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Abstract This thesis focuses on statistical inference in graphs (or matrices) in high di-
mension and studies the graph alignment problem which aims to recover a hidden underlying
matching between the nodes of two correlated random graphs.

Similarly to many other inference problems in planted models, we are interested in under-
standing the fundamental information-theoretical limits as well as the computational hardness
of graph alignment.

First, we study the Gaussian setting, when the graphs are complete and the signal lies
on correlated Gaussian edges weights. We prove that the exact recovery task exhibits a
sharp information-theoretic threshold, characterize it, and study a simple and natural spectral
method for recovery, EIG1, which consists in aligning the leading eigenvectors of the adjacency
matrices of the two graphs.

While most of the recent work on the subject was dedicated to recovering the hidden
signal in dense graphs, we next explore graph alignment in the sparse regime, where the mean
degrees are constant, not scaling with the graph size. In this particularly challenging setting,
for sparse Erdős-Rényi graphs, only a fraction of the nodes can be correctly matched by any
algorithm. Our second contribution is an information-theoretical result which characterizes
a regime where even this partial alignment is impossible, and gives upper bounds on the
reachable overlap between any estimator and the true planted matching.

We next propose an algorithm that performs partial alignment, NTMA, which is based on
a measure of similarity – called the tree matching weight – between tree-like neighborhoods
of the nodes in the graphs.

Under this local approach in the sparse regime, we are brought to study a related problem:
correlation detection in random unlabeled trees. This hypothesis testing problem consists in
testing whether two trees are correlated or independent. The tree matching weight yields
a first method for this question as well; another contribution is to study an optimal test
based on the likelihood ratio. In a correlated Galton-Watson model, which is well-known
to be the local approximation of sparse Erdős-Rényi graphs, we characterize the regimes of
performance of this test.

Finally, we come back to graph alignment and propose a message-passing algorithm,
MPAlign, naturally inspired by the study of the related problem on trees. This message-
passing algorithm is analyzed and provably recovers a fraction of the planted signal in some
regimes of parameters.

Keywords: statistical inference, random graphs, graph alignment, correlation detection
in trees, message-passing algorithms, machine learning, probability.



Résumé Cette thèse a pour contexte l’inférence statistique sur des graphes (ou matrices)
en grande dimension et étudie le problème d’alignement de graphes, qui consiste à retrouver
un appariement sous-jacent entre les sommets de deux graphes aléatoires correlés.

Comme pour de nombreux problèmes d’inférence dans des modèles dit plantés, nous nous
intéressons aux limites fondamentales ainsi qu’à la difficulté computationnelle du problème.

Nous étudions tout d’abord un modèle Gaussien dans lequel les graphes sont complets
et où les poids des arêtes matchées sous la correspondence sous-jacente sont correlées. Nous
établissons un seuil informationnel pour la tâche d’alignement exact dans ce modèle, et étu-
dions un algorithme spectral simple, EIG1, consistant à aligner les vecteurs propres dominants
des matrices d’adjacence des deux graphes.

Tandis que la grande majorité des travaux récents sur le sujet est dédiée à l’alignement
exact dans les graphes denses, nous explorons dans la suite de la thèse un régime dit creux
dans lequel le degré moyen des sommets est constant, indépendant de la taille du graphe. Pour
les graphes d’Erdős-Rényi, dans ce régime ou l’alignement est plus difficile, n’importe quel
algorithme ne pourra aligner seulement qu’une fraction des noeuds : on parle d’alignement
partiel. Nous démontrons un résultat informationnel caractérisant un régime dans lequel
l’alignement partiel est impossible, et donnant une borne supérieure sur la fraction de noeuds
du graphe qu’un estimateur peut espérer correctement aligner.

Nous proposons par la suite un algorithme, NTMA, pour l’alignement partiel dans le régime
où les graphes sont creux, définissant une mesure de similarité – le tree matching weight –
entre les voisinages arborescents des sommets des deux graphes.

En étudiant l’alignement de graphes creux d’un point de vue local, un autre problème as-
socié apparaît : la détection de corrélation dans les arbres. Ce problème de test d’hypothèses,
non étudié auparavant, consiste à décider si deux arbres aléatoires sont correlés ou indépen-
dants. Le tree matching weight donne une première méthode pour résoudre ce problème;
dans une autre contribution, nous étudions un test optimal pour cette tâche de détection,
basé sur le rapport de vraisemblance. Dans un modèle d’arbres de Galton-Watson corrélés,
qui sont bien connus pour être les approximations locales des graphes d’Erdős-Rényi creux,
nous caractérisons le régime de performance de ce test.

L’étude de ce problème sur les arbres donne ainsi naturellement un algorithme de passage
de messages en temps polynomial pour notre tâche initiale d’alignement de graphes : MPAlign.
Nous prouvons que cette méthode retrouve une fraction du signal planté dans certains régimes
de paramètres.

Mots-clés: inférence statistique, graphes aléatoires, alignement de graphes, détection de
corrélation dans des arbres, algorithmes de message-passing, machine learning, probabilités.
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Contributions and outline

Chapter 1. This opening chapter is a general introduction to the dissertation. We start
with a general framework for inference on graphs, and go over basic concepts of random
graph theory stating general results that will be useful throughout the thesis. We give a
general overview of inference problems in random graphs, with several iconic examples, and
introduce the phase transition phenomena arising in the high-dimensional regime. We next
motivate and describe the graph alignment problem, discuss elementary results and give a
survey of prior techniques, methods and theoretical work on the subject. We also introduce
the problem of detecting correlation in trees.

Chapter 2. This chapter, based on the paper [Gan22] published at MSML 2021, inves-
tigates information-theoretic limits for exact alignment in the Gaussian setting, when the
graphs are complete and the signal lies on correlated Gaussian edges weights. This model
is often viewed as an interesting playground for graph alignment. We prove that the exact
recovery task exhibits a sharp fundamental threshold, and characterize it.

Chapter 3. We then continue the exploration of the Gaussian setting, studying a simple
and natural spectral method for recovery which consists in aligning the leading eigenvectors of
the adjacency matrices of the two graphs. We give theoretical guarantees for this algorithm,
showing a zero-one law property in terms of the signal-to-noise ratio for this method to work.
This chapter is based on the paper [GLM22], published in Advances in Probability.

Chapter 4. We focus in this chapter on the study of Erdős-Rényi graph alignment in
the sparse regime, where the mean degrees of the graphs are constant, not scaling with
the number of nodes. Based on the paper [GML21b] published at COLT 2021, we prove
an information-theoretical result characterizing a regime where even partial alignment is
impossible, and giving upper bounds on the reachable overlap between any estimator and the
planted matching. The proof builds upon building automorphisms of the intersection graph
exchanging copies of small tree components.

Chapter 5. This chapter investigates an algorithm for sparse graph alignment, which relies
on a measure of similarity – called the tree matching weight – between tree-like neighborhoods
of the nodes in the graphs. We give theoretical guarantees for this method to work in
the Erdős-Rényi model, and propose along the way a test to decide whether two trees are
correlated or independent. This chapter is based on the paper [GM20], published at COLT
2020.

Chapter 6. Following the previous local approach in the sparse regime, we are interested
in a related problem: correlation detection in random unlabeled trees. For this hypothesis
testing problem, we study an optimal test based on the likelihood ratio. In a correlated
Galton-Watson model, which is well-known to be the local approximation of sparse Erdős-
Rényi graphs, we characterize regimes of performance of this test. Then, we come back to
graph alignment and propose a message-passing algorithm naturally inspired by the study
of the related problem on trees. This message-passing algorithm is analyzed and provably
recovers a fraction of the planted signal in some regimes of parameters. The chapter is based
on the paper [GML21a], which short version is published at ITCS 2021.

Chapter 7 (Addendum). A last chapter is appended to the dissertation, and presents
recent results for correlation detection in trees. These results are significantly improving on
previous work and give a general understanding of the fundamental limits of the problem, as
well as some perspectives discussed afterwards in the conclusion.
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Notations

Basics

i, j, k, `,m... non negative integers, most of the time
[m] set {1, . . . ,m} of integers from 1 to m
|X | cardinal of a finite set X
Sm set of permutations on [m] (we often identify Sk to SX whenever |X | = k)

S(A,B) set of injective mappings between finite sets A and B
S(k, `) set of injective mappings from [k] to [`]
π, σ permutations, most of the time
Π,Σ permutation matrices, most of the time

O, o,Ω, ω,Θ,∼ standard Landau notations
1C indicator function at event C; 1C = 1 if C is satisfied, 0 otherwise

Graphs

G = (V,E) a graph G with vertex set V and edge set E
←→ or ←→

G
connectivity in undirected graph G (eluded if no ambiguity)

A(G) adjacency matrix of graph G, sometimes A if no amibiguity
n number of nodes of a graph, most of the time

u, v nodes of a graph, most of the time

T, t, τ a tree, most of the time
d depth of a tree, most of the time
Xd set of unlabeled finite trees of depth at most d
Tk set of unlabeled trees of size k

Probability

General convention: sometimes lowercase characters are used to distinguish
deterministic objects from random variables (uppercase).

∼ is distributed according to (sometimes also denotes asymptotic equivalence)
(d)
= equality in distribution

Ber(p) Bernoulli distribution with parameter p ∈ [0, 1]
Bin(n, p) Binomial distribution with parameters n ≥ 0, p ∈ [0, 1]

Poi(λ) Poisson distribution with parameter λ > 0
Exp(µ) exponential distribution with parameter µ > 0
N (µ, v) Gaussian distribution with mean µ and variance v

GOE Gaussian Orthogonal Ensemble
Wig(n, ξ), Wig′(n, ρ) Correlated Gaussian Wigner model (or a variant thereof) with size n× n,

noise parameter ξ > 0 or correlation ρ ∈ [0, 1].
G(n, p) Erdős-Rényi model with n nodes and edge probability p

G(n, q, s) correlated Erdős-Rényi model with n nodes, edge probability q and correlation s
SBM(n, α, P ) stochastic block model with n nodes, community distribution α

and edge probabilities P
GW

(µ)
d Galton-Watson model with offspring distribution Poi(µ) up to depth d

P(λ,s)
d joint distribution of correlated Galton-Watson trees
P(λ)
d joint distribution of independent Galton-Watson trees
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Chapter 1

Introduction

1.1. Context

A myriad of datasets found in real life can be represented as graphs, which are nowadays
becoming more and more useful to model complex systems. Facebook users can be viewed
in a graph where each edge encodes a friendship relationship; Netflix as a graph between
users and movies, each edge carrying rating or browsing data. Examples of the overwhelming
presence of graphs can be found across applications in a variety of different fields: visualizing
interaction between proteins in an organism, representing cities or destinations for route
optimization, extracting a mesh from a 3D object, analyzing the spread of epidemics or fake
news on Twitter, finding similar patterns in data, etc.

This thesis focuses on statistical inference in graphs, which consists in extracting relevant
information from the observation of graph-shaped data. We are interested in understanding
the fundamental aspects of these problems, as well as designing and analyzing algorithms for
the considered tasks, seeking to characterize the regimes in which they may suceed.

Statistical inference In its broadest sense, statistical inference aims to draw meaningful
conclusions based upon the observation of data. Suppose that we are given samples (in the
form of measurements in Rd, graphs, matrices, etc.) assumed to be drawn according to some
probability distribution. The statistician designs methods to recover some information about
the latter, e.g. testing hypotheses or deriving estimates for some parameter θ ∈ Θ of the
distribution. The usual framework is as follows:

parameter θ ∈ Θ −→ data Y −→ estimator θ̂

The main (informal) questions that arise in this setting are: ‘how well can we discriminate
between different models/hypotheses?’, ‘can we efficiently estimate the parameter θ?’

This thesis focuses on statistical inference in random graphs – or random matrices – in
high dimension, when both the intrinsic dimension of the data and that of the parameter are
large. This common assumption is particularly relevant for two main reasons: first, it fits well
with real data, datasets being nowadays larger and larger; second, results in this asymptotic
regime exhibit interesting and unexpected phenomena, see Section 1.2.3.

Planted models Some inference problems fall into the intuitive, conventional, and slightly
different planted framework, where the observation is the result of a perturbation of some
underlying signal of interest.

In this planted framework, the model – sometimes also referred to as teacher-student model
in the machine learning and statistical physics communities – is as follows: some signal X
is drawn according to some prior (we hence work in a bayesian setting), and ’planted’ in

1sources: http://allthingsgraphed.com/2014/11/02/twitter-friends-network/ for (a), https://gmsh.info/
for (b), [QCM+09] for (c).
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1.1. Context

(a) – a Twitter network with four communities (b) – some 3D finite element meshes

(c) – a graph showing the platelet Protein-Protein
Interaction network

Figure 1.1 – Some graphs1 in real life.

the data. Given the signal X, the observation Y is drawn according to some conditional
distribution p(· |X). The framework is as follows:

signal X ∼ pX −→ observation Y ∼ p(·|X) −→ estimator X̂

We refer to Section 1.2.2 for a closer look at planted models in the context of inference
in random graphs.

Detection and reconstruction tasks The two informal questions stated earlier – testing
hypotheses and estimating some parameter – can now be reformulated, and their counterparts
are proper to the planted framework:

(i) Can we detect the presence of a planted signal in the data?
(ii) If yes, are we also able to recover the signal?

Let us more formally give a succinct mathematical formulation of questions (i) and (ii). Let
us define n to be a generic dimension parameter; working in the high-dimensional regime here
corresponds to making n tend to infinity.

Question (i) defines the detection task. Detecting the presence of signal exactly consists
in discriminating a model with no planted signal – the null model – from the planted model,
based on the observation of Y . In other words, detection task corresponds to the following
hypothesis testing

H0 := “Y is drawn from the null model” versus H1 := “Y is drawn from the planted model”

16



1.1. Context

Given a detection task, we are thus interested in designing a test T (i.e., a measurable function
of Y taking values in {0, 1}) for which we are able to give guarantees with probability tending
to 1 asymptotically in n.

Question (ii) defines the reconstruction – or recovery – task. Recovering the signal now
corresponds to designing an estimator X̂ (i.e., a measurable function of Y ) for which we are
able to give guarantees (e.g. prove that X̂ is somehow close to X) with probability tending
to 1 asymptotically in n.

Let us pause for a moment after these broad definitions. Intuitively, the detection task is
in general easier than the reconstruction task – even though some counter-examples can be
found in [BMV+17] – and impossibility of detection almost always implies impossibility of
reconstruction. Conversely, non-equivalence between detection and reconstruction (at least
partial) may also seem rather counter-intuitive, when considering that the usual strategy for
detecting some signal consists precisely in exhibiting the latter. However, these two problems
are indeed definitely different; let us give hereafter an easy example of this fact.

A toy example (1/2): finding hay in a haystack Consider a bit sequence (ξ1, . . . , ξn)
of length n made of i.i.d. entries taking the value 0 or 1 with equal probability. Let k > 0
that may depend on n.

Under the planted model, the observation Y = (Y1, . . . , Yn) is generated as follows: we
choose k positions 1 ≤ i1 < . . . < ik ≤ n uniformly at random, and set for all i ∈ {1, . . . , n},
Yi = 1 if i ∈ {i1, . . . , ik}, and Yi = ξi otherwise. We denote Y ∼ P1,k.

Under the null model, we simply set Yi = ξi for all i ∈ {1, . . . , n}, and denote Y ∼ P0.

ξ 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0
k positions × × × × × × ×

Y 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0

Figure 1.2 – A realization with n = 18, k = 7. After transformation, in the sequence Y , the presence
of a planted signal is highly probable; but where are the k extra ones?

Detection. In this simple example the planted signal consists in extra ones somewhere in
the data. It then easy to see that an optimal test for detection is simply based on counting
occurrences of ones. Define N1(Y ) := |{i : Yi = 1}|. Standard concentration inequalities (e.g.
Hoeffding’s inequality) straightaway give that with high probability – that is, with probability
tending to 1 when n→∞:

N1(Y ) =

{
n/2 + Θ(

√
n) under the null model P0,

(n+ k)/2 + Θ(
√
n− k) under the planted model P1,k.

Comparing these typical values shows that as soon as k = ω(
√
n), extra ones can be

detected, e.g. with a test Tn outputting 1 if and only if N1(Y ) is greater than n/2 + k/4.
Indeed, if k = ω(

√
n), we will have P0(Tn = 0) → 1, P1,k(Tn = 1) → 1. Such a test is

said to achieve strong detection (see Section 1.4.2). On the contrary, unreachability of strong
detection when k = O(

√
n) is established e.g. by applying the central limit theorem – details

are left to the reader.

Reconstruction. We are now in a position to understand why the two tasks are of different
kind. Though it is rather simple to detect extra ones when k = ω(

√
n), the reconstruction

task would consist in recovering the exact positions of the extra ones. If one had no idea
about the data, a naive – and somehow the worst – method would consist in choosing these
k positions uniformly at random among the N1(Y ) possibilities. It is easy to check that the
number of positions that are correctly recovered – or, the overlap – with this method is of
order k2/n which is almost always very small compared to k even when k = ω(

√
n).
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1.2. Inference on random graphs: a short tour

A moment of thought shows that this naive method can never be outperformed. Indeed,
the posterior distribution of the positions of extra ones is given by

P1,k(i1, . . . , ik |Y ) =
1

P1,k(Y )
1i1<...<ik1Yi1=...=Yik=1

(
n

k

)−1(1

2

)n−k
.

The dependence on i1, . . . , ik lying only in the terms 1i1<...<ik and 1Yi1=...=Yik=1, it is therefore
the uniform distribution on the set of ordered lists of length k among the N1(Y ) positions of
ones.

In particular, if k = ω(
√
n) and k = o(n), then detection is easy but reconstruction is

impossible, even partially, in the sense that no method can recover more than o(k) of the
planted extra ones. See Section 1.2.3 for the definition of a formalized context for these
observations.

Organization of rest of the introduction

We start in Section 1.2 with some basics of random graph theory as well as general results
and famous techniques that will be useful throughout this work. We then give a general
overview on inference problems in random graphs through several widely studied examples,
as well as the definition of the phase transition phenomena that crop up in these problems.

We introduce in Section 1.3 the graph alignment problem, lying at the very heart of this
thesis and which various aspects will be discussed in the next chapters. We give insights on
the motivations, discuss general related topics and give an overview of prior techniques and
methods for this problem as well as theoretical guarantees, aside from our work.

We finally describe in Section 1.4 a related problem which will be the focus of Chapters
5, and mostly 6 and 7: correlation detection in random trees. This problem is interesting for
its own sake, but has also a strong connection with graph alignment.

1.2. Inference on random graphs: a short tour

In this section, we will present the general framework of inference on randoms graphs,
introducing some basic concepts and notations, and describing several – fundamental – ex-
amples for problems of this sort.

1.2.1. Basics of random graph theory

Graphs A (simple) graph G = (V,E) is a discrete structure consisting in a vertex set V
and an edge set E. Elements of V are called vertices, sometimes nodes.

In an undirected graph, E is a subset of
(
V
2

)
, the set of unordered pairs (or 2−sets) of

distinct elements of V , and an edge e between nodes u and v is denoted by {u, v}. If the
graph is oriented, then E contains ordered pairs (or 2−tuples) of elements of V , and they are
denoted by (u, v).

All graphs considered throughout along this manuscript are finite (namely V and E are
finite sets), and undirected, unless stated otherwise. If u, v ∈ V are such that {u, v} ∈ E, we
denote u ←→

G
v and u ←→ v when there is no ambiguity on the graph, and the vertices u and

v are said to be connected, or neighbors in G.

Adjacency matrix, weighted graphs A graph G = (V,E) with node set V = [n] is often
represented through its adjacency matrix A = A(G) ∈ Rn×n defined as follows:

∀u, v ∈ [n], Au,v = 1{u,v}∈E .

An undirected weighted graph G = (V,E) is a graph with additional information on edges,
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1.2. Inference on random graphs: a short tour

namely
∀u, v ∈ [n], Au,v = 1{u,v}∈EWu,v ,

where the variables Wu,v ∈ R are edge weights.

The Erdős-Rényi model A simple, greatly celebrated, and widely used model of random
graphs is the Erdős-Rényi model, introduced by Paul Erdős and Alfréd Rényi in 1959 [ER59].
In this model, denoted by G(n, p), the graph G has node set V = [n] and each pair {u, v} for
u 6= v ∈ [n] is present in E independently with probability p.

(a) – n = 25, p = 0.14 (b) – n = 100, p = 0.03

Figure 1.3 – Some realizations of G(n, p).

Note that the Erdős-Rényi model is in some sense the simplest model of random graphs
one can ever think of: edges are drawn independently with the same probability, and there
is no particular geometry in the graph. An immediate corollary of this absence of geometry
is the following

Lemma 1.2.1. Fix n ≥ 1, p ∈ (0, 1) and 0 ≤ m ≤
(
n
2

)
. Let G ∼ G(n, p), conditioned to have

m edges. Then G is uniform among all graphs with node set [n] and m edges.

