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INDEX THEORY AND

NON-COMMUTATIVE GEOMETRY

II. DIRAC OPERATORS AND INDEX BUNDLES

April 19, 2005

MOULAY-TAHAR BENAMEUR AND JAMES L. HEITSCH

Abstract. When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define
its Chern character in Haefliger cohomology and relate it to the Chern character of the K−theory index. This
result gives a concrete connection between the topology of the foliation and the longitudinal index formula.
Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.
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Introduction

In this paper, we continue our systematic study of the index theorem in Haefliger cohomology of foliations.
In [BH-I], we defined a Chern character for leafwise elliptic pseudodifferential operators on foliations. By
using Connes’ extension in [Con86], we then translated the Connes-Skandalis K−theory index theorem
[CS84] into Haefliger cohomology, thus proving scalar index theorems in the presence of holonomy invariant
currents.

In order to get more insight into topological invariants of foliations, we extend here the results of [He95]
and [HL99], which tie the indices of a leafwise operator on a foliation of a compact manifold to the so-called
index bundle of the operator. In particular, we show that for a generalized Dirac operator D along the leaves
of a foliation with Hausdorff graph, the Chern character of the analytic index of D coincides with the Chern
character of the index bundle of D. As in [He95] and [HL99], we assume that the projection onto the kernel
of D is transversely smooth, and that the spectral projections of D2 for the intervals (0, ǫ) are transversely
smooth, for ǫ sufficiently small. In those two papers, we assumed that the Novikov-Shubin invariants of D
were greater than three times the codimension of F . Here we use the K−theory index and we need only
assume that they are greater than half the codimension of F . More precisely, the pairings of these Chern
characters with a given Haefliger 2k−current agree whenever the Novikov-Shubin invariants of D are greater
than k. We conjecture that this theorem is still true provided only that the Novikov-Shubin invariants are
positive. Note that in the heat equation proof of the classical Atiyah-Singer families index theorem, [B86],
it is assumed that there is a uniform gap about zero in the spectrum of the operator, which implies the
conditions we assume on the spectral projections.

In [Con79, Con81], Connes extended the classical construction of Atiyah [A75] of the L2 covering index
theorem to leafwise elliptic operators on compact foliated manifolds. To do so he replaced the lifting and
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deck transformations used by Atiyah by a lifting to the holonomy covers of the leaves invariant under the
natural action of the holonomy groupoid. Moreover, he defined an analytic index map from the K-theory of
the tangent bundle of the foliation to the K-theory of the C∗ algebra of the foliation, which plays the role of
the K-theory of the space of leaves. In [CS84], Connes and Skandalis defined a push forward map in K-theory
for any K-oriented map from a manifold to the space of leaves of a foliation of a compact manifold. This
allowed them to define a topological index map from the K-theory of the tangent bundle of the foliation to
the K-theory of its C∗ algebra. Their main result is that the analytic and topological index maps are equal,
an extension of the classical Atiyah-Singer families index theorem. This theorem does not lead in general to
a relation between the index of the operator and its index bundle, by which we mean the (graded) projection
onto the kernel of the operator, even when this latter is transversely smooth so that its Chern character is
well defined. This index bundle, which lives in a von Neumann algebra of the foliation, carries important
information about the foliation, e.g. its Euler class, its higher signatures, etc.

In this paper, we extend the Chern character to the index bundle of D, provided the projection onto the
kernel of D is transversely smooth. Our main result is that, with the conditions given in the first paragraph,
the Chern character of D equals the Chern character of the index bundle of D. Since the Chern character of
the index bundle equals the superconnection index defined in [He95], we obtain as a corollary the coincidence
of the superconnection index with the Chern character of the analytic and topological indices. This Chern
character is readily computable and directly relates the index of D with the topology of the foliation.

We point out the papers [GL03, GL05] where Gorokhovsky and Lott prove, by a different method, an
index theorem for longitudinal Dirac operators.

Here is a brief outline of the paper. In Section 1., we fix notation and briefly review some necessary
material. In Section 2., we extend our Chern character to the K−theory of the space of super-exponentially
decaying operators on the leaves of a foliation, recall the construction of Dirac operators and the heat index
idempotent. In Section 3., we review the construction of the Chern character we use, and extend it to the
index bundle of a leafwise Dirac operator. In Section 4., we prove our main theorem, Theorem 4.1. In
Section 5., we show that the Chern character of the index bundle for D defined here is the same as that
defined in [He95] using Bismut superconnections.

Some of our results are valid for all foliations, not just those with Hausfdorff groupoid. We will alert the
reader when we need to assume that the graph G of F is Hausdorff. It is also worth pointing out that our
results are valid if we replace the holonomy groupoid G by any smooth groupoid between the monodromy
and holonomy groupoids.

Achnowledgements. The authors would like to thank A. Carey, A. Connes, M. Hilsum, E. Leichtnam, J.
Lott, V. Nistor, and P. Piazza for many helpful discussions. We are especially indebted to G. Skandalis for
many suggestions and remarks.

1. Notation and Review

Throughout this paper M denotes a smooth compact Riemannian manifold of dimension n, and F denotes
an oriented foliation of M of dimension p and codimension q. So n = p + q. The tangent bundle of F will
be denoted TF . If E → N is a vector bundle over a manifold N , we denote the space of smooth sections by
C∞(E) or by C∞(N ;E) if we want to emphasize the base space of the bundle. The compactly supported
sections are denoted by C∞

c (E) or C∞
c (N ;E). The space of differential k−forms on N is denoted Ak(N),

and we set A(N) = ⊕k≥0Ak(N). The space of compactly supported k−forms is denoted Ak
c (N), and

Ac(N) = ⊕k≥0Ak
c (N).

The holonomy groupoid G of F consists of equivalence classes of paths γ : [0, 1] →M such that the image
of γ is contained in a leaf of F . Two such paths γ1 and γ2 are equivalent if γ1(0) = γ2(0), γ1(1) = γ2(1), and
the holonomy germ along them is the same. Two classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G(0) of units of G consists of the equivalence classes of the constant paths, and we identify G(0) with M .

G is a (in general non-Hausdorff) dimension 2p + q manifold. The basic open sets defining its manifold
structure are given as follows. Let U be a finite good cover of M by foliation charts as defined in [HL90].
Given U and V in this cover and a leafwise path γ starting in U and ending in V , define (U, γ, V ) to be
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the set of equivalence classes of leafwise paths starting in U and ending in V which are homotopic to γ
through a homotopy of leafwise paths whose end points remain in U and V respectively. It is easy to see,
using the holonomy defined by γ from a transversal in U to a transversal in V , that if U, V ≃ Rp×Rq, then
(U, γ, V ) ≃ R

p ×R
p ×R

q. If G is non-Hausdorff, it is not true that compact sets are always closed, nor that
the closure of a compact set is compact. Because of this, we define the notion of having compact support as
follows. Given a bundle E over G and any set (U, γ, V ) as above, consider E | (U, γ, V ), the restriction of E
to (U, γ, V ). The space C∞

c (E | (U, γ, V )) has a natural inclusion into the space of sections of E over G by
extending any element of C∞

c (E | (U, γ, V )) to all of G by defining it to be zero outside (U, γ, V ). We define
the space C∞

c (E) = C∞
c (G;E) of smooth sections of E over G with compact support to be all finite sums∑

si where each si is the image of an element in some C∞
c (E | (U, γ, V )). The space of smooth functions

with compact support on G, namely C∞
c (G;G × R), will be denoted C∞

c (G). The metric on M induces a
canonical metric on G, denoted g0. See [He95] for the construction.

The source and range maps of the groupoid G are the two natural maps s, r : G → M given by s
(
[γ]

)
=

γ(0), r
(
[γ]

)
= γ(1). G has two natural transverse foliations Fs and Fr whose leaves are respectively L̃x =

s−1(x), L̃x = r−1(x) for x ∈M . Note that r : L̃x → L is the holonomy covering of L.
The Haefliger cohomology of F , [H80], is given as follows. For each Ui ∈ U , let Ti ⊂ Ui be a transversal and

set T =
⋃
Ti. We may assume that the closures of the Ti are disjoint. Let H be the holonomy pseudogroup

induced by F on T . Denote by Ak
c (M/F ) the quotient of Ak

c (T ) by the vector subspace generated by elements
of the form α− h∗α where h ∈ H and α ∈ Ak

c (T ) has support contained in the range of h. Give Ak
c

(
M/F )

the quotient topology of the usual C∞ topology on Ak
c (T ), so this is not a Hausdorff space in general. The

exterior derivative dT : Ak
c (T ) → Ak+1

c (T ) induces a continuous differential dH : Ak
c (M/F ) → Ak+1

c (M/F ).
Note that Ak

c (M/F ) and dH are independent of the choice of cover U . The complex {A∗
c(M/F ), dH} and

its cohomology H∗
c(M/F ) are, respectively, the Haefliger forms and Haefliger cohomology of F .

As the bundle TF is oriented, there is a continuous open surjective linear map, called integration over
the leaves, ∫

F

: Ap+k
c (M) −→ Ak

c (M/F )

which commutes with the exterior derivatives dM and dH . Given ω ∈ Ap+k
c (M), write ω =

∑
ωi where

ωi ∈ Ap+k
c (Ui). Integrate ωi along the fibers of the submersion πi : Ui → Ti to obtain

∫

Ui

ωi ∈ Ak
c (Ti).

Define

∫

F

ω ∈ Ak
c (M/F ) to be the class of

∑

i

∫

Ui

ωi. It is independent of the choice of the ωi and of the

cover U . As

∫

F

commutes with dM and dH , it induces the map

∫

F

: Hp+k(M ; R) → Hk
c (M/F ).

2. The K−theory index

In this section, we recall the definition of the analytic index of a Dirac operator defined along the leaves
of a foliation. We begin with some general remarks about operators along the leaves of foliations.

Let E1 and E′
1 be two complex vector bundles over M with Hermitian metrics and connections, and set

E = r∗E1 and E′ = r∗E′
1 with the pulled back metrics and connections. A pseudo-differential G-operator

with uniform support acting from E to E′ is a smooth family (Px)x∈M of G-invariant pseudo-differential

operators, where for each x, Px is an operator acting from E | L̃x to E′ | L̃x. The G-invariance property

means that for any γ ∈ L̃yx = L̃x ∩ L̃y, we have

(γ · P )y = Uγ ◦ Px ◦ U−1
γ = Py,

where Uγ denotes the operator on sections of any bundle induced by the isomorphism γ : L̃y → L̃x given by
composition with γ; for instance

Uγ : C∞
c (L̃x, E) −→ C∞

c (L̃y, E).

