Efficient polynomial time algorithms computing industrial-strength primitive roots - Archive ouverte HAL
Article Dans Une Revue Information Processing Letters Année : 2006

Efficient polynomial time algorithms computing industrial-strength primitive roots

Résumé

E. Bach, following an idea of T. Itoh, has shown how to build a small set of numbers modulo a prime p such that at least one element of this set is a generator of $\mathbb{Z}/p\mathbb{Z}$ [Bach (1997), Itoh (2001)]. E. Bach suggests also that at least half of his set should be generators. We show here that a slight variant of this set can indeed be made to contain a ratio of primitive roots as close to 1 as necessary. We thus derive several algorithms computing primitive roots correct with very high probability in polynomial time. In particular we present an asymptotically $O^{\sim}\left( \sqrt{\frac{1}{\epsilon}}\log^{1.5}(p) + \log^2(p)\right)$ algorithm providing primitive roots of $p$ with probability of correctness greater than $1-\epsilon$ and several $O(\log^\alpha(p))$, $\alpha \leq 5.23$ algorithms computing "Industrial-strength" primitive roots with probabilities e.g. greater than the probability of "hardware malfunctions".
Fichier principal
Vignette du fichier
polypr.pdf (275.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00002828 , version 1 (13-09-2004)
hal-00002828 , version 2 (14-09-2004)
hal-00002828 , version 3 (14-09-2004)
hal-00002828 , version 4 (14-09-2004)
hal-00002828 , version 5 (08-12-2008)

Identifiants

Citer

Jacques Dubrois, Jean-Guillaume Dumas. Efficient polynomial time algorithms computing industrial-strength primitive roots. Information Processing Letters, 2006, 97 (2), pp.41-45. ⟨10.1016/j.ipl.2005.09.014⟩. ⟨hal-00002828v5⟩

Collections

UGA CNRS LMC-IMAG
237 Consultations
1304 Téléchargements

Altmetric

Partager

More