Many interesting results with high probability are known for Erdős-Rényi graphs, and
literature investigating this model is abundant. For a general and thorough view on this very
rich topic, the reader can refer to Bollobás [Bol01], Janson, Luczak and Rucinski [JLR00]
and Hofstadt [Hof16].

High probability properties, first and second moment methods Some event A
depending on a size (or dimension) parameter n is said to be verified with high probability
(w.h.p.) if the probability of A tends to 1 when n→∞.

We will start with merely giving one of the most elementary – and famous – results for the
Erdős-Rényi model, which proof will be the occasion to introduce the first and second-moment
methods (see e.g. [AS16]) that are instrumental for solving many probabilistic questions in
random graphs. Let us introduce them hereafter.

Lemma 1.2.2 (First moment method). Let X be a non-negative, integer-valued random
variable. Then

P(X > 0) ≤ E[X].

Proof. This is a consequence of Markov’s inequality : for all b > 0, P(X ≥ b) ≤ E[X]
b . Taking

b = 1 gives the desired result.

In particular, in the case where X depends on n, and E [X] → 0 when n → ∞, then
Lemma 1.2.2 implies that X = 0 with high probability.
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Lemma 1.2.3 (Second moment method2). Let X be a real random variable with positive
mean and finite variance. Then for all 0 ≤ c ≤ 1,

P (X ≥ cE [X]) ≥ (1− c)2 E [X]2

E [X2]
.

Proof. Using Cauchy-Schwarz inequality,

E[X] = E
[
X1X<cE[X]

]
+ E

[
X1X≥cE[X]

]
≤ cE [X] + E[X2]1/2 P(X ≥ cE [X])1/2,

which gives E[X]2 (1− c)2 ≤ E[X2]P(X ≥ cE [X]).

In particular, in the case where X depends on n, E [X]→∞ and E
[
X2
]
∼ E [X]2 when

n → ∞, taking c → 0 in Lemma 1.2.3 implies that X ≥ o(E [X]) with high probability and
hence that X →∞ w.h.p.

Let us now state an elementary result that will be proved by appealing to these standard
methods. A graph G is connected if for any u 6= v ∈ G, there exists a path from u to v made
of edges of G. A node u ∈ V is isolated if it has no neighbors in G.

Theorem 1.1 (Connectivity of Erdős-Rényi graphs). Let G ∼ G(n, p) with p depending on
n. Then, with high probability,

(i) if np ≤ (1− ε) log n for some ε > 0, then G contains isolated vertices and hence is not
connected.

(ii) if np ≥ (1 + ε) log n for some ε > 0, then G is connected.

(a) – p = 1.3/n (b) – p = 2/n

(c) – p = 3.3/n (d) – p = 3.9/n

Figure 1.4 – Some realizations of G(n, p) with n = 200, connected and disconnected.

2In this form, this result is known as the Payley-Sigmund inequality.
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1.2. Inference on random graphs: a short tour

Proof. Proof of (i). We will use the second moment method for the proof of point (i). Let
us denote

X := |{u ∈ V, u is isolated in G}| =
∑
u∈V

1u is isolated in G .

For any u ∈ V , P(u is isolated in G) = (1 − p)n−1, hence E[X] = n(1 − p)n−1 which
equals exp((1 + o(1))[log n − np]) ≥ exp((1 + o(1))ε log n) → ∞ under the assumption
np ≤ (1− ε) log n.

Let us now check that we indeed have E
[
X2
]
∼ E [X]2 when n→∞.

E[X2] =
∑
u,v∈V

E
[
1u,v are isolated in G

]
= E[X] +

∑
u,v∈V,u 6=v

P (u, v are isolated in G)

= o(E[X]2) + n(n− 1)(1− p)n−1+n−2 = (1 + o(1))E [X]2 .

Proof of (ii). Point (ii) is proved with the first moment method. Let us assume that
np ≥ (1 + ε) log n. Define a zero-cut of G to be a partition of V into two sets which are
crossed by no edges. It is clear that G is disconnected if and only if G admits a non trivial
zero-cut, the trivial one being the partition {V,∅}. Let Y be defined as the number of non
trivial zero-cuts of G. For a given partition {S, V \S} of V into two sets of size k and n− k,
{S, V \ S} is a zero-cut with probability (1− p)k(n−k), hence

E[Y ] =

bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k).

The right hand term being decreasing with p, we can assume without loss of generality that
p = (1 + ε) logn

n . Using
(
n
k

)
≤ (en/k)k, and splitting the last sum at k = αn, where α is to be

specified later, we get the following upper bound:

E[Y ] ≤
αn∑
k=1

exp (k [log(en/k)− (1− α)(1 + ε) log n]) +

bn/2c∑
k=αn+1

(
n

k

)
(1− p)αn2/2

(a)

≤
αn∑
k=1

exp (−(c+ o(1))k log n) + 2ne−α(1+ε)n logn = o(1),

where (a) holds as soon as α ∈ (0, 1) and c are such that (1 − α)(1 + ε) − 1 > c > 0, which
is true whenever α ∈ (0, ε/(1 + ε)).

Remark 1.2.1. Note that result of Theorem 1.1 shows that the asymptotic probability of
connectivity in an Erdős-Rényi graph abruptly jumps from 0 to 1 when np/(log n) begins to
exceed 1: in this case we say that the connectivity property exhibits a (sharp) threshold. This
remarkable fact occurs for a large range of properties in random graphs (see e.g. [Bol01,
JLR00]). In inference problems, such underlying threshold phenomena involving parameters
of the random models are often the cause of the emergence of so-called phases (impossible,
hard or easy), see Section 1.2.3.

1.2.2. The zoo of inference problems on graphs

Why planting signal? At first sight, the planted framework described earlier may leave
the reader somewhat bemused; the question of finding some interesting information in data –
in the broadest meaning – is very different from assuming that the data is literally constructed
out of some underlying signal, and aiming to recover it. We would like to start by emphasizing
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and elaborating on this important point.
Here are few words to clarify the above statement and release this apparent tension: for

the overwhelming majority of inference problems in random graphs, the planted formulation
is in fact a probabilistic rephrasing of an original deterministic combinatorial optimization
problem, which we often refer to as the worst-case version. The planted approach differs from
the initial problem, but has the advantage of carrying it its very essence a notion of ground
truth, offering a comfortable framework for the evaluation of the performance of algorithms
as well as a direct control on the signal-to-noise ratio. Also, theoretical guarantees can be
obtained with high probability in planted models under less stringent constraints, taking into
account the typical properties of data sampled from the generative model. Cris Moore echoes
these statements in [Moo17], justifying this approach in the context of community detection
in the following words:

“For the most part we are used to thinking about worst-case instances rather
than random ones, since we want algorithms that are guaranteed to work on any
instance. But why should we expect a community detection algorithm to work, or
care about its results, unless there really are communities in the first place? And
when Nature adds noise to a data set, isn’t it fair to assume that this noise is
random, rather than diabolically designed by an adversary?”

This duality is believed to be fundamental and should be kept in mind when facing
inference problems (on graphs). We will endeavour to shed light on the two flavours of the
problems given as examples hereafter: a worst-case – deterministic – formulation, as well as
a planted – probabilistic – counterpart, leading to different objectives and results.

A non-exhaustive bestiary Without further ado, we will now give three representative
examples of inference problems on graphs.

(a) Max-clique, planted clique. A clique of a graph is a subset of vertices all adjacent
to each other, i.e. a complete subgraph. The max-clique problem consists in finding the
maximum clique in a graph G = (V,E), that is solving the following

arg max
S⊂V

S is a clique

|S| . (1.1)

The max-clique problem, as well as the problem of deciding whether the graph contains a
clique of given size is NP-hard [Kar72], as well as some of its approximations [Hå99], unless
P = NP.

The planted version of max-clique, namely the planted clique problem, is defined as follows.
Consider two integers n and k ≤ n possibly scaling with n. Let us generate a graphG = (V,E)
with vertex set V = [n] as follows. First, a subsetK? ⊂ V of size k is chosen uniformly among
the k−subsets of V . K? will form a clique: all possible edges between vertices of K? are
added to E. Then, all possible remaining edges are drawn independently with probability
1/2. We denote this model by Gk(n, 1/2).

Note that when k = 0, that is in the absence of a planted clique, G is simply distributed
according to G(n, 1/2). Given k, the statistical test for the detection task is thus

H0 := “G ∼ G(n, 1/2)” versus “H1 := G ∼ Gk(n, 1/2)” .

For reconstruction, the goal is to find an estimator K̂ = K̂(G) that recovers the whole
true clique K? with high probability, that is such that P(K̂(G) = K?)→ 1 when n→∞ and
G ∼ Gk(n, 1/2).

Note that under the planted model, the posterior distribution of K? (conditionally on G)
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(a) – n = 30, k = 8 (b) – n = 100, k = 15

Figure 1.5 – Some realizations of Gk(n, 1/2), where the planted clique is highlighted in red

is given by

P (K? = K |G) =
1

P(G)

(
1

2

)n−k
1K is a clique in G ,

which shows that, unsurprisingly, the posterior distribution of K? is the uniform distribution
among all cliques of size k in G. In the case where k ≥ (2+ε) log2(n) it can be shown [Mat72]
that the only clique of size k in G is the planted one, and that it is the maximal clique, with
high probability. Hence w.h.p. in this regime, the maximum a posteriori estimator of K?

is precisely the solution of the max-clique problem (1.1) in G. This last statement makes
the worst-case/planted duality even more explicit. For more insights on the performance of
simple algorithms for this problem, we refer to the lecture notes by Wu and Xu [WX19].

(b) Min-bisection, community detection. A bisection of a graph G is a partition of the
vertex set V into two sets of equal size (we assume that |V | is even). In a weighted graph
G = (V,E) with adjacency matrix A, the min-bisection problem corresponds to finding a
bisection with minimal crossing edge weights, namely

arg min
(V1,V2) bisection of G

∑
u∈V1, v∈V2

Au,v . (1.2)

Finding the min-bisection of a graph is known to be NP-hard [GJS74]. In the planted
version of min-bisection, the random graph G = (V,E) has to satisfy the following property:
there is an underlying optimal partition of V consisting in two subsets that are referred to as
communities. Therefore, the problem amounts to recovering these communities, which can
very well be more than two in a general setting. In order for the graph to satisfy this property,
it is sampled according to the celebrated stochastic block model, originally introduced in
[HLL83], widely studied in recent threads of research [DKMZ11, Mas14, MNS15, MNS18,
Abb18].

For a number of nodes n ≥ 0, a number of blocks r ≥ 1, a distribution α = (αi)i∈[r] on
[r] and a r × r symmetric matrix P with non-negative entries, the stochastic block model
SBM(n, α, P ) is defined as follows. First, draw independently for every node u ∈ V = [n]
a community (or type) χ?(u) ∼ α. Then, every edge {u, v} for u 6= v ∈ V is present
independently with probability Pχ?(u),χ?(v).

Note that when r = 1 (single community), G ∼ G(n, p) with p := P11. Given n and P ,
detection of planted communities consists in testing

H0 := “G ∼ G(n, p) for some p ∈ (0, 1)” versus H1 := “G ∼ SBM(n, α, P )” .

For reconstruction, we assert the performance of an estimator χ̂ = χ̂(G) : V → [r] of the
communities through its rescaled overlap with the ground truth χ?, defined by
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1.2. Inference on random graphs: a short tour

(a) – n = 230, r = 2, Pc,c′ = 3.2 · 1c=c′ + 0.7 · 1c 6=c′

(b) – n = 400, r = 4, Pc,c′ = 3.3 · 1c=c′ + 0.5 · 1c6=c′

Figure 1.6 – Some realizations of SBM(n, α, P ). For both cases, α is the uniform distribution among
the r communities, and nodes are colored and placed accordingly.

ov(χ̂, χ?) :=
1

n
max
σ∈Sr

∑
u∈V

1σ◦χ̂(u)=χ?(u) −
∑
i∈[r]

α2
i .

The second term in the right-hand side in the above ensures that ov(χ̂, χ?) > 0 implies
that the estimator χ̂ strictly outperforms random guess. Indeed,

∑
i∈[r] α

2
i is the expected

fraction of good predictions achieved by the random guess estimator outputting communities
drawn under the prior distribution α.

The connection between the maximum a posteriori (MAP) estimator and the min-bisection
problem can be illustrated in the standard case of two symmetric communities, in the sparse

regime with α = (1/2, 1/2) and P =

(
a/n b/n
b/n a/n

)
in the assortative setting where 0 < b < a.

In this case, denoting by S? := {u ∈ V, χ?(u) = 1}, the posterior distribution of S? under the
stochastic block model writes

P (S? = S |G) ∝ exp

log

(
b/n

a/n

) ∑
u∈S,v∈V \S

Au,v + log

(
1− b/n
1− a/n

) ∑
u∈S,v∈V \S

(1−Au,v)

 .
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1.2. Inference on random graphs: a short tour

where ∝ stands for proportionality up to terms that do not depend on S. Neglecting the
effect of non-edges, which is fair in the sparse regime (see [Moo17]), since 0 < b/a < 1 by
assumption, and since (S?, V \ S?) is w.h.p. close to a bisection of G, heuristically the MAP
estimator of the two communities (S?, V \ S?) is well approximated by the solution to the
min-bisection problem (1.2) in graph G. For an excellent survey on the subject with a sta-
tistical physics approach, we refer to [Moo17].

(c) Min-weight perfect matching, planted matching. Let G = (V,E) be a graph with
|V | = 2n and adjacency matrix A. Assume that there is a partition {V0, V1} of V with
|V0| = |V1| = n such that every edge {u, v} ∈ E satisfies u ∈ V0 and v ∈ V1 (we say that G
is bipartite). A perfect matching (p.m. hereafter) of G is a set M := {e1, . . . , en} of n edges
of E such that each node u ∈ V appears exactly once in M . The weight of a matching M is
defined by

weight(M) :=
∑

e={u,v}∈M

Au,v

The min-weight perfect matching problem writes

arg min
M p.m. of G

weight(M) . (1.3)

Unlike the first two examples (a) and (b), the min-weight perfect matching problem is
an instance of the Linear Assignment Problem (LAP) and can be solved in polynomial-time,
e.g. by the Hungarian algorithm [Kuh55] which runs in O(n3) time. In the planted matching
problem [SSZ20, DWXY21, MMX21], the graph G is taken to be a subgraph of a complete
bipartite graph Kn,n, namely V = [2n] and E ⊆ {{u, v}, 1 ≤ u ≤ n, n+ 1 ≤ v ≤ 2n}. A
planted matching M? is first picked uniformly at random from the set of perfect matchings
of Kn,n. The remaining possible n2 − n = n(n − 1) edges are then sampled independently
with probability p. Then, edge weights are drawn independently for all e ∈ E from some
distribution P if e ∈M? and from another distribution Q otherwise.

Reconstructing the planted matching refers to finding an estimator M̂ = M̂(G) such
that the overlap 1

n

∣∣∣M̂ ∩M?
∣∣∣ is as large as possible. Let us here again derive the posterior

distribution of the signal in the planted matching model. Denoting by ∝ proportionality up
to terms that do not depend on M , we have

P (M? = M |G) ∝ exp

 ∑
e={u,v}∈M

logP(Au,v) +
∑

e={u,v}∈E\M

logQ(Au,v)

1M is a p.m. of G

∝ exp

− ∑
e={u,v}∈M

log
Q
P

(Au,v)

1M is a p.m. of G.

This gives immediately that once again, the MAP estimator ofM? is precisely the solution to
the worst-case instance (1.3) on the reweighted graph G̃ such that for each edge e = {u, v},

A(G̃)u,v := log
Q
P

(A(G)u,v).

Note that in particular, if P = Exp(µP ) and Q = Exp(µQ) with µQ < µP – which is the
model considered in [SSZ20, DWXY21, MMX21], see Figure 1.7 – then we exactly have
log QP (Au,v) = c + (µP − µQ)Au,v with some constant c, and hence the MAP estimator is
exactly the solution to the min-weight perfect matching problem (1.3) directly on G.

We close this short glimpse on the bestiary by mentioning other planted structures in
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1.2. Inference on random graphs: a short tour

(a) – n = 14, highlighted M∗ (b) – n = 14, hidden M∗

(c) – n = 30, highlighted M∗ (d) – n = 30, hidden M∗

Figure 1.7 – Some realizations of planted matchings on the complete bipartite graph Kn,n (p = 1).
For both cases, P = Exp(µP ), Q = Exp(µQ) with µP = 4.2 and µQ = 1/n, and edges are colored
according to their weights.

graphs which have been recently studied, such as trees [MST19], colorings [DF16], or hamil-
tonian paths [BDT+20].

After having given these classical examples, we are now ready to elaborate about some
asymptotic (high-dimensional) phenomena that arise in these inference problems, namely the
emergence of some regimes of model parameters scaling with the dimension n, where the task
– reconstruction or detection – turns out to be impossible, hard or easy.

1.2.3. Impossible, hard and easy phases

Definitions Let us consider an inference task (e.g. detection, reconstruction) in a planted
model where the data – not necessarily graphs – is sampled from a parametric distribution
with parameters θ ∈ Θ.

• The impossible phase (or impossible regime) is defined as a subset Θimpossible of the set
of parameters Θ such that for all θ ∈ Θimpossible, provably no algorithm can perform
the task with high probability.

• The easy phase (or easy regime) is the regime of parameters Θeasy where the task can
provably be solved by a polynomial-time algorithm, with high probability.

• The hard phase (or hard regime) is the regime Θhard where some exhaustive, non-
polynomial search provably works but where no polynomial-time is known to succeed
with high probability.

The above definitions imply that {Θimpossible,Θeasy,Θhard} is a partition of Θ. The un-
derstanding – and the pinning down – of these three phases, gathered in a so-called phase
diagram, is of course of paramount importance for the understanding of inference problems,
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1.3. Graph alignment

their related algorithms, and has thus been the subject of many recent threads of research
(see e.g. [BBH18] for a unified view).

A toy example (2/2): finding hay in a haystack The remarks made earlier in our
simple toy example (see ‘A toy example (1/2)’) can be specified to fit this context. For the
(strong) detection task, the impossible phase covers the regime where k = O(

√
n). When

k = ω(
√
n), counting the occurrences of ones takes O(n) time and enables to detect the

presence of signal with high probability: the task is easy.
The (partial) reconstruction task has however a much larger impossible phase (k = o(n)).

To complete the phase diagram, let us mention that in the – not so interesting – case where
k = Θ(n), the optimal method for partial recovery still consists in choosing k positions at
random among the positions of ones, which runs in polynomial time.

k

detection impossible detection easy

partial recovery impossible recovery easy

Θ(
√
n) Θ(n)

Figure 1.8 – Phase diagram for detection and reconstruction in the ‘find hay in a haystack’ problem

Note that in this (very simple) case, there is no hard phase neither for detection nor
reconstruction. However, a considerable variety of inference problems are conjectured to
exhibit a hard phase in their phase diagram. Planted clique (see Section 1.2.2, (a)) may be
the most appealing example. A significant amount of recent contributions [GZ19, DM13,
FR10, Jer92, BHK+16] has agreed on the fact that no polynomial-time algorithm is known
to recover a planted clique smaller than Θ(

√
n), even though as discussed in previous section,

an exhaustive – non polynomial – search recovers a planted clique of size k as soon as k ≥
(2 + ε) log2(n). The phase diagram for reconstruction in the planted clique problem is hence
as follows:

k2 log2(n) Θ(
√
n)

impossible hard easy

Figure 1.9 – Phase diagram for reconstruction in planted clique – see Section 1.2.2, (a)

For another example where this phase transition of this type also appears, we can mention
community detection for three or more communities (see e.g. Abbé’s survey [Abb18] on the
subject).

Understanding the phase diagram is also a fundamental and central question for the graph
alignment problem, which we are now ready to introduce.

1.3. Graph alignment

After this short introduction to the general topic of inference in random graphs, let us
now dive into the core of this thesis, namely the graph alignment problem, which will be the
subject of interest in the upcoming chapters.
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1.3. Graph alignment

1.3.1. Motivations

Graph alignment3 (or network alignment) aims to answer the following (informal) ques-
tion: ‘what is the best way to match the nodes of two graphs?’ Providing an answer to this

Figure 1.10 – Graph alignment consists in the following informal question: ‘what is the best way to
match the nodes of two graphs?’

very general query corresponds to exhibiting a vertex correspondence, or alignment, between
two – labeled or unlabeled – graphs so that the aligned – labeled – versions of the graphs are
resembling or close enough, for some well-defined distance.

Motivations for the investigation of this problem are numerous, since many questions from
various fields can be phrased as graph alignment problems. Let us now give a short overview
of several applications.