The smoothness assumption is rigorously defined in [NWX96]. If we denote by Kx the Schwartz kernel
of Px, then the G-invariance assumption implies that the family (Kx)x∈M induces a distributional section
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K of Hom(E, Ê′) over G which is smooth outside G(0) = M . Here Ê′ = s∗E′
1, which is also the pullback

bundle of E′ under the diffeomorphism γ 7→ γ−1. Since M is compact, the uniform support condition
becomes the assumption that the support of K is compact in G. The space of uniformly supported pseudo-
differential G−operators from E to E′ is denoted Ψ∞(G;E,E′), and the space of uniformly supported
regularizing G-operators is denoted by Ψ−∞(G;E,E′). When E′ = E we simply denote the correspond-
ing spaces by Ψ∞(G;E) and Ψ−∞(G;E). The Schwartz Kernel Theorem identifies Ψ−∞(G;E,E′) with

C∞
c (G,Hom(E, Ê′)), see [Con79, NWX96].
An element of Ψ∞(G;E,E′) is elliptic if it is elliptic when restricted to each leaf of Fs. The parametrix

theorem can be extended to the foliated case and we have

Proposition 2.1. [Con79] Let P be a uniformly supported elliptic pseudo-differential G−operator acting
from E to E′. Then there exists a uniformly supported pseudo-differential G−operator Q acting from E′ to
E such that

IE −Q ◦ P ∈ Ψ−∞(G;E) and IE′ − P ◦Q ∈ Ψ−∞(G;E′).

Here IE and IE′ denote the identity operators of E and E′ respectively.

A classicalK−theory construction assigns to any uniformly supported elliptic pseudo-differential G−operator
P from E to E′, a K−theory class

Inda(P ) ∈ K0(Ψ
−∞(G;E ⊕ E′)) = K0(C

∞
c (G,Hom(E ⊕ E′)))

called the analytic index of P [CM91, BH-I]. It will be useful to define this index class using functional
calculus in a wider space of smoothing operators, so we now relax the uniform support condition and extend
the above pseudodifferential calculus.

A super-exponentially decaying G−operator from E to E′ is a family P = (Px)x∈M of smoothing
G−operators so that its Schwartz kernel Px(y, z) is smooth in x, y, and z, and satisfies

2.2. Given non-negative integer multi indices α, β, and γ, there are positive constants ǫ, C1, and C2, such

that for all x ∈M , y, z ∈ L̃x,

‖∂
|α|+|β|+|γ|Px(y, z)

∂xα∂yβ∂zγ
‖ ≤ C1 exp

[−dx(y, z)1+ǫ
C2

]
.

Here ∂/∂x , ∂/∂y, and ∂/∂z come from coordinates obtained from a finite good cover U of M and dx( , )

is the distance on L̃x. The space of all such operators is denoted Ψ−∞
S

(G;E,E′) or C∞
S

(G; Hom(E, Ê′)).

Again when E′ = E we denote the corresponding spaces by Ψ−∞
S

(G;E) and C∞
S

(G; Hom(E)) for simplicity.

When E and E′ are trivial line bundles, we omit them and denote the corresponding spaces by Ψ−∞
S

(G) and
C∞

S
(G).

Lemma 2.3. When E′ = E, the space Ψ−∞
S

(G;E) is an algebra.

Proof. Let P and Q ∈ Ψ−∞
S

(G;E), with constants ǫ1, C1, C2 and ǫ2, D1, D2 respectively, for the estimate
given by Equation 2.2. We may replace ǫ1 and ǫ2 by ǫ = min(ǫ1, ǫ2). Set α = 1 + ǫ, C = C1D1 and

D = C2 +D2. Then for y, z ∈ L̃x,

|Px ◦Qx(y, z)| = |
∫

L̃x

Px(y, w)Qx(w, z) dw| ≤
∫

L̃x

C1e
−d(y,w)α/C2D1e

−d(w,z)α/D2 dw ≤
∫

L̃x

Ce−d(y,w)α/De−d(w,z)
α/D dw = Ce−(d(y,z)α/2αD)

∫

L̃x

e−(d(y,w)α+d(w,z)α−(d(y,z)/2)α)/D dw ≤

Ce−(d(y,z)α/2αD)
[ ∫

Sz

e−d(y,w)α/D dw +

∫

Sy

e−d(w,z)
α/D dw

]
≤

Ce−(d(y,z)α/2αD)
[ ∫

L̃x

e−d(y,w)α/D dw +

∫

L̃x

e−d(w,z)
α/D dw

]
,

where
Sz = {w ∈ L̃x | d(w, z) ≥ d(y, z)/2} and Sy = {w ∈ L̃x | d(y, w) ≥ d(y, z)/2}.
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Now each of the integrals

∫

L̃x

e−d(y,w)α/D dw and

∫

L̃x

e−d(w,z)
α/D dw is bounded independently of x, y, and

z. This is a standard argument for foliations of compact manifolds. Since M is compact, the leaves L̃x have
at most (uniformly bounded) exponential growth, and the integrands are super-exponentially decaying with
uniform super-exponential bounds. This gives us the estimate in 2.2 for P ◦Q.

To get the estimate for the derivatives ∂|α|+|β|+|γ|(P ◦Q)x(y, z)/∂x
α∂yβ∂zγ we need only note that these

are finite sums of the form

∑

α1+α2=α

∫

L̃x

(∂|α1|+|β|Px(y, w)

∂xα1∂yβ

)(∂|α2|+|γ|Qx(w, z)

∂xα2∂zγ

)
dw.

We can then repeat the argument above, using the estimates for the individual integrands.
�

There is a continuous embedding of algebras

jS : C∞
c (G; Hom(E ⊕ E′)) →֒ C∞

S (G; Hom(E ⊕ E′)),

and we define the Schwartz analytic index IndS

a as the composition of the analytic index Inda and the
induced morphism jS∗ : K∗(G; Hom(E⊕E′)) → K0(C

∞
S

(G; Hom(E⊕E′))). So if P is a uniformly supported
elliptic pseudo-differential G−operator,

IndS

a (P ) = jS∗(Inda(P )) ∈ K0(C
∞
S

(G; Hom(E ⊕ E′))).

By classical arguments, see for instance [MN96], it is easy to check that Ψ−∞
S

(G;E,E′) is a right module

over the algebra Ψ−∞
S

(G). The extended pseudodifferential calculus is defined by:

Ψ∞
S (G;E,E′) := Ψ−∞

S
(G;E,E′) ⊗Ψ−∞(G) Ψ∞(G;E,E′).

It is generated by Ψ∞(G;E,E′) and Ψ−∞
S

(G;E,E′). When E′ = E, we obtain in this way an algebra

of pseudodifferential operators. The subspace Ψ−∞
S

(G;E) is then an ideal in the algebra Ψ∞
S

(G;E). This

is due to the estimate given in 2.2. In particular, we may define IndS

a (P ) directly using a parametrix
Q ∈ Ψ∞

S
(G;E′, E) and the classical construction, and it is obvious that the two definitions agree.

The construction of the Chern character cha : K0(C
∞
c (G; Hom(E⊕E′))) → H∗

c(M/F ) in [BH-I], reviewed
in Section 3 below, also extends to this case thanks to Lemma 2.5, p. 443 of [HL02]. Note that this lemma
requires one of the elements to be uniformly exponentially decaying while the other must have uniformly
bounded coefficients. But if an operator is uniformly exponentially decaying it does have uniformly bounded
coefficients. Thus we have

chS

a : K0(C
∞
S (G; Hom(E ⊕ E′))) −→ H∗

c(M/F )

and

chS

a ◦jS∗ = cha .

Finally, the formula for cha in Definition 3.2 below also holds for chS

a .
Now assume that the dimension p of F is even and denote by D a generalized Dirac operator for the

foliation F . One of the most important examples of such an operator is given by the longitudinal Dirac
operator with coefficients in a vector bundle over M . It is defined as follows. As above, let E1 be a complex
vector bundle over M with Hermitian metric and connection, and set E = r∗(E1) with the pulled back
metric and connection. Assume that the tangent bundle TF of F is spin with a fixed spin structure. Then
TFs is also spin, and we endow it with the pulled back spin structure from TF . Denote by S = S+ ⊕ S−

the bundle of spinors along the leaves of Fs. Denote by ∇0 the connection on TFs given by the orthogonal
projection of the Levi-Civita connection for g0 on TG. ∇0 in then the Levi-Civita connection on each leaf

of Fs for the induced metric. For all x ∈ M , ∇0 induces a connection ∇0 on S|L̃x and we denote also by

∇0 the tensor product connection on S ⊗E|L̃x. These data determine a smooth family D = {Dx} of Dirac
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operators, where Dx acts on sections of S ⊗E|L̃x as follows. Let X1, . . . , Xp be a local oriented orthonormal

basis of T L̃x, and set

Dx =

p∑

i=1

ρ(Xi)∇0
Xi

where ρ(Xi) is the Clifford action of Xi on the bundle S ⊗ E|L̃x. Then Dx does not depend on the
choice of the Xi, and it is an odd operator for the Z2 grading of S ⊗ E = (S+ ⊗ E) ⊕ (S− ⊗ E). Set
D+ = D : C∞

c (S+ ⊗ E) → C∞
c (S− ⊗ E) and D− = D : C∞

c (S− ⊗ E) → C∞
c (S+ ⊗ E). For more on

generalized Dirac operators, see [LM89].
A super-exponentially decaying G−operator on S ⊗E is defined to be an operator of the form

A =

(
A11 A12

A21 A22

)
,

where each Aij is a smoothing operator whose Schwartz kernel Aij,x(y, z) is smooth in x, y, and z, and
satisfies the estimate in 2.2. A11 maps sections of S+ ⊗E to itself, A12 maps sections of S− ⊗E to sections
of S+ ⊗ E, etc. The set of all such operators is denoted Ψ−∞

S
(G;S ⊗ E) or C∞

S
(G; Hom(S ⊗ E)). If we

unitalize Ψ−∞
S

(G;S ⊗ E) by adding two copies of C corresponding to the projections π± : C∞
c (S ⊗ E) →

C∞
c (S± ⊗ E), then we get a unital algebra that we denote by Ψ̃−∞

S
(G;S ⊗ E). Note that π+ =

(
I 0
0 0

)

and π− =

(
0 0
0 I

)
. Since the grading operator α for S = S+ ⊕ S− satisfies α = π+ − π−, α belongs to

Ψ̃−∞
S

(G;S ⊗E).
The odd operator D is elliptic, so its analytic index is defined using a parametrix Q for D which is also

odd, i.e.
Q = Q± : C∞

c (S± ⊗ E) −→ C∞
c (S∓ ⊗ E).

