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DIAMOND REPRESENTATIONS OF sl(n)

DIDIER ARNAL, NADIA BEL BARAKA, AND NORMAN J. WILDBERGER

Abstract

In [W], there is a graphic description of any irreducible, finite dimen-
sional sl(3) module. This construction, called diamond representation
is very simple and can be easily extended to the space of irreducible
finite dimensional Uq(sl(3))-modules.

In the present work, we generalize this construction to sl(n). We
show this is in fact a description of the reduced shape algebra, a quo-
tient of the shape algebra of sl(n). The basis used in [W] is thus nat-
urally parametrized with the so called quasi standard Young tableaux.
To compute the matrix coefficients of the representation in this basis,
it is possible to use Groebner basis for the ideal of reduced Plücker
relations defining the reduced shape algebra.

1. Introduction

In this paper, we consider the irreducible finite dimensional repre-
sentations of the Lie algebra sl(n) = sl(n, C). Of course these repre-
sentations are well known and there are very explicit descriptions for
them, for instance in [FH].

First, sl(n) acts naturally on Cn, its fundamental representations are
the natural actions on Cn,∧2Cn, . . . ,∧n−1Cn, they have highest weights
ω1, . . . , ωn−1. Each simple sl(n)-module has a highest weight λ and this
highest weight characterizes the module. Note S

λ this module, it is a
submodule of the tensor product

Syma1(Cn)⊗ Syma2(∧2
C

n)⊗ · · · ⊗ Syman−1(∧n−1
C

n),

if λ = a1ω1 + · · ·+ an−1ωn−1.
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The direct sum S• of all the simple modules has a natural realization
as the shape algebra of sl(n), i.e. as the algebra C[SL(n)]N

+
of polyno-

mial functions on the group SL(n), which are invariant under the right
multiplication by upper triangular matrices. Let g be an element in

SL(n), denote δ
(s)
i1,...,is

(g) the determinant of the submatrix of g obtained
by considering the s first columns of g and the rows i1 < · · · < is, then

S• is generated as an algebra by the functions δ
(s)
i1,...,is

. More precisely, it

is the quotient of C[δ
(s)
i1,...,is

] by the ideal P (δ) generated by the Plücker
relations.

Generally a parametrization of a basis for Sλ is given by the set of
semi-standard Young tableaux T of shape λ i.e. with an−1 columns of
size n− 1, . . . , a1 columns of size 1.

Using this description, we give here a natural ordering on the set

of variables δ
(s)
i1,...,is

, we determine the Groebner basis of P (δ) for this
ordering, getting the corresponding basis of the quotient as monomials
δT , for T semi-standard.

Thus the action of upper triangular matrices on this basis can be
easily computed. (See for instance the description given in [LT]).

On the other hand, in [W], N. Wildberger gave a really different pre-
sentation of the simple sl(3)-modules. This description is based on the
construction of the diamond cone for sl(3), it is an infinite dimensional
indecomposable module for the Heisenberg Lie algebra with a very ex-
plicit basis. The matrix coefficients are integral numbers and fixing the
highest weight λ, it is easy to build the corresponding representation of
sl(3), on the submodule generated by this vector in the diamond cone.

In this paper, we extend this presentation to sl(n). In fact the di-
amond cone module is a quotient of the shape algebra. We call this

quotient the reduced shape algebra. It is the quotient of C[δ
(s)
i1,...,is

] by
the ideal Pred(δ) sum of the ideal of Plücker relations and the ideal

generated by δ
(s)
1,...,s − 1.

With the same approach as above, we define a new ordering on the

variables δ
(s)
i1,...,is

, with this ordering, we can compute the Groebner ba-
sis for Pred(δ) and the corresponding basis for the quotient : the set of
monomials δT , for some Young tableaux T called here quasi-standard.
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The action of the upper triangular matrices on this basis is easy to
compute : this gives us the diamond cone for sl(n).

In order to refind the complete sl(n)-modules, we have to define a
symmetry on each Sλ and on the corresponding submodule in the re-
duced shape algebra. This symmetry exchanges the role of N+ and
N− and we get the complete sl(n) representation.

Unfortunately, this symmetry corresponds to a modification of the
ordering on Young tableaux, thus, if n > 3 to a different basis in Sλ.
The n− action on the first base is not so simple as in [W].

2. Usual (algebraic) presentation of the sl(n) simple
modules

Let us consider the Lie algebra sl(n) = sl(n, C): it is the set of n×n
traceless matrices, it is the Lie algebra of the Lie group SL(n) of n×n
matrices, with determinant 1. The Cartan algebra h is the space of
diagonal matrices:

h =




H =




θ1 0

. . .
0 θn



 , θj ∈ C, θ1 + · · ·+ θn = 0




 .

We put αi(H) = θi. The root system of sl(n) is the set of linear form
on h generated by the αi − αj , (i 6= j).

The usual basis ∆ for the root system is given by :

∆ = {αi − αi+1, i = 1, 2, . . . , n− 1}

The root space corresponding to the simple root ηi = αi − αi+1 is
generated by the upper triangular matrix:

Xη =




0
1
. . .

0


 .
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The root space corresponding to −η is generated by lower triangular
matrix:

Yη =




0
. . .

1
0


 = tXη

these matrices generate sl(n) as a Lie algebra.

A weight λ for sl(n) is a linear form :

λ :




θ1 0

. . .
0 θn



 7→ (a1+· · ·+an−1)θ1+(a2+· · ·+an−1)θ2+· · ·+an−1θn−1.

If a1, . . . , an−1 are positive integral numbers, we shall say that λ is a
dominant integral weight. This is the case if and only if λ is a linear

combination λ =
n−1∑
j=1

ajωj, with positive integral coefficients aj, of the

fundamental weights:

ωj = α1 + · · ·+ αj :




θ1 0

. . .
0 θn



 7→ θ1 + · · ·+ θj (1 ≤ j ≤ n− 1).

The set of simple sl(n)-modules up to equivalence is isomorphic to
the set of dominant integral weights. More precisely, sl(n) acts nat-
urally on V = Cn (with canonical basis e1, . . . , en), thus also on the
totally antisymmetric tensor products ∧jV (j = 1, . . . , n − 1) and on
the symmetric tensor products Symaj(∧jV ) and finally on

Syma1(V )⊗ Syma2(∧2V )⊗ · · · ⊗ Syman−1(∧n−1V ).

For each dominant integral weight λ =
∑

ajωj, the corresponding
simple module Sλ(V ) is the submodule of

Syma1(V )⊗ Syma2(∧2V )⊗ · · · ⊗ Syman−1(∧n−1V ).

generated by the vector:

vλ = (e1)
a1 ⊗ (e1 ∧ e2)

a2 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)
an−1 .

With this construction, we get each simple sl(n)-module, and two
distinct weights λ, λ′ give rise to inequivalent simple sl(n)-modules.
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This action gives rise by exponentiation to a representation of SL(n).
Let us put

Ω =




0 εn

.
.

.
εn 0




where εn = 1 if
[

n
2

]
is even and εn = e

iπ
n if

[
n
2

]
is odd. Then Ω

belongs to SL(n). In fact, this matrix, acting by adjoint action gen-
erates the longest element of the Weyl group of SL(n). It corresp-
nds to a change in the choice of simple roots and nilpotent subalge-
bras n+ and n−, if X = [xij ] is a strictly upper triangular matrix,
Ω−1XΩ =

[
x(n+1−i)(n+1−j)

]
is strictly lower triangular. Let us put:

vλ
− = (en)a1 ⊗ (en ∧ en−1)

a2 ⊗ · · · ⊗ (en ∧ · · · ∧ e2)
an−1 = ε−|λ|

n Ω.vλ,

with |λ| = a1 + 2a2 + · · · + (n − 1)an−1. Then vλ
− is a lowest weight

vector in Sλ(V ).

3. The shape algebra: abstract algebraic presentation

Let us put:

S
•(V ) =

⊕

λ

S
λ(V ).

Since we have an explicit realization of each highest weight vector, it
is possible to define a natural comultiplication ∆ on S•(V ), just by
defining

∆ : S
λ(V ) −→

⊕

µ+ν=λ

S
µ(V )⊗ S

ν(V )

as the unique sl(n)-morphism sending vλ on

∆(vλ) =
∑

µ+ν=λ

vµ ⊗ vν .

∆ is cocommutative. The contragredient module (Sλ)∗ is naturally
identified with S

tλ where tλ =
∑

an−iωi if λ =
∑

aiωi. By transposi-
tion, ∆ defines a commutative multiplication m on S•(V ):

m = t∆ : S
tµ(V )⊗ S

tν(V ) −→ S
tµ+tν(V ).

By definition, if µ =
∑

j bjωj, ν =
∑

j cjωj ,

m(vµ ⊗ vν) = vµ.vν = vµ+ν = eb1+c1
1 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)

bn−1+cn−1.
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Since each isotypic component of the SL(n) module S•(V ) is simple
the multiplication m is characterized by this relation and the condition

m (Sµ(V )⊗ S
ν(V )) ⊂ S

µ+ν(V ).

We shall call shape algebra of SL(n) the algebra S•(V ) equipped
with the above multiplication.

