Jacques Dubrois
email: jdubrois@axalto.com

Jean-Guillaume Dumas
email: jean-guillaume.dumas@imag.fr

Efficient polynomial time algorithms computing industrial-strength primitive roots

E. Bach, following an idea of T. Itoh, has shown how to build a small set of numbers modulo a prime p such that at least one element of this set is a generator of Z/ p Z. E. Bach suggests also that at least half of his set should be generators. We show here that a slight variant of this set can indeed be made to contain a ratio of primitive roots as close to 1 as necessary.

In particular we present an asymptotically O ∼ 1 ǫ log 1.5 (p) + log 2 (p) algorithm providing primitive roots of p with probability of correctness greater than 1 -ǫ and several O(log α (p)), α ≤ 5.23, algorithms computing "Industrial-strength" primitive roots.

Introduction

Primitive roots are generators of the multiplicative group of the invertibles of a finite field. We focus in this paper only on prime finite fields, but the proposed algorithms can work over extension fields or other multiplicative groups.

Primitive roots are of intrinsic use e.g. for secret key exchange (Diffie-Hellman), pseudo random generators (Blum-Micali) or primality certification. The classical method of generation of such generators is by trial, test and error. Indeed within a prime field with p elements they are quite numerous (φ(φ(p)) = φ(p -1) among p -1 invertibles are generators.

The problem resides in the test to decide whether a number g is a generator or not. The first idea is to test every g i for i = 1..p -1 looking for matches. Unfortunately this is exponential in the size of p. An acceleration is then to factor p -1 and test whether one of the g p-1 q is 1 for q a divisor of p -1. If this is the case then g is obviously not a generator. On the contrary, one has proved that the only possible order of g is p -1. Unfortunately again, factorization is still not a polynomial time process: no polynomial time algorithm computing primitive roots is known.

However, there exists polynomial time methods isolating a polynomial size set of numbers containing at least one primitive root. Shoup's [START_REF] Shoup | Searching for primitive roots in finite fields[END_REF] algorithm is such a method. Elliot and Murata [START_REF] Peter | On the average of the least primitive root modulo p[END_REF] also gave polynomial lower bounds on the least primitive root modulo p. One can also generate elements with exponentially large order even though not being primitive roots [START_REF] Von | Orders of Gauss periods in finite fields[END_REF]. Our method is in between those two approaches.

As reported by Bach [START_REF] Bach | Comments on search procedures for primitive roots[END_REF], Itoh's breakthrough was to use only a partial factorization of p -1 to produce primitive roots with high probability [START_REF] Itoh | How to generate a primitive root modulo a prime[END_REF]. Bach then used this idea of partial factorization to give the actually smallest known set, deterministically containing one primitive root [START_REF] Bach | Comments on search procedures for primitive roots[END_REF], if the Extended Riemann Hypothesis is true. Moreover, he suggested that his set contained at least half primitive roots.

In this paper, we propose to use a combination of Itoh's and Bach's algorithms producing a polynomial time algorithm generating primitive roots with a very small probability of failure (without the ERH). Such generated numbers will be denoted by "Industrial-strength" primitive roots. We also have a guaranteed lower bound on the order of the produced elements. In this paper, we analyze the actual ratio of primitive roots within a variant of Bach's full set. As this ratio is close to 1, both in theory and even more in practice, selecting a random element within this set produces a fast and effective method computing primitive roots.

We present in section 2 our algorithm and the main theorem counting this ratio. Then practical implementation details and effective ratios are discussed section 4. We conclude section 6 with applications of primitive root generation, accelerated by our probabilistic method. Among this applications are Diffie-Hellman key exchange, ElGamal cryptosystem, Blum-Micali pseudo random bit generation, and a new probabilistic primality test based on Lucas' deterministic procedure. This test uses both the analysis of the first sections and the composite case.

The variant of Itoh/Bach's algorithm

The salient features of our approach when compared to Bach's are that:

1. We partially factor, but with known lower bound on the remaining factors.

2.

We do not require the primality of the chosen elements.

3. Random elements are drawn from the whole set of candidates instead of only from the first ones. Now, when compared to Itoh's method, we use a deterministic process producing a number with a very high order and which has a high probability of being primitive. On the contrary, Itoh selects a random element but uses a polynomial process to prove that this number is a primitive root with high probability [START_REF] Itoh | How to generate a primitive root modulo a prime[END_REF]. The difference here is that we use low order terms to build higher order elements Algorithm 1: Probabilistic Primitive Root Input: A prime p ≥ 3 and a failure probability 0 < ǫ < 1.

