Diamond representations of $\mathfrak{sl}(n)$ - Archive ouverte HAL
Article Dans Une Revue Annales Mathématiques Blaise Pascal Année : 2006

Diamond representations of $\mathfrak{sl}(n)$

Norman J. Wildberger
  • Fonction : Auteur
  • PersonId : 830260

Résumé

In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)$ module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional ${\mathcal U}_q(\mathfrak{sl}(3))$-modules. In the present work, we generalize this construction to $\mathfrak{sl}(n)$. We show this is in fact a description of the reduced shape algebra, a quotient of the shape algebra of $\mathfrak{sl}(n)$. The basis used in \cite{W} is thus naturally parametrized with the so called quasi standard Young tableaux. To compute the matrix coefficients of the representation in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker relations defining the reduced shape algebra.
Fichier principal
Vignette du fichier
diamants.pdf (352.08 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00007473 , version 1 (21-07-2005)

Identifiants

Citer

Didier Arnal, Nadia Bel Baraka, Norman J. Wildberger. Diamond representations of $\mathfrak{sl}(n)$. Annales Mathématiques Blaise Pascal, 2006, 13 (2), pp.381-429. ⟨hal-00007473⟩
134 Consultations
190 Téléchargements

Altmetric

Partager

More