By construction the shape algebra is generated as an algebra by the
subspace V ⊕∧2V ⊕ · · · ⊕ ∧n−1V . Thus it is a quotient of the algebra
denoted in [FH]:

A•(V ) = Sym•
(
V ⊕ ∧2V ⊕ · · · ⊕ ∧n−1V

)

=
⊕

a1,...,an−1

Syman−1(∧n−1V )⊗ · · · ⊗ Syma1(V ).

We define now the ideal of Plücker relations: it is the ideal P of
A•(V ) generated by the vectors in Sym2(∧pV ):

(ei1 ∧ · · · ∧ eip).(ej1 ∧ · · · ∧ ejp)+

+

p∑

ℓ=1

(−1)ℓ(ej1 ∧ ei1 ∧ · · · ∧ êiℓ ∧ · · · ∧ eip).(eiℓ ∧ ej2 ∧ · · · ∧ ejp)

and by the vectors in ∧pV ⊗ ∧qV (p > q)

(ei1 ∧ · · · ∧ eip).(ej1 ∧ · · · ∧ ejq)+

+

p∑

ℓ=1

(−1)ℓ(ej1 ∧ ei1 ∧ · · · ∧ êiℓ ∧ · · · ∧ eip).(eiℓ ∧ ej2 ∧ · · · ∧ ejq).

Theorem 1.

The shape algebra S
•(V ) is the quotient of A•(V ) by the ideal P .

This theorem is well known. There is a complete proof in [FH] p.
235, this result is cited by Towber in [LT] as a theorem due to Kostant.

We define a symmetry τ in S
• just by putting:

τ(v) = Ω.v if v ∈ S
•(V )

Since the multiplication is a morphism of sl(n) and SL(n) module,
τ(vv′) = τ(v)τ(v′). Especially, we can define the multiplication just as

above by fixing vλ
−.vµ

− = v
(λ+µ)
− .
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Now for each matrix A in sl(n), ΩAΩ = τA is the matrix defined by
a central symmetry on the entries of A:

τA = [an+1−i,n+1−j] if A = [ai,j ]

If A is the matrix Xη for a positive root η = αi − αj ,
τXη = ΩXηΩ is

the matrix Yτη if τη is the positive root τη = αn+1−j −αn+1−i Then for
each v in S

•:

(τ ◦Xη ◦ τ)(v) = ΩXηΩ v = Yτηv

4. The shape algebra: geometric presentation

The shape algebra can also be viewed as an algebra of functions on a
quotient SL(n)/N+ of the Lie group SL(n). Denote N+ the subgroup

of matrices n+ =




1 ∗

. . .
0 1





Let us consider the space C[SL(n)] = C[gij]/(det− 1) of all polyno-
mial functions f with respect to the entries gij of the matrix g ∈ SL(n).
There is a SL(n)× SL(n) action on this space, defined as follows:

((g1, g2).f)(g′) = f(tg1g
′g2).

Since this space is generated by the invariant finite dimensional sub-
spaces of class of functions with degree less than N (N = 0, 1 . . . ),
this action is completely reducible in a sum of finite dimensional sim-
ple SL(n)× SL(n) modules. The highest vector for these modules are
class of functions f such that:

f(tn+
1 gn+

2 ) = f(g) n+
1 ∈ N+, n+

2 ∈ N+.

But, let us consider the restriction of f to the dense set of g such that,

for s = 1, . . . , n, δ
(s)
1,2,...,s(g) 6= 0. On this set, using the Gauss method,
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we can reduce g to a diagonal matrix, getting:

g = tn
+
1




δ
(1)
1 (g) 0

δ
(2)
1,2(g)

δ
(1)
1 (g)

. . .

δ
(n−1)
1,2,...,n−1(g)

δ
(n−2)
1,...,n−2(g)

0
1

δ
(n−1)
1,2,...,n−1(g)




n+
2 .

The highest weight is (λ, λ) with λ =
∑

aiωi, that means f is a poly-
nomial function in the variables

δ
(1)
1 (g),

δ
(2)
1,2(g)

δ
(1)
1 (g)

, . . . ,
δ
(n−1)
1,2,...,n−1(g)

δ
(n−2)
1,...,n−2(g)

,
1

δ
(n−1)
1,2,...,n−1(g)

,

homogeneous with degree a1 + · · ·+ an−1, a2 + · · · + an−1, . . . , an−1, 0,
i.e. the function f is a multiple of the function:

δλ =
(
δ
(1)
1

)a1
(
δ
(2)
1,2

)a2

. . .
(
δ
(n−1)
1,2,...,n−1

)an−1

.

Acting with only the first factor SL(n) on these functions, we get all
the polynomial N+ right invariant functions on SL(n). Due to the
form of the bi-invariant functions f , these functions are polynomial
functions in the δ-variables :

C[SL(n)]N
+

≃ C[δ
(s)
i1,...,is

]/P (δ),

where P (δ) is an ideal. Moreover each irreducible representation of
SL(n) happens exactly one times in this space, thus as a vector space,

S
•(Cn) ≃ C[SL(n)]N

+

.

Acting on δλ (λ =
∑

i aiωi) on the left by N− = t(N+), we get
polynomial functions which contains only monomials of the form:

n−1∏

s=1

as∏

k=1

δ
(s)

ik1 ,...,iks
.

Let us call V a1,...,an−1 the space of such functions. In view of our de-
scription, it is a simple module and the isotypic component of type λ
in C[SL(n)]N

+
.
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Finally the usual pointwise multiplication of polynomial functions
send V a1,...,an−1 ⊗ V b1,...,bn−1 into V (a1+b1),...,(an−1+bn−1). Thus the above
identification

S
•(Cn) ≃ C[SL(n)]N

+

,

characterized by vλ 7→ δλ is a morphism of algebra.

Proposition 1.

The shape algebra is isomorphic to the algebra O(SL(n)/N+) of the
regular functions on the homogeneous space SL(n)/N+.

The ideal P (δ) is the ideal generated by the Plücker relations written
on the δ functions.

Remark 1.

In this presentation of S•(Cn), the SL(n) action on the elements of
the shape algebra, viewed as a polynomial function f is very natural
since it is just:

(g.f)(g′) = f(tgg′), g ∈ SL(n), g′ ∈ SL(n).

The symmetry τ can be directly implemented in the space C[SL(n)]N
+
.

Indeed τ is up to conjugation by Ω, a morphism of SL(n) modules and
the formula

τ(e1 ∧ · · · ∧ es) = εs
nen ∧ · · · ∧ en+1−s

becomes here

τ(δ
(s)
1,2,...,s) = εs

nδ
(s)
n,(n−1),...,(n+1−s).

But, if we put for any regular function f on SL(n), (θf)(g) = f(Ωg),
we define a bijection from C[SL(n)]N

+
into itself such that

g.θ(f) = θ(Ω−1gΩ.f) and θ(δ
(s)
1,...,s) = δ

(s)
n,n−1,...,n+1−s.

Thus τ = θ.

5. The shape algebra : Combinatorial presentation

The usual basis of Sλ(V ) are parameterized by the semi standard
Young tableaux with shape λ. Let us be more precize:
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We can naturally associate to each δ variable a column C:

δC = δ
(p)
i1,...,ip

−→

i1
i2
...
ip

Then if we identify two Young tableaux which differ only by a permu-
tation of their columns, the set of Young tableaux defines a linear basis

for the algebra C[δ
(s)
i1,...,is

]:

δT = δ
(p1)
i1,...,ip1

δ
(p2)
j1,...,jp2

. . . δ
(pk)
ℓ1,...,ℓpk

−→

. . .

...

. . .

(p1 ≤ p2 ≤ · · · ≤ pk). That means, we read the Young tableau from
right to left, using the following convention: if two different columns C
and C ′ have the same height, we put in the first place in T the column
C if

ip = i′p, ip−1 = i′p−1, . . . , ir+1 = i′r+1, and ir < i′r.

The Plücker relations are quadratic in the δ variables, they corre-
spond to linear combination of Young tableaux with two columns, for
instance, we get for sl(3) the following relation between tableaux:

δ
(2)
12 δ

(1)
3 − δ

(2)
23 δ

(1)
1 + δ

(2)
13 δ

(1)
2 −→

1 3
2

−
2 1
3

+
1 2
3

In order to describe a basis for the quotient space:

S
•(V ) = C[δ

(j)
i1,...,ij

]/ P (δ),

we will use the notion of Groebner basis [CLO].

Let us consider the algebra C[X1, . . . , Xk] of polynomials in the vari-
able Xi and an ideal I of C[X1, . . . , Xk].

Suppose we fix an ordering on the set of monomials Xα1
1 . . .Xαk

k

in C[X1, . . . , Xk] (for instance by using the lexicographie ordering on
words α1 . . . αk if we put X1 < X2 < · · · < Xk). Then any polynomial
g has an unique leading term LT (g); the greatest monomial happening
in g for this ordering.
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Definition 1.

A finite subset {g1, . . . , gk} of an ideal I is said to be a reduced Groeb-
ner basis for I if and only if the leading term of any element of I is
divisible by one of the leading term of gi and if for all gi no monomial
of gi is divisible by the leading term of some gj j 6= i.