Set
S+ = I −Q− ◦D+ and S− = I −D+ ◦Q−

so
S± : C∞

c (S± ⊗ E) −→ C∞
c (S± ⊗ E).

Using embeddings of our bundles in trivial bundles and computing the boundary map in K−theory, it
is easy to see that the analytic index of D is the K−theory class [CM91] in K0(Ψ

−∞(G;S ⊗ E)) =
K0(C

∞
c (G; Hom(S ⊗E)),

Inda(D
+) = [e] − [π−],

where the idempotent e is given by

2.4. e =

(
S2

+ −Q− ◦ (S− + S2
−)

−S− ◦D+ I − S2
−

)
.

The class [e] − [π−] lives in the K0−group of the unital algebra Ψ̃−∞(G;S ⊗ E) but its image in the
K0−group of C ⊕ C under the map induced by

p :

(
A11 + λIS+⊗E A12

A21 A22 + µIS+⊗E

)
7−→ (λ, µ),

is trivial. Since this epimorphism admits a splitting homomorphism, it is clear that the kernel of the
induced map p∗ is isomorphic to the K0−group of the non-unital algebra Ψ−∞(G;S ⊗E). Hence, the index
Inda(D

+) = [e] − [π−] is well defined.

Proposition 2.5. Assume that G is Hausdorff. Set

P (tD) =




e−tD
−D+

(−e−tD−D+/2) I−e
−tD−D+

tD−D+

√
tD−

−e−tD+D−/2
√
tD+ I − e−tD

+D−


 .
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Then, for all t > 0, P (tD) is an idempotent in Ψ̃−∞
S

(G;S ⊗E) and

[P (tD)] − [π−] = IndS

a (D+) ∈ K0(C
∞
S (G; Hom(S ⊗E))).

Proof. It is classical that all the operators in P (tD) (with the possible exception of the term π−) are

smoothing when restricted to any L̃x, so their Schwartz kernels are smooth when restricted to any L̃x.
Thus to check for smoothness, we need only check that they are smooth transversely, i.e. smooth in
the variable x ∈ M . The coefficients of the D± are smooth, and Corollary 3.11 of [He95] (which re-

quires that G be Hausdorff), says that the e−tD
±D∓

are transversely smooth. We will show presently that

e−tD
−D+/2 I − e−tD

−D+

tD−D+

√
tD− =

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
is also transversely smooth.

By [He95], the Schwartz kernels P±
t,x(y, z) of the e−tD

±D∓

satisfy the following estimate. Given a non-
negative integer i and non-negative integer multi indices α, β, and γ, and a real number T > 0, there is a

constant C > 0 such that for all x ∈M , y, z ∈ L̃x, and 0 ≤ t ≤ T ,

2.6. ‖
∂i+|α|+|β|+|γ|P±

t,x(y, z)

∂ti∂xα∂yβ∂zγ
‖ ≤ Ct−(p/2+i+|α|+|β|+|γ|) exp

[−dx(y, z)2
4t

]
.

It follows immediately that the e−tD
±D∓

and the e−tD
±D∓/2 satisfy the estimate in Equation 2.2, and

so also e−tD
+D−/2

√
tD+ =

√
tD+e−tD

−D+/2, since the derivatives of the coefficients of D± are uniformly
bounded on G.

To handle e−tD
−D+/2 I − e−tD

−D+

tD−D+

√
tD− =

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
, note that

d

ds

[I − e−sD
+D−

D+D−

]
= e−sD

+D−

, so
I − e−tD

+D−

tD+D−
=

1

t

∫ t

0

e−sD
+D−

ds.

Thus

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
=

√
tD−

t

∫ t

0

e−(t/2+s)D+D−

ds =

√
tD−

t

∫ 3t/2

t/2

e−sD
+D−

ds.

A simple calculation using Equation 2.6 above then shows that for fixed t,
√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
is

transversely smooth and that it satisfies the estimate in Equation 2.2.

It is easy to check that the operator Q(tD) = Q±(tD) where Q−(tD) =
I − e−tD

−D+/2

tD−D+

√
tD− and

Q+(tD) =
I − e−tD

+D−/2

tD+D−

√
tD+, is a parametrix for

√
tD. The corresponding idempotent e given by

Equation 2.4 is then P (tD), so the Schwartz analytic index of tD is just [P (tD)] − [π−]. Since the index
class only depends on the K−theory class of the principal symbol, it is clear that the K−theory class
[P (tD)] − [π−] is independent of t > 0. �

3. The Chern character in Haefliger cohomology

In this section we review the construction of the Chern-Connes character in Haefliger cohomology given in

[BH-I]. In view of our definition of the analytic index through the K−group of the unitalization Ψ̃−∞
S

(G;S⊗
E), the Chern character is easy to express in terms of heat kernels. We may regard the connection ∇
on S ⊗ E as an operator of degree one on C∞(S ⊗ E ⊗ ∧T ∗G) where on decomposable sections φ ⊗ ω,
∇(φ ⊗ ω) = (∇φ) ∧ ω + φ ⊗ dω. The foliation Fs has normal bundle ν∗s ≃ s∗(T ∗M), and ∇ defines a
quasi-connection ∇ν acting on C∞(S ⊗E ⊗ ∧ν∗s ) by the composition

C∞(S ⊗E ⊗ ∧ν∗s )
i−→ C∞(S ⊗E ⊗ ∧T ∗G)

∇−→ C∞(S ⊗E ⊗ ∧T ∗G)
pν−→ C∞(S ⊗E ⊗ ∧ν∗s ),

where i is the inclusion and pν is induced by the restriction pν : T ∗G → ν∗s .
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C∞(S ⊗E ⊗ ∧ν∗s ) is an A(M)-module where for φ ∈ C∞(S ⊗E ⊗ ∧ν∗s ), and ω ∈ A(M), we set

ω · φ = pν(s
∗(ω))φ,

where again the map pν : A(G) → C∞(∧ν∗s ) is induced by the projection pν : T ∗G → ν∗s .
Recall Ψ−∞(G;S ⊗E) ≃ C∞

c (G,Hom(S ⊗E)) the space of uniformly supported regularizing G-operators.
We may consider the algebra

Ψ−∞(G;S ⊗E)⊗̂C∞(M)A(M)

as a subspace of the space of A(M)-equivariant endomorphisms of C∞(S ⊗ E ⊗ ∧ν∗s ) by using the A(M)
module structure of C∞(S ⊗E ⊗ ∧ν∗s ).

Denote by ∂ν : End(C∞(S ⊗E⊗∧ν∗s )) → End(C∞(S ⊗E⊗∧ν∗s )) the linear operator given by the graded
commutator

∂ν(T ) = [∇ν , T ].

The operator ∂ν maps the space

Ac(G,S ⊗E) := Ψ−∞(G;S ⊗E)⊗̂C∞(M)A(M)

to itself, and (∂ν)
2 is given by the commutator with the curvature θ = (∇ν)2 of ∇ν .

In the same way, we consider the algebra

AS(G,S ⊗E) := Ψ−∞
S

(G;S ⊗E)⊗̂C∞(M)A(M)

where Ψ−∞
S

(G;S⊗E) is the algebra of superexponentially decaying operators defined in the previous section.
Then ∂ν also acts on AS(G,S ⊗ E) with (∂ν)

2 given again by the commutator with the zero-th order
differential operator θ.

By the Schwartz kernel theorem, the algebra AS(G,S ⊗E) is isomorphic to the algebra

C∞
S (G; Hom(S ⊗E))⊗̂C∞(M)A(M).

For any T ∈ AS(G,S ⊗ E), define the trace of T to be the (compactly supported) Haefliger k-form Tr(T )
given by

Tr(T ) =

∫

F

tr(K(x̄))dx =

∫

F

tr(K(x, x))dx,

where K is the smooth Schwartz kernel of T , x̄ is the class of the constant path at x, tr(K(x̄)) is the usual
trace of K(x̄) ∈ End((S ⊗ E)x̄) ⊗ ∧T ∗Mx and so belongs to ∧T ∗Mx, and dx is the leafwise volume form
associated with the fixed orientation of the foliation F . The map

Tr : AS(G,S ⊗E) −→ Ac(M/F )

is then a graded trace which satisfies Tr ◦∂ν = dH ◦ Tr, see [BH-I].
Since ∂2

ν is not necessarily zero, we used Connes’ X−trick to construct a new graded differential algebra

(ÃS, δ) out of the graded quasi-differential algebra (AS(G,S ⊗E), ∂ν), see [Con94], p. 229. First, note that

the curvature operator θ is a multiplier of AS(G,S ⊗ E). As a vector space ÃS = M2(AS(G,S ⊗ E)). An

element T̃ =

(
T11 T12

T21 T22

)
∈ ÃS is homogeneous of degree ∂T̃ = k if

k = ∂T11 = ∂T12 + 1 = ∂T21 + 1 = ∂T22 + 2.

On homogeneous elements of ÃS, δ is given by

δT̃ =

(
∂νT11 ∂νT12

−∂νT21 −∂νT22

)
+

(
0 −θ
1 0

)
T̃ + (−1)∂T̃ T̃

(
0 1
−θ 0

)
,

and is extended to non-homogenous elements by linearity. A straightforward computation gives δ2 = 0. For

homogeneous T ∈ AS(G,S ⊗E), the differential δ on

(
T 0
0 0

)
∈ ÃS is given by

δ

(
T 0
0 0

)
=

(
∂νT (−1)∂TT
T 0

)
.
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Set

Θ =

(
1 0
0 θ

)

and define a new product on ÃS by

T̃ ∗ T̃ ′ = T̃ΘT̃ ′.

This makes (ÃS, δ) a graded differential algebra. For simplicity, we shall remove the multiplication ∗ from

the notation and write T̃ T̃ ′ for T̃ ∗ T̃ ′, when no confusion will occur.

The graded algebra AS(G,S ⊗E) embeds as a subalgebra of ÃS by using the map

T →֒
(
T 0
0 0

)
.

We shall therefore also denote by T the image in ÃS of any T ∈ AS(G,S ⊗E).

For homogeneous T̃ ∈ ÃS define

Φ(T̃ ) = Tr(T11) − (−1)∂T̃ Tr(T22θ),

and extend to arbitrary elements by linearity. The map Φ : ÃS → A∗
c(M/F ) is then a graded trace, and

again we have Φ ◦ δ = dH ◦ Φ, see [BH-I].
The (algebraic) Chern-Connes character in the even case is the morphism

cha : K0(C
∞
S

(G,S ⊗E)) = K0(Ψ
−∞
S

(G;S ⊗E)) −→ H∗
c(M/F )

defined as follows. Denote by Ψ̂−∞
S

(G;S ⊗ E) the minimal unitalization of Ψ−∞
S

(G;S ⊗ E). This amounts
to adding a copy of the complex numbers C, so

Ψ̂−∞
S

(G;S ⊗E) = Ψ−∞
S

(G;S ⊗E) ⊕ C.