• (De-)anonymization. De-anonymization problems in networks aroused great interest
when Narayanan and Shmatikov [NS08] were able to de-anonymize an unlabeled dataset
of film ratings (subsampled from the Netflix dataset [NET]) with the help of auxiliary
information given by the observation of a publicly available database (namely IMDb,
the Internet Movie Database [IMB]). The authors proposed a simple method relying on
the correspondence (or correlation) between movies and ratings across the databases,
that were able to match some pairs of records and thus to recover the entire movie
viewing history of a given subscriber, which may be in turn used as input to uncover
political preferences or other sensitive information.

Since then, de-anonymization problems have been studied in recent literature in several
versions and reformulations: related topics such as quantifying privacy issues related
to databases [Dwo08] or social networks [NS09] have been investigated.

• Image processing and pattern recognition. Some recognition tasks in image processing
such as shape matching and object recognition [BBM05] can be achieved by finding
correspondences between feature points across two (or several) images. The similarities
are based on correspondence between vertex features as well as the cost of geometric
transformation between pairs of nodes.

Some popular algorithms for graph matching have been widely proposed for pattern
recognition (see [CFVS04] for a broad survey) in many areas since the late seventies:
2D/3D image analysis [Mad16], document processing, video analysis, biometric identi-
fication as well as biomedical/biological applications. All these fields have in common
that some structured information is represented by graphs, and the goal is to find a
correspondence that somehow ensures that substructures in the first graph are mapped
to similar substructures in the other.

3The same problem is sometimes found under the name graph matching. However, for the sake of clarity,
we will only refer to graph alignment throughout the manuscript, in order not to confuse the reader with the
different problem of planted matching evoked earlier (see Section 1.2.2, example (b)).

28



1.3. Graph alignment

• Protein interaction networks in computational biology. Authors of [SXB07, SXB08]
study protein-protein interaction (PPIs) networks represented as labeled graphs, where
the nodes are proteins and edges represent interaction. These networks are observed
across different species. They provide an algorithm, IsoRank, encoded as an eigenvalue
problem, which performs a global alignment of two or more PPIs networks, using both
the network structure of the data and sequence similarity.

Aligning these networks proves to be a very valuable tool: first, it provides a phyloge-
netic function-oriented comparison of proteins across different species, identifying those
that may play the same role, thus transferring knowledge and insights across species;
second, it can be used to perform ortholog prediction, that is being able to spot genes
that derive from the same ancestor.

Some following works elaborated on approximations [KG16] or refined versions [LLB+09]
of IsoRank, and also developed further competitive methods for this problem [KSMG13,
EKHK15].

• Natural language processing and semantic entailment. A fundamental task in natural
language processing (NLP) is the recognition of semantic entailment, that is, given a
piece of text, whether an hypothesis can be concluded by logical implication, or simply
by general world-knowledge.

In [HNM05], the authors use a representation of sentences as directed, labeled graphs
between words and phrases, originally introduced in [LP01] (for a recent general sur-
vey on graph representations in NLP, see [OB20]). In these small networks, edges
encode underlying dependency relationships in the sentence. Given a sentence and an
hypothesis, the proposed strategy in order to identify entailment is to represent both
the sentence and the hypothesis as graphs, and then to measure similarity between
them, that is to find a mapping in the two graphs minimizing a score built from both
the semantic resemblance of the matched vertices and how well the edges (namely, the
relationships) are preserved by the mapping.

Graph alignment recently grew some new interest in other applied fields, including computa-
tional neurosciences [FCC+21], analysis of data from diffusion magnetic resonance imaging
[OSA16], and cross-lingual knowledge alignment [CTYZ17].

We refer to Section 1.3.4 for a brief history of theoretical aspects and results in graph
alignment.

1.3.2. The quadratic assignment problem

Given two graphs G = (V,E), G′ = (V ′, E′) with same number of vertices n = |V | = |V ′|,
the problem of graph alignment consists in identifying a bijective mapping, or alignment
π : V → V ′ that minimizes ∑

i,j∈V

(
1{i,j}∈E − 1{π(i),π(j)}∈E′

)2
, (1.4)

that is the number of disagreements between adjacencies in the two graphs under the align-
ment π. In the case where the two graphs are isomorphic, the two node sets V and V ′ can
be matched perfectly: an isomorphism between G and G′ achieves zero cost in (1.4).

However, we are interested in graph alignment for general, non necessarily isomorphic
graphs: the problem can hence be viewed as a noisy version of the isomorphism problem.

Given the adjacency matrices A and B of the two graphs G and G′, the graph matching
problem can be phrased as an instance of the quadratic assignment problem (QAP) [PRW94]
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which is the following

arg min
Π∈Sn

‖A−ΠBΠ>‖2 = arg max
Π∈Sn

〈A,ΠBΠ>〉 , (1.5)

where Π ranges over all n×n permutation matrices, 〈·, ·〉 denotes the matrix Frobenius inner
product, i.e. 〈C,D〉 := Tr(C>D), and ‖ · ‖ is the associated norm.

In a more general setting, including that of applications discussed in Section 1.3.1, the
loss function can also take into account a matching cost for pairs of vertices, and the problem
becomes

arg max
Π∈Sn

〈A,ΠBΠ>〉+ 〈C,Π〉 , (1.6)

where C is a n× n matrix such that the cost for matching vertex u ∈ V and u′ ∈ V ′ is given
by −Cu,u′ .

Under its general formulation, QAP is known to be a NP-hard problem, as well as some of
its approximations [PRW94, MMS14]. These hardness results are applicable in the worst case,
where the observed graphs are designed by an adversary. In line with the worst-case/planted
duality detailed earlier in Section 1.2.2, a natural idea is then to study the planted formulation,
when A and B are random instances.

1.3.3. Planted graph alignment

We now study the planted version of graph alignment, namely the planted graph align-
ment problem, where the pair of graphs (G,H) is sampled according to the following general
procedure. We generate a pair (G,G′) of graphs, (or adjacency matrices (A,A′)) with same
node set such that G and G′ are edge correlated, and relabel the nodes of G′ with some
uniform random permutation π? ∈ Sn, independent from everything else, to form H.

Henceforward, we will always refer to graph alignment for planted graph alignment.
Let us describe several models of random correlated graphs that will be studied in the

sequel: the Gaussian model, where the graph is complete and the signal lies on the edge
weights, and the correlated Erdős-Rényi model, where the correlated graphs both have Erdős-
Rényi marginal distributions.

Correlated Gaussian Wigner model The correlated Gaussian Wigner model was first
introduced by Ding et al. [DMWX21] as a simple playground for graph alignment, and has
been further investigated for its own sake in some recent works (see Section 1.3.4).

Under this model, the graphs are complete and the signal lies in the weights of edges
between all pairs of nodes. The correlated weighted adjacency matrices A and A′ are simply
sampled as follows: first, A is drawn from the Gaussian Orthogonal Ensemble (GOE), namely,
independently for all 1 ≤ u ≤ v ≤ n,

Au,v = Av,u ∼

{
N (0, 1/n) if u 6= v ,

N (0, 2/n) if u = v .
(1.7)

Given H an independent copy of A, we define

A′ = A+ ξH , (1.8)

where ξ > 0 is the noise parameter. We denote (A,A′) ∼ Wig(n, ξ). Under this model,
coefficients of A and A′ are pairwise correlated with correlation parameter 1√

1+ξ2
. This

model is the subject of Chapter 3.
A natural variant of the model is to ensure that the two marginals are the same, and

to remove self-loops in the graphs (i.e. diagonal coefficients). All pairs of edge weights
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(Au,v, A
′
u,v)1≤u<v≤n can be taken to be i.i.d. couples of normal variables with zero mean,

unit variance and correlation parameter ρ ∈ [0, 1]. An equivalent sampling procedure is to
generate matrix A′ from A as follows:

A′ = ρ ·A+
√

1− ρ2 ·H, (1.9)

where H is an independent copy of A. We denote (A,A′) ∼ Wig′(n, ρ). This model, very
close to Wig(n, ξ), is the subject of Chapter 2.

Correlated Erdős-Rényi model As the simplest, most natural model of correlated ran-
dom graphs, the correlated Erdős-Rényi model has naturally been the focus of recent threads
of research (see Section 1.3.4) for the study of graph alignment. We refer to Section 1.2.1 for
the definition of the non-correlated Erdős-Rényi model. This model will be studied in detail
in Chapters 4, 5 and 6.

For a number of nodes n, edge probability q ∈ [0, 1] and correlation parameter s ∈ [0, 1]
such that s ≥ q, the correlated Erdős-Rényi model, denoted G(n, q, s), consists of two random
graphs G,G′ with symmetric adjacency matrices A,A′, with same node set V = [n], where{

(Au,v, A
′
u,v)
}
u<v∈[n]

are i.i.d. pairs of correlated Bernoulli random variables such that

(Au,v, A
′
u,v) =


(1, 1) with probability qs
(1, 0) with probability q(1− s)
(0, 1) with probability q(1− s)
(0, 0) with probability 1− q(2− s).

(1.10)

Note that in this setting, G and G′ both have G(n, q) marginal distributions.

Figure 1.11 – Two samples from G(n, q, s) with n = 80, p = 1.9/n and s = 0.8.

Remark 1.3.1. Note that if s = 1, the graphs G and G′ are identical, and in the case s = q,

the two graphs are independent, that is G(n, q, q)
(d)
= G(n, q)⊗ G(n, q).

Remark 1.3.2. Another equivalent sampling procedure for the correlated Erdős-Rényi model
is as follows. Starting from a parent graph F ∼ G(n, q/s), G and G′ are obtained by two
independent s−subsamplings of F (a s−subsampling of F consists in keeping each edge of F
independently with probability s).

Planting the alignment As mentioned earlier, in the planted model for graph alignment,
after having generated two labeled correlated graphs G and G′, the last step is to draw the
planted permutation π? uniformly at random in Sn.

We then relabel the second graph G′ according to this permutation π?, forming the graph
H with adjacency matrix B such that for all 1 ≤ u, v ≤ n,

Bπ?(u),π?(v) = A′u,v , (1.11)
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or, equivalently, B = (Π?)>A′Π? where Π? is the n×n matrix representation of permutation
π?, that is Π?

u,v = 1v=π?(u).

Figure 1.12 – A sample from model Wig′(n, ρ) (1.9) with n = 25 and ρ = 0.8. Edges are colored
according to their weights.

Reconstruction Given the two graphs (G,H) generated from the planted model described
above, the reconstruction task consists in finding an estimator π̂ of the planted solution π?
upon observing G and H (or equivalently A and B).

The performance of any estimator π̂ = π̂(G,H) : [n] → [n] will be assessed through its
overlap with the unknown planted permutation π?, defined as

ov(π̂, π?) :=
1

n

∑
u∈[n]

1π̂(u)=π?(u) . (1.12)

The overlap (1.12) is now the measure of performance which we seek to optimize when
performing graph alignment in this planted setting, and differs from that of the non-planted
case (1.5).

We can however straightaway note that in the Erdős-Rényi setting, the posterior distri-
bution of the planted alignment Π? is given by

P(Π∗ = Π|A,B) ∝ P (Π∗ = Π, A,B)

=
1

n!
(qs)

1
2
〈A,ΠBΠ>〉(q(1− s))

1
2
〈A,1〉+ 1

2
〈1,B〉−〈A,ΠBΠ>〉(1− q(2− s))

1
2
〈1−A,1−ΠBΠ>〉

∝
(
s(1− q(2− s))
q(1− s)2

) 1
2
〈A,ΠBΠ>〉

, (1.13)

where 1 denotes the all-ones matrix. Since s ≥ q, s(1−q(2−s))
q(1−s)2 ≥ 1, and the maximum-a-

posteriori estimator of π? given G,H is thus exactly the solution of the QAP (1.5). This is
again unsurprisingly in accordance with the worst-case/planted duality (see Section 1.2.2).
The same computations show that this result also holds in the Gaussian Wigner models
Wig(n, ξ) (1.7) and Wig′(n, ρ) (1.8).

We now specify different types of reconstruction tasks that will be referred to in the rest
of the thesis. A sequence of estimators {π̂n}n (i.e. measurable functions of G,H) – omitting
the dependence in n – is said to achieve

• Exact recovery if P(π̂ = π?) −→
n→∞

1,

• Almost exact recovery if P(ov(π̂, π?) = 1− o(1)) −→
n→∞

1,

• Partial recovery if there exists some ε > 0 such that P(ov(π̂, π?) > ε) −→
n→∞

1 .
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Remark 1.3.3. Partial recovery consists in ensuring that the estimator π̂ matches a non-
vanishing fraction of nodes – we hope this fraction to be as large as possible. Though simple to
formulate, from an application standpoint it may however be of little use to know that one has
a permutation with 30% of correctly matched nodes if one does not have a clue about which
pairs are correctly matched. Motivated in part by the following remark, we will introduce in
Section 1.4.4, Chapters 4 and 6 another slightly different recovery task, namely one-sided
partial recovery, which is believed to be more relevant both for theory and practice.

1.3.4. A summary of related work

We give in the following a overview of related algorithmic and theoretical contributions,
aside from our work.

Seeded graph alignment An interesting and widely studied setting is graph alignment
with presence of side information, namely seeds, that are correct pre-mapped vertex pairs.
The idea of seeded alignment methods is that vertices u of G and u′ of H will have more
witnesses – that is, correct pairs (w,w′) such that u ←→

G
w and u′ ←→

H
w′ – if they are matched

than if they are not.
It is proved in [LFP14a] that when the graphs are dense enough, a logarithmic number of

correct seeds is sufficient to recover the whole alignment. To perform this task, several meth-
ods are proposed [PG11, FAP+19, SGE17, YG13, MX19, ABT22], some of them relying on
percolation techniques [JLTV12, YG13], large neighborhoods statistics [MX19], or projected
power method [ABT22].

An interesting line of work extends the problem in the case where some of them are likely to
be incorrect, e.g. since they may be provided by seedless methods. The NoisySeeds algorithm,
also built on a percolation procedure, is proposed in [KHG15], and [LS18] uses 1-hop witnesses
to recover the full alignment. The recent paper [YXL21] establishes information-theoretic
results for seeded alignment in the noisy case, and proposes a method which considers both
1-hop and 2-hop witnesses, improving on previous theoretical guarantees.

Information-theoretic results First fundamental results for Erdős-Rényi graph align-
ment are due to Pedarsani and Grossglauser [PG11], followed by Cullina and Kiyavash [CK17]
who prove that under some mild sparsity constraints, feasibility of exact alignment exhibits
a sharp threshold at nqs ' log n. Their approach is based on the analysis of the maximum
a posteriori estimator for the positive side, and the impossibility result is the consequence
of the large number4 of automorphisms of an Erdős-Rényi graph with mean degree less than
(1− ε) log n [Bol01].

Results for almost-exact recovery proved in [CKMP18] establish that almost-exact recov-
ery is feasible if and only if nqs→ +∞, under some mild sparsity assumptions.

These reconstruction thresholds are sharpened by the recent work [WXY21]. This paper
shows, among other results, a sharp all-or-nothing phenomenon in the Gaussian setting at
nρ2 = 4 log n. If nρ2 > (4 + ε) log n, exact alignment is feasible, whereas below the threshold
even partial recovery is infeasible.

For dense Erdős-Rényi graphs with q/s = n−o(1), another phase transition arises between
infeasibility of partial alignment and possibility of almost-exact alignment, at

nqs(log(s/q)− 1 + q/s)

log n
= 2 . (1.14)

Partial recovery was first studied by Hall and Massoulié [HM20], who showed that nqs→ 0
is an impossibility condition, whereas nqs > C (with a large, non-explicit constant C),
together with some additional sparsity constraints, ensures feasibility. These results are
improved in [WXY21], where the authors show that if q = λ/n, and s is an constant, then

4Note that the illustrative result in Theorem 1.1 proved earlier on gives a short proof of this fact.
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1.3. Graph alignment

partial recovery is shown to be feasible when nqs > 4 + ε. The impossibility result requires
nq/s = ω(log2 n) and nqs < 1− ε.

At the time this manuscript is being completed, a very recent contribution [DD22] sharp-
ens this last result in the case where q/s = n−α+o(1), showing a sharp threshold for partial
recovery at nqs = λ?(α), where λ?(α) is given as the asymptotic maximal edge-vertex ratio
over all nonempty subgraphs of an Erdős-Rényi graph G(n, 1

αn).

Algorithms for exact recovery in the dense case Hitherto, the vast majority of prior
work focused on exact recovery with no side information, seeking to provide polynomial-time
(or quasi-polynomial time) algorithms that (sometimes provably) recover the entire permu-
tation π? under some conditions on the parameters n, q, s (or n, ρ, ξ is the Gaussian setting).

Spectral methods. A first spectral method for recovery is due to [Ume88], and uses spec-
tral decompositions and relaxation of the QAP on the orthogonal group. Another spectral,
rank-reduction method is proposed by Feizi et al. [FQM+16], and an another algorithm,
GRAMPA, is proposed and analyzed in [FMWX19a, FMWX19b], both for the Wigner and the
Erdős-Rényi model. GRAMPA builds a similarity matrix based on outer products between pairs
of eigenvectors of the two graphs, and outputs a matching via a rounding procedure.

QAP relaxations. A class of algorithms designed for recovery follows a Frank-Wolfe ap-
proach (see [ABGL02, VCL+11, ZBV09]) , which consists in relaxing the integer programming
formulation of the QAP (1.5) to a continuous optimization problem on which iterative lin-
earized procedures are used, and then projecting the final iterate on the space of solutions.
Every linear optimization step at each iteration is a linear assignment problem (LAP) of the
form

arg max
Π∈Sn

〈Πu, v〉 , (1.15)

with u, v ∈ Rn, which can be solved using the Hungarian algorithm [Kuh55] in O(n3) time
complexity. In the same vein, authors of [ZBV09] study a path following algorithm on a
concave relaxation of the QAP.

The question of giving theoretical guarantees on the performance of such relaxations of
the QAP is interestingly discussed in [LFP14b]. In this paper, the common convex relaxation
of the QAP which consists in minimizing ‖AD − DB‖2 over all doubly-stochastic matrices
D is proved to almost always fail, whereas the indefinite relaxed graph alignment problem5

which minimizes −〈AD,DB〉 over all doubly-stochastic matrices D almost always discovers
the true permutation, if solved exactly. Though non-convex quadratic programming is NP-
hard in general, this indefinite relaxation can still be efficiently approximately solved with
the Frank-Wolfe methodology evoked here above.

Relevant to QAP relaxation methods is the recent contribution [DML17] which proposes
a convex quadratic programming relaxation, proved to be more accurate than the classical
double-stochastic and spectral relaxations, although with same time complexity as the former.

Methods using network topology. Another class of methods are based on the exploration
of the network topology, in order to design vertex signatures that can efficiently recover the
matched pairs. Ding et al. [DMWX21] introduced a matching procedure based on degree
profiles, that is the empirical distribution of the degrees of neighbors. A method proposed
in [BCL+19] relies on counting copies of subgraphs adjacent to a given node, for a well-
chosen family of graphs. In recent contributions, Mao, Rudelson and Thikhomirov design an
method involving a two-generation partitioning procedure [MRT21b] and another algorithm
[MRT21a] based on comparison of partition trees associated with the graph vertices. These

5Note that since ‖DA‖2 6= ‖A‖2 in general, these two relaxations have now different solutions. Moreover,
the objective in this second relaxation is no more convex in D, the Hessian being indefinite.
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1.4. Correlation detection in random trees

methods are shown to improve the previously state-of-the art performances in terms of noise
robustness (see below).

Theoretical guarantees. From the methods for exact recovery cited here above, those
giving rigorous theoretical guarantees all require a mean degree at least nq ≥ polylog n, and
1 − s ≤ 1/(polylog n) in the Erdős-Rényi setting or 1 − ρ2 ≤ 1/(polylog n) in the Gaussian
setting, that is a correlation close enough to 1. The only exceptions for exact recovery are
the recent works of Mao, Rudelson and Thikhomirov: in the Erdős-Rényi model, [MRT21b]
tolerates a noise 1− s up to (log log n)−c, and [MRT21a] can tolerate up to constant noise –
the constant being unspecified. The recent algorithm proposed in [ABT22] can also tolerate
constant noise for exact recovery in the seeded setting.

Note that these methods are not proved to work in the sparse setting where both the
correlation and the mean degree are constant, setting on which we will focus in Chapters 4,
5 and 6.

Detection problem Aside from the reconstruction tasks, the detection has less been stud-
ied until very recently. Given n, q, s, the associated hypothesis problem is as follows:

H0 := “(G,H) are two independent G(n, q) graphs”

versus
H1 := “(G,H) are drawn under the Erdős-Rényi planted model” .

Wu, Xu and Yu [WXY20] give fundamental results for the detection problem. They
establish a sharp threshold for detection in the Gaussian model at nρ2/ log n = 4, and show
for the Erdős-Rényi model that in the dense case q/s = n−o(1), the sharp threshold for
partial/almost-exact alignment given in (1.14) also holds for detection. The picture in the
sparser case q/s = n−Ω(1) is however less clear, but in the case where q = λ/n and s is a
constant, their result implies that strong detection is feasible if λs > 2 and infeasible if λs < 1
and s < 0.01.