If {g1, . . . , gk} is a reduced Groebner basis for I, then the set of
(classes of) monomials which are not divisible by any monomials LT (gi)
(i = 1, . . . , k) is a basis of the quotient C[X1, . . . , Xk]/I.

Following [FH], we know there is in the ideal P (δ) the following
elements for any p ≥ q ≥ r:

δ
(p)
i1,i2,...,ip

δ
(q)
j1,j2,...,jq

+
∑

A ⊂ {i1, . . . , ip}
#A = r

±δ
(p)
({i1,...,ip}\A)∪{j1,...,jr}

δ
(p)
A∪{jr+1,...,jq}

(∗)

where δ
(p)
({i1,...,ip}\A)∪{j1,...,jr}

= 0 if there is a repetition of some index

and, if {k1, . . . , kp} = ({i1, . . . , ip}\A)∪{j1, . . . , jr} and k1 < · · · < kp,
then

δ
(p)
({i1,...,ip}\A)∪{j1,...,jr}

= δ
(p)
k1,...,kp

.

Now we put an ordering on the variables δ
(p)
i1,...,ip

by the following
relations:

δ(1)
... > δ(2)

... > δ(n−1)
...

and δ
(p)
i1,...,ip

> δ
(p)
j1,...,jp

if ip = jp, . . . , ir+1 = jr+1 and ir < jr.

We put the lexicographic ordering on the monomials δT in C[δ
(p)
i1,...,ip

].

Remark 2.

In [FH], an ordering < on Young tableaux is defined,in fact our or-
dering is the reverse ordering since:

δT < δT ′

if and only if T ′ < T.

Recall that a Young tableau is semi standard if its entries are in-
creasing along each row (and strictly increasing along each column). It
is well known that the set of semi standard Young tableau gives a basis

for C[δ
(p)
i1,...,ip

]/P (δ) (see [FH] for instance).
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Our ordering defines an unique Groebner basis for P (δ). We shall
now build this basis.

For any non semi standard Young tableau T with 2 columns, there
exists an element in P (δ) of the form (∗). This relation can be written
as:

δT +
n∑

j=1

±δTj with δTj < δT ∀j.

Each Tj has the same shape as T but some of them can be non semi
standard. We repeat the construction for each non semi standard Tj

and finally we get, for each non semi standard T with 2 columns, an
element fT in P (δ) such that the leading term of fT is δT and all
the monomials of fT have the form a.δT ′

with T ′ semi standard and
δT ′

< δT .

Theorem 2.

The set

G = {fS, S non semi standard with 2 columns}

is the reduced Groebner basis of P (δ) for our ordering.

Proof:

First denote NS the set of all monomials δT with T non semi stan-
dard. Since each non semi standard T has 2 consecutive columns such
that the sub tableau defined by these 2 columns is non semi standard,
δT is divisible by one of the δS, i.e. by one of the leading term of fS.

Thus the ideal < δS > generated by the leading terms of G contains
the vector space span(NS).

Conversely let T be a semi standard Young tableau. Suppose T
belongs to the ideal < LT (P (δ)) > generated by the leading terms of
all the f in P (δ). That means:

δT = f −
∑

T ′<T

aT ′δT ′

.

If any T ′ is semi standard we keep this relation. If some of the T ′ are
non semi standard, then δT ′

is in < δS > thus in < LT (P (δ)) > and
we repeat the construction for δT ′

. We get finally:

δT = f0 −
∑

T ′′<T
T ′′semi standard

aT ′′δT ′′

, f0 ∈ P (δ).

This implies that

δT +
∑

T ′′

aT ′′δT ′′

∈ P (δ).
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But this is impossible, since the set {δT , T semi standard} is a basis

for C[δ
(p)
i1,...,ip

]/P (δ) Thus:

< LT (P (δ)) >= span(NS)

Moreover, since any monomial in fS is either δS or aT δT with T semi
standard, it can not be divisible by a δS′

with S ′ 6= S, S ′ non semi
standard with two columns. This proves our theorem.

The usual basis of the shape algebra S•(V ) by semi standard Young
tableaux can thus be described as a natural basis of a the quotient of

the polynomial algebra C[δ
(p)
i1,...,ip

] by the ideal of Plücker relations, if

we put the ordering < on the monomials δT .

Especially, we can write the action of any element of the Lie algebra

sl(n) on any polynomial function with variables δ
(s)
i1,...,ip

, for instance, if

Xα = Eij i 6= j then Xα acts on C[δ
(p)
i1,...,ip

] as the derivation:

Xαf =
d

ds
|s=0f(exp stXα.) =

∑

{i1,...,ip}∩{i,j}={j}

±δ
(p)
({i1,...,ip}\{j})∪{i}

∂f

∂δ
(p)
i1,...,ip

.

Finally, the Cartan algebra acts on f as the derivation

Hf =
d

ds
|s=0f(exp stH.) =

∑
(θi1 + · · ·+ θip)δ

(p)
i1,...,ip

∂f

∂δ
(p)
i1,...,ip

,

if H =




θ1 0

. . .
0 θn



. This action defines the action on the quotient by

P (δ), since we have a Groebner basis for the ideal P (δ), the quotient
action on the basis of semi standard Young tableaux reduces to compute
the canonical form of the polynomial Xαf or Hf , this is easy to do
with usual computer software.

As an illustration, we gives a graphic description of the N+ part
of the adjoint representation Sω1+ω2(C3) of sl(3) (see [K] for similar
presentation).
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Sω1+ω2(C3)

If we change our Weyl chamber, we can repeat this construction,
defining first anti semi standard tableaux as Young tableaux with en-
tries strictly decreasing in each column and decreasing in each row.
Then we define an ordering on the set of variables δs

i1,...,is
, i1 > i2 >

· · · > is by putting: δ(1) > δ(2) > . . . and δ
(p)
i1,...,ip

> δ
(p)
j1,...,jp

if ip =
jp . . . ir+1 = jr+1 and ir > jr.

Let T be an anti semi standard tableau. We can associate to T a
monomial:

δT = δ
(c1)

a1
1...a1

c1

δ
(c2)

a2
1...a2

c2

. . .

= ±δ
(c1)

a1
c1

...a1
1
δ
(c2)

a2
c2

...a2
1
. . .

and exchange the variables corresponding to columns with equal height,
then we get another Young tableau T ′ such that δT = δT ′

.
For instance:

T =
4 2
3 1

, δ
(2)
43 δ

(2)
21 = δ

(2)
12 δ

(2)
34 , T ′ =

1 3
2 4

or:

T =
4 1
3
2

, δ
(3)
432δ

(1)
1 = −δ

(3)
234δ

(1)
1 , T ′ =

2 1
3
4

.

Unfortunately, if n > 2, T ′ is generally not semi standard (T =
3 1
2

, T ′ =
2 1
3

) thus our change of ordering on the variables

δ defines a new Groebner basis on the shape algebra if n > 2.
Now, the symmetry τ corresponds to the following operation on tableaux
since:

τ(δ
(s)
i1,...,is

) = εs
nδ

(s)
n+1−i1,...,n+1−is

We can define τ directly on Young tableaux by replacing each entry ai
j

of T by n + 1 − ai
j . The anti semi standard tableaux are exactly the

image by τ of the semi standard ones.

6. The reduced shape algebra : Algebraic presentation

Let V be a complex vector space with dimension n. From now one,
we shall study a quotient of the shape algebra S

•(V ).
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Definition 2.

Let R+ be the ideal in the shape algebra generated by vλ − 1:

R+ = 〈vλ − 1 = (e1)
a1(e1 ∧ e2)

a2 . . . (e1 ∧ · · · ∧ en−1)
an − 1, ∀λ =

∑
ajωj〉

= 〈e1 − 1, e1 ∧ e2 − 1, . . . , e1 ∧ · · · ∧ en−1 − 1〉.

We call reduced shape algebra and write S•
red(V ) the quotient S•(V )/R+.

This reduced shape algebra is no more a natural sl(n) module but
the ideal R is invariant under the action of the solvable group HN+

consisting of upper triangula matrices in SL(n). Thus the quotient is a
HN+ module too. The action of the Cartan group H is still diagonal,
let study the N+ (or n+) action on S•

red(V )+.

Proposition 2.

Denote π+ the canonical projection from S•(V ) to S•
red(V )+. Then

• i) The space of vectors u ∈ S•
red(V )+ such that n+u = 0 is C1.

• ii) S•
red(V )+ is an indecomposable module.

• iii) For any λ, the n+ module Sλ(V ) is equivalent to the sub-
module π+

(
Sλ(V )

)
of S•

red(V )+.

• iv) For any λ > µ, π+ (Sµ(V )) is a submodule of π+
(
Sλ(V )

)
.