Let MN(Ψ̂−∞
S

(G;S ⊗ E)) be the space of N × N matrices with coefficients in Ψ̂−∞
S

(G;S ⊗ E). Denote by

tr : MN (Ψ−∞
S

(G;S ⊗E)) → Ψ−∞
S

(G;S ⊗E) the usual trace.
Recall the following:

Theorem 3.1. [BH-I] Let B = [ẽ1] − [ẽ2] be an element of K0(Ψ
−∞
S

(G;S ⊗ E)), where ẽ1 = (e1, λ1) and

ẽ2 = (e2, λ2) are idempotents in MN(Ψ̂−∞
S

(G;S ⊗E)). Then the Haefliger forms

(Φ ◦ tr)
(
e1 exp

(−(δe1)
2

2iπ

))
and (Φ ◦ tr)

(
e2 exp

(−(δe2)
2

2iπ

))

are closed and the Haefliger cohomology class of their difference depends only on B.

Definition 3.2. The algebraic Chern character cha(B) of B is the Haefliger cohomology class

3.3. cha(B) =

[
(Φ ◦ tr)

(
e1 exp

(−(δe1)
2

2iπ

))]
−

[
(Φ ◦ tr)

(
e2 exp

(−(δe2)
2

2iπ

))]
.

In order to effectively compute the Chern character of the index of a generalized Dirac operator for F , we
need some further results. The exact sequence of algebras

0 → Ψ−∞
S

(G;S ⊗E)
i→֒ Ψ̃−∞

S
(G;S ⊗E)

p−→ C
2 → 0

has a splitting homomorphism ̺ : C2 → Ψ̃−∞
S

(G;S ⊗E) given by ̺(λ, µ) = λπ+ +µπ−. Therefore the kernel
of the induced map

p∗ : K0(Ψ̃
−∞
S

(G;S ⊗ E)) −→ K0(C
2) ≃ Z

2,

is isomorphic to the group K0(Ψ
−∞
S

(G;S ⊗E)). Denote by p0 the obvious projection of Ψ̂−∞
S

(G;S ⊗E) onto
C. Then the inclusion map

β : Ψ̂−∞
S

(G;S ⊗E) −→ Ψ̃−∞
S

(G;S ⊗E),

given by β(T, λ) = T + λπ+ + λπ− induces the isomorphism

β∗ : K0(Ψ
−∞
S

(G;S ⊗E)) = Ker(p0,∗) −→ Ker(p∗) ⊂ K0(Ψ̃
−∞
S

(G;S ⊗E)).



10 M-T. BENAMEUR AND J. L. HEITSCH APRIL 19, 2005

We shall use the universal graded algebra in the proof of Proposition 3.4 below, so we recall its definition.
To any algebra C, there corresponds a (universal) differential graded algebra Ω(C) = ⊕n≥0Ω

n(C) which is
defined by

Ω0(C) := C ⊕ C, and for n ≥ 1,Ωn(C) := (C ⊕ C) ⊗ C⊗n .

The differential d : Ωn(C) → Ωn+1(C) is defined for aj ∈ C and c ∈ C by

d
[
(a0 + c) ⊗ a1 ⊗ · · · ⊗ an)

]
:= 1 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an.

It is clear that by definition d2 = 0. The space Ωn(C) is endowed with a natural right C-module structure
(and hence right C ⊕ C-module structure) defined by

((a0 + c) ⊗ a1 ⊗ · · · ⊗ an)an+1 := (−1)n
n∑

j=0

(−1)j(a0 + c) ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an+1.

The algebra structure of Ω(C) is defined by setting

((a0 + c) ⊗ a1 ⊗ · · · ⊗ an)(b0 ⊗ b1 ⊗ · · · ⊗ bk) := ((a0 + c) ⊗ a1 ⊗ · · · ⊗ an)b0 ⊗ b1 ⊗ · · · ⊗ bk

and

((a0 + c) ⊗ a1 ⊗ · · · ⊗ an)c′ ⊗ b1 ⊗ · · · ⊗ bk) := c′[(a0 + c) ⊗ a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bk].

A straightforward verification shows that (Ω(C), d) is a differential graded algebra, see [Con85]. We point
out that by definition

(a0 + c)da1 · · · dan = (a0 + c) ⊗ a1 ⊗ · · · ⊗ an.

The following is known to experts. We give the proof for completeness, since it will be used in the sequel.

Proposition 3.4. Let ẽ and ẽ′ be two idempotents in MN (Ψ̃−∞
S

(G;S ⊗ E)) such that [ẽ] − [ẽ′] belongs to
the kernel of p∗. Then the Haefliger forms

(Φ ◦ tr)
(
(ẽ− (̺ ◦ p)(ẽ)) exp

(−(δ(ẽ− (̺ ◦ p)(ẽ)))2
2iπ

))
and

(Φ ◦ tr)
(
(ẽ′ − (̺ ◦ p)(ẽ′)) exp

(−(δ(ẽ′ − (̺ ◦ p)(ẽ′)))2
2iπ

))

are closed and we have the following equality in Haefliger cohomology:

(cha ◦β−1
∗ )([ẽ] − [ẽ′]) =

[
(Φ ◦ tr)

(
(ẽ− (̺ ◦ p)(ẽ)) exp

(−(δ(ẽ− (̺ ◦ p)(ẽ)))2
2iπ

))]

−
[
(Φ ◦ tr)

(
(ẽ′ − (̺ ◦ p)(ẽ′)) exp

(−(δ(ẽ′ − (̺ ◦ p)(ẽ′)))2
2iπ

))]

Proof. We define for every k ≥ 0 a multilinear functional Φ̃ on the unital algebra Ψ̃−∞
S

(G;S ⊗ E) by the
equality

Φ̃(T̃ 0, · · · , T̃ k) := Φ(T 0δT 1 · · · δT k) + Φ(δ(Λ0T 1)δT 2 · · · δT k),
where T̃ j = T j + Λj ∈ Ψ̃−∞

S
(G;S ⊗E) with

T j = T̃ j − (̺ ◦ p)(T̃ j) ∈ Ψ−∞
S

(G;S ⊗E) and Λj = ̺ ◦ p(T̃ j) =

(
λj 0
0 µj

)
= λjπ+ + µjπ−.

Then Φ̃ is a functional on the universal differential graded algebra associated with Ψ̃−∞
S

(G;S ⊗ E), see
[Con85] and also the bivariant constructions in [CQ97, Nis93]. More precisely, we set:

Φ̃((T̃ 0 + c)dT̃ 1 · · · dT̃ k) := Φ̃(T̃ 0, · · · , T̃ k).
We then have by definition

(Φ̃ ◦ d) = 0

on the universal differential graded algebra associated with Ψ̃−∞
S

(G;S ⊗E).
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For T̃ j = T j + Λj ∈ Ψ̃−∞
S

(G;S ⊗E), we have

(−1)kΦ̃([T̃ 0dT̃ 1 · · · dT̃ k, T̃ k+1]) = (−1)kΦ̃(T̃ 0dT̃ 1 · · · dT̃ kT̃ k+1) − (−1)kΦ̃(T̃ k+1T̃ 0dT̃ 1 · · · dT̃ k)

= Φ̃(T̃ 0T̃ 1dT̃ 2 · · · dT̃ k+1) +

k∑

j=1

(−1)jΦ̃(T̃ 0dT̃ 1 · · · dT̃ j−1d(T̃ jT̃ j+1)dT̃ j+2 · · · dT̃ k+1)

− (−1)kΦ̃(T̃ k+1T̃ 0dT̃ 1 · · · dT̃ k)
= Φ((T 0T 1 + Λ0T 1 + T 0Λ1)δT 2 · · · δT k+1) + Φ(δ(Λ0Λ1T 2)δT 3 · · · δT k+1)

+

k∑

j=1

(−1)jΦ(T 0δT 1 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

− Φ(δ(Λ0(T 1T 2 + Λ1T 2 + T 1Λ2))δT 3 · · · δT k+1)

+

k∑

j=2

(−1)jΦ(δ(Λ0T 1)δT 2 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

− (−1)kΦ((T k+1T 0 + T k+1Λ0 + Λk+1T 0)δT 1 · · · δT k)
− (−1)kΦ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

By using a connection which commutes with the grading we insure that ∂ν(Λ) = 0 for any Λ ∈ Cπ+⊕Cπ−.
Thus, using the definitions of the product and the differential δ, we can easily deduce the following relations
for all Λ, T,Λ′, and T ′:

3.5. ∂ν(ΛT ) = Λ(∂νT ), ∂ν(TΛ) = (∂νT )Λ, θΛT = ΛθT, TΛδ(T ′) = Tδ(ΛT ′), δ(TΛ)T ′ = (δT )(ΛT ′),

δ(TΛ)δ(T ′) = δ(T )δ(ΛT ′), TΛδ(Λ′T ′) = Tδ(ΛΛ′T ′) and δ(TT ′) = δTT ′ + TδT ′.

It is then a straightforward calculation that

Φ((T 0T 1 + Λ0T 1 + T 0Λ1)δT 2 · · · δT k+1)+

k∑

j=1

(−1)jΦ(T 0δT 1 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

collapses to

Φ(Λ0T 1δT 2 · · · δT k+1) + (−1)kΦ(T 0δT 1 · · · δT k−1(δT kT k+1 + δ(T kΛk+1))),

and

Φ(δ(Λ0Λ1T 2)δT 3 · · · δT k+1) − Φ(δ(Λ0(T 1T 2 + Λ1T 2 + T 1Λ2))δT 3 · · · δT k+1)+

k∑

j=2

(−1)jΦ(δ(Λ0T 1)δT 2 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

collapses to

−Φ(Λ0T 1δT 2 · · · δT k+1) + (−1)kΦ(δ(Λ0T 1)δT 2 · · · δT k−1(δT kT k+1 + δ(T kΛk+1))).
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Substituting and multiplying by (−1)k, we get

Φ̃([T̃ 0dT̃ 1 · · ·dT̃ k, T̃ k+1]) = (−1)kΦ(Λ0T 1δT 2 · · · δT k+1)

+ Φ(T 0δT 1 · · · δT kT k+1))

+ Φ(T 0δT 1 · · · δT k−1δ(T kΛk+1))

− (−1)kΦ(Λ0T 1δT 2 · · · δT k+1)

+ Φ(δ(Λ0T 1)δT 2 · · · δT kT k+1)

+ Φ(δ(Λ0T 1)δT 2 · · · δT k−1δ(T kΛk+1))

− Φ(T k+1T 0δT 1 · · · δT k)
− Φ(T k+1Λ0δT 1 · · · δT k)
− Φ(Λk+1T 0δT 1 · · · δT k)
− Φ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

The first and the fourth terms on the right cancel. Using 3.5 and the trace property of Φ we have the
following equations:

0 = Φ(T 0δT 1 · · · δT kT k+1) − Φ(T k+1T 0δT 1 · · · δT k).
0 = Φ(T 0δT 1 · · · δT k−1δ(T kΛk+1)) − Φ(Λk+1T 0δT 1 · · · δT k).
0 = Φ(δ(Λ0T 1)δT 2 · · · δT kT k+1) − Φ(T k+1Λ0δT 1 · · · δT k).
0 = Φ(δ(Λ0T 1)δT 2 · · · δT k−1δ(T kΛk+1)) − Φ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

Thus

Φ̃([T̃ 0dT̃ 1 · · · dT̃ k, T̃ k+1]) = 0.