Output: A number, primitive root with probability greater than 1 -ε. begin Compute B such that (1

+ 2 p-1)(1 -1 B) log B p-1 2 = 1 -ε. Partially factor p -1 = 2 e1 p e2 2p e h h Q (p i < B and Q has no factor < B). for each 1 ≤ i ≤ h do
By trial and error, randomly choose α i verifying:

α p-1 p i i ≡ 1 (mod p). Set a ≡ h i=1 α p-1 p e i i i (mod p).
if Factorization is complete then Set Probability of correctness to 1 and return a. else Refine Probability of correctness to (1

+ 1 Q-1)(1 -1 B) log B Q . Randomly choose b verifying: b p-1 Q ≡ 1 and return g ≡ ab p-1 Q (mod p). end
whereas Itoh discards the randomly chosen candidates and restarts all over at each failure. Therefore we first compute the ratio of primitive roots within the set. We have found afterwards that Itoh, independently and differently, proves quite the same within his [START_REF] Itoh | How to generate a primitive root modulo a prime[END_REF]Theorem 1].

Theorem 1 At least φ(Q)
Q-1 of the returned values of Algorithm 1 are primitive roots.

Proof. We let p -1 = kQ. In algorithm 1, the order of a is (p -1)/Q = k (see [START_REF] Bach | Comments on search procedures for primitive roots[END_REF]). We partition Z/pZ * by S and T where

S = {b ∈ Z/pZ * : b k ≡ 1(mod p)} and T = {b ∈ Z/pZ * : b k ≡ 1(mod p)}
and let U = {b ∈ Z/pZ * : b k has order Q}. Note that for any x ∈ Z/pZ * of order n and any y ∈ Z/pZ * of order m, if gcd(n, m) = 1 then the order of z ≡ xy(mod p) is nm. Thus for any b ∈ U it follows that g ≡ ab k (mod p) has order p -1. Since U ⊆ S, we have that |U| |S| of the returned values of algorithm 1 are primitive roots.

We thus now count the number of elements of U and S. On the one hand, we fix arbitrarily a primitive root g ∈ Z/pZ * and define

E = {i : 0 ≤ i ≤ Q and gcd(i, Q) = 1}. |E| = ϕ(Q) and it is not difficult to see that U = {g i+jQ : i ∈ E and 0 ≤ j ≤ k -1}. This implies that |U | = kϕ(Q).
On the other hand, we have T = {g 0 , gQ , . . . , g(k-1)Q }. The partitioning therefore gives

|S| = |Z/pZ * | -|T | = p -1 -k. We thus conclude that |U| |S| = kφ(Q) p-1-k = φ(Q) Q-1 .
Corollary 2 Algorithm 1 is correct and, when Pollard's rho algorithm is used, has an average running time of

O 1 ε log 2.5 (p) + log 3 (p) log(log(p)) * .
Proof. We first need to show that

φ(Q) Q-1 > 1 -ε. Let Q = ω(Q) i=1 q i fi where ω(Q) is the number of distinct prime factors of Q. Then φ(Q) = ω(Q) i=1 φ(q i fi) = Q ω(Q) i=1 (1 -1 qi). Thus φ(Q) Q-1 = (1 + 1 Q-1) ω(Q) i=1
(1 -1 qi). Now, since any factor of Q is bigger than B, we have:

ω(Q) i=1 (1 -1 qi) > ω(Q) i=1 (1 -1 B) = (1 -1 B) ω(Q) .
To conclude, we minor ω(Q) by log B (Q). This gives the probability refinement † . Since Q is not known at the beginning, one can minor it there by p-1 2 since p -1 must be even whenever p ≥ 3. Now for the complexity. For the computation of B, we use a Newton-Raphson's approximation. The second step depends on the factorization method. Both complexities here are given by the application of Pollard's rho algorithm. Indeed Pollard's rho would require at worst L = 2⌈B⌉ loops and L = O(√ B) on the average thanks to the birthday paradox. Now each loop of Pollard's rho is a squaring and a gcd, both of complexity O(log 2 p).