Proof

i) We know ([V] p. 317 for instance) that, in each S
λ(V ), the space

of vectors u such that n+u = 0 is exactly Cvλ. This gives i) in the
quotient S•

red(V )+.

ii) Let u be a non zero vector in S•
red(V )+, the n+ module W generated

by u is finite dimensional since u is a finite sum of image through π+ of
weights vectors. The n+ action is locally nilpotent on S•(V ), thus it is
also locally nilpotent on S•

red(V )+, as a consequence W contains a non
trivial vector annhilated by n+. This vector is a multiple of 1. Thus
any n+ submodule of S

•
red(V )+ contains 1, S

•
red(V )+ is an indecompos-

able n+ module.

iii) Let π+
λ be the restriction of π+ to Sλ(V ). It is a morphism of n+

modules. If its kernel is not vanishing, thanks to Lie theorem, the n+

module Ker(π+
λ ) contains a non zero vector annihilated by n+, this

vector is a multiple of vλ, but π+(vλ) = 1 6= 0. Thus π+
λ is an isomor-

phism of n+ modules.
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iv) The relation λ > µ is equivalent to say there is ν dominant integral
weight such that λ = µ + ν. In S•(V ), the multiplication by vν send
S

µ(V ) into S
λ(V ). In the quotient, this operation becomes the identity

mapping: π+(uvν) = π+(u) for any u in Sµ(V ).

Similarly, we define S•
red(V )− as the quotient of S•(V ) by the ideal

R− generated by {en ∧ · · · ∧ en+1−s− 1, s = 1, . . . , n− 1}. It is a HN−

module. If we denote π− the canonical morphism, we get the same
proposition with ′′−′′ instead of ′′+′′ everywhere.

7. The reduced shape algebra, Geometrical presentation

As above, we can write everything in term of the functions δ
(p)
i1,...,ip

.

If R(δ)+ is the ideal generated by δ
(p)
1,...,p − 1, we get:

S
•
red(V )+ ≃C[SL(n, C)]N

+

/R(δ)+ =
C[δ

(p)
i1,...,ip

]
/R(δ)+ + P (δ).

Suppose now f is a polynomial function, invariant with respect to the
right multiplication by N+. Then f is characterized by its restriction to

the dense open subset of SL(n) of the matrices g such that δ
(p)
1,...,p(g) 6= 0

for all p. On this set, by the use of the Gauss method, we can write:

g =




g′
11 0 0 . . . 0

g′
21 g′

22 0 . . . 0
g′
31 g′

32 g′
33 . . . 0

. . .
g′

n1 g′
n2 g′

n3 . . . g′
nn







1 a12 a13 . . . a1n

0 1 a23 . . . a2n

0 0 1 . . . a3n

. . .
0 0 0 . . . 1




.

With, for all k ≥ j:

g′
jk =

δ
(k)
1,2,...,k−1,j(g)

δ
(k−1)
1,2,...,k−1(g)

.
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By N+ right invariance, we get

f(g) =
1

∏
(δ

(j)
1,...,j(g))bj

Φ(δ
(k)
1,2,...,k−1,j(g), δ

(j)
1,...,j(g))

=
1

∏
(δ

(j)
1,...,j(g))bj

∑

(c1,...,cn−1)

Φc1,...,cn−1(δ
(k)
1,2,...,k−1,j(g))

∏

j

(
δ
(j)
1,...,j(g)− 1

)cj

=
1

∏
(δ

(j)
1,2,...,j(g))bj

∑

(c1,...,cn−1)

Fc1,...,cn−1(g)
∏

j

(
δ
(j)
1,...,j(g)− 1

)cj

.

By definition, the functions Φc1,...,cn−1 and Fc1,...,cn−1 are polynomial,
Fc1,...,cn−1 is right invariant by N+ and

F0,...,0−f =
(∏

(δ
(j)
1,...,j)

bj − 1
)

f−
∑

c1+···+cn−1>0

Fc1,...,cn−1

∏

j

(
δ
(j)
1,...,j − 1

)cj

belongs to R(δ)+. For any g in N− and any k ≥ j, we have δ
(k)
1,...,k−1,j(g) =

gjk and f(g) = Φ0,...,0(gjk) = F (g). The restriction of the function f to
N− characterizes the function Φ0,...,0 thus the value of F0,...,0 and F0,...,0

and f are in the same class modulo R(δ)+. Conversely, any polyno-
mial function Φ on N+ defines a function F in C[SL(n, C)]N

+
. The

restriction mapping is an isomorphism of algebra between S•
red(V )+ and

C[N−].

Remark 3.

In this presentation of S•
red(V )+, the N+ action on the elements of

the reduced shape algebra is very natural since it is just:

(g.f)(g′) = f(tgg′), g ∈ N+, g′ ∈ N−, f ∈ C[N−].

But since
C[δ

(j)
i1,...,ij

]
/R(δ)+ is simply C[δ

(j)
i1,...,ij

(ij > j)], we have also:

S
•
red(V )+ ≃

C[δ
(j)
i1,...,ij

(ij > j)]
/Pred(δ)

+ .

Where Pred(δ)
+ is the ideal generated by the Plücker relations but

where we replace the function δ
(j)
1,...,j by 1.
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Especially, if Xα = Eij i < j then Xα acts on C[δ
(p)
i1,...,ip

(ip > p)] as
the derivation:

Xαf =
d

ds
|s=0f(exp stXα.)

= ±
∂f

∂δ
(p)
({1,...,p}\{i})∪{j}

+
∑

{i1,...,ip}∩{i,j}={j}
{i1,...,ip}\{j})∪{i}6={1,...,p}

±δ
(p)
({i1,...,ip}\{j})∪{i}

∂f

∂δ
(p)
i1,...,ip

.

The same construction for S•
red(V )− gives:

R−(δ) = θ
(
R+(δ)

)

is the ideal generated by the set {δ
(p)
n,...,(n−p+1) − 1}, S•

red(V )− is the

quotient of C[SL(n)]N
+

(which is stabilized by θ) by R−(δ). The Gauss
formula allows to write:

g =




g′
11 g′

1n

.
.

.
g′

nn 0







1 a1n

.
.

.
0 1




if δ
(p)
n,...,(n−p+1)(g) 6= 0 for any p.

And any f is modulo R(δ)− characterized by its restriction to:








g′
ij 1

.
.

.
1 0









= N+Ω =









1 g′
ij

.
.

.
0 1







0 εn

.
.

.
εn 0









Finally, if we put f(n+Ω) = h(n+), we get S•
red(V )− ≃ C[N+] with

the natural N− action:

(g.h)(g1) = h(tgg1).

Theorem 3.

The reduced shape algebras are isomorphic to the algebra of polyno-
mial functions on N−(N+), then:

S
•
red(V )+ ≃ C[N−] = C[n−]

S
•
red(V )− ≃ C[N+] = C[n+].
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The last assertions of the theorem comes from the observation that
the exponential mapping from the Lie algebra n−(n+) onto the Lie
group N−(N+) is a polynomial bijection with inverse polynomial too.

8. The reduced shape algebra: Combinatorial
presentation

8.1. Super and quasi standard Young tableaux.

In order to describe the restricted shape algebra and the restricted
Plücker relations, we have to perform the quotient of the preceding con-

struction by the ideal generated by {δ
(s)
12...s−1}. On the Young tableaux

this operation can be viewed as an ’extraction’ of trivial columns.

A column whose height is c in a tableau is trivial if its entries are
1, 2, . . . , c, a Young tableau T is trivial if each column of T is trivial.
Now let T be a Young tableau (semi standard or not), we define the
extraction of trivial columns in T in the following manner:

Denote aij the entries of T (aij is in the row i and the column j, for
any j, aij < a(i+1)j and the heights c1, . . . , ct of T are decreasing). We
say that the tableau T is reducible if

• there is a column j whose the s top entries are 1, 2, . . . , s (ai,j = i
for 1 ≤ i ≤ s),
• on the right of the column j, there is a column j′ with height s

in T (there is j′ ≥ j such that cj′ = s),
• for any k > j, if ck−1 > s and ck ≥ s, as+1,k−1 > as,k.

Let T be a reducible Young tableau, let j the smallest index and s
the largest index for which the above conditions hold. Let us suppress
the trivial top part of the column j and shift to the left the right parts
of the s first rows (i.e. we shift to the left every aik with 1 ≤ i ≤ s and
j < k), then we get a Young tableau R1: the entries of R1 are bkℓ with

bkℓ =






ak(ℓ+1) if 1 ≤ k ≤ s and j ≤ ℓ ≤ t− 1

akℓ if s < k or ℓ < j.

If the number of column of T was t, then R1 has t − 1 column, more
precisely if the heights of the columns of T were: (c1, . . . , ct) and the
columns of heights s had the number j′, . . . , j′′, then the heights of the
columns of R1 are (c′1, . . . , c

′
t−1) with

c′k =






c′k = ck if 1 ≤ k < j′′

c′k = ck+1 if j′′ ≤ k ≤ t− 1.
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Simultaneously, we define L1 as the Young tableau with only one trivial
column with entries 1, . . . , s.

Now if R1 is reducible, we repeat the above operation, extracting a
second trivial column from R1, getting two Young tableaux a trivial
one with two columns L2 and a Young tableau R2 with t− 2 columns.

Repeating this construction, after m steps, we get a trivial Young
tableau Lm with m column and a Young tableau Rm with t−m columns.

This construction stops when the Young tableau Rm is not reducible
we say Rm is irreducible and call Rm the residue of T .

Definition 3. (Super, left and right Young tableaux)
A super Young tableau is a pair S = (L, R) of two Young tableaux,

the left one L is a trivial Young tableau, the right one, R is an irre-
ducible Young tableau. L or R can be the empty tableau without any
column.

