The graph alignment problem: fundamental limits and efficient algorithms - Archive ouverte HAL
Thèse Année : 2022

The graph alignment problem: fundamental limits and efficient algorithms

Alignement de graphes : limites fondamentales et algorithmes efficaces

Luca Ganassali
  • Fonction : Auteur
  • PersonId : 1077335

Résumé

This thesis focuses on statistical inference in graphs (or matrices) in high dimension and studies the graph alignment problem which aims to recover a hidden underlying matching between the nodes of two correlated random graphs. Similarly to many other inference problems in planted models, we are interested in understanding the fundamental information-theoretical limits as well as the computational hardness of graph alignment. First, we study the Gaussian setting, when the graphs are complete and the signal lies on correlated Gaussian edges weights. We prove that the exact recovery task exhibits a sharp information-theoretic threshold, characterize it, and study a simple and natural spectral method for recovery, EIG1, which consists in aligning the leading eigenvectors of the adjacency matrices of the two graphs. While most of the recent work on the subject was dedicated to recovering the hidden signal in dense graphs, we next explore graph alignment in the sparse regime, where the mean degrees are constant, not scaling with the graph size. In this particularly challenging setting, for sparse Erdos-Rényi graphs, only a fraction of the nodes can be correctly matched by any algorithm. Our second contribution is an information-theoretical result which characterizes a regime where even this partial alignment is impossible, and gives upper bounds on the reachable overlap between any estimator and the true planted matching. We next propose an algorithm that performs partial alignment, NTMA, which is based on a measure of similarity – called the tree matching weight – between tree-like neighborhoods of the nodes in the graphs. Under this local approach in the sparse regime, we are brought to study a related problem: correlation detection in random unlabeled trees. This hypothesis testing problem consists in testing whether two trees are correlated or independent. The tree matching weight yields a first method for this question as well; another contribution is to study an optimal test based on the likelihood ratio. In a correlated Galton-Watson model, which is well-known to be the local approximation of sparse Erdos-Rényi graphs, we characterize the regimes of performance of this test. Finally, we come back to graph alignment and propose a message-passing algorithm, MPAlign, naturally inspired by the study of the related problem on trees. This message-passing algorithm is analyzed and provably recovers a fraction of the planted signal in some regimes of parameters.
Cette thèse a pour contexte l’inférence statistique sur des graphes (ou matrices) en grande dimension et étudie le problème d’alignement de graphes, qui consiste à retrouver un appariement sous-jacent entre les sommets de deux graphes aléatoires correlés. Comme pour de nombreux problèmes d’inférence dans des modèles dit plantés, nous nous intéressons aux limites fondamentales ainsi qu’à la difficulté computationnelle du problème. Nous étudions tout d’abord un modèle Gaussien dans lequel les graphes sont complets et où les poids des arêtes matchées sous la correspondence sous-jacente sont correlées. Nous établissons un seuil informationnel pour la tâche d’alignement exact dans ce modèle, et étudions un algorithme spectral simple, EIG1, consistant à aligner les vecteurs propres dominants des matrices d’adjacence des deux graphes. Tandis que la grande majorité des travaux récents sur le sujet est dédiée à l’alignement exact dans les graphes denses, nous explorons dans la suite de la thèse un régime dit creux dans lequel le degré moyen des sommets est constant, indépendant de la taille du graphe. Pour les graphes d’Erdos-Rényi, dans ce régime ou l’alignement est plus difficile, n’importe quel algorithme ne pourra aligner seulement qu’une fraction des noeuds : on parle d’alignement partiel. Nous démontrons un résultat informationnel caractérisant un régime dans lequel l’alignement partiel est impossible, et donnant une borne supérieure sur la fraction de noeuds du graphe qu’un estimateur peut espérer correctement aligner. Nous proposons par la suite un algorithme, NTMA, pour l’alignement partiel dans le régime où les graphes sont creux, définissant une mesure de similarité – le tree matching weight – entre les voisinages arborescents des sommets des deux graphes. En étudiant l’alignement de graphes creux d’un point de vue local, un autre problème associé apparaît : la détection de corrélation dans les arbres. Ce problème de test d’hypothèses, non étudié auparavant, consiste à décider si deux arbres aléatoires sont correlés ou indépendants. Le tree matching weight donne une première méthode pour résoudre ce problème; dans une autre contribution, nous étudions un test optimal pour cette tâche de détection, basé sur le rapport de vraisemblance. Dans un modèle d’arbres de Galton-Watson corrélés, qui sont bien connus pour être les approximations locales des graphes d’Erdos-Rényi creux, nous caractérisons le régime de performance de ce test. L’étude de ce problème sur les arbres donne ainsi naturellement un algorithme de passage de messages en temps polynomial pour notre tâche initiale d’alignement de graphes : MPAlign. Nous prouvons que cette méthode retrouve une fraction du signal planté dans certains régimes de paramètres.
Fichier principal
Vignette du fichier
phd_manuscript.pdf (4.9 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-03921009 , version 1 (03-01-2023)

Identifiants

  • HAL Id : tel-03921009 , version 1

Citer

Luca Ganassali. The graph alignment problem: fundamental limits and efficient algorithms. Probability [math.PR]. PSL Research University; Ecole normale supérieure, 2022. English. ⟨NNT : ⟩. ⟨tel-03921009⟩
131 Consultations
173 Téléchargements

Partager

More