Efficient polynomial time algorithms computing industrial-strength primitive roots - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2004

Efficient polynomial time algorithms computing industrial-strength primitive roots

Résumé

E. Bach, following an idea of T. Itoh, has shown how to build a small set of numbers modulo a prime p such that at least one element of this set is a generator of $\pF{p}$\cite{Bach:1997:sppr,Itoh:2001:PPR}. E. Bach suggests also that at least half of his set should be generators. We show here that a slight variant of this set can indeed be made to contain a ratio of primitive roots as close to 1 as necessary. We thus derive several algorithms computing primitive roots correct with very high probability in polynomial time. In particular we present an $O( \sqrt{\frac{1}{\epsilon}}log^2(p) + log^4(p))$ algorithm providing primitive roots with probability of correctness greater than $1-\epsilon$ and several $O(log^\alpha(p))$, $4 \leq \alpha \leq 4.959$ algorithms computing "Industrial-strength" primitive roots with probabilities e.g. greater than the probability of "hardware malfunctions".
Fichier principal
Vignette du fichier
polypr.pdf (235.51 Ko) Télécharger le fichier

Dates et versions

hal-00002828 , version 1 (13-09-2004)
hal-00002828 , version 2 (14-09-2004)
hal-00002828 , version 3 (14-09-2004)
hal-00002828 , version 4 (14-09-2004)
hal-00002828 , version 5 (08-12-2008)

Identifiants

Citer

Jacques Dubrois, Jean-Guillaume Dumas. Efficient polynomial time algorithms computing industrial-strength primitive roots. 2004. ⟨hal-00002828v3⟩
237 Consultations
1304 Téléchargements

Altmetric

Partager

More