Our construction defines a mapping f (the extraction mapping) from
the set Y of Young tableaux into the set SY of super young tableaux

f(T ) = S = (L, R).

If λ is the sequence of the heights of the column of T : λ = (c1 ≤
· · · ≤ ct) and µ = (c′1 ≤ · · · ≤ c′ℓ) and ν = (c′′1 ≤ · · · ≤ c′′r) the corre-
sponding sequence for L and R (one of these sequences can be empty),
then µ and ν are two disjoint subsequences of λ and λ is the ’union’ of
µ and ν: we refind the sequence λ by putting together the elements of
µ and ν and ordering them in a decreasing sequence.

Starting with an irreducible Young tableau R, we can insert to it
any family of trivial columns, say {D1, . . . , Dℓ}, getting a new tableau
T . We insert these column in the following way: if the height of Di is
di, we insert D1, . . . , Di such that any column of T , after Di has height
strictly less then di, the columns of T before Di are the columns of R
with length at least di, with their ordering and the column Dj (j < i).
Then T is a Young tableau. Of course, if ℓ > 0, T is reducible.

Let us try to extract a trivial column from T . Among the new
column, the first one is D1 with height d1. In T this column is the
column p. Suppose the first trivial column extracted from T is the s
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top elements of the column j, with j < p. Since R is irreducible, there
is a k > j such that cR

k−1 > s, cR
k ≥ s and aR

s+1,k−1 ≤ aR
s,k (we denote

cR
k the height of the column k and aR

i,j the i, j-entry in R). We choose
the smallest such k. Since we can now extract the trivial column from
T , there is, in T , at least one new column, say D between the two
columns k − 1, k in R, which are now columns k1, k2 in T . We choose
for D the last one: D is the column k2 − 1 in T . The height of D is
cT
k2−1 = d > cT

k2
= cR

k ≥ s and we get:

aT
s+1,k2−1 = s + 1 ≤ aR

s+1,k−1 ≤ aR
s,k = aT

s,k2
.

We cannot extract the trivial column consisting of the s top elements
of the column j, with j < p. Of course, we can extract all the col-
umn p of T . Thus, in the computing of f(T ), the first step is just to
eliminate the column D1 from T , repeating this construction, we get
f(T ) = (L, R) where L is the trivial tableau (D1, . . . , Dℓ). We proved
that f is a surjective mapping by defining a mapping h from SY to Y
such that f ◦ h(L, R) = (L, R).

Definition 4. (Quasi standard tableaux)
A super Young tableau S = (L, R) is said quasi-standard if its right

tableau R is semistandard.
A Young tableau T is said quasi-standard if it is irreducible and

semistandard.

Let us denote by QSY (resp. QY) the set of quasi standard super
Young tableaux (resp. quasi standard Young tableaux). Denote SEM
the set of semistandard Young tableaux.

Lemma 1. (f is a bijection from SEM onto QSY)
The mapping f , when restricted to SEM is a one-to-one onto map-

ping from SEM onto QSY .

Proof

First it is clear that if T is semistandard, then each tableau in the
sequence R1, . . . , Rm defined above is still semistandard, then f is a
map from SEM to QSY .

Now let S = (L, R) be an element of QSY . Denote the rows of
L by (L′

1, . . . , L
′
u), their lengths being ℓ′1, . . . , ℓ

′
u. Similarly, denote

(L′′
1, . . . , L

′′
v) the rows of R, their lengths being ℓ′′1, . . . , ℓ

′′
v.We define

the new tableau T = g(S) as the tableau with the row i contains (from
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left to right) ℓ′i entries i, then the ℓ′′i entries of the row i of R. In fact, T
is a Young tableau since if aT

i,j is an entry of T , it is either i or an entry

of R (aT
i,j = aR

i,j−ℓ′i
if aR

r,s are the entries of R). In any case, aT
i,j ≥ i.

If aT
i,j = i, then aT

i,j = i < i + 1 ≤ aT
i+1,j. If aT

i,j = aR
i,j−ℓ′i

, since

ℓ′i ≥ ℓ′i+1, aT
i+1,j = aR

i+1,j−ℓ′i+1
and aT

i,j = aR
i,j−ℓ′i

< aR
i+1,j−ℓ′i

≤ aR
i+1,j−ℓ′i+1

=

aT
i+1,j.
T is semistandard: by construction each row in T is a increasing

sequence of entries. g is a map from QSY to SEM.

The map g is the inverse mapping of f . Indeed if T is semistandard,
if a column C of T begins by a trivial part, then all the columns before
C begin with the same trivial part and suppressing the top of the first
column or the top of C is the same operation, thus to construct the
sequence R1, . . . , Rm, we just have to consider the first column at each
step.

Starting with T = g(S), we can extract at each step a trivial column
having the height of the corresponding column of L, but no more, since
R is irreducible. Thus f ◦ g(S) = S, for any S ∈ QSY .

Conversely, starting with a semistandard T , we build first f(T ) =
(L, R) and by construction the rows of L are the left part of the rows
of T , thus g ◦ f(T ) = T .

8.2. Quasi standard Young tableaux and Groebner basis.

In this section we shall repeat the construction of section 3 but for
the ideal R(δ)+ and the quasi standard Young tableaux.

First, we choose the following elimination order on the variables δ:

defining the degree deg(δ
(s)
i1...is

) as 1 if is > s (δ
(s)
i1...is

is not trivial) and 0

if is = s (δ
(s)
i1...is

is trivial), the degree of δT is the sum of degree of each
variables and T > T ′ if and only if:





deg(δT ) > deg(δT ′

)
or

deg(δT ) = deg(δT ′

) and T > T ′ for the preceding ordering.

Now we look for the leading terms of elements of R(δ)+, for this
ordering. We saw that the leading terms of elements of P (δ) for the
preceding ordering were non semistandard monomials.
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Let T be a non quasi standard tableau.

Case 1: T is non semi standard.

Then T contains a non semistandard tableau with two columns T 0:
δT = δUδT 0

. For T 0, we saw there is a Plücker relation PT 0 in P (δ)
whose leading term for the ordering of section 3 was T 0.

Case 1.1: T 0 contains a trivial column Ci, since T 0 is non semistan-

dard, it is its second column. δT 0
= δ

(s)
1,...,sδ

(c)
a1,...,ac . But δ

(s)
1,...,s is the

leading term of the element Vs = δ
(s)
1,...,s− 1 in R(δ)+. δT 0

is the leading

term of δUδ
(c)
a1,...,acVs which is in R(δ)+.

Case 1.2: T 0 does not contain any trivial column. δT 0
= δ

(s)
b1,...,bs

δ
(c)
a1,...,ac

with c ≥ s, there is j such that aj > bj , we choose the largest such
j, due to our conventions of writing, if c = s then j < s and ac > c,
bs > s.

Thus the relation PT 0 has the following form:

PT 0 = δT 0
−

∑
A⊂{a1,...,ac}

#A=j

±δ
(s)
A∪{bj+1,...,bs}

δ
(c)
({a1,...,ac}\A)∪{b1,...,bj}

= δT 0
−

∑
S<T 0

S semi standard

±δ(S).

If a tableau S in this relation contains a trivial column, i.e S = C1C2

with C1 trivial, we replace S by C2 since

δS − δC2 = Vs.δ
C2 .

Repeating this operation, we get an element

P ′
T 0 = δT 0

−
∑

S<T 0

S quasi standard

±δ(S).

Case 2: T is semi standard.

If T has only one column, this column is trivial T is the leading term
of some PT = δT − 1 in R(δ)+.

Since T is semi standard the construction of the super Young tableau
f(T ) begins with the extraction of the top s elements 1, . . . , s of the
first column of T . Let us look to the two first columns of T , CT

1 and
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CT
2 . By hypothesis, δCT

1 = δ
(c1)
1,...,s,as+1,...,ac1

, δCT
2 = δ

(c2)
b1,...,bs,bs+1,...,bc2

and

bs < as+1.
Let us define ∂T as the tableau with the following first columns C∂T

1

and C∂T
2 :

δC∂T
1 = δ

(c1)
b1,...,bs,as+1,...,ac1

, δC∂T
2 = δ

(c2)
1,...,s,bs+1,...,bc2

,

the other columns of ∂T being C∂T
i = CT

i (i ≥ 3). Let us write the
Plücker relation corresponding to these two columns and s:

δT − δ∂T−
∑

A⊂{1,...,s,as+1,...,ac1}

A 6={1,...,s}
#A=s

±
∏

i≥3

δCT
i δ

(c2)
A∪{bs+1,...,bc2}

δ
(c1)
({1,...,s,as+1,...,ac1}\A)∪{b1,...,bs}

= δT − δ∂T −
∑

A

±δTA .

Each term δTA in the sum has a second column containing ai with

i > s, thus ai ≥ as+1 > bs and δ
(c2)
A∪{bs+1,...,bc2}

< δCT
2 , δTA < δT .