Improving on a previous work [BCL+19], the state-of-the art algorithm for this detection
task is proposed in [MWXY21] which consider a test based on counting trees in the two
graphs. This algorithm runs in O(n2+o(1)) time and is proved to succeed with high probability
if nmin(q, 1−q) ≥ n−o(1) (this assumption is very mild) and the correlation coefficient (which
is asymptotically s if q → 0) is greater that

√
α ∼ 0.58, where α is Otter’s constant [Ott48],

defined as the inverse of the exponential growing rate of the number of unlabeled trees with
K edges. This algorithm also improves on previous informational results and will be the
object of further discussion in Chapter 7.

1.4. Correlation detection in random trees

In this Section, we introduce a problem which will be at the heart of Chapters 5 and 6:
correlation detection in random trees.

1.4.1. Problem statement

The problem of detecting correlation in random trees is a fundamental statistical task,
consisting in deciding whether two rooted trees are correlated up to a relabeling of the nodes,
that is if they contain a common planted subtree, or if they are independent.

This problem could very well be defined per se and studied as such; we nevertheless
explain briefly how this problem arises from the study of sparse graph alignment. Let us
imagine that we are given correlated graphs G,H from the Erdős-Rényi planted model, and
that one would like to know whether node u ∈ V (G) is matched to u′ ∈ V (H), namely if
u′ = π?(u). An answer to this question can be to build an estimator π̂ such that π̂(u) = u′ if

35



1.4. Correlation detection in random trees

and only if the local structure of graph G in the neighborhood of node u is somehow ’close’
to the local structure of graph H in the neighborhood of node u′.

In the sparse regime, it is well known that the neighborhoods up to distance d of node u
(resp. u′) in G (resp. G′), are both asymptotically distributed as Galton-Watson branching
trees6. More specifically, if u′ = π?(u), then the pair of neighborhoods are asymptotically
jointly distributed as correlated Galton-Watson branching trees (distribution denoted P(λ,s)

d ).
On the other hand, for pairs of nodes (u, u′) taken at random in [n], the neighborhoods
are asymptotically independent Galton-Watson branching trees (distribution denoted P(λ)

d ).
Hence, we are now left with the problem of detecting correlation in random trees.

Rooted labeled trees A labeled rooted tree t = (V,E) is an undirected graph with node
set V and edge set E which is connected and contains no cycle. The root of t is a given
distinguished node ρ ∈ V , and the depth of a node u is defined as its graph distance to the
root ρ. The depth of tree t is given as the maximum depth of all nodes in t.

In a rooted tree t, each node u at depth d ≥ 1 has a unique parent in t, which can be
defined as the unique node at depth d − 1 on the path from u to the root ρ. Similarly, the
children of a node u of depth d are all the neighbors of u at depth d + 1. For any node u
of the tree t, we denote by tu the subtree of t rooted at node u, that is the tree obtained by
deleting the edge between u and its parent and keeping the connected component of u.

Models of random trees, hypothesis testing We describe hereafter models of random
trees that will be useful in the sequel. For more detailed definitions we refer to Chapter 5,
Section 5.2.4.

Galton-Watson trees with Poisson offspring. TheGalton-Watson tree with offspring Poi(µ)

up to depth d, denoted by GW
(µ)
d , is defined recursively as follows. First, the distribution

GW
(µ)
0 is a Dirac at the trivial tree only consisting in the root. Then, for d ≥ 1, sample a

number Z ∼ Poi(µ) of independent GW(λ)
d−1 trees, and attach each of them as children of the

root, to form a tree of depth at most d.

Tree augmentation. For λ > 0 and s ∈ [0, 1], a (random) (λ, s)−augmentation of a given
tree τ = (V,E), denoted by Aug

(λ,s)
d (τ), is defined as follows. First, attach to each node u in

V at depth < d a number Z+
u of additional children, where the Z+

u are i.i.d. of distribution
Poi(λ(1 − s)). Let V + be the set of these additional children. To each v ∈ V + at depth
dv ∈ [d], we attach another random tree of distribution GW

(λ)
d−dv , independently of everything

else.

We are now ready to describe the two models P(λ)
d and P(λ,s)

d in simple words. Under the
independent model P(λ)

d , T and T ′ are two independent GW
(λ)
d trees. The correlated model

P(λ,s)
d is built as follows. Starting from an intersection tree τ? ∼ GW

(λs)
d , and T and T ′ are

obtained as two independent (λ, s)−augmentations of τ?.

In both models, the labels of the trees are always forgotten, or randomly uniformly re-
sampled. We however still distinguish the roots of the two trees. It can easily be verified that
the marginals of T and T ′ are the same under P(λ)

d and P(λ,s)
d , namely GW

(λ)
d . The parameters

are λ, the mean number of children, and the correlation s.

6This convergence in fact happens in the sense of Benjamini-Schramm, see [BS11].
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1.4. Correlation detection in random trees

(a) – Samples T, T ′ from P(λ)
d .

(b) – Samples T, T ′ from P(λ,s)
d . The common subtree τ? is drawn thick and purple.

Figure 1.13 – Samples from models P(λ)
d and P(λ,s)

d , with λ = 1.8, s = 0.8, and d = 5. The root node
is highlighted in yellow. Labels are forgotten.

1.4.2. Hypothesis testing, one-sided test

The corresponding hypothesis test can be formalized as follows: given the observation of
a pair of trees (T, T ′) of depth at most d, we want to test

H0 = "T, T ′ are drawn under P(λ)
d " versus H1 = "T, T ′ are drawn under P(λ,s)

d ". (1.16)

In statistical detection problems (see Section 1.2), the commonly considered tasks are
that of

• strong detection, i.e. designing tests Td that verify

lim
d→∞

[
P(λ)
d

(
Td(T, T ′) = 1

)
+ P(λ,s)

d

(
Td(T, T ′) = 0

)]
= 0,

• weak detection, i.e. tests Tn that verify

lim sup
d→∞

[
P(λ)
d

(
Td(T, T ′) = 1

)
+ P(λ,s)

d

(
Td(T, T ′) = 0

)]
< 1,

In other words, strong detection corresponds to exactly discriminating w.h.p. between P(λ)
d

and P(λ,s)
d , whereas weak detection corresponds to strictly outperforming random guessing.

We here argue that neither strong detection nor weak detection are relevant for our problem.
First, because of the event that the intersection tree does not survive, which is of positive

probability under P(λ,s)
d : we always have P(λ,s)

d (t, t′) ≥ C ·P(λ)
d (t, t′) for some C = C(λ, s) > 0.

This implies that P(λ)
d is always absolutely continuous w.r.t. P(λ,s)

d , hence strong detection
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can never be achieved.

Second, weak detection is always achievable as soon as s > 0: with the same notations as
here above, the difference of the degree of the root in T and that of the root in T ′ is always
centered but has different variance under P(λ)

d and under P(λ,s)
d , hence these two distributions

can be weakly distinguished, without any further assumption than s > 0.
Moreover, if we want our test to be relevant for partial alignment – for which we know

that only a fraction of the nodes can be recovered – it is natural to require a positive power
(i.e., being able to detect matched nodes with some positive probability), but also to ensure
that the output of the algorithm contain almost no wrong pair (i.e. imposing a vanishing
type I error).

We are thus interested in being able to ensure the existence of an asymptotic one-sided
test, that is a test Td : Xd ×Xd → {0, 1} such that Td chooses hypothesis H0 under P(λ)

d with
probability 1−o(1), and chooses H1 under P(λ,s)

d with some positive uniformly lower-bounded
probability.

1.4.3. Two methods

We now give the outline of two methods for detection of correlation in random trees, that
will be the object of Chapters 5 and 6.

Tree matching weight In Chapter 5, we build a test based on a measure of similarity
between two trees: the tree matching weight.

Matching weight of two rooted trees. For any d ≥ 0, let Ad denote the collection of rooted
trees whose leaves are all of depth d. Given two rooted trees t and t′ of depth at most d, let
M(t, t′) denote the collection of trees τ ∈ Ad such that there exist injective embeddings of
τ in t and t′ that preserve the rooted tree structure, that is the depth of the nodes and the
child-parent relationship. The matching weight of trees t and t′ at depth d is then defined as:

Wd(t, t
′) := sup

τ∈M(t,t′)
|Ld(τ)|, (1.17)

where Ld(τ) is the number of leaves at depth d of tree τ . In other words, the tree matching
weight of a pair of trees is defined as the maximal size of a common subtree, measured in
terms of number of leaves.

ρ ρ′

1

Figure 1.14 – Example of two trees t, t′ with W3(t, t′) = 7, where an optimal t ∈ A3 is drawn in red.

Recursive computation of Wd. From the previous definition, a first step conditioning
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yields a recursion formula for the matching weight Wd, of the following form:

Wd(t, t
′) = sup

m :M(Ct,Ct′ )

∑
(u,u′)∈m

Wd−1(tu, t
′
u′) , (1.18)

where the supremum is taken over all matchings, that is one-to-one mappings m from a subset
of the root’s children set Ct in t to the root’s children set Ct′ in t′. This recursion formula
(1.18) is at the heart of the analysis of this statistic as well as the design of related algorithms.
The general idea is that if the trees are correlated, with positive probability they will tend to
have a significantly higher matching weight than if they are independent. We refer to Section
5.2.2 for a proof of (1.18) and more generally to Chapter 5 for the study of this method.

The likelihood ratio In Chapter 6, we are interested in studying the existence of one-
sided tests for detection, which we recall are tests guarantying an asymptotic vanishing type I
error and non vanishing power. According to the Neyman-Pearson Lemma, optimal one-sided
tests are based on the likelihood ratio Ld of the distributions under the distinct hypotheses
P(λ,s)
d and P(λ)

d . For a pair of trees (t, t′), this likelihood ratio is given by

Ld(t, t
′) :=

P(λ,s)
d (t, t′)

P(λ)
d (t, t′)

. (1.19)

Recursive computation of Ld. This likelihood ratio also satisfies a nice recursive property:

Ld(t, t
′) =

c∧c′∑
k=0

ψ(k, c, c′)
∑

σ:[k]→[c]
σ′:[k]→[c′]

k∏
i=1

Ln−1(tσ(i), t
′
σ′(i)) , (1.20)

where c (resp. c′) is the degree of the root in t (resp. in t′), and the second sum of the RHS
is taken over injective mappings σ and σ′. The coefficients ψ(k, c, c′) are given by

ψ(k, c, c′) = eλs × sks̄c+c
′−2k

λkk!
.

The idea here again is that with positive probability the likelihood ratio is going to be
significantly larger for correlated trees than for independent pairs, hence a test Td of the
form Td(t, t′) = 1Ld(t,t′)>βd for a well chosen threshold βd should solve one-sided detection
whenever possible. We refer to Section 6.3.1 for the details and proof of (1.20), and more
generally to Chapter 6 for a thorough study of this method.

1.4.4. Heuristics for partial graph alignment

We briefly state the results that establish a link between tree correlation detection and
graph alignment. Given that the tests considered above are one-sided tests, we are going to
perform one-sided partial recovery.

One-sided partial recovery In order to define this notion, we are left to consider esti-
mators of π? that are no longer necessarily permutations, but only one-to-one functions from
a subset C ⊂ [n] of the node set of G to the node set of H – which we recall is also [n].

For any subset C ⊂ [n], the performance of any one-to-one estimator π̂ : C → [n] is still
assessed through its overlap ov(π̂, π?), defined as in (1.12) by:

ov(π̂, π?) =
1

n

∑
u∈C

1π̂(u)=π?(u) .

Note that the estimator may not be in Sn, and only consist in a partial matching. We also
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need to define the error fraction of π̂ with the unknown permutation π?:

err(π̂, π?) :=
1

n

∑
u∈C

1π̂(u)6=π?(u) =
|C|
n
− ov(π̂, π?). (1.21)

A sequence of injective estimators {π̂n}n – omitting the dependence in n – is said to achieve
one-sided partial recovery if there exists some ε > 0 such that w.h.p. ov(π̂, π?) > ε and also
err(π̂, π?) = o(1).

We end this Section and the introduction with an informal statement relating the existence
of a one-sided test for tree correlation detection and one-sided partial graph alignment, which
will be discussed further in Chapter 6.

(Informal Statement). For given (λ, s), if there exists a one-sided test for tree correlation
detection, then one-sided partial alignment in the correlated Erdős-Rényi model G(n, λ/n, s)
is achieved in polynomial time by the MPAlign algorithm defined in Chapter 6.

40



Chapter 2

Alignment of graph databases with Gaussian
weights: fundamental limits

In this chapter, we study the fundamental limits for reconstruction in weighted graph (or
matrix) database alignment. We consider the Wigner model Wig′(n, ρ) (1.9), and we prove
that there is a sharp threshold for exact recovery of π?: if nρ2 ≥ (4 + ε) log n + ω(1) for
some ε > 0, there is an estimator π̂ – namely the MAP estimator – based on the observation
of databases A,B that achieves exact reconstruction with high probability. Conversely, if
nρ2 ≤ 4 log n− log logn− ω(1), then any estimator π̂ verifies π̂ = π with probability o(1).

This result shows that the information-theoretic threshold for exact recovery is the same
as the one obtained for detection in [WXY20]: in other words, for Gaussian weighted graph
alignment, the problem of reconstruction is, fundamentally, not more difficult than that of
detection.

The proofs build upon the analysis of the MAP estimator and the second moment method
– introduced earlier in Section 1.2.1 – together with the study of the correlation structure of
energies of permutations.

This chapter is based on the paper Sharp threshold for alignment of graph databases with
gaussian weights [Gan22], published at MSML 2021.

2.1. Introduction

2.1.1. Aligning databases

We address the following problem: suppose that we have two databases consisting in
weighted graphs represented by their adjacency matrices A and B. For simplicity, assume
that the two graphs have same size and that each individual appears in both graphs. For a
given individual, its attached signal consists in weighted edges with all other users. Across
databases, edges that correspond to pairs of matched individuals are correlated. We consider
the following question: if the graphs are shown unlabeled (that is, if users are anonymized),
is it possible to recover the corresponding matching between databases by aligning them at the
sight of their correlation structure?

Intuitively, when the matrices are correlated enough, one can learn the true matching
between individuals present in the databases. We investigate the precise conditions on corre-
lation under which exact reconstruction (or perfect de-anonymization) is feasible with high
probability.

As mentioned in Section 1.3.1, de-anonymization problems aroused great interest when
[NS08] were able to de-anonymize an unlabeled dataset of film ratings with the observation
of a publicly available database, using correlations between the ratings. Since then, some
authors have sought to quantify privacy issues related to databases [Dwo08] or social networks
[NS09], one of the starting points of the widespread attention given on the more general graph
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alignment problem. We refer to Section 1.3.1 for further applications and to Section 1.3.4 for
a survey of theoretical results.

Vector-shaped and graph-shaped databases From the theoretical point of view, fun-
damental limits for the deanonymisation problem are now well understood when data only
consists in vectors u, v of size n (or more generally, rectangular databases of size n × k)
[CMK18, ECK19], that is when each user has its own signal, regardless of its connections
with others. In this setting, the problem can be phrased in terms of a Linear Assigment
Problem (LAP):

arg max
Π

〈Πu, v〉, (2.1)

where the maximum runs over all permutation matrices of size n. As mentioned earlier in
the introduction, LAP can be solved efficiently in O(n3) steps using the classical Hungarian
algorithm ([Kuh55]).

Another related problem is that of linear regression with an unknown permutation, studied
in [PWC16]: this time, one observes y = Π?Ax?+w, where x? ∈ Rd is an unknown vector, Π?

is an unknown n×n permutation matrix, and w ∈ Rn is additive Gaussian noise. Here again,
the permutation Π? applies only on the left side of A, which corresponds to row permutation.

On the other hand, we recall that when the databases are graphs, the problem is different
and can be phrased this time in terms of a Quadratic Assigment Problem (QAP):

arg max
Π

〈A,ΠBΠT 〉. (2.2)

We recall that a significant difference with the previous vector-shaped setting is that this
problem is known to be NP-hard in the worst case, as well as some of its approximations
[MMS14, PRW94]. In the case where the signal lies in the graph structure itself – that is,
when the pairs (Au,v, Bπ?(i),π?(j)) are correlated pairs of Bernoulli variables – [CK17] shows
that there exists a sharp threshold for exact recovery, where the signal-to-noise ratio can
be expressed in the correlated Erdős-Rényi model in terms of the size n of both graphs, the
marginal edge probability q and the correlation parameter s between edges of the two graphs.
Namely, this sharp threshold is at nqs ∼ log n.

This chapter focuses on the case where signal lies in weights on edges between all pairs of
nodes. We recall hereafter the correlated Gaussian Wigner model Wig′(n, ρ) defined in (1.9).

Model of GaussianWigner matrices In the correlated GaussianWigner modelWig′(n, ρ)
(1.9), the weighted adjacency matrices A and B of the two graphs G and H are symmetric,
and sampled as follows: first draw the planted permutation π? uniformly at random in Sn.
Then all pairs of edge weights (Au,v, Bπ?(u),π?(v))1≤i<j≤n are i.i.d. couples of normal vari-
ables with zero mean, unit variance and correlation parameter ρ ∈ [0, 1]. Since all Gaussian
variables are independent from π?, matrix B can also be drawn from A as follows:

B = ρ ·Π?>AΠ? +
√

1− ρ2 ·H, (2.3)

whereH is an independent copy of A, and Π? is the n×nmatrix representation of permutation
π?, that is Π?

u,v = 1v=π?(u).

Detection problem A most recent paper ([WXY20]) studies fundamental limits for de-
tection, both in correlated Gaussian weighted and correlated Erdős-Rényi graphs. This time,
the problem is as follows: given A,B, are we able to distinguish between model (2.3) and a
null model, where the two graphs are just independent Gaussian weighted graphs? Intuitively,
this problem is less demanding than that of exact alignment, since the task is to detect –
wherever in the graph – the presence of a hidden planted alignment. Under the same model
(2.3), Y. Wu, J. Xu and S. Yu showed that strong detection is feasible with high probabil-
ity if nρ2 ≥ 4 log n, whereas it is impossible if nρ2 ≤ (4 − ε) log n for some ε > 0. Their
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Figure 2.1 – A sample from model (2.3) with n = 5. For representation, edges are colored according
to their weights, and the underlying alignment is u 7→ u′ for u ∈ {1, 2, 3, 4, 5}.

study builds on an analysis of the likelihood ratio, as often done in detection problems. The
contribution of this chapter is to show that this sharp detection threshold is also that of
exact reconstruction. Interestingly, for Gaussian weighted graph alignment, the problem of
reconstruction is in fact fundamentally not more difficult than that of detection.

After this study was completed, the author was made aware of recent and independent
work conducted by [WXY21], which also obtains – among other things – the results of this
study, albeit with different proof techniques.

2.1.2. Main results

In the sequel, we work with the correlated Gaussian Wigner model described in (2.3), and
establish the precise (sharp) threshold for exact recovery of π? in this model.

Theorem 2.1 (Achievability part). If for n large enough

ρ2 ≥ (4 + ε) log n

n
(2.4)

for some ε > 0, then there is an estimator (namely, the MAP estimator) π̂ of π? given A,B
such that π̂ = π? with probability 1− o(1).

Theorem 2.2 (Converse part). Conversely, if

ρ2 ≤ 4 log n− log logn− ω(1)

n
(2.5)

then any estimator π̂ of π given A,B verifies π̂ = π? with probability o(1).

Computational limits of exact recovery For the correlated Gaussian Wigner model
(2.3), several algorithms have been studied, usually as a first step in order to analyze further
graph alignment algorithms. The state-of-the-art polynomial-time algorithms are either based
on degree profiles [DMWX21], or on a spectral method [FMWX19a]. In both cases, these
methods require the noise parameter

√
1− ρ2 to be O

(
log−1 n

)
. In Chapter 3, we will study

a simpler algorithm with lower computational complexity, requiring
√

1− ρ2 to be O(n−7/6)
[GLM22]. In any case, ρ needs to tend to 1, and the regimes in which these methods work well
are far from the fundamental limits established in Theorems 2.1 and 2.2. The main result of
this chapter thus corroborates the idea that matrix alignment may be computationally hard
even in the feasibility regime. In other words, the hard phase can be conjectured to be wide
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for this reconstruction problem. Proving a result of that form however remains a very thorny
question.

Organization of the chapter We first some notations at the beginning of Section 2.2,
and then establish a control on correlations between energies of permutations, using Hanson-
Wright inequality. The achievability result is proved in Section 2.3: after showing that the
classical first moment method fails, we take advantage of the correlation structure established
before to handle the sharp bound. Then, second moment method is applied in Section 2.4 to
show that lots of small perturbations of the true underlying permutation have lower energies,
establishing the converse bound. Finally, some additional proofs are deferred to Appendix
2.A. The proof techniques are not far from those used by [ECK19], the main novelty being
the use of correlation of energies, which is essential to both achievability and impossibility
result.