Now a classical argument shows that Φ̃ is then a graded trace on the whole universal algebra associated

with Ψ̃−∞
S

(G;S ⊗E).

Given the above, we know that for any idempotent ẽ in the matrix algebra MN (Ψ̃−∞
S

(G;S ⊗ E)), the
expression

(Φ̃ ◦ tr)
(
ẽ exp

(−(d(ẽ)2)

2iπ

))

is a closed Haefliger form and that its cohomology class only depends on the K−theory class [ẽ] of the
idempotent ẽ, see for instance [BH-I]. But note that this Haefliger differential form coincides up to exact
Haefliger forms with the differential form

(Φ ◦ tr)
(
(ẽ− (̺ ◦ p)(ẽ)) exp

(−(δ(ẽ− (̺ ◦ p)(ẽ)))2
2iπ

))

which is then also closed and represents the same Haefliger cohomology class. Thus we deduce that the
Haefliger class

[
(Φ ◦ tr)

(
(ẽ− (̺ ◦ p)(ẽ)) exp

(−(δ(ẽ− (̺ ◦ p)(ẽ)))2
2iπ

))]
−

[
(Φ ◦ tr)

(
(ẽ′ − (̺ ◦ p)(ẽ′)) exp

(−(δ(ẽ′ − (̺ ◦ p)(ẽ′)))2
2iπ

))]
,

is well defined and only depends on the K−theory class [ẽ]− [ẽ′]. We denote it by c̃ha([ẽ]− [ẽ′]). So we have
the following morphism

c̃ha : K0(Ψ̃
−∞
S

(G;S ⊗E)) −→ H∗
c(M/F ).

The above construction applies also to the minimal unitalization Ψ̂−∞
S

(G;S⊗E) of the algebra Ψ−∞
S

(G;S⊗E)
and yields a morphism

ĉha : K0(Ψ̂
−∞
S

(G;S ⊗E)) −→ H∗
c(M/F ),
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whose restriction to K0(Ψ
−∞
S

(G;S ⊗E)) is by definition the Chern character cha. Note that ĉha is given by
the same formula (3.3), except that the K−theory element is no longer supposed to live in the kernel of

p0,∗ : K0(Ψ̂
−∞
S

(G;S ⊗E)) −→ K0(Ψ
−∞
S

(G;S ⊗E)).

Now the map β : Ψ̂−∞
S

(G;S⊗E) → Ψ̃−∞
S

(G;S⊗E) induces a well defined morphism of short exact sequences

0

0

-

-

K0(Ψ
−∞
S

(G;S ⊗E))

?

K0(Ψ
−∞
S

(G;S ⊗E))

id

i0,∗-

-i∗

K0(Ψ̂
−∞
S

(G;S ⊗E))

?

K0(Ψ̃
−∞
S

(G;S ⊗E))

β∗

p0,∗-

-p∗

K0(C) ≃ Z

?

K0(C
2) ≃ Z2

[β]∗

-

-

0

0.

Hence composing with c̃ha gives the following diagram which is commutative by the very definition of the
maps:

0 - K0(Ψ
−∞
S

(G;S ⊗E))

i0,∗

i∗

β∗

c̃ha

ĉha
�

���

@
@@R

K0(Ψ̃
−∞
S

(G;S ⊗E))

K0(Ψ̂
−∞
S

(G;S ⊗E))

?

�
���

@
@@R

Hc(M/F ).

In particular, c̃ha ◦ β∗ = ĉha, so

c̃ha ◦ β∗ ◦ i0,∗ = ĉha ◦ i0,∗ = cha .

But,

β∗ ◦ i0,∗ : K0(Ψ
−∞
S

(G;S ⊗E)) −→ Ker p∗,

is an isomorphism, so we may define the Chern character directly on the group K0(Ψ
−∞
S

(G;S⊗E)) = Ker p∗.
The proof is thus complete. �

Corollary 3.6. Let D be a generalized Dirac operator for the foliation F acting on the sections of the

Z2−graded bundle S ⊗ E. Let P (tD) be the associated idempotent in the algebra Ψ̃−∞
S

(G;S ⊗ E), as in
Proposition 2.5. Set Pt = P (tD) − π−. Then for all t > 0, the Haefliger form

(Φ ◦ tr)
(
Pt exp

[−((δPt)
2)

2iπ

])
,

is closed and as Haefliger classes, we have the equality

cha(Inda(D
+)) =

[
(Φ ◦ tr)

(
Pt exp

[−((δPt)
2)

2iπ

])]
.

Proof. The analyticK−theory index ofD in theK−theory groupK0(Ψ
−∞
S

(G;S⊗E)) of superexeponentially
decaying operators is given by

Inda(D
+) = [P (tD)] − [π−] ∈ Ker

(
K0(Ψ̃

−∞
S

(G;S ⊗E)) → Z
2
)
.

Since the splitting map ̺ : C2 → Ψ̃−∞
S

(G;S ⊗E) is ̺(λ, µ) = λπ+ + µπ−, we have that

P (tD) − (̺ ◦ p)(P (tD)) = Pt and π− − (̺ ◦ p)(π−) = 0.

Now apply Proposition 3.4. �
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In [BH-I] we proved that the Chern character cha composed with the topological and analytic index maps
of Connes-Skandalis [CS84] yield the same map. As a particular case, for any generalized Dirac operator
D with coefficients in a Hermitian bundle E1 over M , the Chern character of the topological index of D,
denoted cha(Indt(D

+)), coincides with the Chern character of the analytic index of D, i.e.

cha(Indt(D
+)) = cha(Inda(D

+)),

and the common value of this Haefliger cohomology class is

cha(Indt(D
+)) = cha(Inda(D

+)) =

∫

F

Â(TF ) ch(E1).

Here Â(TF ) is the usual Â genus of the tangent bundle of F , and ch is the usual Chern character of E1.
In order to define the Chern character of the index bundle of D, we need to assume that P0, the projection

onto the kernel of D, is smooth. Classical results imply that P0 is smooth when restricted to any leaf L̃x, so
what we are really assuming is that it is transversely smooth.

Recall that α = π+ − π− is the grading involution for S ⊗E = (S+ ⊗ E) ⊕ (S− ⊗ E). Then

P0 =

[
P+

0 0
0 P−

0

]
, so αP0 =

[
P+

0 0
0 −P−

0

]

is the super-projection onto the leafwise kernel of D, where P±
0 is projection onto the kernel of D±. Note

that ∂νπ± = 0, provided we use a connection which preserves the splitting S = S+ ⊕ S−, which we assume
that we do, so ∂να = 0, and αθ = θα. Note also that αP0 = P0α, so

(∂ν(αP0))
2 = α2(∂νP0)

2 = (∂νP0)
2 and αP0θαP0 = α2P0θP0 = P0θP0, which implies (δ(αP0))

2 = (δP0)
2.

Proposition 3.7. The Haefliger form (Φ ◦ tr)
(
αP0 exp(

−((δ(αP0))
2)

2iπ
)
)

= (Φ ◦ tr)
(
αP0 exp(

−((δP0)
2)

2iπ
)
)

is closed, and the Haefliger class it defines depends only on P0.

Proof. Set U = 2P0 − 1 then

αU = Uα,U2 = I, UP0 = P0 = P0U and U(δP0) =
1

2
U(δU) = −1

2
(δU)U = −(δP0)U.

Thus, for any k ≥ 0,

(dH ◦ Φ ◦ tr)
(
αP0(δP0)

2k)
)

= (Φ ◦ tr)
(
α(δP0)

2k+1
)

= (Φ ◦ tr)
(
U2α(δP0)

2k+1
)
.

But,

(Φ ◦ tr)
(
U2α(δP0)

2k+1
)

= (−1)2k+1(Φ ◦ tr)
(
Uα(δP0)

2k+1U
)

= −(Φ ◦ tr)
(
U2α(δP0)

2k+1
)
,

so

(dH ◦ Φ ◦ tr)
(
αP0(δP0)

2k)
)

= 0.

In order to show the independence of the choice of connection, we use the relevant parts of the proof of
Theorem 4.1 of [BH-I]. Indeed, it is obvious that the Poincaré argument developed there still applies to the
regularizing operator P0 even though it may be non-compactly supported. �

Definition 3.8. The analytic Chern character cha(P0) of the index bundle of D is the class of the Haefliger

form (Φ ◦ tr)
(
αP0 exp(

−((δ(αP0))
2)

2iπ
)
)

= (Φ ◦ tr)
(
αP0 exp(

−((δP0)
2)

2iπ
)
)
.

Finally, an easy induction argument using the fact that for any idempotent e, e(∂νe)
2ℓ−1e = 0 for all

ℓ > 0, shows that

e(δe)2j =

(
e
(
(∂νe)

2 + eθe
)j

0
0 0

)
.

Thus

3.9. cha(P0) =)
[
(Tr ◦ tr)

(
αP0 exp(

−((∂νP0)
2 + P0θP0)

2iπ
)
)]
.
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4. Proof of Main Theorem

Denote by Pǫ the spectral projection for D2 for the interval (0, ǫ). Recall that the Novikov-Shubin
invariants of D are greater than k ≥ 0 provided that there is β > k so that

(Tr ◦ tr)(Pǫ) = (Φ ◦ tr)(Pǫ) is O(ǫβ) as ǫ→ 0.