If c2 = s, deg(δ∂T ) < deg(δT ), δT is the leading term of an element
in R(δ)+. If c2 > s, we repeat this construction for ∂T , forgotting its
first column. We get the following element of R(δ)+:

δ∂T − δ∂2T−
∑

B⊂{1,...,s,bs+1,...,bc2}

B 6={1,...,s}
#B=s

±
∏

i≥4

δCT
i δ

(c3)
B∪{cs+1,...,cc3}

δ
(c2)
({1,...,s,bs+1,...,bc2}\B)∪{c1,...,cs}

δC∂T
1

= δ∂T − δ∂2T −
∑

B

δTB .

Each term δTB in the sum has a third column containing bi with i > s,

thus bi ≥ bs+1 > cs and δ
(c3)
B∪{cs+1,...,cc3}

< δCT
3 , δTB < δT .

Repeating this operation we finally get an element in R(δ)+ of the
form:

δT − δ∂kT −
∑

j

δTj

with δTj < δT for all j, the column k + 1 of ∂kT is trivial, deg(δ∂kT ) <
deg(δT ) and δT is the leading term of an element of R(δ)+.

Remark 4.
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The tableau ∂kT considered here is (perhaps up a reordering of the
columns with height s ) the tableau h(C, R1) if C is the first trivial
column:

δC = δ
(s)
1...s

and R1 the first step in the process of trivial columns extraction from
T .

We got an element of R(δ)+:

δT − δR1 −
∑
±δTj (R1 < T, Tj < T )

If R1 is quasi standard, we stop the process. If it is not the case, we
continue the extraction, getting new tableaux T ′

k < R1 < T . Finally we
get: T = g(L, R) with L 6= ∅ and δT −δR−

∑
Tk<T

akδ
T
k belongs to R(δ)+.

R is quasi standard R < T, Tk < T . We repeat this operation for each
non quasi standard Tk; getting an element PT = δT − δR −

∑
akδ

Tk

with Tk < T , Tk quasi standard, P (T ) in R(δ)+.
We proved that each non quasi standard Young tableau is the lead-

ing term of an explicit element PT of R(δ)+. Let us now prove that
any quasi standard Young tableau is not a leading term of an element
in R(δ)+.

Let λ be a highest weight for sl(n) and V λ the corresponding simple
module. We saw that V λ is naturally a sub-module of S•

red(V ). More
precisely, V λ is the space spanned by the classes modulo R(δ)+ of the
monomials δT for all Young tableau T of shape λ. A basis for V λ is
given by the classes of the monomials δT for T semi standard with
shape λ in the quotient C[δ]/R(δ)+. Let us consider the sub-space W λ

of V λ spanned by the quasi standard and semi standard Young tableau
of shape λ.
A basis of V λ is given by the classes of δT , T semi standard with shape
λ modulo R(δ)+. Either T is quasi standard and (δT ) is a basis of
W λ or T = g(L, R), we saw δT − δR =

∑
akδ

Tk modulo R(δ)+ with
Tk quasi standard Tk < T and R is quasi standard with shape µ < λ.
This proves that V λ is a subspace of

∑
µ≤λ

W µ.But since g is injective,

dimV λ =
∑
µ≤λ

dim(W µ) thus V λ =
⊕

µ≤λ

W µ.

Let now T be a quasi standard Young tableau of shape λ. Suppose
δT is the leading term of an element T +

∑
k akδ

Tk in R(δ)+, then
using the first part of the proof, we can replace each δTk with a non
quasi standard Tk, by a linear combination of δTj with quasi standard
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Tj modulo R(δ)+. Finally we get an element in R(δ)+ of the form
T +

∑
j ajδ

Tj with any Tj quasi standard and strictly smaller than T .
The shape µj of Tj is thus smaller than λ. But this is impossible since
the sum

∑
µ≤λ

W µ is direct.

Finally, as in section 3, for each non quasi standard Young tableau,
we got an element in R(δ)+ of the form:

P red
T = δT −

∑

j

ajδ
Tj

with δTj strictly smaller than δT and quasi standard.

Let T be a non quasi standard tableau with shape λ. We shall say
that T is minimal if it does not contain any non quasi standard tableau
with shape µ < λ. For instance a semi standard non quasi standard
tableau with one column or with 2 columns without trivial column are
minimal.

If n ≤ 3 there are no other semi standard, minimal, non quasi stan-
dard tableaux, but if n ≥ 4 there is semi standard, minimal, non quasi
standard tableau with 3 columns for instance:

1 2 3
3 4

Theorem 4. The Groebner basis

The set

G = {P T
red, T semi standard minimal non quasi standard or

T non semi standard with 2 columns, without any trivial column}

is the reduced Groebner basis of R(δ)+ for our ordering.

Proof:

We saw that

< LT (R(δ)+) >= {δT , T non quasi standard}.

If T contains a trivial column C, δT is divisible by δC and C is min-
imal semi standard non quasi standard.

If T is non semi standard, it contains a non semi standard tableau
S with 2 columns, without any trivial column.
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If T does not contain any trivial column and is semi standard then
by definition it contains a minimal non quasi standard tableau S but
S is by construction semi standard.

Thus
< LT (G) >=< LT (R(δ)+) > .

Now each monomial in any P T
red of G which are not the leading term,

are aT ′δT ′

with T ′ quasi standard.
But if S ⊂ T ′, then S is also quasi standard. Indeed, S is semi

standard, suppose S non quasi standard then S contains a first column

C1 = (1, 2, . . . , s, as+1, . . . , aC1),

other column
Ci = (b1, b2, . . . , bs, bs+1, . . . )

a last column
Ct = (c1, c2, . . . , cct) with t ≤ s.

We can extract (1, 2, . . . , s) from S.
Now, we can refind T from S by adding some columns before C1,

between columns of S or after Ct. But T is semi standard. By con-
sidering each case for these new columns, we directly see that the top
(1, 2, . . . , s) of columns C1 can still be extracted from T which is im-
possible since T is quasi standard.

Thus any monomial of P T
red is not divisible by the leading term of

another P T
red.

This means that G is the reduced Groebner basis of R(δ)+ for our
ordering.

The same result holds with the anti standard tableau, image by τ of
the quasi standard tableaux.

The anti quasi standard tableaux can be defined exactly as the quasi
standard tableaux by extracting ”trivial” top of columns like:

n
n− 1

...
n− s

They are still the image by τ of the quasi standard tableaux.
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Remark 5.

In fact, if n ≤ 3, the quasi satndard Grobner basis is invariant under
the action of θ. Similarly, with the symmetry τ , if we identify τ(T ) with
±T ′ with T ′ the Young tableau such that δτ(T ) = δT ′, then T quasi
standard implies T ′ quasi standard. In the study of sl(4) below, we
shall see this no more true for n > 3.

Let us now picture the adjoint representation of sl(3) in S
+
red equipped

with its Groebner basis:
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and the same representation in S
−
red equipped with its Groebner basis

is:
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We resume our construction by the two following diagrams:

A•(V ) = C[V ⊕ (V ∧ V )⊕ · · · ⊕ (V ∧ · · · ∧ V )]

↓

τ x

S
•(V ) =C[V ⊕···⊕∧n−1V ] /P

π− ւ ց π+

C[V ⊕···⊕∧n−1V ]/(P+R−)=S
−

red
←→ S

+
red =C[V ⊕···⊕∧n−1V ] /(P+R+)

and :

θ x

C[δ
(s)
i1,...,is

]i1>···>is /P (δ) = C[SL(n)]N
+

=C[δ
(s)
i1,...,is

]i1>···>is /P (δ)

V ect(antisemistandard) = = V ect(semistandard)

ւ ց

C[SL(n)]N
−

/(P (δ)+R(δ)−) ≃ C[N+]←→ C[N−] ≃C[SL(n)]N
+

/(P (δ)+R(δ)+)

C[δ
(s)
i1,...,is

]is<n+1−s/Pred(δ)− = =C[δ
(s)
i1,...,is

]is>s /Pred(δ)−

V ect(antiquasistandard) = = V ect(quasistandard)

9. The sl(2) case

9.1. Representations of sl(2).
The sl(2)-simple modules are charachterized by a highest weight a.

More precesely, the basis of sl(2) is:

Xα =

[
0 1
0 0

]
, Hα =

[
1 0
0 −1

]
, Yα =

[
0 0
1 0

]
.

If a is a positive integer, the simple module πa acting on the space V a

is a + 1-dimensional, with a basis vn (0 ≤ n ≤ a) and the matrices of
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the action are:

πa(Xα) =




0 1 0 0
0 0 2 0

. . .
. . .

a
0 0




,

πa(Hα) =




a 0 0
0 a− 2 0

. . .
0 −a


 ,

πa(Yα) =




0 0 0 0
a 0 0 0

. . .
. . .

0 1 0


 .

There is only one fundamental representation, associated to the
weight ω1. We realize it in the space generated by the functions

δ
(1)
1 (g) = g11, δ

(1)
2 (g) = g21. The other representations are realized

on the space of homogeneous polynomial functions of degree a in these
variables.

9.2. Shape and reduced shape algebra.

There are no Plücker relation between g11 and g22, thus the shape
algebra is isomorphic to the algebra

A•(V ) = C[g11, g21] ≃ S(V ).