2.2. Preliminaries

2.2.1. Definitions and notations

Recall that for any positive integer n, [n] := {1, 2, . . . , n}. For two positive sequences
{un} and {vn}, denote un = O(vn) if there exists C > 0 such that un ≤ Cvn for all n. We
will also write un = o(vn) (resp. un = ω(vn)) if un/vn → 0 (resp. vn/un → 0). All limits
considered are taken when n→∞.

Linear algebra. We work with the canonical euclidean norm ‖ · ‖ on Rn, and 〈·, ·〉 the
canonical inner product on Rn or Rn×n. For any n × n matrix M with real entries, its
Frobenius norm ‖M‖F and its operator norm ‖M‖op are defined as follows:

‖M‖F :=

 ∑
1≤u,v≤n

A2
u,v

1/2

and ‖M‖op := sup
X∈Rn\{0}

‖MX‖
‖X‖

.

Note that for any normal matrix (that is, if MTM = MMT ), then ‖M‖op equals ρ(M), the
spectral radius of M .

Probability. When working with model (2.3), we will denote by PA (resp. EA) the condi-
tional probability (resp. the conditional expectation) with respect to the random matrix A.
We recall that N (µ, v) denotes a Gaussian variable (resp. vector) with mean µ and variance
(resp. covariance matrix) v. Such a Gaussian variable (resp. vector) is called standard if
µ = 0 and v = 1 (resp. v is the identity matrix). We say that an event An happens with high
probability (w.h.p) if P(An)→ 1 when n→∞.

Permutations. We denote by Sm the set of permutations of [m]. To any permutation
σ ∈ Sm, we can associate its m × m matrix representation Σ defined by Σu,v = 1v=σ(u).
Define Fσ the set of fixed points of σ:

Fσ := {u ∈ [m], σ(u) = u} , (2.6)

and denote fσ := |Fσ|. Similarly, we define the set of unfixed points of σ:

Dσ := [m] \ Fσ = {i ∈ [m], σ(i) 6= i} , (2.7)

and we denote dσ := |Dσ|. For any d ∈ {0, . . . ,m} we define Sm,d the set of permutations of
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Sm with exactly d unfixed points. Note that |Sm,1| = 0 and that we have the inequality

|Sm,d| =
(

m

m− d

)
|{σ ∈ Sd, Fσ = 0}| ≤

(
m

m− d

)
d! ≤ md. (2.8)

We recall that similarity between two permutations σ, σ′ ∈ Sn is measured by their overlap:

ov(σ, σ′) :=
1

n

n∑
u=1

1σ(u)=σ′(u) =
1

n
fσ−1◦σ′ .

Observe that on a graph of size n, each permutation σ of the vertices [n] has a natural
extension to a canonical permutation on edges σE :

(
[n]
2

)
→
(

[n]
2

)
defined as follows:

σE : e = {u, v} 7→ σE(e) = {σ(u), σ(jv)} .

Note that the mapping σ 7→ σE is one-to-one as soon as n ≥ 3, since for all u ∈ [n] and
v 6= v′ ∈ [n] \ {u}, edges σE({u, v}) and σE({u, v′}) have only one node in common, which
is σ(u). We will use the notation FE

σ := FσE (resp. DE
σ := DσE) the set of fixed edges (resp.

unfixed edges) of σ. Similarly we denote fE
σ := fσE and fE

σ := dσE , for brievity.
Note that dE

σ and are dσ are closely tied, since for all σ ∈ Sn, we have the inequality

dσ

(
n− dσ

2

)
≤ dE

σ ≤ dσ
(
n− dσ − 1

2

)
. (2.9)

Indeed, observe that

(i) the number of fixed edges is at least the number of pairs of fixed points, and

(ii) the number of fixed edges is exactly the number of pairs of fixed points plus the number
of pairs (u, v), u < v that are exchanged by σ (that is, the number of transpositions),
this number being at most dσ/2.

These remarks give that (
n− dσ

2

)
≤
(
n

2

)
− dE

σ ≤
(
n− dσ

2

)
+
dσ
2
,

which directly implies (2.9).

Remark 2.2.1. Note that inequality (2.9) gives the almost sure equivalents dE
σ ∼ dσn when

dσ = o(n), and dE
σ ∼ 1

2α(2− α)n2 when dσ = αn. In any case, dE
σ ∈

[
1
2dσn, dσn

]
.

2.2.2. MAP estimation, relative energy of permutations

Since π? is uniformly chosen, we work in a Bayesian setting: let us evaluate the posterior
probability density of π? given A,B:

pπ?|A,B (π|a, b) ∝ pπ?,A,B (π, a, b)

∝ exp

− 1

2(1− ρ2)

∑
1≤i<j≤n

(
Bπ(u),π(v) − ρAu,v

)2 ,

where ∝ indicates equality up to some factors that do not depend on σ. Define the loss
function

E(π,A,B) :=
∑

1≤i<j≤n

(
Bπ(u),π(v) − ρAu,v

)2
. (2.10)
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This loss function can also be viewed as the energy associated with permutation π. Note that
the posterior distribution is a Gibbs measure corresponding to this energy E , with inverse
temperature β = 1

2(1−ρ2)
. The MAP (maximum a posteriori) estimator is thus

π̂MAP := arg max
π

pπ?|A,B (π|A,B) = arg min
π

E(π,A,B), (2.11)

where the minimum is taken over all permutations π ∈ Sn. As previously stated in Section
1.3.3, the above formulation (2.11) is standard in the literature of graph alignment and meets
the classical QAP formulation (2.2), since

arg min
π

E(π,A,B) = arg max
Π

〈A,ΠBΠT 〉.

Theory from Bayesian optimal estimation guarantees that the best possible estimator for
our exact reconstruction problem, in the Bayes risk sense, is π̂MAP. Thus, if MAP estimator
fails with high probability, then no estimator can succeed. This is why this estimator is often
studied in exact reconstruction problems, as already done in previous works ([CK17, CMK18,
ECK19]).

From now on we work conditionally on π? which can always be assumed to be id without
loss of generality. More precisely, we will make the variable change σ = π? ◦ π−1 ; writing B
as a function of σ,A and H, (2.10) becomes

E(σ,A,H) = ρ2
∑

1≤i<j≤n

(
Au,v −Aσ(u),σ(v)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n
Hu,v

(
Au,v −Aσ(u),σ(v)

)
+ (1− ρ2)

∑
1≤i<j≤n

H2
u,v.

The loss function E applied to the ground truth π = π? – that is σ = id – gives the energy
reference (1 − ρ2)

∑
1≤i<j≤nH

2
u,v. In order to compare any π with π? – or any σ with id –

we further define the relative energy of a permutation σ ∈ Sn:

δ(σ) := E(σ,A,H)− E(id, A,H)

= ρ2
∑

1≤i<j≤n

(
Au,v −Aσ(u),σ(v)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n
Hu,v

(
Au,v −Aσ(u),σ(v)

)
. (2.12)

We next omit in our notations the dependency on A and H of δ(σ).

Remark 2.2.2. This relative energy δ, also introduced by [CK17] for Erdős-Rényi graph
alignment, is a measurement of the quality of a proposed alignment: δ(σ) ≤ 0 means that
σ−1 ◦ π? is a better alignment than π? for A and B in the posterior sense. A crucial set is
then

Q := {σ ∈ Sn, δ(σ) ≤ 0} .

Points of Q are alignments on which the posterior distribution puts important weights – at
least greater weights than that of the ground truth – or equivalently points of low energy. Note
that id ∈ Q.

In view of (2.12), conditionally on A, δ(σ) is as follows:

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (2.13)

where
vσ :=

∑
1≤i<j≤n

(
Au,v −Aσ(u),σ(v)

)2
,
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and X = (Xσ)σ∈Sn is a Gaussian vector, centered, with covariance given by

Cov(Xσ, Xσ′) =
∑

1≤i<j≤n

(
Au,v −Aσ(u),σ(v)

) (
Au,v −Aσ′(i),σ′(j)

)
:= cσ,σ′ .

Note that for all σ ∈ Sn, cσ,σ = vσ. Elaborating on the correlation structure of these relative
energies is the object of the end of this section.

2.2.3. Control of covariance structure of relative energies

For all σ, σ′ ∈ Sn, cσ,σ′ can be written as follows

cσ,σ′ =
∑

e∈([n]2 )

(
Ae −AσE(e)

)(
Ae −Aσ′E(e)

)

and satisfies
E
[
cσ,σ′

]
=
∣∣DE

σ ∩ DE
σ′
∣∣+
∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣.

In particular,
E [vσ] = dE

σ + dE
σ = 2dE

σ .

Random variables cσ,σ′ only depend on the entries of A, which are Gaussian. Moreover,
cσ,σ′ being a quadratic form evaluated on a Gaussian vector, it can be controlled using
Hanson-Wright inequality:

Lemma 2.2.1 (Hanson-Wright inequality ([HW71])). Let X be a standard Gaussian vector,
and M a deterministic matrix. Then there exists a universal constant c > 0 such that with
probability at least 1− 2δ:∣∣XTMX − TrM

∣∣ ≤ c(‖M‖F√log(1/δ) + ‖M‖op log(1/δ)
)
. (2.14)

We refer to [HW71] for a proof. Inequality (2.14) used in our context leads to the following

Corollary 2.2.1. There exists a universal constant C > 0 such that with high probability,
for every d ∈ {2, . . . , n}, for all σ, σ′ ∈ Sn,d,∣∣cσ,σ′ − ∣∣DE

σ ∩ DE
σ′
∣∣− ∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣∣∣ ≤ Cd√n log n.

Proof. We first make the following observation: for any σ, σ′ ∈ Sn,

cσ,σ′ =
∑
e

(
Ae −Aσ(e)

) (
Ae −Aσ′(e)

)
= AT (IN − Σ)T (IN − Σ′)A,

where A = (Ae)e is viewed as a standard Gaussian vector of size N =
(
n
2

)
, and Σ (resp. Σ′)

is the N ×N permutation matrix associated with σE (resp. σ′E). Note that

Tr((IN − Σ)T (IN − Σ′)) = N − fE
σ − fE

σ′ + fE
σ−1◦σ′

(a)
=
∣∣DE

σ ∩ DE
σ′
∣∣+
∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣,

where (a) is obtained by noticing that∣∣DE
σ ∩ DE

σ′
∣∣+
∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣ = dE

σ + dE
σ′ −

∣∣DE
σ ∪ DE

σ′
∣∣+ fE

σ−1◦σ′ −
∣∣FE

σ ∪ FE
σ′
∣∣
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and that
∣∣DE

σ ∪ DE
σ′

∣∣+
∣∣FE

σ ∪ FE
σ′

∣∣ = N. For a fixed d and σ, σ′ ∈ Sn,d, one has

‖(IN − Σ)T (IN − Σ′)‖F ≤ ‖(IN − Σ′)‖F + ‖ΣT (IN − Σ′)‖F = 2‖(IN − Σ′)‖F

≤ 2
√

2dE
σ′

≤ 2
√

2dn,

where we used (2.9) in the last step. One also has

‖(IN − Σ)T (IN − Σ′)‖op ≤ ρ(IN − Σ)× ρ(IN − Σ′)

≤ 2× 2 = 4.

Taking δ = n−(2d+2), Lemma 2.2.1 gives that with probability at least 1− 2δ,∣∣cσ,σ′ − ∣∣DE
σ ∩ DE

σ′
∣∣− ∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣∣∣ ≤ c(2

√
2
√
d(2d+ 2)

√
n log n+ 4(2d+ 2) log n

)
≤ Cd

√
n log n, (2.15)

for some universal constant C > 0. The proof is concluded by checking that this inequality
holds w.h.p. for all d and σ, σ′ ∈ Sn,d : the probability that at least one pair (σ, σ′) contradicts
(2.15) is upper bounded by

n× |Sn,d|2 × 2δ ≤ 2n1+2d−2d−2 = o(1).

In the rest of the chapter we define the event

A :=
{
∀d ∈ [n], ∀σ, σ′ ∈ Sn,d,

∣∣cσ,σ′ − ∣∣DE
σ ∩ DE

σ′
∣∣− ∣∣DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′
∣∣∣∣ ≤ Cd√n log n

}
,

(2.16)
which happens with probability 1− o(1) by Corollary 2.2.1.

2.3. Achievability result

In this section, we establish the result of Theorem 2.1.

2.3.1. Failure of first moment method

For the achievability result, the first strategy is to use the union bound (or first moment
method) to show that under condition (2.4) of Theorem 2.1,

P (MAP fails) = P (π̂MAP 6= π) = o(1).

As described hereafter, this naive method does not give the correct bound. Indeed, let us
evaluate P (δ(σ) ≤ 0) for a given σ 6= id. In view of the conditional distribution (2.13) of δ(σ)
we have

P (δ(σ) ≤ 0) = E
[
EA
[
1δ(σ)≤0

]]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2Xσ ≤ 0

)]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2

√
vσ · N (0, 1) ≤ 0

)]
= E

[
PA

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2

)]
≤ E

[
exp

(
− ρ2

8(1− ρ2)
vσ

)]
,
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where we used standard Gaussian concentration in the last inequality: P (N (0, 1) ≥ t) ≤
exp(−t2/2). Note that on event A defined in (2.16) and inequality (2.9),

∀d ∈ [n],∀σ ∈ Sn,d, vσ ≥ 2dE
σ − Cdσ

√
n log n ≥ dE

σ (2− 2εn) ,

setting εn = 2C
√

log n/n. Union bound then gives

P (MAP fails) ≤ P (∃σ ∈ Sn \ {id} , δ(σ) ≤ 0)

≤ o(1) +
∑

σ∈Sn\{id}

E
[
exp

(
− ρ2

8(1− ρ2)
vσ

)
1A

]

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
− ρ2

8(1− ρ2)
(2− 2εn)dE

σ

)

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
−ρ

2

4
(1− εn)dE

σ

)
,

where we used 1/(1− ρ2) > 1 in the last step. Let us now study the last sum, distinguishing
the terms according to d := dσ:

• As long as d = o(n), by Remark 2.2.1, the terms behave like exp
(
−ρ2

4 (1− εn)dn
)
. By

(2.8), log |Sn,d| ≤ d log n so the partial sum is small if ρ2

4 (1 − εn)n − log n > 0, which
gives the necessary condition ρ2 ≥ 4 logn

n .

• However, the situation is different when it comes to large values of d. For instance, let
us study the contribution of derangements to the sum (that is, σ such that dσ = n).
Note that these derangements are very numerous (their number is ∼ e−1n!). Again by
Remark 2.2.1, their contribution is thus of order

e−1n! exp
(
ρ2(1− εn)n2/8(1− o(1))

)
= exp

((
n log n− ρ2n2/8

)
(1− o(1))

)
,

which gives a more restrictive condition: ρ2 ≥ 8 logn
n .

As seen here-above, this naive first moment method enables to ensure feasibility of exact
reconstruction only in the regime where ρ2 ≥ 8 logn

n , which is not the optimal one. This
bound is actually quite rough here, because the variables are substantially correlated when
d gets large and their contributions make the first moment explode. We take advantage of
these correlations in the next section in order to get access to the sharp bound.

2.3.2. Improving the first moment method with correlations.

For all d ∈ {2, . . . , n}, define Ed the event:

Ed := {∃σ ∈ Sn,d, δ(σ) ≤ 0} .

In this Section we will assume that

ρ ≥ (2 + ε)

√
log n

n
,

for some ε > 0. Recall that we work on the event A defined in (2.16), and that conditionally
on entries of matrix A, we can write

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (2.17)
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whereX = (Xσ)σ∈Sn,d is a Gaussian vector, centered, with covariance given by Cov(Xσ, Xσ′) =
cσ,σ′ . Also note that on event A, for all d ≤ αn and σ ∈ Sn,d, inequality (2.9) gives

vσ = (1− o(1))2dn(1− α/2). (2.18)

In view of (2.18), as previously done in Section 2.3.1, naive first moment method may suffice
for d ≤ αn:

P

 ⋃
2≤d≤αn

Ed

 ≤ o(1) +

αn∑
d=2

|Sn,d| × P

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2
∩ A

)

≤ o(1) +
αn∑
d=2

|Sn,d| × P
(
N (0, 1) ≥ (1 + ε/2)

√
2d log n(1− α/2)(1− o(1))

)
≤ o(1) +

αn∑
d=2

exp (d log n− d log n(1 + ε)(1− α/2) + o(d log n)) ,

which is o(1) as soon as α < α0 := 2ε
1−ε/2 . It then remains to control the probabilities P(Ed)

for d ≥ α0n. As mentioned earlier, we take advantage of the correlation structure in (2.17).
More precisely, we show that all variables Xσ at a given level d = αn have substantial positive
covariance when compared to their variance – of order α(2−α)n2 on A by (2.18) – as shown
in Figure 2.2. To do so, we derive an appropriate lower bound for cσ,σ′ for σ, σ′ ∈ Sn,αn. This
is the scope of the following Lemma:

Lemma 2.3.1. With high probability, there exists a universal constant C1 > 0 such that for
any d = αn with fixed α > 0 and σ, σ′ ∈ Sn,αn:

Cov(Xσ, Xσ′) = cσ,σ′ ≥ f(α)n2 − C1n
3/2 log1/2 n,

with
f(α) :=

{
α2 if α < 1/2
α2 − 1

2(2α− 1)2 if α ≥ 1/2
(2.19)

Thus for any ε′ > 0, with high probability, for any d = αn with fixed α > 0,

max
σ∈Sn,αn

Xσ ≤
√

2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n.

The proof of this Lemma is obtained by working on event A defined in (2.16), and estab-
lishing a lower bound on

∣∣DE
σ ∩ DE

σ′

∣∣, which is simply the number of edges that are deranged
both by σE and σ′E . It can be found in Appendix 2.A.1.

Then, since f(α) ≤ α(2 − α) with elementary computations, according to Lemma 2.3.1,
there is an event B of probability 1− o(1) such that

max
σ∈Sn,d

Xσ ≤ (1 + o(1))
√

2α (α(2− α)− f(α))n3/2 log1/2 n

holds for all d = αn with α > α0. Note that on event A ∩ B, for all d = αn and σ ∈ Sn,d,

ρ−1δ(σ) ≥ ρvσ − 2
√

1− ρ2 max
σ∈Sn,d

Xσ

≥ (1 + o(1))n3/2 log1/2 n
[
(2 + ε)α(2− α)− 2

√
2α (α(2− α)− f(α))

]
≥ (1 + o(1))× 2×

[
α(2− α)−

√
2α (α(2− α)− f(α))

]
n3/2 log1/2 n ≥ 0,

for n large enough, since it can be easily checked (see Appendix 2.A.3) that
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Figure 2.2 – Plot on [0, 1] of normalized variance α(2 − α), together with the lower bound on the
normalized covariance (function f) defined by (2.19).

Lemma 2.3.2. For every α ∈ [0, 1],

α(2− α)−
√

2α (α(2− α)− f(α)) ≥ 0. (2.20)

Previous computations hence give that P
(⋃

d≥αn Ed
)
≤ 1 − P(A ∩ B) = o(1), and ends

the proof of Theorem 2.1.

2.4. Converse bound: second moment method for transpositions

In this section, we prove Theorem 2.2. As claimed in the introduction, theory from
Bayesian optimal estimation guarantees that the best possible estimator for our exact recon-
struction problem, in the Bayes risk sense, is π̂MAP. We will show that under assumption
(2.5) of Theorem 2.2, this MAP estimator fails with high probability, which implies that no
estimator can succeed.

This converse bound is obtained by a second moment argument, showing that with high
probability, there are lots of permutation τ 6= id – in fact, transpositions – such that δ(τ) is
negative, that is, τ−1 ◦π? is a substantially better alignment than π?, with lowest energy. Let
us denote Tn ⊂ Sn the set of all permutations of [n] that are transpositions. For all τ ∈ Tn,
we have dE

τ = 2(n− 2). Corollary 2.2.1 gives that the event

C :=
{
∀τ, τ ′ ∈ Tn,

∣∣cτ,τ ′ − ∣∣DE
τ ∩ DE

τ ′
∣∣− ∣∣DE

τ ∩ DE
τ ′ ∩ FE

τ◦τ ′
∣∣∣∣ ≤ C√n log n

}
happens with probability 1 − o(1) for C > 0 large enough. In particular, on C, for C > 0
large enough,

∀τ ∈ Tn, |vτ − 4n| ≤ C
√
n log n.