When we say a Haefliger form Ψ depending on ǫ is O(ǫβ) as ǫ→ 0 we mean that there is a constant C > 0 so
that the function on T , ‖Ψ‖T ≤ Cǫβ as ǫ→ 0. Here ‖ ‖T is the pointwise norm on forms on the transversal
T induced from the metric on M . To say that ‖Ψ‖T ≤ Cǫβ, means that given any representative ψ ∈ Ψ,
there is a constant Cψ so that ‖ψ‖T ≤ Cψǫ

β . For a given cover, two representatives differ by a finite number
of translations of local forms on transversals to other transversals so if this equation is satisfied for one
representative with respect to a given cover, it is satisfied for all representatives with respect to that cover.
The fact that for any two good covers of M by foliation charts there is a integer N so that any placque of
the first cover intersects at most N placques of the second cover implies easily that this condition does not
depend on the choice of good cover.

We now prove our main theorem.

Theorem 4.1. Assume that G is Hausdorff, and that the Novikov-Shubin invariants of D are greater than
q/2. Assume further that the spectral projections P0 and Pǫ are transversely smooth (for ǫ sufficiently small),
and that ∂νP0 and ∂νPǫ are bounded operators. Then the analytic Chern character of the K-theory index of
D equals the analytic Chern character of the index bundle of D, that is

cha(Inda(D
+)) = cha([P0]).

Theorem 4.1 uses estimates on Novikov-Shubin invariants of D to deduce the equality of the whole Chern
character of the index bundle with that of the analytic index. We will actually prove the following stronger
theorem.

Theorem 4.2. Assume again that G is Hausdorff, that the spectral projections P0 and Pǫ are transversely
smooth (for ǫ sufficiently small), and that ∂νP0 and ∂νPǫ are bounded operators. For a fixed integer k with
0 ≤ 2k ≤ q, assume that the Novikov-Shubin invariants of D are greater than k. Then the kth component
of the Chern character of the K-theory index of D equals the kth component of the Chern character of the
index bundle of D, that is

chka(Inda(D
+)) = chka([P0]) ∈ H2k

c (M/F ).

The proof of this theorem is rather long and involves a number of complicated estimates. For easier
reading, we will split it into a series of propositions and lemmas. Note that Theorem 4.2 implies Theorem
4.1.

For the rest of this section, let k be a fixed integer in the interval [0, q/2]. By Corollary 3.6, we need only
show that,

lim
t→∞

(Φ ◦ tr)
(
Pt(δPt)

2k
)

= (Φ ◦ tr)
(
αP0(δ(αP0))

2k
)
.

If we ignore the minus signs in Pt, we see that the diagonal terms give e−tD
2

, and the off diagonal terms are

given by (Pt)21 = (e−tD
2/2

√
tD)21 and (Pt)12 = (e−tD

2/2 I − e−tD
2

tD2

√
tD)12. Thus

Pt = π+e
−tD2

π+ − π−e
−tD2

π− − π−e
−tD2/2

√
tDπ+ − π+e

−tD2/2 I − e−tD
2

tD2

√
tDπ−.

As the connection ∇ used in the definition of ∂ν preserves the splitting S ⊗ E = (S+ ⊗ E) ⊕ (S− ⊗ E),

∂νπ± = 0, and we may work with the operators e−tD
2

, e−tD
2/2

√
tD, and e−tD

2/2 I − e−tD
2

tD2

√
tD in what

follows instead of the (more notationally complicated) entries of Pt.
We will assume that the reader is familiar with the Spectral Mapping Theorem, see for instance [RS80],

and how to use it to compute bounds on norms, strong convergence, etc. This theorem gives that for ℓ ≥ 0,
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the norms of the operators Dℓe−tD
2

, Dℓe−tD
2/2

√
tD and Dℓe−tD

2/2 I − e−tD
2

tD2

√
tD are uniformly bounded

as t → ∞. In addition, as t → ∞, Dℓe−tD
2/2

√
tD and Dℓe−tD

2/2 I − e−tD
2

tD2

√
tD converge in norm to zero

for ℓ ≥ 0, and for ℓ > 0, Dℓe−tD
2

also converges in norm to zero.
Choose δ so that

−1 < δ <
−k
β

< 0

and couple ǫ to t by setting
ǫ = tδ.

Because of the uniformly bounded geometry of the leaves of Fs, which follows from the fact that all the
structures we use on G are pulled back from the compact manifold M , the leafwise estimates we give below
are uniform over all leaves of Fs.

Denote by Qǫ the spectral projection for D2 for the interval [ǫ,∞). Since I = P0 + Pǫ +Qǫ, the operator
∂νQǫ is bounded. Now consider

Pt = P0PtP0 + PǫPtPǫ +QǫPtQǫ = αP0 + PǫPtPǫ +QǫPtQǫ.

Proposition 4.3. As t→ ∞,

(i) ||QǫPtQǫ|| is bounded by a multiple of e−(t(1+δ)/32),

(ii) ||∂ν(QǫPtQǫ)|| is bounded by a multiple of e−(t(1+δ)/32),
(iii) ||PǫPtPǫ|| is bounded,

(iv) ||∂ν(PǫPtPǫ)|| is bounded by a multiple of t(
1
2+a), for any a > 0.

Remark 4.4. The coefficient 1
32 in (i) and (ii) can be improved very easily but this does not allow us to

improve the assumption on the Novikov-Shubin invariants.

Proof. Note that the element

∂ν(QǫPtQǫ) = ∂ν(Qǫ)PtQǫ +QǫPt∂ν(Qǫ) +Qǫ∂ν(Pt)Qǫ

and ||∂ν(Qǫ)|| is bounded. We may write Pt = e−tD
2/4P̂t = P̂te

−tD2/4 where

P̂t =




e−3tD−D+/4 (−e−tD−D+/4)
I − e−tD

−D+

tD−D+

√
tD−

−e−tD+D−/4
√
tD+ −e−3tD+D−/4


 .

P̂t has essentially the same properties as Pt, in particular its norm is bounded independently of t. Since

||e−tD2/4Qǫ|| = ||Qǫe−tD
2/4|| ≤ e−tǫ/4 = e(−t

(1+δ)/4), we have that ||PtQǫ|| and ||QǫPt|| (so also ||QǫPtQǫ||,
||∂ν(Qǫ)PtQǫ|| and ||QǫPt∂ν(Qǫ)||) are bounded by a multiple of e(−t

(1+δ)/4). Thus we have (i) of the
Proposition, and to establish (ii) we need only consider the term Qǫ∂ν(Pt)Qǫ.

Lemma 4.5. ||Qǫ∂ν(e−tD
2/k)Qǫ|| is bounded by a multiple of e−(t1+δ/8k).

Proof. Recall the foliation Duhamel formula of [He95] (which requires that G be Hausdorff) which states
that

∂ν(e
−tD2

) = −
∫ t

0

e−sD
2

∂ν(D
2)e(s−t)D

2

ds.

Thus

Qǫ∂ν(e
−tD2

)Qǫ = −
∫ t

0

Qǫe
−sD2

∂ν(D
2)e(s−t)D

2

Qǫds =

−
∫ t

t/2

Qǫe
−sD2

∂ν(D
2)e(s−t)D

2

Qǫds−
∫ t/2

0

Qǫe
−sD2

∂ν(D
2)e(s−t)D

2

Qǫds.

The norm of the first integral satisfies
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||
∫ t

t/2

Qǫe
−sD2

∂ν(D
2)e(s−t)D

2

Qǫds|| ≤
∫ t

t/2

||Qǫe−sD
2

∂ν(D
2)e(s−t)D

2

Qǫ||ds

≤
∫ t

t/2

||Qǫe−
s
2D

2 || ||e− s
2D

2

∂ν(D
2)|| ||e(s−t)D2

Qǫ||ds.

Now ||e(s−t)D2

Qǫ|| ≤ 1, and since ∂ν(D
2) is a differential operator of order two with bounded coefficients,

e−
1
2D

2

∂ν(D
2) is a smoothing operator so has bounded norm. Thus

||e− s
2D

2

∂ν(D
2)|| ≤ ||e− s−1

2 D2 || ||e− 1
2D

2

∂ν(D
2)|| ≤ ||e− 1

2D
2

∂ν(D
2)||

for t > 2, as then ||e− s−1
2 D2 || ≤ 1 for all s ≥ t/2. Finally, ||Qǫe−

s
2D

2 || ≤ e−sǫ/2, so the last integral is
bounded by a multiple of

ǫ−1(e−(tǫ/4) − e−(tǫ/2)) = t−δ(e−(t1+δ/4) − e−(t1+δ/2)) < t−δe−(t1+δ/4).

This in turn is bounded by a multiple of e−(t1+δ/8), for t sufficiently large.

The change of variables s→ t−s transforms the integral

∫ t/2

0

Qǫe
−sD2

∂ν(D
2)e(s−t)D

2

Qǫds to the integral
∫ t

t/2

Qǫe
(s−t)D2

∂ν(D
2)e−sD

2

Qǫds, so this satisfies the same estimate. Replacing D2 by D2/k then gives the

estimate of the lemma. �

Lemma 4.6. As t→ ∞, ||Qǫ∂ν(e−tD
2√
tD)Qǫ|| is bounded by a multiple of e−(t1+δ/32).

Proof. Observe that

Qǫ∂ν(e
−tD2√

tD)Qǫ = Qǫ∂ν(e
−tD2/2

√
tDe−tD

2/2)Qǫ =

Qǫ∂ν(e
−tD2/2)

√
tDe−tD

2/2Qǫ +Qǫe
−tD2/2∂ν(

√
tD)e−tD

2/2Qǫ +Qǫe
−tD2/2

√
tD∂ν(e

−tD2/2)Qǫ =

Qǫ∂ν(e
−tD2/2)Qǫ

√
tDe−tD

2/2Qǫ +Qǫe
−tD2/2∂ν(

√
tD)e−tD

2/2Qǫ +Qǫe
−tD2/2

√
tDQǫ∂ν(e

−tD2/2)Qǫ.

The operators De−tD
2/2, ∂ν(D)e−tD

2/2 and e−tD
2/2D are all smoothing operators with norms bounded

independently of t, for t large. The fact that ||Qǫe−tD
2/2|| ≤ e−tǫ/2 = e−(t1+δ/2) and the estimate in

Lemma 4.5 give that ||Qǫ∂ν(e−tD
2√
tD)Qǫ|| is bounded by a multiple of

√
t(e−(t1+δ/16) + e−(t1+δ/2)) which

is bounded by a multiple of e−(t1+δ/32), for t large. �

Lemma 4.7. As t→ ∞, ||Qǫ∂ν(e−tD
2 I − e−tD

2

tD2

√
tD)Qǫ|| is bounded by a multiple of e−(t1+δ/32).