Then we need to bound B with respect to ε. We let h = (p -1)/2 and B * = min{ln(h)/ε; h} and consider

f h (ε) = (1 -1/B *) log B * (h) -(1 -ε). Then f h (ε) = 1 - 1 ln(B *) ε + 1 2ln(B *) 1 ln(B *) - 1 ln(h) ε 2 + O ε 3 6ln(B *) 3
is strictly positive as soon as B * ≥ 3. This proves that 1-ε

< (1-1/B *) log B * (h) . Now, since (1 -1/B) log B (h) is decreasing in B, this shows that B such that (1 + 2 p-1)(1 -1 B) log B p-1 2 = 1 -ε satisfies B < B * ≤ ln(h) ε .
For the remaining steps, there is at worst log p distinct factors, thus log p distinct α i , but only log log p on the average [START_REF] Harold | An Introduction to the Theory of Numbers[END_REF]Theorem 430]. Each one requires a modular exponentiation which can be performed with O(log 3 p) operations using recursive squaring. Now, to get a correct α i , at most O(log log p) trials should be necessary (see e.g. [START_REF] Samuel | Cryptanalysis of number theoretic ciphers[END_REF]Theorem 6.18]). However, by an argument similar to that of theorem 1, less than 1 - This gives log × log 3 × log log in the worst case (distinct factors × exponentiation × number of trials) and only log log × log 3 ×2 on the average.

About the number of prime divisors

In the previous section, we have seen that the probability to get a primitive root out of our algorithm is greater than 1 -1 B ω(Q) for Q the remaining unfactored part with no divisors less than B. The running time of the algorithm, and in particular its non-polynomial behavior depends on B and on ω. In practice, ω is quite small in general. The problem is that the bound we used in the preceding section, log B (p -1), is then much too large. In this section, we thus provide tighter probability estimates for some small B and large Q.

Theorem 3 Let B ∈ IN, Q ∈ IN such that no prime lower than B divides Q then: ω(Q) ≤ log B (Q) ∀B ≥ 2 (1) ω(Q) ≤ 1.0956448 log B (ln(Q)) log B (Q) ∀B ≥ 2 10 (2)
ω(Q) ≤ 1.0808280 log B (ln(Q)) log B (Q) ∀B ≥ 2 15 (3)
ω(Q) ≤ 1.0561364 log B (ln(Q)) log B (Q) ∀B ≥ 2 20 (4)
Proof. Of course, (1) is a large upper bound on the number of divisors of Q and therefore a bound on the number of prime divisors. Now for the other bounds, we refine Robin's bound on ω [23, Theorem 11]: which is ω(n) ≤

1.3841 ln(ln(n)) ln(n). Let N k = k i=1 p i where p i is the i-th prime. Now, we let k be such that

N k N π(B) ≤ Q < N k+1 N π(B) . Then ω(Q) ≤ ω N k N π(B)
= k -π(B) since no prime less than B can divide Q. We then combine this with the fact that X ֒→ ln(X) X is decreasing for (X > e), to get:

ω(Q) ≤ F (k,B) log B (ln(Q)) log B (Q) where F (k, B) = (k-π(B)) log log N k N π(B) log N k N π(B)
. We then replace both N k in F (k, B) using e.g. classical bounds on θ(p k) = ln(N k) [START_REF] Robin | Estimation de la fonction de Tchebycheff θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n[END_REF]Theorems 7 & 8]:

θ(p k) ≥k ln k + ln ln k -1 + ln ln k -2.1454 ln k (5) θ(p k) ≤k ln k + ln ln k -1 + ln ln k -1.9185 ln k (6)
We It is noticeable that the last estimates are more interesting than log B (Q) only when B F (k,B) < ln(Q). Those estimates are then only useful for very large Q (e.g. more than 10 5 bits for B = 2 15).