In this section we are working under the assumption (2.5) that we recall here:

ρ2 ≤ 4 log n− log logn− ω(1)

n
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2.4. Converse bound: second moment method for transpositions

We are about to show the following: under condition (2.5), with high probability,

|{τ ∈ Tn, δ(τ) < 0}| = ω(1). (2.21)

To do so, we use the classical Paley-Zygmund inequality (Lemma 1.2.2 of Section 1.2.1) that
implies (taking c → 0 in Lemma 1.2.2) that if Y is a positve random variable such that
E
[
Y 2
]
∼ E [Y ]2, then Y ≥ o(E [Y ]) with high probability. Define

X :=
∑
τ∈Tn

1δ(τ)<0. (2.22)

Using a standard coupling argument in (2.22), one can see that X is decreasing with ρ, thus
we can assume without loss of generality that

ρ2 =
4 log n− log logn− an

n
, (2.23)

with a sequence (an)n such that an = ω(1) and an = o(log log n), e.g. an = log log log n.
We compute the first moment of X, in view of the conditional distribution of δ(τ) given in
(2.13):

E [X] ≥ E [X1C ] =
n(n− 1)

2
E

[
PA

(
N (0, 1) ≥

ρ
√
vτ

2
√

1− ρ2
∩ C

)]

≥ n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥ 1

2

√
4 log n− log log n− an

√
4− Cn−1/2 log1/2 n

)]
=
n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥

√
4 log n− log log n− an − o(1)

)]
∼ n2

4
√

2π
√

log n
exp

(
−2 log n+

log logn

2
+
an
2

)
=

1

4
√

2π
exp

(an
2

)
→∞.

Note that (2.23) is thus precisely the condition ensuring that E [X1C ] → ∞. The second
moment argument computation being a little more technical, we encapsulate it into the
following Lemma:

Lemma 2.4.1 (Second moment computation of X1C). Let Y := X1C. Under assumption
(2.23),

E
[
Y 2
]
≤ (1 + o(1))E [Y ]2 .

Proof of Lemma 2.4.1. We represent a transposition τ by its only 2−cycle (i j) with i < j.
We then distinguish two cases in couples τ = (i j) 6= τ ′ = (k `) ∈ Tn:

• We write τ ∩ τ ′ = ∅ when τ and τ ′ have no common point in their 2−cycle: i 6= k and
j 6= l. When τ ∈ Tn is fixed, note that∣∣{τ ′ ∈ Tn, τ ∩ τ ′ = ∅

}∣∣ =
(n− 2)(n− 3)

2
.

• We write τ ∩ τ ′ 6= ∅ when τ and τ ′ are different but share one common point: for
instance τ = (3 5) and τ = (5 11) verify τ ∩ τ ′ 6= ∅. When τ ∈ Tn is fixed, note that∣∣{τ ′ ∈ Tn, τ ∩ τ ′ 6= ∅

}∣∣ = 2(n− 2).
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2.4. Converse bound: second moment method for transpositions

Note that

E
[
Y 2
]

= E [Y ] +
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) +
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C).

We now evaluate these two sums. For this, we will need the following Lemma, which proof
is deferred to Appendix 2.A.4.

Lemma 2.4.2 (Control of deviation probabilities for correlated Gaussians). Let Z1, Z2 be
two Gaussian variables with mean 0, variance 1 and correlation αn ∈ [0, 1]. For any tn such
that tn →∞,

(i) If αntn → 0, then for n large enough

P (Z1 > tn, Z2 > tn) ≤ e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) . (2.24)

(ii) More generally,

P (Z1 > tn, Z2 > tn) ≤ (1 + o(1))
1 + αn√

2π tn
exp

(
− t2n

1 + αn

)
. (2.25)

First case: τ ∩ τ ′ = ∅. Without loss of generality we can assume that τ = (1 2) and
τ ′ = (3 4). The following diagram shows the simple action of τ and τ ′ on an interesting
(overlapping) subset of edges.

{1, 3} τ←→ {2, 3}
τ ′ l l τ ′
{1, 4} τ←→ {2, 4}

We then see that
∣∣DE

τ ∩ DE
τ ′

∣∣+∣∣DE
τ ∩ DE

τ ′ ∩ FE
τ◦τ ′
∣∣ = 4+0 = 4. So, denoting ατ,τ ′ :=

cτ,τ ′√
vτvτ ′

,
on C, ∣∣ατ,τ ′∣∣ ≤ C

√
n log n+ 4

4n− C
√
n log n

= O

(√
log n

n

)
.

In view of the conditional distribution of δ(τ) given in (2.13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P (Zτ > tn, Zτ ′ > tn) ,

(2.26)
with tn =

√
4 log n− log log n− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0, with

correlation coefficient αn of order O(log1/2 n−1/2). Since αntn → 1, by lemma 2.4.2 case (i),
the sum in (2.26) is upper bounded by

(1− o(1))
n(n− 1)

2
× (n− 2)(n− 3)

2
×
[
Ce−2t2n + (1− o(1))P (Z1 > tn)P (Z2 > tn)

]
≤ (1 + o(1))E [Y ]2 .

Second case: τ ∩ τ ′ 6= ∅. Without loss of generality we can assume that τ = (1 2) and
τ ′ = (2 3). We can immediately deduce that

∣∣DE
τ ∩ DE

τ ′

∣∣+ ∣∣DE
τ ∩ DE

τ ′ ∩ FE
τ◦τ ′
∣∣ = (n− 2) + 0 =

n− 2. So, denoting ατ,τ ′ :=
cτ,τ ′√
vτvτ ′

, on C,

∣∣ατ,τ ′∣∣ ≤ C
√
n log n+ n− 2

4n− C
√
n log n

∼ 1

4
.
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2.4. Converse bound: second moment method for transpositions

Again, in view of the conditional distribution of δ(τ) given in (2.13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P (Zτ > tn, Zτ ′ > tn) ,

(2.27)
with tn =

√
4 log n− log logn− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0,

with correlation coefficient αn ∼ 1/4. By Lemma 2.4.2 case (ii), the sum in (2.27) is upper
bounded by

(1− o(1))
n(n− 1)

2
× 2(n− 2)×

[
(1 + o(1))

1 + αn√
2π tn

exp

(
− t2n

1 + αn

)]
≤ C ′′n3 log−1/2(n) exp

(
−16

5
log n+ o(log n)

)
= o(1) = o(E [Y ]2).

Lemma 2.4.1 together with Payley-Zigmund inequality (Lemma 1.2.2 of Section 1.2.1)
implies that Y ≥ o (E[Y ]) with high probability and thus proves (2.21) and the converse
result of Theorem 2.2.

Remark 2.4.1. We have shown here that under condition (2.5), there is with high probability
a great number of negative relative energy points near the ground truth, none of them being of
significant interest to recover exactly our permutation. We may also study this relative energy
far from the planted permutation, which would be interesting to address the problem of almost
exact (resp. partial) alignment, which consists in finding an estimator π̂ that coincides with π
on at least n− o(n) (resp. some positive fraction of n) points. In the light of our result which
shows that exact recovery is not more difficult than detection, we can also conjecture that the
same threshold nρ2/ log n = 4 is sharp for the tasks of almost exact and partial recovery.
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Appendix of Chapter 2

2.A. Additional proofs

2.A.1. Proof of Lemma 2.3.1: lower bound on correlations of relative energies

Proof. Recall that we work under event A. Fix α ∈ (0, 1] and take d = αn and σ, σ′ ∈ Sn,d.
The proof is obtained by establishing a fine lower bound on

∣∣DE
σ ∩ DE

σ′

∣∣, which is simply the
number of edges that are deranged both by σE and σ′E . In order to establish this lower
bound, let us assume that σ and σ′ have |Dσ ∩ Dσ′ | = βn common unfixed points, with
β ∈ [0, α]. We then form edges in DE

σ ∩ DE
σ′ in the following way:

• First, by taking all pairs but the pairs made of points in the complement of Dσ ∩ Dσ′
and those made of pairs (i, j) that are transpositions of σ or σ′, we obtain at least
1
2β(2− β)n2 − αn edges.

• Then, add new edges made of one extremity in Dσ \Dσ′ and one in Dσ′ \Dσ. Since Dσ
(resp Dσ) is stable by σ (resp. by σ′), all these (α− β)2n2 edges are in DE

σ ∩ DE
σ′ .

Finally we formed g(α, β)n2 − αn edges, with

g(α, β) :=
1

2
β2 + (1− 2α)β + α2, (2.28)

which is minimal on [0, α] at β = 2α− 1 if α ≥ 1/2, or at β = 0 if α < 1/2. In any case, this
minimum is f(α). The first inequality is established by applying inequality (2.16) of event
A.

For the second part, consider a centered vector Z = (Zσ)σ∈Sn,αn such that all Zσ have
same variance vα and Cov(Zσ, Zσ′) = cα for σ 6= σ′, with vα, cα defined as follows:

vα := α(2− α)n2 − C1n
3/2 log1/2 n,

cα := f(α)n2 − C1n
3/2 log1/2 n.

for some C1 > 0 large enough. Note that on event A, for all α ∈ (0, 1], all σ, σ′ ∈ Sn,αn,

Cov(Zσ, Zσ′) ≤ Cov(Xσ, Xσ′),

so one has that for all t > 0,

P
(

max
σ∈Sn,αn

Xσ > t ∩ A
)
≤ P

(
max

σ∈Sn,αn
Zσ > t

)
. (2.29)

We now control the right-hand side of (2.29) with this classical Lemma, which proof is find
hereafter in Appendix 2.A.2:

Lemma 2.A.1 (Maximum of totally correlated Gaussian variables). Let Z be a centered
Gaussian vector of size N , such that all Zi have same variance v and Cov(Zi, Zj) = c for

55



2.A. Additional proofs

i 6= j. Then

P
(

max
1≤i≤N

Zi >
√

2(v − c) logN + 2
√
v log logN

)
≤ 2

logN
. (2.30)

Note that for vα, cα previously defined, one has√
2(vα − cα) log |Sn,αn| ≤

√
2α(α(2− α)− f(α))n3/2 log1/2 n, (2.31)

and for n large enough,

2
√
vα log log |Sn,αn| ≤ 2

√
α(2− α)n

√
log n+ log log n ≤ (2 + ε′)n log1/2 n. (2.32)

Finally, we use equations (2.29)–(2.32) to conclude that for n large enough:

P
(
∃d = αn, α > α0, max

σ∈Sn,d
Xσ >

√
2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n

)
≤ 1− P(A) +

∑
d=αn, α>α0

P
(

max
σ∈Sn,αn

Zi >
√

2(vα − cα) log |Sn,αn|+ 2
√
vα log log |Sn,αn|

)
≤ o(1) +

∑
d=αn, α>α0

2

log |Sn,αn|
≤ o(1) +

2n

log |Sn,α0n|
= o(1) +

2

α0 log n
= o(1),

and Lemma 2.3.1 is proved.

2.A.2. Proof of Lemma 2.A.1: maximum of totally correlated Gaussian variables

Proof. Let us make a change of variables which preserves the joint distribution:

(Z1, Z2, . . . , ZN ) =
(√
c ξ0 +

√
v − c ξ1, . . . ,

√
c ξ0 +

√
v − c ξN

)
,

where ξ0, . . . , ξN are independent standard Gaussian random variables. The maximum thus
writes

max
1≤i≤N

Zi =
√
c ξ0 +

√
v − c max

1≤i≤N
ξi

Then, with the classical inequality P (N (0, 1) ≥ t) ≤ e−t
2/2, then with probability at least

1− 1/(logN), one has:

√
c ξ0 ≤

√
2c log logN, and

√
v − c max

1≤i≤N
ξi ≤

√
2(v − c) logN

(
1 +

log logN

logN

)
,

so with probability at least 1− 2/(logN):

max
1≤i≤N

Zi ≤
√

2(v − c) logN +
√

2 log logN
(√
c+
√
v − c

)
≤
√

2(v − c) logN + 2
√
v log logN,

where we used
√
c+
√
v − c ≤

√
2v in the last step.

2.A.3. Proof of Lemma 2.3.2

Proof. For α ∈ (0, 1],

(2.20) ⇐⇒ α2(2− α)2 ≥ 2α (α(2− α)− f(α))

⇐⇒ f(α) ≥ α2 − α3/2.
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2.A. Additional proofs

The inequality is verified for α < 1/2. To conclude the proof of (2.20), it remains to check
that for 1 ≥ α ≥ 1/2, f(α) ≥ α2 − α3/2, which is equivalent to

α2 − 1

2
(2α− 1)2 ≥ α2 − α3/2 ⇐⇒ α3 − 4α2 + 4α− 1 ≥ 0

⇐⇒ (α− 1)(α2 − 3α+ 1) ≥ 0

⇐⇒ α2 − 3α+ 1 ≤ 0 ⇐⇒ α ≥ 3−
√

5

2
∼ 0.382...

2.A.4. Proof of Lemma 2.4.2: control of deviation probabilities for correlated
Gaussians

Proof. Let us first make a change of variable which preserves the joint distribution:

(Z1, Z2) = (Z,αnZ +
√

1− α2
nZ
′),

with Z,Z ′ two independent standard Gaussian variables.
Proof of (i). Note that standard Gaussian concentration gives P

(
Z > 2tn

∣∣Z > tn
)
∼

1
2e
−3t2n/2. Thus, for n large enough

P (Z1 > tn, Z2 > tn) ≤ P (Z > tn) e−3t2n/2 + P (Z > tn)P
(
αnZ +

√
1− α2

nZ
′ > tn, Z ≤ 2tn

∣∣Z > tn

)
≤ e−2t2n + P (Z > tn)P

(
Z ′ > tn − 2αntn +O(tnα

2
n)
)

≤ e−2t2n + P (Z > tn)P
(
Z ′ > tn − o(1)

)
≤ e−2t2n + (1 + o(1))P (Z > tn)P

(
Z ′ > tn

)
= e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) .

Proof of (ii). For any (sn) such that sn ≤ tn for all n, one has

E
[
esnZ

∣∣Z > tn
]

=
1√
2π

∫ +∞

tn

esnz−z
2/2dz

(
1√
2π

∫ +∞

tn

e−z
2/2dz

)−1

= es
2
n/2

∫ +∞

tn−sn
e−z

2/2dz

(∫ +∞

tn

e−z
2/2dz

)
∼ tn
tn − sn

exp
(
s2
n/2− (tn − sn)2/2 + t2n/2

)
=

tn
tn − sn

esntn .

Using independence of Z,Z ′ and Chernoff bound, we get, taking sn such that αsn = utn with
u < 1, for n large enough,

P
(
αZ +

√
1− α2Z ′ > tn

∣∣Z > tn

)
≤ (1 + o(1))

tn
tn − αsn

exp

(
αsntn +

1− α2

2
s2
n − sntn

)
≤ (1 + o(1))

1

1− u
exp

((
u+

u2(1− α2)

2α2
− u

α

)
t2n

)
(a)

≤ (1 + o(1))(1 + α) exp

(
−1− α

1 + α
· t

2
n

2

)
where we took u = α

1+α < 1 in (a). The proof follows from this last inequality, together with

the bound P (Z > tn) ≤ 1√
2πtn

exp
(
− t2n

2

)
.
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Chapter 3

Alignment of graph databases with Gaussian
weights: analysis of a spectral method

In this chapter, we analyze a simple spectral method (EIG1) for the problem of matrix align-
ment, consisting in aligning their leading eigenvectors: given two adjacency matrices A and
B, EIG1 aligns v1 and v′1, their two corresponding leading eigenvectors (up to the sign of v′1)
and outputs the corresponding permutation.

We will consider the Gaussian model Wig(n, ξ) defined earlier in (1.7): A belongs to the
Gaussian Orthogonal Ensemble (GOE) of size n× n, and B is a noisy version of A where all
nodes have been relabeled according to some planted permutation π?. We show the following
zero-one law: with high probability, under the condition ξn7/6+ε → 0 for some ε > 0, EIG1
recovers all but a vanishing part of the underlying permutation π, whereas if ξn7/6−ε → ∞,
this method cannot recover more than o(n) correct matches.

This result gives an understanding of the simplest and fastest spectral method for matrix
alignment (or complete weighted graph alignment), and involves proof methods and tech-
niques which could be of independent interest.

This chapter is based on the paper Spectral alignment of correlated gaussian matrices
[GLM22], published in Advances in Applied Probability, a joint work with M. Lelarge and L.
Massoulié.

3.1. Introduction

3.1.1. The EIG1 algorithm

As in Chapter 2, we are interested in alignment of Gaussian databases, which is one of
the instances of the graph alignment problem. For a general overview, we refer here again to
the introduction of this manuscript, to Section 1.3.1 for applications and to Section 1.3.4 for
theoretical results.

Related work: spectral methods for graph alignment Some general spectral methods
for random graph alignment are introduced in [FQM+16], based on representation matrices
and low-rank approximations. These methods are tested over synthetic graphs and real data;
however no precise theoretical guarantee – e.g. an error control of the inferred mapping
depending on the signal-to-noise ratio – can be found for such techniques.

Most recently, a spectral method for matrix and graph alignment (GRAMPA) was proposed
in [FMWX19a, FMWX19b] and computes a similarity matrix which takes into account all
pairs of eigenvalues (λi, µj) and eigenvectors (ui, vj) of matrices A and B. The authors study
the regime in which the method exactly recovers the underlying vertex correspondence: this
method can tolerate a noise ξ up to O (1/polylog n) to recover the entire underlying vertex
correspondence. Since the computations of all eigenvectors is required, the time complexity
of GRAMPA is at least O(n3).
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3.1. Introduction

It is important to note that the signs of eigenvectors are ambiguous: in practice, it is
necessary to test over all possible signs of eigenvectors. This additional complexity has no
consequence when reducing A and B to rank-one matrices, but becomes costly when the
reduction made is of rank k � 1. This combinatorial observation makes implementation and
analysis of general rank-reduction methods (as the ones proposed in [FQM+16]) more difficult.
We therefore focus on the analysis of the rank-one reduction (EIG1 hereafter) which is the
simplest and most natural spectral alignment method, where only the leading eigenvectors of
A and B are computed, with time complexity O(n2), which is significantly less than GRAMPA.

Model and method Let us recall the modelWig(n, ξ) defined in (1.8). In this model, A is a
matrix from the normalized Gaussian Orthogonal Ensemble (GOE), i.e. for all 1 ≤ u ≤ v ≤ n,

Au,v = Av,u ∼

{
N (0, 1/n) if u 6= v,

N (0, 2/n) if u = v,
(3.1)

and H is an independent copy of A. We define

B = Π?> (A+ ξH) Π? (3.2)

where Π? is a random uniform matrix of a permutation π? – e.g. random uniform – of [n]
and ξ = ξ(n) is the noise parameter.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) having all distinct coordinates,
the permutation ρ which aligns x and y is the permutation such that for all 1 ≤ i ≤ n, the
rank (for the usual order) of yρ(i) in y is the rank of xi in x.

Remark 3.1.1. Note that in our model, all the probability distributions are absolutely con-
tinuous with respect to Lebesgue measure, thus the eigenvectors of A and B all have almost
surely pairwise distinct coordinates.

We recall that the aim is to infer the underlying permutation Π? given the observation of
A and B. We now introduce our simple spectral algorithm derived from [FQM+16], which
we call EIG1, that consists in computing and aligning the leading eigenvectors v1 and v′1 of A
and B. This very natural method can be thought of as the relaxation of the QAP formulation
(1.5) when reducing A and B to rank-one matrices λ1v1v

>
1 and λ′1v′1v

′T
1 . Indeed, as soon as

v1 and v′1 have pairwise distinct coordinates, is it easy to see that

arg max
Π∈Sn

〈λ1v1v
>
1 ,Πλ

′
1v
′
1v
′T
1 Π>〉 = arg max

Π∈Sn
±v>1 Πv′1 = ρ,

where ρ is the aligning permutation of v1 and ±v′1. Computing the two normalized leading
eigenvectors (i.e. corresponding to the highest eigenvalues) v1 and v′1 of A and B, the EIG1
algorithm returns the aligning permutation of v1 and ±v′1. The method then decides which
permutation to output according to the scores.

The aim of this chapter is to find the regime in which EIG1 achieves almost exact recovery,
i.e. recovers all but a vanishing fraction of nodes of the planted ground truth Π?.

3.1.2. Main results and proof scheme

We start by introducing specific notations and recall some useful basic definitions. Through-
out the chapter, all limits are taken when n→∞, and the dependency in n will most of the
time be eluded, as an abuse of notation.

Eigenvalues, eigenvectors. In the following, (v1, v2, . . . , vn) (resp. (v′1, v
′
2, . . . , v

′
n)) denote

two orthonormal bases of eigenvectors of A (resp. of B) with respect to the (real) eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn of A (resp. λ′1 ≥ λ′2 ≥ . . . ≥ λ′n of B). Through all the study,
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Algorithm 3.1: EIG1 Algorithm for matrix alignment
1 Compute v1 a normalized leading eigenvector of A;
2 Compute v′1 a normalized leading eigenvector of B;
3 Compute Π+ the permutation aligning v1 and v′1;
4 Compute Π− the permutation aligning v1 and −v′1;
5 if 〈A,Π+BΠ>+〉 ≥ 〈A,Π−BΠ>−〉 then
6 return Π+

7 else
8 return Π−
9 end

the sign of v′1 is fixed such that 〈Π?v1, v
′
1〉 > 0.