Proof.

||Qǫ∂ν(e−tD
2 I − e−tD

2

tD2

√
tD)Qǫ|| = ||Qǫ∂ν(e−tD

2√
tD

I − e−tD
2

tD2
)Qǫ|| ≤

||Qǫ∂ν(e−tD
2√
tD)Qǫ

I − e−tD
2

tD2
Qǫ|| + ||Qǫe−tD

2√
tD∂ν(

I − e−tD
2

tD2
)Qǫ||

and ||I − e−tD
2

tD2
|| ≤ 1, so by Lemma 4.6 the first term immediately above satisfies the lemma. If G is

the Green’s operator for D, the second term may be written as Qǫ(G/
√
t)Qǫe

−tD2

tD2∂ν(
I − e−tD

2

tD2
)Qǫ,

and ||QǫG/
√
t|| ≤ (tǫ)−1/2 = t−(1+δ)/2, which is bounded for t large since 1 + δ > 0. The operator

tD2 I − e−tD
2

tD2
= I − e−tD

2

, so

tD2∂ν(
I − e−tD

2

tD2
) = −∂ν(tD2)

I − e−tD
2

tD2
− ∂ν(e

−tD2

),
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and

Qǫe
−tD2

tD2∂ν(
I − e−tD

2

tD2
)Qǫ = −Qǫe−tD

2

∂ν(tD
2)
I − e−tD

2

tD2
Qǫ −Qǫe

−tD2

∂ν(e
−tD2

)Qǫ.

Now,

Qǫe
−tD2

∂ν(tD
2) = Qǫte

−tD2/2e−tD
2/2∂ν(D

2),

and e−tD
2/2∂ν(D

2) is a smoothing operator with norm bounded independently of t, for t large. As

||Qǫte−tD
2/2|| ≤ te−tǫ/2 = te−(t1+δ/2) < e−(t1+δ/4)

for t large, the term Qǫe
−tD2

∂ν(tD
2)
I − e−tD

2

tD2
Qǫ has norm bounded by a multiple of e−(t1+δ/4). By

Lemma 4.5, the term Qǫe
−tD2

∂ν(e
−tD2

)Qǫ = Qǫe
−tD2

Qǫ∂ν(e
−tD2

)Qǫ is bounded by a multiple of e−(t1+δ/8)

(actually e−t
1+δ

if we use the estimate ||Qǫe−tD
2 || ≤ e−tǫ = e−t

1+δ

). �

Thus we have the second inequality of Proposition 4.3. The third estimate follows immediately from the
fact that both Pt and Pǫ are bounded.

Lemma 4.8. ||Pǫ∂ν(e−tD
2

)Pǫ|| is bounded by a multiple of t1+(δ/2).

Note that 1 + (δ/2) > 1/2, but by choosing δ close to −1, we can make 1 + (δ/2) as close to 1/2 as we
please.

Proof.

Pǫ∂ν(e
−tD2

)Pǫ = −
∫ t

0

Pǫe
−sD2

∂ν(D
2)e(s−t)D

2

Pǫds = −
∫ t

0

Pǫe
−sD2

Pǫ[∂ν(D)D +D∂ν(D)]Pǫe
(s−t)D2

Pǫds.

As Pǫ is a smoothing operator, so are Pǫ∂ν(D) and ∂ν(D)Pǫ, since ∂ν(D) is a differential operator of order
one with bounded coefficients. Since ǫ → 0 as t → ∞, their norms are bounded independently of t for t

large. Both ||Pǫe−sD
2 || and ||e(s−t)D2

Pǫ|| are bounded by 1, and both ||PǫD|| and ||DPǫ|| are bounded by
√
ǫ. Thus ||Pǫ∂ν(e−tD

2

)Pǫ|| is bounded by a multiple of

∫ t

0

√
ǫds =

√
ǫt = t1+(δ/2). �

Lemma 4.9. ||Pǫ∂ν(e−tD
2√
tD)Pǫ|| is bounded by a multiple of t(3/2)+δ.

Again note that we can make 3/2 + δ as close to 1/2 as we please.

Proof.

||Pǫ∂ν(e−tD
2√
tD)Pǫ|| ≤ ||Pǫ∂ν(e−tD

2

)Pǫ
√
tDPǫ|| + ||Pǫe−tD

2

Pǫ∂ν(
√
tD)Pǫ||

≤ ||Pǫ∂ν(e−tD
2

)Pǫ||
√
t ||DPǫ|| +

√
t ||Pǫe−tD

2

Pǫ|| ||∂ν(D)Pǫ||
≤ C1(t

1+(δ/2))
√
tǫ+ C2t

1/2 = C1t
(3/2)+δ + C2t

1/2 ≤ Ct(3/2)+δ.
�

Lemma 4.10. ||Pǫ∂ν(e−tD
2 I − e−tD

2

tD2

√
tD)Pǫ|| is bounded by a multiple of t(3/2)+δ.

Proof. As Pǫ∂ν(e
−tD2 I − e−tD

2

tD2

√
tD)Pǫ = Pǫ∂ν(e

−tD2√
tD

I − e−tD
2

tD2
)Pǫ, we have that

Pǫ∂ν(e
−tD2 I − e−tD

2

tD2

√
tD)Pǫ = Pǫ∂ν(e

−tD2√
tD)Pǫ

I − e−tD
2

tD2
Pǫ + Pǫe

−tD2√
tDPǫ∂ν(

I − e−tD
2

tD2
)Pǫ.

By the Lemma 4.9 and the fact that ||I − e−tD
2

tD2
|| ≤ 1, we need only consider the term

||Pǫe−tD
2√
tDPǫ∂ν(

I − e−tD
2

tD2
)Pǫ|| ≤ ||e−tD2√

tDPǫ|| ||Pǫ∂ν(
I − e−tD

2

tD2
)Pǫ|| ≤

C
√
tǫ ||Pǫ∂ν(

I − e−tD
2

tD2
)Pǫ|| = Ct(1+δ)/2||Pǫ∂ν(

I − e−tD
2

tD2
)Pǫ||.
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Thus we need only show that ||Pǫ∂ν(
I − e−tD

2

tD2
)Pǫ|| is bounded by a multiple of t1+(δ/2). Note that

d

dr
(
I − e−rD

2

D2
) = e−rD

2

so

d

dr
(∂ν(

I − e−rD
2

D2
)) = ∂ν(

d

dr
(
I − e−rD

2

D2
)) = ∂ν(e

−rD2

) = −
∫ r

0

e−sD
2

∂ν(D
2)e(s−r)D

2

ds.

Thus

∂ν(
I − e−tD

2

D2
) =

∫ t

0

d

dr
(∂ν(

I − e−rD
2

D2
))dr = −

∫ t

0

∫ r

0

e−sD
2

∂ν(D
2)e(s−r)D

2

ds dr,

and

||Pǫ∂ν(
I − e−tD

2

tD2
)Pǫ|| = ||1

t
Pǫ∂ν(

I − e−tD
2

D2
)Pǫ|| = ||1

t

∫ t

0

∫ r

0

e−sD
2

Pǫ∂ν(D
2)Pǫe

(s−r)D2

ds dr|| ≤

1

t

∫ t

0

∫ r

0

||e−sD2 || ||Pǫ[∂ν(D)D +D∂ν(D)]Pǫ|| ||e(s−r)D
2 ||ds dr ≤ 1

t

∫ t

0

∫ r

0

C
√
ǫ ds dr = Ct1+(δ/2).

�

This finishes the proof of Proposition 4.3 �

To finish the proof of Theorem 4.1, first note that the estimates of Proposition 4.3 remain true with ∂ν
replaced by δ. This follows from the fact that for T ∈ AS(G,S ⊗ E) ⊂ ÃS, δT involves only T and ∂νT .

Similarly, δP0, δ(αP0), δPǫ, and δQǫ are bounded operators. Finally, for T̃1, T̃2 ∈ ÃS, T̃1 ∗ T̃2 = T̃1ΘT̃2. But

multiplication by Θ =

(
1 0
0 θ

)
is a bounded operation, so we may ignore it with impunity in the norm

estimates of products below.
Since Pt = αP0 + PǫPtPǫ +QǫPtQǫ,

tr(Pt(δPt)
2k) = tr(αP0(δ(αP0))

2k)+tr(αP0(δPt)
2k−αP0(δ(αP0))

2k)+tr(PǫPtPǫ(δPt)
2k)+tr(QǫPtQǫ(δPt)

2k).

For any integer ℓ ≥ 0,

||D2ℓQǫPtQǫ(δPt)
2k|| = ||D2ℓQǫe

−tD2/4QǫP̂t(δPt)
2k|| ≤ ||D2ℓQǫe

−tD2/4Qǫ|| ||P̂t(δPt)2k||.
Now

δ(Pt) = δ(αP0) + δ(PǫPtPǫ) + δ(QǫPtQǫ),

and ||P̂t|| is bounded independently of t. So ||P̂t(δPt)2k|| is bounded by a multiple of

||(δPt)2k|| = ||δ(αP0) + δ(PǫPtPǫ) + δ(QǫPtQǫ)||2k ≤ Ct2k(
1
2+a)

where a > 0 is a number to be chosen later (as close to zero as we please). On the other hand, for t sufficiently
large (so that t1+δ > 4ℓ), the maximum of zℓe−tz/4 on the interval [ǫ,∞) occurs at ǫ, so

||D2ℓQǫe
−tD2/4Qǫ|| ≤ ǫℓe−tǫ/4 = tδℓe−(t(1+δ)/4)

so

||D2ℓQǫPtQǫ(δPt)
2k|| ≤ Ct2k(

1
2+a)tδℓe−(t(1+δ)/4)

which goes to zero as t → ∞. The proof of Theorem 2.3.13 of [HL90] shows that this implies that
tr(QǫPtQǫ(δPt)

2k) is pointwise bounded on M and converges pointwise to zero as t → ∞. As Φ is in-
tegration over a compact set, the bounded convergence theorem gives

4.11. lim
t→∞

Φ ◦ tr(QǫPtQǫ(δPt)
2k) = 0.
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Now consider Φ ◦ tr(PǫPtPǫ(δPt)
2k) = Φ ◦ tr(Pǫ(δPt)

2kPǫPtPǫ). The proof of Proposition 12 of [HL99]
shows that

||Φ ◦ tr(Pǫ(δPt)
2kPǫPtPǫ)||T ≤ C||Pǫ(δPt)2kPǫPt|| ||Φ ◦ tr(Pǫ)||T .

Since Φ ◦ tr(Pǫ) is O(ǫβ), this is bounded by a multiple of

t2k(
1
2+a)ǫβ = t2k(

1
2 +a)tδβ = t2k(

1
2 +a)+δβ .

Recall that −1 < δ < −k/β and therefore we can choose a > 0 so small that

2k(
1

2
+ a) + δβ < 0.