Industrial-strength primitive roots

Of course, the only problem with this algorithm is that it is not polynomial. Indeed the partial factorization up to factors of any given size is still exponential. This gives the non polynomial factor 1 ε . Other factoring algorithms with better complexity could also be used, provided they can guarantee a bound on the unfound factors. For that reason, we propose another algorithm with an attainable number of loops for the partial factorization. Therefore, the algorithm is efficient and we provide experimental data showing that it also has a very good behavior with respect to the probabilities: is possible even with L as small as 2 20 . Provided that one is ready to accept a fixed probability, further improvements on the asymptotic complexity can be made. Indeed, D. Knuth said "For the probability less than (1 4) 25 that such a 25-times-in-row procedures gives the wrong information about n. It's much more likely that our computer has dropped a bit in its calculations, due to hardware malfunctions or cosmic radiations, than that algorithm P has repeatedly guessed wrong." ‡ We thus provide a version of our algorithm guaranteeing that the probability of incorrect answer is lower than 2 -40 : Algorithm 3: If p is small (p < 45171967), factor p -1 completely, otherwise apply Algorithm 1 with B = log 5.298514 p.

With Pollard's rho factoring, the average asymptotic bit complexity is then O(log 4.649257 p): Factoring numbers lower than 45171967, takes constant time. Now for larger primes and B = log α (p), we just remark that (1

+ 2 p-1)(1 - 1 B) log B p-1 2
is increasing in p, so that it is bounded by its first value. Numerical approximation of α so that the latter is 1 -2 -40 gives 5.298514. The complexity exponent follows as it is 2 + α 2 . One can also apply the same arguments e.g. for a probability 1 -2 -55 and factoring all primes p < 2 512 (since 513-bit numbers are nowadays factorizable), then slightly degrading the complexity to O(log 5.229921 p). We have thus proved that a probability of at least 1 -2 -40 can always be guaranteed. In other words, our algorithm is able to efficiently produce "industrial-strength" primitive roots. This is for instance illustrated when ‡ More precisely, cosmic rays only can be responsible for 10 5 software errors in 10 9 chiphours at sea level [START_REF] O'gorman | Field testing for cosmic ray soft errors in semiconductor memories[END_REF] . At 1GHz, this makes 1 error every 2 55 computations.

Analysis of the algorithm for composite numbers

In this section we propose an analysis of the behavior of the algorithm for composite numbers. Indeed, our algorithm can also be used to produce high, if not maximal, order element modulo a composite number. This analysis is also used section 6.2 for the probabilistic primality test. It is well known that there exists primitive roots for every number of the form 2, 4, p k or 2p k with p an odd prime. On the other hand, Euler's theorem states that every invertible a ∈ Z/ p Z * satisfies a ϕ(n) ≡ 1[n]. Thus, for composite numbers n not possessing primitive roots, ϕ(n) is not a possible order of an invertible. We therefore use λ(m), Carmichael's lambda function, the maximal order of an invertible element in the multiplicative group (Z/ p Z * , ×). See e.g. [START_REF] Knuth | of The Art of Computer Programming[END_REF][START_REF] Erdös | Carmichael's lambda function[END_REF][START_REF] Bach | Algorithmic Number Theory: Efficient Algorithms[END_REF], for more details. Of course, λ and ϕ coincide for 2, 4, p k and 2p k , for p and odd prime. § swox.com/gmp, maplesoft.com, pari.math.u-bordeaux.fr, gap-system.org, magma. maths.usyd.edu.au

Then λ(2 e) = 2 e-2 for e ≥ 3. Now, for the other cases, since ϕ

p ki i = (p i -1)p ki-1 i
for distinct primes p i , we obtain this similar formula for λ:

λ p ki i = lcm{λ(p ki i)}.
Eventually, we also obtain this corollary of Euler's theorem:

Corollary 4 Every invertible a within Z/ p Z * satisfies a λ(n) ≡ 1[n]. Proof. n = p ei i for distinct primes p i . Then ϕ(p ei i) divides λ(n).
This, together with Euler's theorem shows that a λ(n) ≡ 1[p ei i]. The Chinese theorem thus implies that the latter is also true modulo the product of the p ei i . This corollary shows that the order of any invertible must divide λ(n). For n prime, the number of invertibles having order d|n -1 is exactly ϕ(d) so that d|k ϕ(d) = k for k|n -1. We have the following analogue for n a composite number: Let us have a look of this behavior on an example: let n = 45 so that ϕ(45) = 6 × 4 = 24 and λ(45) = 12. We thus know that any order modulo 9 divides ϕ(9) = 6 and that any order modulo 5 divides ϕ(5) = 4. This gives the different orders of the 24 invertibles shown on table 1. It would be highly desirable to have tight bounds on those number of elements of a given order. Moreover, these bounds should be easily computable (e.g. not requiring some factorization !). In [START_REF] Cameron | Notes on primitive λ-roots[END_REF][START_REF] Müller | On the number of primitive λ-roots[END_REF], the following is proposed: Proposition 6 [5, Corollary 6.8] For n odd, the number of elements of order λ(n) (primitive λ-roots) is larger than ϕ(ϕ(n)). Now, this last result shows that actually quite a lot of elements are of maximal order modulo n. Using this fact, a modification of algorithm 1 can then produce with high probability an element of maximal order even though n is composite.

