poor strategies for this situation, as indicated by the 4000 iterations needed for the criterion to stabilize about zero. The empirical acceptation rate computed over the N i.id. chains, which is 0.00503 for v 1 = 50 and 0.00256 for v 2 = 100, suggest that overdispersion is the reason. The plot of D N (p n 1 , p n 2 , f ) indicates however that v 1 is better then v 2 here. This is in accordance with the marginal histograms and the rate of acceptation. Note that this rate alone does not provide a selection of strategies, since what can only be tell is that "too low" as well as "too high" rates indicates poor strategies, but there are no general results about what means too low or too high for a specific model.

Another comment about the plot of D N (p n 1 , p n 2 , f ) in Figure 7 is the observation of rather long excursions above or between zero (e.g. for 7500 ≤ n ≤ 8500). This behavior is explained by the Markovian dependence of the i.i.d. chains along time.

Figure 8, our criterion states clearly that v 1 = 1 is an even better strategy than v 2 = 50. This conclusion is again supported by the marginal histograms and the empirical rate, which is 0.45 here. The time needed to stabilize about zero now drops to about 3000 iterations, which (in general) indicates that both strategies are better than before. The comparison of the plots of D N (p n 1 , p n 2 , f ) for N = 100 and N = 500 clearly shows the improvement of the entropy estimation (variance reduction) as N → ∞.

We have tried other RWHM with v < 1, and found that these are not better than v = 1, even if the acceptation rate is higher than 0.45 (e.g., for v = 0.1 the rate is 0.79). This highlights the fact that our criterion is more reliable than the rate of acceptation alone.

Conclusion

We have proposed a methodology to precisely quantify and compare several MCMC simulation strategies only on the basis of the simulations output. This methodology is global in the sense that it summarizes in just one plot the relative efficiency of two candidate strategies. A procedure for applying our method in practice has been given in Section 1, and illustrated for an actual Bayesian multidimensional model in Section 5.

A novelty is that this methodology is based upon the use of the relative entropy of the successive densities of the MCMC algorithm. A consistent estimate of this entropy in the MH setup has been proposed, and general conditions insuring its convergence have been detailed. Indeed, the conditions of propositions 2 and 3 are difficult to verify in practice. However, the theoretical study of Section 3 has been developed to support the idea that, if the "ingredients" of the MH algorithm (q, p 0 and f ) have sufficient tails and smoothness conditions, then one can reasonably expect that the successive densities p n , n ≥ 1, of the MH algorithm will also satisfy these conditions, so that our usage of the estimates of the H(p n i )'s will indicate the most efficient MH algorithm among the candidates.

Our methodology is an alternative to the adaptive MCMC strategies, which represent an active field of the current literature on MCMC. The advantage of our approach is that it avoids the difficulties associated to adaptation, namely the preservation of the convergence to the desired limiting distribution, and the theoretical guarantee that the adaptive algorithm will perform better than any other heuristical approach. Most importantly, our method can also be used as a global criterion to compare, on specific cases, the incoming new (eventually adaptive) MCMC strategies against existing simulation methods (the need for such a global comparison criterion on simulated situations is apparent in recent literature, as e.g. in [START_REF] Haario | An adaptive Metropolis Algorithm[END_REF][START_REF] Mira | Ordering and improving the performance of Monte Carlo Markov chains[END_REF]. We used it for this purpose in example 5.1.2. This example also shows that the entropy criterion may detect changes in the convergence regime during the transient phase.

Finally, note that if the comparisons are done on simulated situations where f is entirely known, our approach gives directly the estimate of K(p n , f ) for each strategy instead of the difference between two methods. It provides in this case a convergence diagnostic.

Appendix

The purpose of this appendix is to show that some of the conditions required in Proposition 2 and Proposition 3, which look difficult to check in actual situations, are satisfied at least in simple situations, for classically used MH algorithms in the one-dimensional case (x ∈ R).