Then

4.12. lim
t→∞

Φ ◦ tr(PǫPtPǫ(∂νPt)
2k) = 0.

Finally, consider the individual terms of tr(αP0(δPt)
2k − αP0(δP0)

2k) = tr(P0α(δPt)
2k − P0α(δP0)

2k).
Suppose the term P0A contains a δ(QǫPtQǫ). Then

||P0A|| ≤ ||P0|| ||α|| ||δ(QǫPtQǫ)||µ||δ(αP0)||β ||δ(PǫPtPǫ)||γ

where µ+ β + γ = 2k and µ > 0. Since ||α|| is bounded, Proposition 4.3, gives that as t→ ∞,

||P0A|| ≤ Ce−µ(t1+δ/32)tγ( 1
2 +a).

For every positive integer ℓ, D2ℓP0 = 0, so for every integer ℓ ≥ 0, ||D2ℓP0A|| → 0 as t→ ∞. Proceeding as
in the proof of Equation 4.11, we have

lim
t→∞

Φ ◦ tr(P0A) = 0.

Now suppose that we have one of the remaining terms. It must contain a term of the form δ(PǫPtPǫ). As
P 2
ǫ = Pǫ and δ is a derivation, we may replace δ(PǫPtPǫ) by

δ(P 2
ǫ PtPǫ) = δ(Pǫ)(PǫPtPǫ) + Pǫδ(PǫPtPǫ) = δ(Pǫ)(PǫPtPǫ)Pǫ + Pǫδ(PǫPtPǫ).

Using the trace property of Φ◦tr, we get two terms of the form Φ◦tr(APǫ). As above, the proof of Proposition
12 of [HL99] shows that

||Φ ◦ tr(APǫ)||T ≤ C||A|| ||Φ ◦ tr(Pǫ)||T .
Now A is a product of terms of the form α, P0, δ(αP0), Pǫ, δ(Pǫ), PǫPtPǫ, and δ(PǫPtPǫ). Each of these is

bounded in norm, except the last which has norm bounded by a multiple of t(
1
2 +a). As A can contain no

more that 2k terms of the form δ(PǫPtPǫ), and Φ ◦ tr(Pǫ) is O(ǫβ), we have that ||Φ ◦ tr(APǫ)||T is bounded
by a multiple of

t2k(
1
2+a)ǫβ = t2k(

1
2 +a)tδβ = t2k(

1
2 +a)+δβ .

By our choice of a, we have that the limit as t → ∞ of these terms is zero, just as in the proof of Equation
4.12.

This completes the proof of Theorem 4.2

5. Bismut superconnections

As noted above, in [BH-I] we proved that the Chern character cha composed with the topological and
analytic index maps of Connes-Skandalis [CS84] yield the same map. In particular, for any Dirac operator
D, the Chern character of the topological index of D, coincides with the Chern character of the analytic
index of D, i.e.

cha(Indt(D
+)) = cha(Inda(D

+)).

In [HL99], we proved that cha(Indt(D
+)) is equal to the Chern character of the index bundle of D in

another sense. We defined a “connection” ∇ on the index bundle [P0] of D, and defined the Chern character

of [P0] to be the Haefliger class of Tr(αe−(∇2/2iπ)). We then used a Bismut superconnection for foliations,

[He95], to show that cha(Indt(D)) contains the Haefliger form Tr(αe−(∇2/2iπ)), provided that the assumptions
of Theorem 4.1 are satisfied, but with the stronger assumption that the Novikov-Shubin invariants of D are
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greater than three times the codimension of F . We will now show that whenever P0 is smooth, cha([P0])

contains the Haefliger form Tr(αe−(∇2/2iπ)), so the two definitions of the Chern character of [P0] agree.
We first recall the construction of Bismut superconnections for D. See [B86], [BV87], and also [He95]. Let

∇B be a Bott connection on ν∗s . If ω1, . . . , ωn is a local framing for ν∗s , then ∇Bωi =
∑n
j=1 ωj ⊗ θij where θij

are local one forms on G and the θij satisfy dωi =

n∑

i=1

ωj ∧ θij . that is, the composition

C∞(ν∗s )
∇B

→ C∞(ν∗s ⊗ T ∗G)
∧→ C∞(ν∗s ∧ T ∗G)

is just ω → dω. ∇B induces a connection on ∧ν∗s also denoted ∇B so that

C∞(∧ν∗s )
∇B

→ C∞(∧ν∗s ⊗ T ∗G)
∧→ C∞(∧ν∗s ∧ T ∗G)

is also just ω → dω.
Set V = TFs ⊕ νs ⊕ ν∗s = TG ⊕ ν∗s over G, and define a symmetric bilinear form g on V as follows. TFs

and νs ⊕ ν∗s are orthogonal and g|TFs is g0|TFs. The form g|νs ⊕ ν∗s is given by the canonical duality, i.e.
νs and ν∗s are totally isotropic and g(X,ω) = ω(X) for X ∈ νs, ω ∈ ν∗s . In [BV87], p. 455. it is shown that
there is a unique connection ∇, the Bismut connection, on V so that ∇ preserves ν∗s and g, ∇|ν∗s = ∇B and
for all X , Y ∈ C∞(TG), ∇XY −∇YX = [X,Y ]. Note that in general ∇ does not preserve TG but that for
X,Y ∈ C∞(TG), ∇XY −∇YX ∈ C∞(TG).

Consider the vector space V = Rp ⊕ Rn ⊕ Rn∗. Define a bilinear form Q on V as g was on V , i.e. Rp is
orthogonal to Rn⊕Rn∗, Q|Rp is the usual inner product, and Q|Rn⊕Rn∗ is given by the canonical duality.
Let C(V,Q) be the associated Clifford algebra and set S0 = ∧R

n∗ ⊗ S where S is the spinor space for R
p

with the usual inner product. Let ρ be the representation of the Clifford algebra of Rp in S. Then S0 is the
spinor space for C(V,Q) with the Clifford multiplication being defined by

ρ0(X)(ω ⊗ s) = (−1)degωω ⊗ ρ(X)s
ρ0(Y )(ω ⊗ s) = −2i(Y )ω ⊗ s
ρ0(φ)(ω ⊗ s) = φ ∧ ω ⊗ s

for X ∈ Rp, Y ∈ Rn, φ ∈ Rn∗, ω ∈ ∧Rn∗, s ∈ S. See [BV87], p. 456 and for general facts about spinors and
Clifford algebras, [LM89].

The above fact allows Berline and Vergne to give a beautiful and concise definition of Bismut supercon-
nections for fiber bundles which was extended to foliations in [He95]. Recall that S is the spinor bundle along
the leaves of Fs, and consider the vector bundle S0 = ∧ν∗s ⊗ S over G and the bundle of Clifford algebras
C(V) over G associated to V , g. Then S0,y, the fiber over y ∈ G of S0, is a module for the algebra C(V)y
and we denote the module action also by ρ0. The connection ∇ on V induces a connection ∇ on S0 ([BV87],
p. 456; or more generally [LM89], Ch. 4). Let E be a vector bundle with connection over G as in Section 2.
We shall also denote by ∇ the tensor product connection on S0 ⊗ E.

A Bismut superconnection B for Fs and E is the Dirac type operator on C∞
c (S0 ⊗ E) defined as follows.

Let X1, . . . , Xp be a local oriented orthonormal basis of TFs, and Xp+1, . . . , Xp+n a local basis of νs. Let
X∗

1 , . . . , X
∗
p+n be the dual basis in TFs ⊕ ν∗s , i.e. X∗

i = Xi for 1 ≤ i ≤ p, X∗
i = ωi, for p + 1 ≤ i ≤ p + n

where ωi ∈ ν∗s and ωi(Xj) = δij . Set

B =

p+n∑

i=1

(
ρ0(X

∗
i ) ⊗ 1

)
∇Xi

=

p∑

i=1

ρ(Xi)∇Xi
+

p+n∑

i=p+1

ωi∇Xi
.

B does not depend on the choice of X1, . . . , Xp+n.
Since S = S+ ⊕S− is Z2 graded and ∧ν∗s is Z graded, S0 = ∧ν∗s ⊗S has a total Z2 grading and we write

S0 = S+
0 ⊕S−

0 . We then have an associated Z2 grading S0⊗E = (S+
0 ⊗E)⊕ (S−

0 ⊗E). It is immediate from
the fact that ∇ preserves the grading that B is an odd operator, i.e. B maps C∞(S+

0 ⊗ E) to C∞(S−
0 ⊗ E)

and vice-versa.
Finally, we may use the Z grading on ∧ν∗s to grade the operator B, i.e. B = B [0] + B [1] + · · · where

B [i] : C∞(∧kν∗s ⊗ S ⊗E) → C∞(∧k+iν∗s ⊗ S ⊗E).
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It is straightforward to check that

Proposition 5.1. The term B [1] is a quasi-connection ∇ν for E ⊗ ∧ν∗sas defined in Section 3.

Recall, [HL99], that a connection on the index bundle of D is defined by

∇ = P0B
[1]P0.

For this to be well defined, we must require that P0 is smooth.

Theorem 5.2. Suppose that P0 is smooth. Then cha([P0]) contains the Haefliger form Tr(αe−(∇2/2iπ))

Proof. First we calculate ∇2.

∇2 = P0B
[1]P0B

[1]P0

= P0[B
[1], P0]B

[1]P0 + P0(B
[1])2P0

= P0[B
[1], P0][B

[1], P0] + P0[B
[1], P0]P0B

[1] + P0(B
[1])2P0

= P0[B
[1], P0][B

[1], P0] + P0(B
[1])2P0.

The last equality is a consequence of the relation P0[B
[1], P0]P0 = 0 which is true since P 2

0 = P0 and since
[B [1], ·] is a derivation. This derivation is precisely ∂ν , so (B [1])2 = θ as in Section 3. Thus

∇2 = P0(∂νP0)
2 + P0θP0,

and

∇2k = (P0(∂νP0)
2 + P0θP0)

k.

Note that

∂ν(P0) = ∂ν(P0P0) = ∂ν(P0)P0 + P0∂ν(P0),

so

∂ν(P0)P0 = ∂ν(P0) − P0∂ν(P0).

Using this twice, one can easily show that

P0∂ν(P0)∂ν(P0) = P0∂ν(P0)∂ν(P0)P0.

Then a simple induction argument shows that

(P0(∂νP0)
2 + P0θP0)

k = P0((∂νP0)
2 + P0θP0)

k

Thus,

Tr(α∇2k) = Tr(αP0((∂νP0)
2 + P0θP0)

k),

and comparing with Equation 3.9, we see that cha([P0]) contains the Haefliger form Tr(αe−(∇2/2iπ)). �
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