Applications

Of course, our generation can be applied to any application requiring the use of primitive roots. In this section we show the speed of our method compared to generation of primes with known factorization and propose a generalization of Miller-Rabin probabilistic primality test and of Davenport's strengthenings [START_REF] Davenport | Primality testing revisited[END_REF]. order # of elements of that modulo 45 modulo 9 modulo 5 order modulo 45

1 1 1 1 1 2 1 2 1 1 2 2 1 2 3 3 3 1 ϕ(3) × ϕ(1) = 2 1 4 ϕ(1) × ϕ(4) = 2 2 4 ϕ(2) × ϕ(4) = 2 4 4 6 1 ϕ(6) × ϕ(1) = 2 3 2 ϕ(3) × ϕ(2) = 2 6 2 ϕ(6) × ϕ(2) = 2 6 6 3 4 ϕ(3) × ϕ(4) = 4 6 4 ϕ(6) × ϕ(4) = 4 12 8
Table 1: Elements of a given order modulo 45

Probabilistic Lucas primality test

The deterministic primality test of Lucas is actually the existence of primitive roots:

Theorem 7 (Lucas) Let p > 0. If one can find an a > 0 such that a p-1 ≡ 1 mod p and a p-1 q ≡ 1 mod p, as soon as q divides p -1, then p is prime.

We propose here as a probabilistic primality test to try to build a primitive root. If one succeeds then the number is prime with high probability else it is either proven composite or composite with a high probability. Now for the complexity, we do not pretend to challenge Miller-Rabin test for speed ! Well, one often needs to perform several Miller-Rabin tests with distinct witnesses, so that the probability of being prime increases. Our idea is the following: since one tests several witnesses, why not use them as factors of our probable primitive root ! This idea can then be viewed as a generalization of Miller-Rabin: we not only test for orders of the form n-1 2 e but also for each order of the form n-1 q e where q is a small prime factor of n-1. The effective complexity (save maybe from the partial factorization) will not suffer and the probability can jump as soon as an element with very high order is generated. The algorithm is then a slight modification of algorithm 1, where we let

F (B, Q) = 1 -(1 + 1 Q-1)(1 -1 B) log B Q :
Algorithm 2: Probabilistic Lucas primality test Input: n ≥ 3, odd.

Input: A failure probability 0 < ǫ < 1.

Output: Whether n is prime and a certificate of primality, Output: or n is composite and a factor (or just a Fermat witness), Output: or n is prime with probability of error less than ǫ, Output: or n is composite with probability of error less than ǫ.

begin

Set P = 1, a = 1, Q = n -1 and q = 2. while Q > n 2 3 do Randomly choose α mod n. if gcd(α, n) = 1 or gcd(α n-1 q -1, n) / ∈ {1; n} or α n-1 ≡ 1[n]
or (q == 2 and n is not a strong pseudoprime to the base α) then return n is composite.

else if α n-1 q ≡ 1 mod n then Set P = P/q. if P ≤ ǫ then return n is probably composite with error less than P .

else

-Set e to the greatest power of q dividing Q.

-

Set Q = Q/q e . -Set a = a × α n-1 q e . -Set k = k ∪ {q e }. -Refine B such that F (B, Q) == 4ǫ.
-Find a new prime factor q of Q with q < B, otherwise set q = Q.

if Every q was prime then return n is prime and (a, k) is a certificate. else return n is probably prime with error less than F (B, q). end Remark 8 The exponentiations by n-1 q can in practice be factorized in a "Lucastree" [START_REF] Vaughan | Every prime has a succinct certificate[END_REF][START_REF] Crandall | Prime Numbers, a computational perspective[END_REF].

Remark 9 Algorithm 2 is correct for the primes and most of the composite numbers.