Overlap. For any (matrix) estimator Π̂ of Π? its overlap is defined as follows

ov(Π̂,Π?) := ov(π̂, π?) =
1

n

n∑
u=1

1π̂(u)=π?(u) , (3.3)

where π̂ (resp. π?) is the permutation corresponding to matrix Π̂ (resp. Π?).

Probability. The equality
(d)
= will refer to equality in distribution. Some event An is said

to hold with high probability (we will use the abbreviation "w.h.p."), if P(An) converges to 1
when n→∞.

For two random variables u = un and v = vn, we will use the notation u = oP (v) if
un/vn

P−→ 0 when n → ∞. We also use this notation when X = Xn and Y = Yn are
n−dimensional random vectors: X = oP (Y ) if ‖Xn‖/‖Yn‖

P−→ 0 when n→∞.
Define

F :=
{
f : N→ R | ∀t > 0, ntf(n)→∞, n−tf(n)→ 0

}
. (3.4)

For two random variables u = u(n) and v = v(n), u � v refers to equivalence with high
probability up to some sub-polynomial factor, meaning that there exists a function f ∈ F
such that

P
(
v(n)

f(n)
≤ u(n) ≤ f(n)v(n)

)
→ 1. (3.5)

Main results, proof scheme The main result of this chapter can be stated as follows:
there exists a condition – a threshold – on ξ and n under which the EIG1 method enables us
to recover Π? almost exactly, in terms of the overlap defined in (3.3). Above this threshold,
we show that EIG1 Algorithm cannot recover more than a vanishing part of Π.

Theorem 3.1 (Zero-one law for EIG1 method). For all n, Πn denotes an arbitrary permu-
tation of size n, Π̂n is the estimator obtained with Algorithm EIG1, for A and B of model
(3.2), with permutation Π?

n and noise parameter ξ. We have the following zero-one law:

(i) If there exists ε > 0 such that ξ = o(n−7/6−ε) then

ov(Π̂n,Π
?
n)

L1

−→ 1.

(ii) If there exists ε > 0 such that ξ = ω(n−7/6+ε) then

ov(Π̂n,Π
?
n)

L1

−→ 0.
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3.1. Introduction

Results of Theorem 3.1 are illustrated on Figure 3.1 showing the zero-one law at ξ � n−7/6.
Note that the convergence to the step function appears to be slow.
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Figure 3.1 – Estimated overlap ov(Π̂,Π?) reached by EIG1 in model (3.2), for varying n and ξ. With
95% confidence intervals.

Remark 3.1.2. We can now underline that without loss of generality, we can assume that
Π? = In, the identity matrix. Indeed, one can return to the general case applying transfor-
mations A→ Π?AΠ?,> and H → Π?HΠ?,>. From now on we will assume in the rest of the
chapter that Π? = In.

In order to prove this theorem, it is necessary to establish two intermediate results along
the way, which could also be of independent interest. First, we study the behavior of v′1 with
respect to v1, showing that under some conditions on ξ and n, the difference v1 − v′1 can be
approximated by a renormalized Gaussian standard vector, multiplied by a variance term S,
where S is a random variable which behavior is well understood in terms of n and ξ when
n→∞. For this we work under the following assumption:

∃α > 0, ξ = o
(
n−1/2−α

)
, (3.6)

Proposition 3.1.1. Under assumption (3.6), there exists a standard Gaussian vector Z ∼
N (0, In) independent from v1 and a random variable S � ξn1/6, such that

v′1 = (1 + oP(1))

(
v1 + S

Z

‖Z‖

)
.

Remark 3.1.3. This assumption (3.6) (or a tighter formulation) arises when studying the
diffusion trajectories of eigenvalues and eigenvectors in random matrices, and corresponds
to the microscopic regime in [ABB14]. This assumption ensures that all eigenvalues of B
are close enough to the eigenvalues of A. This comparison term is justified from the random
matrix theory (n−1/2 is the typical amplitude of the spectral gaps

√
n(λi − λi+1) in the bulk,

which are the smaller ones).
Eigenvectors diffusions in similar models (diffusion processes dawn with the scaling ξ =√

t) are studied in [ABB14], where the main tool is the Dyson Brownian motion (see e.g.
[AGZ09]) and its formulation for eigenvectors trajectories, giving stochastic differential equa-
tions for the evolutions of v′j(t) with respect to vectors vi = v′i(0). These equations lead to a
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3.1. Introduction

system of stochastic differential equations for the overlaps 〈vi, v′j(t)〉, which is quite difficult
to analyze rigorously. In this work a more elementary method to get a expansion of v′1 around
v1, for which this very condition (3.6) also appears.

Note that here, spectral gaps at the edge are of order n−1/6 so assumption (3.6) may
not optimal for our study, and we expect Proposition 3.1.1 to hold up to ξ = o

(
n−1/6−α).

However, since the positive result of Theorem 3.1 holds in a way more restrictive regime – see
condition (i), condition (3.6) is enough for our purpose and allows a short and simple proof.

Proposition 3.1.1 suggests the study of v′1 as a Gaussian perturbation of v1. The main
question is now formulated as follows: what is the probability that the perturbation on v1 has
an impact on the overlap of the estimator Π̂ from the EIG1 method? To answer this question,
we introduce a correlated Gaussian vectors model (or toy model hereafter) of parameters n
and s > 0. In this model, we draw a standard Gaussian vector X of size n and Y = X + sZ
where Z is an independent copy of X. We will use the notation (X,Y ) ∼ J(n, s).

Define r1 the function that associates to any vector T = (t1, . . . , tp) the rank of t1 in T
(for the usual decreasing order). For (X,Y ) ∼ J(n, s) we evaluate

p(n, s) := P (r1(X) = r1(Y )) .

Our second result shows that there is a zero-one law for the property of rank preservation in
the toy model J(n, s).

Proposition 3.1.2 (Zero-one law for p(n, s)). In the correlated Gaussian vectors model we
have the following:

(i) If s = o(1/n) then
p(n, s) −→

n→∞
1.

(ii) If s = ω(1/n) then
p(n, s) −→

n→∞
0.

These results are illustrated on Figure 3.2, showing the zero-one law at s � n−1.
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Figure 3.2 – Estimated p(n, s) in the toy model J(n, s). With 95% confidence intervals.
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3.2. Behavior of the leading eigenvectors of correlated matrices

Organization of the chapter The gaussian approximation of v1 − v′1 is established in
Section 3.2 with the proof of Proposition 3.1.1. The toy model defined here above is studied
in Section 3.3 where Proposition 3.1.2 is established. Finally, we gather results of Propositions
3.1.1 and 3.1.2 in Section 3.4 to show Theorem 3.1. Some additional proofs are deferred to
Appendices 3.A and 3.B.

3.2. Behavior of the leading eigenvectors of correlated matrices

The main idea of this section is to find a first order expansion of v′1 around v1. Recall that
we use the notations (v1, v2, . . . , vn) for normalized eigenvectors of A, corresponding to the
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Similarly, (v′1, v

′
2, . . . , v

′
n) and λ′1 ≥ λ′2 ≥ . . . ≥ λ′n

will refer to eigenvectors and eigenvalues of B = A + ξH. Since A and B are symmetric,
all these eigenvalues are real and the vectors {vi}i (resp. {v′i}i) are pairwise orthogonal. We
also recall that v′1 is taken such that 〈v1, v

′
1〉 > 0.

3.2.1. Computation of a leading eigenvector of B

Recall now that we are working under assumption (3.6):

∃α > 0, ξ = o
(
n−1/2−α

)
.

Let w′ be an (non normalized) eigenvector of B for the eigenvalue λ′1 of the form

w′ :=
n∑
i=1

θivi,

where we assume that θ1 = 1. Such an assumption can be made a.s. since any hyperplane of
Rn has a null Lebesgue measure in Rn (see Remark 3.1.1).

The defining eigenvector equations projected on vectors vi give
θ1 = 1,

∀i > 1, θi =
ξ

λ′1 − λi
∑n

j=1 θj〈Hvj , vi〉,

λ′1 − λ1 = ξ
∑n

j=1 θj〈Hvj , v1〉.

(3.7)

The strategy is then to approximately solve (3.7) with an iterative scheme, leading to the
following expansion:

Proposition 3.2.1. Under the assumption (3.6) one has the following:

w′ = v1 + ξ

n∑
i=2

〈Hvi, v1〉
λ1 − λi

vi + oP

(
ξ

n∑
i=2

〈Hvi, v1〉
λ1 − λi

vi

)
. (3.8)

We refer to Appendix 3.A.1 for the details regarding the definition of the mentioned
iterative scheme, as well as a proof of Proposition 3.2.1. The proof uses assumption (3.6) an
builds upon some standard results on the distribution of eigenvalues in the GOE.

Remark 3.2.1. The above proposition could easily be extended for all eigenvectors of B,
under assumption (3.6). Based on the studies of the trajectories of the eigenvalues and eigen-
vectors in the GUE [ABB14] and the GOE [AB14], since we are only interested here in the
leading eigenvectors, we expect the result of Proposition 3.2.1 to hold under the weaker as-
sumption ξn1/6+α → 0, for n−1/6 is the typical spectral gap

√
n(λ1−λ2) on the edge. However,

as explained before (see Remark 3.1.3), our analysis doesn’t require this more optimal assump-
tion. We also know that the expansion (3.8) doesn’t hold as soon as ξ = ω(n−1/6). A result
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3.2. Behavior of the leading eigenvectors of correlated matrices

proved by Chatterjee ([Cha14], Theorem 3.8) shows that the eigenvectors corresponding to
the highest eigenvalues v1 of A and v′1 of B = A+ ξH, when A and H are two independent
matrices from the GUE, are delocalized (in the sense that 〈v1, v

′
1〉 converges in probability to

0 as n→∞), when ξ = ω(n−1/6).

3.2.2. Gaussian representation of v′1 − v1

We still work under assumption (3.6). After renormalization, we have v′1 = w′

‖w′‖ . We are
now able to study the behavior of the overlap 〈v′1, v1〉:

〈v′1, v1〉 =

(
1 + ξ2(1 + oP(1))

n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2

)−1/2

Hence

〈v′1, v1〉 = 1− ξ2

2

n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2 + oP

(
ξ2

n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2

)
. (3.9)

Let us give the heuristic to evaluate the first sum in the right-hand side of (3.9): since the
GOE distribution is invariant by rotation (see e.g. [AGZ09]), the random variables 〈Hvi, v1〉
are zero-mean Gaussian, with variance 1/n. Moreover, it is well known [AGZ09] that the
eigenvalue gaps λ1 − λi are of order n−1/6 when i is small, and n−1/2 in the bulk (when i is
typically of order n). These considerations lead to the following:

Lemma 3.2.1. We have the following concentration

n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2 � n
1/3. (3.10)

We refer to Appendix 3.A.6 for a rigorous proof of this result. With this Lemma, we are
now able to give the first order expansion of 〈v′1, v1〉 with respect to ξ:

〈v′1, v1〉 = 1− ξ2

2
n1/3 + oP

(
ξ2n1/3

)
. (3.11)

Remark 3.2.2. The comparison between ξ and n1/6 made in [Cha14] naturally reappears
here, as ξ2n1/3 is the typical shift of v′1 with respect to v1.

The intuition is that the scalar product 〈v′1, v1〉 is sufficient to derive a Gaussian repre-
sentation of v′1 w.r.t. v1. We formalize this in the following

Lemma 3.2.2. Given v1, when writing the decomposition w′ = v1 + w, with

w :=

n∑
i=2

θivi,

the distribution of w is invariant by rotation in the orthogonal complement of v1. This implies
in particular that given v1, ‖w‖ and w

‖w‖ are independent, and that w
‖w‖ is uniformly distributed

on Sn−2, the unit sphere of v⊥1 .

Proof of Lemma 3.2.2. We work conditionnally on v1. Let O be an orthogonal transformation
of the hyperplane v⊥1 (such that Ov1 = v1). Since the GOE distribution is invariant by
rotation and A and H are independent, B̃ := O>AO + ξO>HO has he same distribution as
B = A+ ξH.

Note that Ow′ = v1 + Ow is an eigenvector of B̃ for the eigenvalue λ1. Since the dis-
tribution of the matrix of eigenvectors (v2, . . . , vn) is the Haar measure on the orthogonal
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3.2. Behavior of the leading eigenvectors of correlated matrices

group On−1

(
v⊥1
)
, denoted by dH, the distribution of w is also invariant by rotation in the

orthogonal complement of v1. Furthermore, for any f, g bounded continuous functions and
O ∈ On−1

(
v⊥1
)
,

E
[
f(‖w‖)g

(
w

‖w‖

)]
= E

[
f(‖w‖)g

(
Ow

‖Ow‖

)]
= E

[
f(‖w‖)

∫
On−1(v⊥1 )

dH(O)g

(
Ow

‖Ow‖

)]

= E
[
f(‖w‖)

∫
Sn−2

g(u)du

Vol (Sn−2)

]
= E [f(‖w‖)]E

[
g

(
w

‖w‖

)]
.

This completes the proof of Lemma 3.2.2.

We can now show the main result of this section, Proposition 3.1.1.

Proof of Proposition 3.1.1. Recall the decomposition w′ = v1 + w with w =
∑n

i=2 θivi. Ac-
cording to Lemma 3.2.2, conditioned to v1, w

‖w‖ is uniformly distributed on Sn−2, the unit
sphere of v⊥1 . We now state a classical result about sampling uniform vectors on a sphere:

Lemma 3.2.3. Let E be p−dimensional Euclidean space, endowed with an orthogonal basis
B = (e1, . . . , ep). Let u be a random vector uniformly distributed on the unit sphere Sp−1 of
E. Then, in basis B, u has the same distribution as Z1√∑p

i=1 Z
2
i

, . . . ,
Zp√∑p
i=1 Z

2
i

 ,

where Z1, . . . , Zp are i.i.d. standard normal random variables.

We refer e.g. to [OVW16], Lemma 10.1, for the proof of this result. In our context, this
proves that the joint distribution of the coordinates w2, . . . , wn of w along v2, . . . , vn is always
that of a normalized standard Gaussian vector (on Rn−1). This joint probability does not
dependent on v1. Hence, there exist Z2, . . . , Zn standard Gaussian independent variables,
independent from v1 (and from ‖w‖ by Lemma 3.2.2), such that:

w′ = v1 +
‖w‖(∑n

i=2 Z
2
i

)1/2 n∑
i=2

Zivi.

Let Z1 be another standard Gaussian variable, independent from everything else. Then

w′ =

(
1− ‖w‖Z1(∑n

i=2 Z
2
i

)1/2
)
v1 +

‖w‖(∑n
i=2 Z

2
i

)1/2 n∑
i=1

Zivi.

Let Z =
∑n

i=1 Zivi, which is a standard Gaussian vector. Since the distribution of Z is
invariant by permutation of the (Zi)1≤i≤n, Z and v1 are independent. We have

v′1 =
w′

‖w′‖
=

w′√
1 + ‖w‖2

=
1√

1 + ‖w‖2

(
1− ‖w‖Z1(∑n

i=2 Z
2
i

)1/2
)
v1 +

‖w‖‖Z‖√
1 + ‖w‖2

(∑n
i=2 Z

2
i

)1/2 Z

‖Z‖
.

Taking

S =
‖w‖‖Z‖(∑n

i=2 Z
2
i

)1/2 − ‖w‖Z1

,
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we get

v′1 =
1√

1 + ‖w‖2

(
1− ‖w‖Z1(∑n

i=2 Z
2
i

)1/2
)(

v1 + S
Z

‖Z‖

)
. (3.12)

Proposition 3.2.1 together with Lemma 3.2.1 yield

‖w‖2 = ‖w′ − v1‖2 = (1 + oP(1)) · ξ2
n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2 � ξ
2n1/3,

the last quantity being o(1) under assumption (3.6). With the previous computation, equation
(3.12) becomes

v′1 = (1 + oP(1))

(
v1 + S

Z

‖Z‖

)
,

with S = (1 + oP(1))‖w‖ � ξn1/6.

3.3. Definition and analysis of a toy model

Now that we have established a expansion of v′1 with respect to v1, our main question
boils down to the study of the effect of a random Gaussian perturbation of a Gaussian vector
in terms of rank of its coordinates: if these ranks are preserved, the permutation that aligns
these two vectors will be Π̂ = Π? = In. Otherwise we want to understand the error made
between Π̂ and Π? = In.

3.3.1. Definitions and notations

We refer to Section 3.1.2 for the definition of the toy model J(n, s). Recall that we want
to compute, when (X,Y ) ∼ J(n, s), the probability

p(n, s) := P (r1(X) = r1(Y )) .

In this section, we denote by E the probability density function of a standard Gaussian
variable, and F its cumulative distribution function. Namely

E(u) :=
1√
2π
e−u

2/2 and F (u) :=
1√
2π

∫ u

−∞
e−z

2/2dz.

We hereafter elaborate on the link between this toy model and our first matrix model (3.2)
in Section 3.2. Since v1 is uniformly distributed on the unit sphere, we have the equality in
distribution v1 = X

‖X‖ where X is a standard Gaussian vector of size n, independent of Z by
Proposition 3.1.1. We write

v1 =
X

‖X‖
,

v′1 = (1 + oP(1))

(
X

‖X‖
+ S

Z

‖Z‖

)
.

Note that for all λ > 0, r1(λT ) = r1(T ), hence

r1(v1) = r1(X), r1(v′1) = r1 (X + sZ) , (3.13)

where
s =

S‖X‖
‖Z‖

� ξn1/6,
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3.3. Definition and analysis of a toy model

where we used the law of large numbers (‖X‖/‖Z‖ → 1 p.s.) as well as Proposition 3.1.1
in the last expansion. Equation (3.13) shows that this toy model is relevant for our initial
problem, up to the fact that the noise term s is random in the matrix model (though we
know its order of magnitude to be � ξn1/6).

Remark 3.3.1. The intuition for the zero-one law for p(n, s) is as follows. If we sort the
n coordinates of X on the real axis, all coordinates being typically perturbed by a factor s,
it seems natural to compare s with the typical gap between two coordinates of order 1/n to
decide whether the rank of the first coordinate of X is preserved in Y .

Let us show that this intuition is rigorously verified. For every couple (x, y) of real
numbers, define

N+
n,s(x, y) := |{1 ≤ i ≤ n, Xi > x, Yi < y}|,

N−n,s(x, y) := |{1 ≤ i ≤ n, Xi < x, Yi > y}|.

In the following, we omit all dependencies in n and s, using the notations N+ and N−. The
corresponding regions are shown on Figure 3.3. We will also need the following probabilities
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Figure 3.3 – Areas corresponding to N+(x, y) and N−(x, y).

S+(x, y) := P (X1 > x, Y1 < y) , and

S−(x, y) := P (X1 < x, Y1 > y) = S+(−x,−y).

In terms of distribution, the random vector(
N+(x, y),N−(x, y), n− 1−N+(x, y)−N+(x, y)

)
follows a multinomial distribution of parameters(

n− 1, S+(x, y), S−(x, y), 1− S+(x, y)− S−(x, y)
)
.

In order to have r1(X) = r1(Y ), there must be the same number of points on the two domains
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3.3. Definition and analysis of a toy model

on Figure 3.3, for x = X1 and y = Y1. We then have the following expression of p(n, s):

p(n, s) = E
[
P
(
N+(X1, Y1) = N−(X1, Y1)

)]
=

∫
R

∫
R
P(dx, dy)P(N+(x, y) = N−(x, y))

=

∫
R

∫
R
E(x)E(z)φx,z(n, s) dx dz,

with

φx,z(n, s) :=

b(n−1)/2c∑
k=0

(
n− 1

k

)(
n− 1− k

k

)(
S+
x,z

)k (
S−x,z

)k (
1− S+

x,z − S−x,z
)n−1−2k

, (3.14)

using the notations S+
x,z = S+(x, x + sz) and S−x,z = S−(x, x + sz). A simple computation

shows that

S+(x, x+ sz) =

∫ +∞

x

1√
2π
e−u

2/2

(∫ z+x−u
s

−∞

1√
2π
e−v

2/2 dv

)
du

=

∫ +∞

x
E(u)F

(
z − u− x

s

)
du, (3.15)

= s

∫ +∞

0
E(x+ vs)F (z − v) dv. (3.16)

We have the classical integration result∫ z

−∞
F (u)du = zF (z) + E(z). (3.17)

From (3.15), (3.16) and (3.17) we derive the following easy lemma:

Lemma 3.3.1. For all x and z,

S+(x, x+ sz) =
s→0

s [E(x) (zF (z) + E(z))] + o(s),

S+(x, x+ sz) −→
s→∞

F (z) (1− F (x)) ,

S−(x, x+ sz) =
s→0

s [E(x) (−z + zF (z) + E(z))] + o(s),

S−(x, x+ sz) −→
s→∞

F (x) (1− F (z)) .