The reduced shape algebra is the quotient by the ideal generated by
g11 − 1. Let us put:

n− =

{[
0 0
x 0

]}
, N− = exp

(
n−

)
=

{[
1 0
x 1

]}
.

Then:
S
•
red(V )+ = C[δ1

2] = C[X],

The Xα acts on a polynomial function as the operator:

Xα =
∂

∂X
.

We realize the sl(2)-diamond cone as the half line of the entire nodes
0, 1, . . . , a, a + 1, . . . , at each node n, we put the quasi standard Young
tableau 2 . . . 2 or the monomial Xn. We have an explicit basis for
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the representation of N+ on the diamond cone defined by the action of
Xα, pictured by the graph:
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� �� ��
2 2 20

2 2 . . . 2
︸ ︷︷ ︸

1 2 a

a-1
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For any a ≥ 0, we define the diamond Da as the graph generated by
Xa, the vector space V a as the vector space with basis the nodes of
Da.
We saw that the anti semi standard (resp. the anti quasi standard) ba-
sis can be identified with the semi standard (resp. the quasi standard)
basis. More precisely, a being fixed, the action of τ on V a, denoted by
τ (a) is defined as:

τ (a)(Xn) = Xa−n

τ (a)( 2 . . . 2 ) = 2 . . . 2

We can see τ (a) as the succession of the operations:

• Completion of the tableau T (compl[2 . . . 2] = [1 . . . 1][2 . . . 2])
• Action of τ (τ(compl[2 . . . 2]) = [2 . . . 2][1 . . . 1])
• reordering (ord(τ(compl[2 . . . 2])) = [1 . . . 1][2 . . . 2])
• Cancelling the trivial columns 1

We put:

Yα(Xn) = (τ (a) ◦Xα ◦ τ (a))(Xn) = (a− n)Xn+1

and Hα = [Xα, Yα] or:

Hα(Xn) = [(n + 1)(a− n)− n(a− n + 1)]Xn = (a− 2n)Xn.

We complete the diamond Da by adding the edges corresponding to
the Yα-action.

10. The sl(3) case

10.1. Representations of sl(3).
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The sl(3)-simple modules are characterized by their highest weight.
More precisely, the basis of sl(3) is:

Xα =




0 1 0
0 0 0
0 0 0



 , Xβ =




0 0 0
0 0 1
0 0 0



 , Xα+β =




0 0 1
0 0 0
0 0 0



 ,

Hα =




1 0 0
0 −1 0
0 0 0



 , Hβ =




0 0 0
0 1 0
0 0 −1



 ,

Yα =




0 0 0
1 0 0
0 0 0



 , Yβ =




0 0 0
0 0 0
0 1 0



 , Yα+β =




0 0 0
0 0 0
1 0 0



 .

The simple modules have non multiplicity free weights. We can describe
then by using the reduced shape algebra. The fundamental modules
are three dimensional, they are realized on the space V ω1 = C3 and
V ω2 = ∧2

C
3.

For each pair of natural integers, there is an unique irreducible repre-
sentation π(a, b) with highest weight a̟1 + b̟2.

10.2. Shape and reduced shape algebra.

Now we have just one Plücker relation: let us put as above:

δ
(1)
1 = g11, δ

(1)
2 = g21, δ

(1)
3 = g31

δ
(2)
12 = g11g22 − g12g21, δ

(2)
13 = g11g32 − g12g31, δ

(2)
23 = g21g32 − g22g31.

Then the unique Plücker relation is:

δ
(1)
1 δ

(2)
23 − δ

(1)
2 δ

(2)
13 + δ

(1)
3 δ

(2)
12 = 0.

The shape algebra is the quotient of the algebra of polynomial functions
in these 6 variables by the above relation.

The reduced shape algebra is obtained by imposing δ
(1)
1 = 1 and

δ
(2)
12 = 1.
An explicit description of a basis for this module V (a,b) and the

Xη, Yη, H η actions on this basis can be found in [W] for instance.
More precisely, Wildberger defines a diamond cone D in R

3 and a in-
finite dimensional vector space V with basis:

B = {em,n,ℓ, (m, n, ℓ) ∈ D ⊂ R3}
= {em,n,ℓ, m, n ≥ 0, −n ≤ ℓ ≤ 2m− n, m− 2n ≤ ℓ ≤ m,
ℓ ≡ max(m, n)mod2}.
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He defines the action of Xη on these vectors em,n,ℓ and the irreducible
module V (a,b) with highest weight a̟1 + b̟2 is the module generated
by the Xη action on the highest weight vector ea+b,a+b,a−b.

A basis for this module is an explicit subset B(a,b) of B. There is a
symmetry τ(a,b) on V (a,b), τ(a,b)(B

(a,b)) = B(a,b) and the Yη, Hη actions
are defined as:

Yη = τ(a,b) ◦Xη ◦ τ(a,b), Hη = [Xη, Yη]

see [W] for explicit formulas.

Let us put:

n− =









0 0 0
x 0 0
u y 0








 , N− = exp
(
n−

)
=









1 0 0
x 1 0

u + xy

2
y 1








 .

Then:

δ
(1)
2 = X, δ

(1)
3 =

xy

2
+ u = U, δ

(2)
13 = Y, δ

(2)
23 =

xy

2
− u = E

and

S
•
red(V )+ ≃ C[x, y, u]

= C[δ
(1)
2 , δ

(1)
3 , δ

(2)
13 , δ

(2)
23 ]/
〈δ

(1)
3 + δ

(2)
23 − δ

(1)
2 δ

(2)
13 〉

= C[X, Y, U, E]/〈U + E −XY 〉.

The quasi standard ordering on variables is:

δ
(1)
3 < δ

(1)
2 < δ

(2)
23 < δ

(2)
13 , or U > X > E > Y.

Then the leading term for this basis is δ
(1)
2 δ

(2)
13 = XY , thus we get the

basis:
{

(δ
(1)
3 )u(δ

(2)
23 )e(δ

(1)
2 )x = UuEeXx, u, e, x ∈ N

}

⋃{
(δ

(1)
3 )u(δ

(2)
23 )e(δ

(1)
2 )y = UuEeY y, u, e, y ∈ N, y > 0

}
.

Now the action of Xα, Xβ and Xα+β on these polynomials are the
following:

Xα =
∂

∂x
−

y

2

∂

∂u
, Xβ =

∂

∂y
+

x

2

∂

∂u
, Xα+β =

∂

∂u
,
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or

Xα(X) = 1, Xα(Y ) = 0, Xα(U) = 0, Xα(E) = Y,

Xβ(X) = 0, Xβ(Y ) = 1, Xβ(U) = X, Xβ(E) = 0,

Xα+β(X) = 0, Xα+β(Y ) = 0, Xα+β(U) = 1, Xα+β(E) = −1.

Then the Xη acting by derivations on the polynomial functions φ, we
refind the diamond cone, the diamond D(a,b), the vector space V (a,b), the
symmetry τ(a,b) and the complete diamond graphs on D(a,b) described
in [W] with the identification:

em,n,ℓ = Un−m−ℓ
2 E

m−ℓ
2 Xm−n if m > n

em,n,ℓ = U
m+ℓ

2 E
m−ℓ

2 if m = n

em,n,ℓ = U
m+ℓ

2 Em−n+ℓ
2 Y n−m if m < n,

our basis coincide with the basis B given by Wildberger, for S•
red(V )+.

10.3. Xη action, Symmetry and Yη action.

With our notations, we have the following identification between
column and variables X, U, Y, E:

X = δ
(1)
2 (g) −→ 2

U = δ
(1)
3 (g) −→ 3

Y = δ
(2)
13 (g) −→

1
3

E = δ
(2)
23 (g) −→

2
3

The unique reduced Plücker relation is:

3 −
1 2
3

+
2
3

= 0

For instance the Xα action on our basis is exactly the Wildberger’s
one:

UuEeXx eUu+1Ee−1Xx−1 + (e + x)UuEeXx−1 (x > 0)
UuEeY y eUuEe−1Y y+1 (y ≥ 0)
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or

em,n,ℓ
m−ℓ

2
em−1,n,ℓ+1 + (m− n + m−ℓ

2
)em−1,n,ℓ−1 (m > n)

em,n,ℓ (m− n+ℓ
2

)em−1,n,ℓ (n ≥ m)

and the Xβ action:

UuEeXx uUu−1EeXx−1 (x > 0)
UuEeY y uUu−1EeXY y + yUuEeY y−1 (y ≥ 0)

or

em,n,ℓ (n− m−ℓ
2

)em,n−1,ℓ (m > n)
em,n,ℓ (n−m + n+ℓ

2
)em,n−1,ℓ+1 + (n+ℓ

2
)em,n−1,ℓ−1 (n ≥ m)

For sl(3), our symmetry τ on quasi standard Young tableaux induces
a very simple transformation on V (a,b).