Proof. Correctness for prime numbers is the correctness of the pseudo primitive root generation. among the elements of Z/ p e1 1 Z. By the Chinese theorem, among the elements having their order divisible by q modulo n, we have then identified ϕ(n)(1 -1 q f 1) of them: the ones having their order modulo p e1 1 divisible by q. Now the others are among the ϕ(n)(1 q f 1) that remains. Just now consider those modulo p e2 2 . If f 2 == 0 then we have not found any new element. Otherwise, 1 -1 q f 2 of them are of order divisible by q. Well, actually, in both cases, we can state that 1 -1 q f 2 of them are of order divisible by q. We have thus found some other elements: ϕ(n)(1 q f 1)(1 -1 q f 2). This added to the previously found elements makes ϕ(n)(1 -1 q f 1 q f 2). Doing such a counting for each of the remaining p ei i gives the announced formula.

 therefore obtain a function F (k, B) explicit in k and B. The values given in the theorem are the numerically computed maximal values of F (k, B) as a function of k for B ∈ {2 10 , 2 15 , 2 20 }. The claim then follows from the fact that F (k, B) is decreasing in B.

Heuristic 2 :Figure 1 :Figure 2 :

 212 Figure 1: Actual probability of failure of Algorithm 1 with L = 2 20experimental data then shows that in practice no probability less than 1 -2 -40

Figure 3 :

 3 Figure 3: Generations of primitive roots

Proposition 5

 5 The number of invertibles having order d|λ(n) is S d ω j=1 ϕ(d j) for n = p e1 1 . . . p eω ω and S d = {(d 1 , . . . , d ω) s.t. d j |ϕ(p ej j) and lcm{d j } = d}. Proof. By the Chinese theorem, an element has order d if and only if the lcm of its orders modulo the p ej j is d. Then there are exactly ϕ(d j) elements of order d j modulo p ej j .

6. 1 Figure 4 :

 14 Figure 4: Blum-Micali primes with known factorization vs Industrial-strength primitive roots

Figure 5 :

 5 Figure 5: Probabilistic Lucas vs GMP's Miller-Rabin for primes with probability < 10 -6

For

 instance, take a Carmichael number still passing our test whenever B ≤ 1450: 37690903213 = 229 × 2243 × 73379. Well, 37690903212 = 19 × 2 2 × 3×59×1451×1931 and λ(37690903213) = 19×2 2 ×3×59×1931. Then, Q will be 1451 × 1931 and our algorithm will be able to find elements for which α n-1 Q ≡ 1 mod n: those of which order is divisible by 1931. Unfortunately, there are quite a lot of them: ϕ(n) 1930 1931 = 37489647840 ≈ (1 -.00533962722683134975)n.

 1 pi of the α i are such that α Note that one can dynamically refine B as more factors of p -1 are known.

			p-1
	This gives an average number of trials of 1 + 1	i	p i	≡ 1.
	O	1 ε log 1.5 (p) log 2 (log(p)) log(log(log(p)))+ log 2 (p) log 2 (log(p)) log(log(log(p))) ; but the
	worst case complexity is O 1 ε log 3 (p) + log 4 (p) log(log(p)) .		

pi , which is bounded by a constant. * Using fast integer arithmetic this can become : †

The use of a generator and a big prime is the core of many cryptographic protocols. Among them are Blum-Micali pseudo-random generators[START_REF] Blum | How to generate cryptographically strong sequences of pseudo-random bits[END_REF], Diffie-Hellman key exchange[START_REF] Diffie | New directions in cryptography[END_REF], etc. In this section we just compare the generation of primes with known factorization[START_REF] Bach | How to generate factored random numbers[END_REF], so that primitive roots of primes with any given size are computable. The idea in[START_REF] Blum | How to generate cryptographically strong sequences of pseudo-random bits[END_REF] is to iteratively and randomly build primes so that the factorizations of p i -1 are known. For cryptanalysis reasons their original method selects the primes and primitive roots bit by bit and is therefore quite slow. On figure4we then present also a third way, which is to generate the prime with known factorization as in[START_REF] Bach | How to generate factored random numbers[END_REF], but then to generate the primitive root deterministically with our algorithm (since the factorization of p -1 is known). We compare this method with the following full-probabilistic way:1. By trial and error generate a probable prime (e.g. a prime passing several Miller-Rabin tests[START_REF] Gary | Riemann's hypothesis and tests for primality[END_REF]).2. Generate a probable primitive root by Heuristic 2.We see on figure 4 that our method is faster and allows for the use of bigger primes/generators.

