Index theorey and Non-Commutative Geometry. II. Dirac operators and index bundles - Archive ouverte HAL
Article Dans Une Revue Journal of K-theory Année : 2008

Index theorey and Non-Commutative Geometry. II. Dirac operators and index bundles

Résumé

When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define its Chern character in Haefliger cohomology and relate it to the Chern character of the $K-$theory index. This result gives a concrete connection between the topology of the foliation and the longitudinal index formula. Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.
Fichier principal
Vignette du fichier
indexTWOfinal.pdf (304.41 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00004755 , version 1 (19-04-2005)

Identifiants

Citer

Moulay Tahar Benameur, James Heitsch. Index theorey and Non-Commutative Geometry. II. Dirac operators and index bundles. Journal of K-theory , 2008, 1 (2), pp.305-356. ⟨10.1017/is007011012jkt007⟩. ⟨hal-00004755⟩
115 Consultations
300 Téléchargements

Altmetric

Partager

More