The one-dimensional independence sampler case

In the IS case, the difficult conditions are conditions ( 15) and ( 16) of Lemma 3. These conditions are simpler to handle in the one-dimensional case. First, note that we can prove under additional conditions the derivability of p n for all n ≥ 1 (that proof is not given since we are not using it here). In the one-dimensional case, when q and f are in addition derivable, and have non-oscillating tails, assumption (A) leads to

∃m 1 < m 2 : ∀x < m 1 , h ′ (x) < 0, and ∀x > m 2 , h ′ (x) > 0. ( 33 
)
For a fixed x ∈ R, there exists by (33) a compact set K

(x) = [a(x), b(x)] such that (i) [m 1 , m 2 ] ⊆ K(x); (ii) h(a(x)) = h(b(x)) = h(x);
(iii) for any y / ∈ K(x), h(y) ≥ h(x).

As in the general case, this entails that ∀y / ∈ K(x), α(y, x) = 1. If we have the Lipschitz condition on K(x):

∀y, z, |α(y, x) -α(z, x)| ≤ c(x)|y -z|, the expression of c(x) can be precised c(x) = sup y∈K(x) ∂φ(y, x) ∂y < ∞. (34) 
and Lemma 3 holds if the integrability condition ( 16) is satisfied. Note that |a(x)| and b(x) both go to +∞ as |x| → ∞; in particular, b(x) = x for x > m 2 . Hence c(x) → ∞ as |x| → ∞, and condition ( 16) is not always true, but merely depends on the relative decreasing rate of the tails of q and f .

For an illustrative example, assume that the tails of f are of order x -β , and the tails of q are of order x -α . Satisfying assumption A requires that β > α. Now, one can always use the fact that c(x) ≤ sup y∈R ∂φ(y, x) ∂y , so that if β -1 < α < β, then c(x) is of order x α-β for large x and ( 16) is satisfied. The condition α ∈ [β -1, β] states that the tails of q should be "not too heavy", compared with the tails of f . This requirement is obviously stronger than what is needed, but more precise conditions require some analytical expression of c(x) for x / ∈ [m 1 , m 2 ], and this expression depends on a(x) and h ′ .

Fortunately, condition ( 16) is satisfied in much more general settings. For instance, consider situations where f and q are both symmetric w.r.t. 0, so that K(x) = [-|x|, |x|] for x outside [m 1 , m 2 ], and c(x) can be expressed in closed form. Then it is easy to verify that (16) holds for, e.g., f ≡ N (0, 1) and q ≡ t(d), the Student distribution with d degrees of freedom, for d ≥ 2 (even if, for d = 2 the tails of q are of order x -3 ). In this example, the proposal density has tails much more heavier than f , but Lemma 3 holds i.e., I is still Lipschitz.

The one-dimensional general MH case

In the general MH case, the difficult conditions are conditions (ii) and (iii) of Proposition 3. Our aim is to show that these conditions hold in the simple RWMH case with gaussian proposal density. In order to obtain a tractable case, let q(y|x) be the p.d.f. of the gaussian N (x, 1), and f be the density of the target distribution N (0, 1).

For condition (ii) we have to prove that q(•|x)α(x, •) is c(x)-Lipschitz, with p n (x)c(x) dx < ∞. Here q(y|x) = q(x|y), so that α(x, y) = 1 ∧ f (y)

f (x) ≤ f (y) f (x) ,
which is a truncated function such that, for any x, lim |y|→∞ α(x, y) = 0. In other words, both α(x, y) and q(y|x)α(x, y) have tails behavior for large y. The nontroncated function ϕ x (y) = q(y|x)f (y)/f (x) is then Lipschitz, with c(x) = sup y∈R ϕ ′ x (y) .

A direct calculation (feasible in this simple case) gives c(x) ∝ exp(x 2 -2)/4. Since to ensure the tails conditions of the successive densities p n we have to assume that the initial distribution itself has tails lighter or equal to that of f (i.e. that ||p 0 /f || ∞ < A, see Theorem 1) then by the recursive definition of p n we have, as in the proof of Theorem 1, p n (y) ≤ 2 n Af (y), so that p n (x)c(x) dx < ∞, i.e. condition (ii) of Proposition 3 holds.

We turn now to condition (iii) of Proposition 3, i.e. we have to show that J(y) given by ( 20) is Lipschitz. For fixed y, z ∈ R, |J(y) -J(z)| ≤ |q(x|y)α(y, x)q(x|z)α(z, x)| dx.