Starting with a quasi standard Young tableau T with a′ columns of
height 1 and b′ columns of height 2, a′ ≤ a and b′ ≤ b, we complete T

by adding a− a′ trivial columns 1 and b′− b trivial columns
1
2

. For

instance:

a = 5, b = 3 T =
2 2 2 2 3
3 3

, compl(T ) =
1 2 2 1 1 2 2 3
2 3 3

Then we compute τ(compl(T )), we reorganize the columns as above
and finally we suppress the trivial columns, on our example:

τ(compl(T )) =
3 2 2 3 3 2 2 1
2 1 1

= −
1 1 2 1 2 2 3 3
2 2 3

≃ −
2 2 2 3 3
3

The resulting quasi standard tableau will be denoted τ (a,b)(T ). Explic-
itly we get with the polynomial notations:

τ (a,b)(UuEeXx) = Ua−(x+u)Eb−eXx

τ (a,b)(UuEeXx) = Ua−uEb−(y+e)Y y

or:

τ (a,b)(em,n,ℓ) = ea+b−n,a+b−m,a−b+m−n−ℓ
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We refind the symmetry, thus the Yη and Hη actions of Wildberger
([W]).

11. The sl(4) case

11.1. Representations of sl(4).
As above, we have simple roots α, β and γ, with:

Xα =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , Xβ =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , Xγ =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 .

Moreover we have positive roots α + β, β + γ and α + β + γ, with:

Xα+β =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , Xβ+γ =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , Xα+β+γ =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 .

We put Yη = tXη and

Hα =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 , Hβ =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 , Hγ =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1


 .

The fundamental representations are 4 and 6 dimensional, they are
associted to the fundamental highest weight ω1 for the canonical repre-
sentation on V = C4, ω2 for the representation on ∧2V and ω3 for the
representation on ∧3V . These fundamental representations are easy
to describe, the reduction of the tensor product of any two of them is
completely described in [FH]. Especially, we get the Plücker relations
via this decomposition.

11.2. Shape and reduced shape algebra.

Now we have 10 Plücker relations: let us put as above:

δ
(1)
i = gi1, δ

(2)
ij =

∣∣∣∣
gi1 gi2

gj1 gj2

∣∣∣∣ , δ
(3)
ijk =

∣∣∣∣∣∣

gi1 gi2 gi3

gj1 gj2 gj3

gk1 gk2 gk3

∣∣∣∣∣∣
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Then we have 4 Plücker relations between the δ(1) and δ(2) :

δ
(1)
1 δ

(2)
23 − δ

(1)
2 δ

(2)
13 + δ

(1)
3 δ

(2)
12 = 0,

δ
(1)
2 δ

(2)
34 − δ

(1)
3 δ

(2)
24 + δ

(1)
4 δ

(2)
23 = 0,

δ
(1)
1 δ

(2)
34 − δ

(1)
3 δ

(2)
14 + δ

(1)
4 δ

(2)
13 = 0,

δ
(1)
1 δ

(2)
24 − δ

(1)
2 δ

(2)
14 + δ

(1)
4 δ

(2)
12 = 0.

There are also 4 relations between the δ(2) and δ(3):

δ
(2)
14 δ

(3)
234 − δ

(2)
24 δ

(3)
134 + δ

(2)
34 δ

(3)
124 = 0,

δ
(2)
12 δ

(3)
134 − δ

(2)
13 δ

(3)
124 + δ

(2)
14 δ

(3)
123 = 0,

δ
(2)
12 δ

(3)
234 − δ

(2)
23 δ

(3)
124 + δ

(2)
24 δ

(3)
123 = 0,

δ
(2)
13 δ

(3)
234 − δ

(2)
23 δ

(3)
134 + δ

(2)
34 δ

(3)
123 = 0.

And one between the δ(2):

δ
(2)
12 δ

(2)
34 − δ

(2)
13 δ

(2)
24 + δ

(2)
14 δ

(2)
23 = 0.

And finally one between the δ(1) and the δ(3):

δ
(1)
1 δ

(3)
234 − δ

(1)
2 δ

(3)
134 + δ

(1)
3 δ

(3)
124 − δ

(1)
4 δ

(3)
123 = 0.

The shape algebra is the quotient of the algebra of polynomial func-
tions in these 14 variables by the 10 above relations.

The reduced shape algebra is obtained by imposing δ
(1)
1 = 1, δ

(2)
12 = 1

and δ
(3)
123 = 1.

Let us put:

n− =









0 0 0 0
x 0 0 0
u y 0 0
w v z 0









and

N− = exp(n−) =









1 0 0 0
x 1 0 0

u + xy

2
y 1 0

w + xv
2

+ zu
2

+ xyz

6
v + yz

2
z 1








.

Then we get:

δ
(1)
1 = 1, δ

(1)
2 = X, δ

(1)
3 =

xy

2
+ u = U, δ

(1)
4 = w +

xv

2
+

zu

2
+

xyz

6
= A
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and

δ
(3)
123 = 1, δ

(3)
124 = Z, δ

(3)
134 = yz−ξ2 = W, δ

(3)
234 =

xyz

6
−

xv

2
−

zu

2
+w = C

and

δ
(2)
12 = 1, δ

(2)
13 = Y, δ

(2)
14 = v +

yz

2
= V

δ
(2)
23 =

xy

2
− u = E, δ

(2)
24 =

xyz

3
+

xv

2
−

zu

2
− w = D, δ

(2)
34 =

xy2z

12
+ uv − yw = B.

Now:

S
•
red(V )+ ≃ C[x, y, z, u, v, w]

= C[δ
(1)
2 , . . . , δ

(1)
4 , δ

(2)
13 , . . . , δ

(2)
34 , δ

(3)
124, . . . , δ

(3)
234]/Pred(δ)

+

= C[X, Y, Z, U, E, W, V, A, C, D, B]/P luck

where P luck is the ideal generated by the 10 polynomials:

P luck = 〈U −XY + E, D −XV + A, B − UV + Y A, XB − UD + AE,

B − Y D + EV, C −XW1 + UZ − A,

V C −DW + PZ, W − Y Z + V, C − EZ + D, Y C − EW + B〉.

We choosed the following ordering for our variables:

Z < W < C < Y < E < V < D < B < X < U < A.

Then the leading terms of this basis are:

XY, XV, UV, BX, Y Z, EZ, Y C, V C, XW, EV, UDW, UDY.

Now the basis of our space, i.e. the nodes of the sl(4)-diamond are
monomials

XxY yZzW wV vUuEeAaCcDdBb

with:

0 = xy = xv = uv = bx = yz = ez = yc = vc = xw = ev = udw = udy.

The action of our generators Xα, Xβ and Xγ on these polynomials
are:

Xα = ∂x −
y

2
∂u +

(yz

12
−

v

2

)
∂w,

Xβ = ∂y +
x

2
∂u −

z

2
∂v −

xz

6
∂w,

Xγ = ∂z +
y

2
∂v +

(xy

12
+

u

2

)
∂w.
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Then we get:

Xα(X) = 1, Xβ(X) = 0, Xγ(X) = 0,

Xα(Y ) = 0, Xβ(Y ) = 1, Xγ(Y ) = 0,

Xα(Z) = 0, Xβ(Z) = 0, Xγ(Z) = 1,

Xα(U) = 0, Xβ(U) = X, Xγ(U) = 0,

Xα(E) = Y, Xβ(E) = 0, Xγ(E) = 0,

Xα(W ) = 0, Xβ(W ) = Z, Xγ(W ) = 0,

Xα(V ) = 0, Xβ(V ) = 0, Xγ(V ) = Y,

Xα(A) = 0, Xβ(A) = 0, Xγ(A) = U,

Xα(C) = W, Xβ(C) = 0, Xγ(C) = 0,

Xα(D) = V, Xβ(D) = 0, Xγ(D) = V,

Xα(B) = 0, Xβ(B) = D, Xγ(B) = 0.

Thus the Xη for η simple are acting on our basis of the reduced shape
algebra by giving linear combination with integral coefficients, indeed,
we find first such a linear combination on Z (even Z+) coefficients but
on monomials which are perhaps not all admissible, then we come back
to admissible monomials, using the reduced Plücker relations, but these
relations are with coefficients ±1, thus we finally get a combination of
monomials in the basis with coefficients in Z.

11.3. Symmetry.

Now the symmetry τ on Young tableaux does not induce a simple
operation τ (abc) on the basis of the simple module V (abc).

For instance the tableau

1 3
2
4

= ZU is an element of the basis

of V (1,0,1) (see fig.). Repeating the operation performed for sl(2) and
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sl(3), we get:

compl(
1 3
2
4

) =
1 3
2
4

, τ(compl(
1 3
2
4

)) =
4 2
3
1

= −
1 2
3
4

but this tableau is not quasi standard: the extraction of the trivial top
1 of the first column is not trivial:

τ (1,0,1)(

1 3
2
4

) = −
2
3
4
−

1 3
2
4

+ 4

or:

τ (1,0,1)(ZU) = −WX = −C − ZU + A

We prefer to keep the new Groebner basis to see τ as a global change
of basis inside the reduced shape algebra and to realize Yτη = τXητ by

using the two basis. For instance in V (101) the basis is:

{1, X, U, A, Z, W, C, WU, WA, CU, CA, CX, ZU, ZA, ZX}

the image by τcompl of this basis is:

{AC, UC, XC, C, WA, ZA, A, ZX, Z, X, 1, WX, W, WU}

The matrix of Yτη on this new basis is exactly the matrix of Xη in the
old one.

Here is the presentation for adjoint representation V (1,0,1) of SL(4):
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