Acknowledgements

Many thanks to T. Itoh and E. Bach.

Now for composite numbers: the idea is that first of all, only Carmichael numbers will be able to pass the pseudo prime test several times. The 4ǫ then follows since at least one α passed the strong pseudoprime test. This reduces the possible Carmichael numbers able to pass our test. Then, for most of the Carmichael numbers, λ(n) divides n -1 but, moreover, λ(n) also divides n-1 q for some q, factor of n -1. Therefore, α n-1 q

will always be one. If n is prime on the contrary, only 1 q elements will have order a multiple of q. Now for the n 2 3 in the loop. The argument is the same as for the Pocklington theorem [START_REF] Crandall | Prime Numbers, a computational perspective[END_REF]Theorem 4.1.4] and the Brillhart, Lehmer and Selfridge theorem [6, Theorem 4.1.5]: let n -1 = kQ and let p be a prime factor of n. The algorithm has found an a verifying a n-1 ≡ 1 mod n. Hence, the order of a Q mod p is a divisor of n-1 Q = k. Now, since gcd(a n-1 q -1, n) = 1 for each prime q dividing k, this order is not a proper divisor of k, so is equal to k. Hence, k must be a divisor of p -1 = ϕ(p). We conclude that each prime factor of n must exceed k. From this, Pocklington's theorem states that if k is greater than √ n, n is prime. And then, Brillhart-Lehmer-Selfridge theorem states that if k is in between n and then n must be prime otherwise n would have more than 3 factors each of those being greater than n 1 3 .

Here is an example of Carmichael number, 1729. 1728 = 2 6 3 3 , where λ(1729) = 2 2 3 2 . Then n-1 q is either 864 or 576 both of which are divisible by 36 = λ(1729). Therefore, our test will detect 1729 to be probably composite with any probability of correctness. Figure 5 shows that this algorithm is highly competitive with repeated applications of GMP's strong pseudo prime test (i.e. with the same estimated probability of correctness). Depending on the success of the partial factorization, our test can even be faster (timing, on a PIV 2.4GHz, presented on figure 5 are the mean time between 4 distinct runs).

Haplessly, some Carmichael numbers will still pass our test. The following results, sharpening [11, lemma 1], explains why: Theorem 10 Let n = p e1 1 . . . p eω ω . Let q be a prime divisor of ϕ(n), and (f 1 , . . . , f ω) be the maximal values for which q fi divides ϕ(p ei i). There are

invertible elements of order divisible by q (i.e. for which α

Proof. By the Chinese remainder theorem, one can consider the moduli by p ei i separately. Suppose, without loss of generality, that p e1 1 is such that f 1 > 0. Otherwise all the f i are 0 and the theorem is still correct. Consider a generator g of the invertibles modulo p e1

1 . An element has q in its order if and only if its index with respect to g contains q f1 . There are exactly 1 -1 q f 1 such elements Thus, there are more than 5 chances over a thousand to choose an element α for which α n-1

1451×1931 ≡ 1 mod n. Even though this is much higher than 1 Q (if n was prime), this probability will not be detected abnormal by our algorithm. Now, even if p -1 is seldom smooth for p prime [START_REF] Pomerance | Smooth orders and cryptographic applications[END_REF], one can wonder if this is still the case for this special kind of Carmichael numbers . . .

Conclusion

We provide here a new very fast and efficient algorithm generating primitive roots. On the one hand, the algorithm has a polynomial time bit complexity when all existing algorithms where exponential. This is for instance illustrated when comparing it to existing software on figure 3. On the other hand, our algorithm is probabilistic in the sense that the answer might not be a primitive root. We have seen in this paper however, that the chances that an incorrect answer is given are less important than say "hardware malfunctions". For this reason, we call our answers "Industrial-strength" primitive roots.

Then, we propose a new probabilistic primality test using this primitive root generation. This test can be viewed as a generalization of Miller-Rabin's test to other small prime factors dividing n -1 The test is then quantifying the information gained by finding elements of large order modulo n. When a given probability of correctness is desirable for the test, our algorithm is heuristically competitive with repeated applications of Miller-Rabin's.