As for the IS case, we need a precise study of the truncated function here. We assume first that z > y > 0. Since q is symmetric, q(x|y) f (x) f (y) q(x|z) dx

+ K(z) c q(x|y) f (x) f (y) -q(x|z) f (x) f (z) dx,
where K(z) c = R \ K(z). Using the mean value theorem, the first term can be written 

where the last inequality comes from the absolute first moment of the normal density.

For the second term, consider first the integral on the right side of K(z) \ K(y), that is z y |ϕ y,z (x)| dx, where ϕ y,z (x) = q(x|y) f (x) f (y) q(x|z).

In this simple setting, it is easy to check that ϕ y,z (•) is a bounded function, monotonically decreasing from ϕ y,z (y) = δq(y|z) > 0 to ϕ y,z (z) = q(y|z)δ < 0, where δ = q(y|y) is the value of the gaussian density at its mode. Hence z y q(x|y) f (x) f (y) q(x|z) dx ≤ δ|y -z|.

(36)

The symmetric term -y -z |ϕ y,z (x)| dx is handled in a similar way.

The third term can in turn be decomposed into 

K(z) c q(x|y) f (x) f (y) -q(x|z) f (x) f (z) dx ≤ Q K(z) c f (x) f (y) - f ( 
Finally,

K(z) c f (x) f (y) - f (x) f (z) dx = 2 ∞ z f (x) f (y) - f (x) f (z) dx ≤ 2 1 f (y) - 1 f (z) ∞ z f (x) dx ≤ 2 √ 2πze z 2 /2 e -z 2 z + z 2 + 4/π |y -z|, (38) 
≤ D|y -z|,

where the left term in (38) comes from the mean value theorem applied to the function 1/f (•), the rightmost term in ( 38) is a well-known bound of the tail of the normal distribution, and

D = sup z∈R 2 √ 2πze z 2 /2 e -z 2 z + z 2 + 4/π < ∞.
Collecting ( 35), ( 36), ( 37) and ( 39) together shows that |J(y) -J(z)| ≤ k|y -z| for z > y > 0 and 0 < k < ∞.

other cases are done similarly, so that J(•) is Lipschitz.
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 1 Figure 1: mixture density (30).
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 23 Figure 2: Plots of n → K N (p n , f ) for the IS with a gaussian proposal N (0, σ 2 ). Left: σ = 3 (solid) vs. σ = 1 (dashed); Right: σ = 3 (solid) vs. σ = 10 (dashed), σ = 30 (dotted), σ = 100 (long dashed).
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 4 Figure 4: Plots of n → K N (p n , f ) for the RWMH with gaussian proposal q(•|x) ≡ N (x, σ 2 ):
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 56 Figure 5: left: true target pdf; right: adaptive proposal density.

Figure 7 :

 7 Figure 7: MH for the Logit model, n = 10, 000 iterations; marginals from 1 chain and v 1 = 50 (row 1) againtst v 2 = 100 (row 2); bottom: D N (p n 1 , p n 2 , f ) based on N = 100 chains.

Figure 8 :

 8 Figure 8: MH for the Logit model, n = 10, 000 iterations; top: marginals from 1 chain and v 1 = 1 (row 1) vs. v 2 = 50 (row 2); bottom: D N (p n 1 , p n 2 , f ) based on N = 100 chains (row 3), and N = 500 chains (row 4).

  define two compact sets K(y) and K(z) byK(t) = {x ∈ R : α(t, x) = 1} = {x ∈ R : f (x) ≥ f (t)} which, in the present situation, are just K(y) = [-y, y], K(z) = [-z, z], and satisfy K(y) ⊂ K(z). Hence |J(y) -J(z)| ≤ K(y) |q(x|y)q(x|z)| dx + K(z)\K(y)

  )q(x|z)| dx ≤ |q(x|y)q(x|z)| dx ≤ |y -z| |xy * | 2π exp -(xy * ) 2 /2 dx ≤ 2 π |y -z|,

  )q(x|z)| dx, where, as in Proposition 3, Q = ||q|| ∞ , and since sup x∈K(z) c |f (x)/f (z)| = 1. Using the mean value theorem as for the first term, K(z) c |q(x|y)q(x|z)| dx ≤ 2 π |y -z|.