Moreover, both s 7→ S+(x, x+ sz) and s 7→ S−(x, x+ sz) are increasing.

3.3.2. Zero-one law for p(n, s)

In this Section we give a proof of Proposition 3.1.2.

Proof of Proposition 3.1.2. First case (i). If s = o(1/n), we have the following inequality

p(n, s) ≥
∫
R

∫
R
dxdzE(x)E(z)P

(
N+(x, x+ sz) = N−(x, x+ sz) = 0

)
. (3.18)

According to Lemma 3.3.1, for all x, z ∈ R

P
(
N+(x, x+ sz) = N−(x, x+ sz) = 0

)
=
(
1− S+(x, x+ sz)− S−(x, x+ sz)

)n−1

∼ exp (−nsE(x) [z(2F (z)− 1) + 2E(z)])
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−→
n→∞

1,

By applying the dominated convergence theorem in (3.18), we conclude that p(n, s)→ 1.

Second case (ii). If sn→∞, recall that

p(n, s) =

∫
R

∫
R
dxdzE(x)E(z)φx,z(n, s), (3.19)

with φx,z defined in equation (3.14). In the rest of the proof, we fix x and z two real numbers.
Letting

b(n, s, k) :=

(
n− 1

k

)(
S+
x,z

)k (
1− S+

x,z

)n−1−k

and
M(n, s) := max

0≤k≤n−1
b(n, s, k).

Note that by Lemma 3.3.1, there exists C = C(x, z) < 1 such that for n large enough,
S+
x,z < C < 1. Moreover, combining this Lemma with assumption (ii) gives that nS+

x,z →∞.
It is also known that M(n, s) = b(n, s, bnS+

x,zc) and a classical computation shows that in
this case (see e.g. [Bol01], formula 1.5):

M(n, s) =

(
n− 1

bnS+
x,zc

)(
S+
x,z

)bnS+
x,zc (1− S+

x,z

)n−1−bnS+
x,zc

∼ 1√
2πnt(1− t)

t−(n−1)t(1− t)−(n−1)(1−t) (S+
x,z

)(n−1)t (
1− S+

x,z

)(n−1)(1−t)

=
(
nS+

x,z

)−1/2
(1 +O(1))→ 0.

where t :=
bnS+

x,zc
n−1 ∼ S+

x,z. Working with equation (3.14), we obtain the following control

φx,z(n, s) ≤M(n, s)×
b(n−1)/2c∑

k=0

(
n− 1− k

k

)(
S−x,z

)k (1− S+
x,z − S−x,z

)n−1−2k(
1− S+

x,z

)n−1−k

(a)
= M(n, s)×

(1− S+
x,z)

(
1−

(
−S+

x,z

1−S−x,z

)n)
1 + S−x,z − S+

x,z

(b)
= M(n, s)×O(1) −→

n→∞
0.

We used in (b) the fact that S+
x,z + S−x,z is increasing in s, and that given x and z, for all

s > 0, by Lemma 3.3.1,

S+
x,z + S−x,z < F (x) (1− F (z)) + F (z) (1− F (x)) < 1.

We used in (a) the following combinatorial result:

Lemma 3.3.2. For all α > 0,

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
αk =

1√
1 + 4α

[(
1 +
√

1 + 4α

2

)n
−
(

1−
√

1 + 4α

2

)n]
. (3.20)

We refer to Appendix 3.B.1 for a proof of this result. To obtain (a) from Lemma 3.3.2, we

apply (3.20) to α =
S−x,z(1−S+

x,z)
(1−S+

x,z−S−x,z)
2 , with

√
1 + 4α =

1−S+
x,z+S−x,z

1−S+
x,z−S−x,z

. Some simple simplifications
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then give the claimed result. The dominated convergence theorem in (3.19) shows that
p(n, s)→ 0 and ends the proof.

Remark 3.3.2. The above computations also imply the existence of a non-degenerate limit
of p(n, s) in the critical case where sn→ c > 0: in this case, previous discussions as well as
Lemma 3.3.1 show that the joint distribution of (N+(x, x+ sz),N−(x, x+ sz)) is asymptot-
ically

Poi(c [E(x) (zF (z) + E(z))])⊗ Poi(c [E(x) (−z + zF (z) + E(z))]).

Therefore, p(n, s) has a non-degenerate limit given by∫
R

∫
R
E(x)E(z) ·G (c [E(x) (zF (z) + E(z))] , c [E(x) (−z + zF (z) + E(z))]) dx dz, (3.21)

where

G(a, b) := P(Poi(a) = Poi(b)) = e−(a+b)
∑
k≥0

akbk

(k!)2
. (3.22)

3.4. Analysis of the EIG1 method for matrix alignment

By now, we come back to our initial problem, which is the analysis of EIG1 method.
Recall that for any estimator Π̂ of Π?, its overlap is defined as follows

ov(Π̂,Π?) :=
1

n

n∑
u=1

1Π̂(u)=Π?(u).

The aim of this section is to show how Propositions 3.1.1 and 3.1.2 can be assembled to show
the main result of our study, namely Theorem 3.1.

Proof of Theorem 3.1. First case (i). Assuming ξ = o(n−7/6−ε) for some ε > 0, then in
particular condition (3.6) holds. Proposition 3.1.1 as well as equation (3.13) in Section 3.3
enable to identify v1 and v′1 with the following vectors:

v1 ∼ X, v′1 ∼ X + sZ, (3.23)

where X and Z are two independent Gaussian vectors from the toy model, and where s �
ξn1/6 w.h.p. Recall that we work under the assumptions Π? = In and 〈v1, v

′
1〉 > 0. In this

case, we expect Π+ to be very close to In.
We will use the notations of Section 3.3 hereafter. Let’s take f ∈ F such that w.h.p.,

ξn1/6f(n)−1 ≤ s ≤ ξn1/6f(n). We have for all 1 ≤ i ≤ n,

P (Π+(i) = Π?(u)) = P (Π+(1) = Π?(1))

= E
[∫∫

dxdzE(x)E(z)φx,z (n, s)1ξn1/6f(n)−1≤s≤ξn1/6f(n)

]
+ o(1)

=

∫∫
dxdzE(x)E(z)E

[
φx,z (n, s)1ξn1/6f(n)−1≤s≤ξn1/6f(n)

]
+ o(1).

When conditioning on the event A where ξn1/6f(n)−1 ≤ s ≤ ξn1/6f(n), we know that sn→ 0
by condition (i) and for all x, z, E [φx,z (n, s) | A]→ 1 as shown in Section 3.3. Since A occurs
w.h.p. we have

E [φx,z (n, s)1A]−→1,
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which implies with the dominated convergence theorem that

E [ov(Π+,Π
?)] −→

n→∞
1 (3.24)

and thus
ov(Π+,Π

?)
L1

→ 1.

We now check that w.h.p., Π+ is preferred to Π− in the EIG1 method:

Lemma 3.4.1. In the case (i) of Theorem 3.1, if 〈v1, v
′
1〉 > 0, we have w.h.p.

〈A,Π+BΠ>+〉 > 〈A,Π−BΠ>−〉,

in other words Algorithm EIG1 returns w.h.p. Π̂ = Π+.

This Lemma is proved in Appendix 3.B.3 and implies, together with (3.24), that

E
[
ov(Π̂,Π?)

]
≥ E

[
ov(Π̂,Π?)1Π̂=Π+

]
= E

[
ov(Π+,Π

?)1Π̂=Π+

]
= E [ov(Π+,Π

?)]− E
[
ov(Π+,Π

?)1Π̂=Π−

]
= 1− o(1).

and thus
ov(Π̂,Π?)

L1

−→
n→∞

1. (3.25)

Second case (ii). If condition (3.6) is verified then the identification (3.23) still holds and
the proof of case (i) adapts well. However, if (3.6) is not verified, we can still make a link with
the toy model studied in Section 3.3. Let’s use a simple coupling argument: if ξ = ω(n−1/2−α)
for some α ≥ 0, let’s take ξ1, ξ2 > 0 such that

ξ2 = ξ2
1 + ξ2

2

and
n−7/6+ε � ξ1 � n−1/2−α,

fixing for instance ξ1 = n−1. We will use the notation ṽ1, now viewed as the leading eigen-
vector of the matrix

B̃ = A+ ξ1H + ξ2H̃,

where H̃ is an independent copy of H. This has no consequence in terms of distribution
: (A, B̃) is still drawn under model (3.2). Let’s denote v′1 the leading eigenvector of B1 =
A + ξ1H, chosen so that 〈v1, v

′
1〉 > 0. It is clear that condition (3.6) holds for ξ1. We have

the following result, based on the invariance by rotation of the GOE distribution:

Lemma 3.4.2. We still have the following equality in distribution:

(r1(v1), r1(ṽ1))
(d)
= (r1(X), r1(X + sZ)) ,

where X, Z are two standard Gaussian vectors from the toy model, with w.h.p.

s ≥ s1 � ξ1n
1/6.

We refer to Appendix 3.B.2 for a proof. Since w.h.p. s ≥ s1 and s1n � ξ1n
7/6 →∞, we

have for all 1 ≤ i ≤ n,

P (Π+(i) = Π?(u)) = P (Π+(1) = Π?(1))
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= E
[∫∫

dxdzE(x)E(z)φx,z(n, s)1sn→∞

]
+ o(1)

=

∫∫
dxdzE(x)E(z)E [φx,z(n, s)1sn→∞] + o(1).

With the same arguments as in the case (i), we show that φx,z(n, s)1sn→∞
L1

−→ 0, which
implies

E [ov(Π+,Π
?)] −→

n→∞
0,

hence ov(Π+,Π
?)

L1

−→
n→∞

0. The last step is to verify that the overlap achieved by Π− does not
outperform that of Π+. We prove the following Lemma in Appendix 3.B.4:

Lemma 3.4.3. In the case (ii), if 〈v1, v
′
1〉 > 0, we also have

ov(Π−,Π
?)

L1

−→
n→∞

0.

Lemma 3.4.3 then gives

E
[
ov(Π̂,Π?)

]
≤ E [ov(Π+,Π

?)] + E [ov(Π−,Π
?)] −→

n→∞
0,

and thus
ov(Π̂,Π?)

L1

−→
n→∞

0. (3.26)

Of course, the convergences in (3.25) and (3.26) also hold in probability, by Markov’s
inequality.
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Appendix of Chapter 3

3.A. Additional proofs for Section 3.2

Throughout the proofs, all variables denoted by Ci with i = 1, 2, . . . are unspecified,
independent, positive constants.

3.A.1. Proof of Proposition 3.2.1

Proof of Proposition 3.2.1. Let us establish a first inequality: since the GOE distribution
is invariant by rotation (see e.g. [AGZ09]), the random variables 〈Hvj , vi〉 are zero-mean
Gaussian, with variance 1/n of i 6= j and 2/n if i = j. Hence, w.h.p.

sup
1≤i,j≤n

|〈Hvj , vi〉| ≤ C1

√
log n

n
. (3.27)

We will use the following short-hand notation for 1 ≤ i, j ≤ n:

mi,j := 〈Hvj , vi〉,

The defining eigenvector equations projected on vectors vi write θi =
ξ

λ′1 − λi
∑n

j=1 θjmi,j ,

λ′1 − λ1= ξ
∑n

j=1 θjm1,j .
(3.28)

In order to approximate the θi variables, we define the following iterative scheme: θki =
ξ

λk−1
1 − λi

∑n
j=1 θ

k−1
j mi,j ,

λk1 − λ1 = ξ
∑n

j=1 θ
k−1
j m1,j ,

(3.29)

with initial conditions
(
θ0
i

)
2≤i≤n = 0 and λ0

1 = λ1, and setting θk1 = 1 for all k. For k ≥ 1,
define

∆k :=
∑
i≥2

∣∣∣θki − θk−1
i

∣∣∣ ,
and for k ≥ 0,

Sk :=
∑
i≥1

∣∣∣θki ∣∣∣ .
Recall that under assumption (3.6), there exists α > 0 such that ξ = o

(
n−1/2−α). We define

ε as follows:
ε = ε(n) =

√
ξn1/2+α.

The idea is to show that the sequence {∆k}k≥1 decreases geometrically with k at rate ε. More
specifically, we show the following result:
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Lemma 3.A.1. With the same notations and under the assumption (3.6) of Proposition
3.2.1, one has w.h.p.

(i) ∀k ≥ 1, ∆k ≤ ∆1ε
k−1,

(ii) ∀k ≥ 0, ∀ 2 ≤ i ≤ n,
∣∣λk1 − λi∣∣ ≥ 1

2 |λ1 − λi|
(
1− ε− . . .− εk−1

)
,

(iii) ∀k ≥ 0, Sk ≤ 1 + (1 + . . .+ εk−1)∆1,

(iv)
∑n

i=2

∣∣θi − θ1
i

∣∣2 = o
(∑n

i=2

∣∣θ1
i

∣∣2).
This Lemma is proved in the next section. Equation (iv) of Lemma 3.A.1 yields

w′ = v1 +

n∑
i=2

θ1
i vi +

n∑
i=2

(
θi − θ1

i

)
vi

= v1 + ξ

n∑
i=2

〈Hvi, v1〉
λ1 − λi

vi + oP

(
ξ

n∑
i=2

〈Hvi, v1〉
λ1 − λi

vi

)
.

3.A.2. Proof of Lemma 3.A.1

Proof of Lemma 3.A.1. In this proof we will use the same notations as defined in the proof of
Proposition 3.2.1, and we make the assumption (3.6). We now state three technical lemmas
controlling some statistics of eigenvalues in the GOE which are useful hereafter.

Lemma 3.A.2. W.h.p., for all δ > 0,

n∑
j=2

1

λ1 − λj
≤ O

(
n1+δ

)
. (3.30)

Lemma 3.A.3. We have
n∑
j=2

1

(λ1 − λj)2 � n
4/3. (3.31)

Lemma 3.A.4. For any C > 0, w.h.p.

λ1 − λ2 ≥ n−2/3 (log n)−C log logn . (3.32)

Proofs of these three Lemmas can be found in the next sections. We will work under the
event (that occurs w.h.p.) on which the equations (3.30), (3.31), (3.32), (3.10) and (3.27) are
satisfied. We show the following inequalities:

(i) ∀k ≥ 1, ∆k ≤ ∆1ε
k−1,

(ii) ∀k ≥ 0,∀ 2 ≤ i ≤ n,
∣∣λk1 − λi∣∣ ≥ 1

2 |λ1 − λi|
(
1− ε− . . .− εk−1

)
,

(iii) ∀k ≥ 0, Sk ≤ 1 + (1 + . . .+ εk−1)∆1.
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Recall that ε is given by

ε = ε(n) =

√
ξn1/2+α.

We will denote by fi(n), with i an integer, functions as defined in Lemma 3.A.3. All the
following inequality will be valid for n large enough (uniformly in i and in k).

Step 1: propagation of the first equation. Let k ≥ 3. We work by induction, assuming
that (i), (ii) and (iii) are verified until k − 1.

∣∣∣θki − θk−1
i

∣∣∣ ≤
∣∣∣∣∣∣ ξ

λk−1
1 − λi

n∑
j=2

(
θk−1
j − θk−2

j

)
mi,j

∣∣∣∣∣∣+

∣∣∣∣∣∣
ξ
(
λk−2

1 − λk−1
1

)
(
λk−1

1 − λi
)(

λk−2
1 − λi

) n∑
j=1

θk−2
j mi,j

∣∣∣∣∣∣
≤ ξ∣∣∣λk−1

1 − λi
∣∣∣C1

√
log n

n
∆k−1 + ξC1

√
log n

n
Sk−2

∣∣∣λk−2
1 − λk−1

1

∣∣∣∣∣∣λk−1
1 − λi

∣∣∣ ∣∣∣λk−2
1 − λi

∣∣∣
(a)

≤ ξ
3

|λ1 − λi|
C1

√
log n

n
∆k−1 + ξC1

√
log n

n
Sk−2

9
∣∣∣λk−2

1 − λk−1
1

∣∣∣
|λ1 − λi|2

(b)

≤ ξ
3

|λ1 − λi|
C1

√
log n

n
∆k−1 + ξC1

√
log n

n
2

9
∣∣∣λk−2

1 − λk−1
1

∣∣∣
|λ1 − λi|2

.

We applied (ii) to k − 1, k − 2 in (a) and (iii) to k − 2 in (b). Note that

∣∣∣λk−2
1 − λk−1

1

∣∣∣ =

∣∣∣∣∣∣ξ
n∑
j=1

(
θk−2
j − θk−3

j

)
mi,j

∣∣∣∣∣∣ ≤ ξC1

√
log n

n
∆k−2,

which yields the inequality:∣∣∣θki − θk−1
i

∣∣∣ ≤ ξ

|λ1 − λi|
f1(n)n−1/2∆k−1 +

ξ2

|λ1 − λi|2
f2(n)n−1∆k−2.

We choose δ such that 0 < δ < α (where α is fixed by (3.6)), and we sum from i = 2 to n:

∆k ≤ ξf1(n)n1/2+δ∆k−1 + ξ2f3(n)n1/3∆k−2

(a)

≤ o(ε)εk−2∆1 + o(ε2)εk−3∆1

≤ εk−1∆1.

We used ξf1(n)n1/2+δ = o(ε), ξ2f3(n)n1/3 = o(ε2) and we applied (i) to k−1 and k−2 in (a).

Step 2: propagation of the second equation. Let k ≥ 2, and 0 < δ < α. We work by
induction, assuming that (i), (ii) and (iii) are verified until k − 1.∣∣∣λk1 − λk−1

1

∣∣∣ ≤ ξf1(n)n−1/2∆k−1

(a)

≤ ξf1(n)n−1/2εk−2∆1

≤ n−2/3(log n)−C log lognεk−2∆1

≤ λ1 − λ2

2
εk−2∆1
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≤ λ1 − λi
2

εk−2∆1.

We applied (i) to k − 1 in (a). Note that

∆1 =

n∑
j=2

ξ

λ1 − λi
|mi,1| ≤ ξf1(n)n1/2+δ ≤ o(ε).

Applying (ii) to k − 1, we get∣∣∣λk1 − λi∣∣∣ ≥ ∣∣∣λ1 − λk−1
1

∣∣∣− ∣∣∣λk1 − λk−1
1

∣∣∣
≥ λ1 − λi

2

(
1− ε− . . .− εk−2

)
− λ1 − λi

2
εk−1

≥ λ1 − λi
2

(
1− ε− . . .− εk−1

)
.

Step 3: propagation of the third equation. Let k ≥ 1. Here again, we work by induc-
tion, assuming that (i), (ii) and (iii) are verified until k − 1.

Sk = 1 +
n∑
j=2

∣∣∣θkj ∣∣∣
≤ 1 + ∆k + Sk−1 − 1

(a)

≤ εk−1∆1 + 1 +
(

1 + . . .+ εk−2
)

∆1

≤ 1 +
(

1 + ε+ . . .+ εk−1
)

∆1.

We applied (i) to k and (iii) to k − 1 in (a).

Step 4: Proof of (i) for k = 1, 2, (ii) for k = 0, 1 and (iii) for k = 0, 1. The equation (i)
for k = 1 is obvious. For k = 2 :

∣∣θ2
i − θ1

i

∣∣ ≤
∣∣∣∣∣∣ ξ

λ1
1 − λi

n∑
j=2

(
θ1
j − θ0

j

)
mi,j

∣∣∣∣∣∣+

∣∣∣∣∣∣ ξ
(
λ0

1 − λ1
1

)(
λ1

1 − λi
) (
λ0

1 − λi
) n∑
j=1

θ0
jmi,j

∣∣∣∣∣∣ .
We have ∣∣λ1

1 − λi
∣∣ ≥ |λ1 − λi| −

∣∣λ1 − λ1
1

∣∣ ≥ |λ1 − λi| − ξ |m1,1|

≥ |λ1 − λi| −
1

2
|λ1 − λ2| ≥

1

2
|λ1 − λi| ,

which shows (ii) for k = 0, 1. Thus, for 0 < δ < α:

∣∣θ2
i − θ1

i

∣∣ ≤ 2ξ

λ1 − λi
C1

√
log n

n
∆1 +

4ξ

(λ1 − λi)2 ξ |m1,1| |mi,1| ,

and

∆2 ≤ ξf1(n)n1/2+δ∆1 + 4ξ |m1,1|
n∑
i=2

ξ |mi,1|
(λ1 − λi)2

≤ ξf1(n)n1/2+δ∆1 + 4ξf4(n)n−1/2n2/3
n∑
i=2

ξ |mi,1|
(λ1 − λi)
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≤ ξf1(n)n1/2+δ∆1 + 4ξf4(n)n1/6∆1

≤ ε∆1.

The proof of (iii) for k = 0, 1 is obvious.

Step 5: Proof of equation (iv). Let k ≥ 2 and 2 ≤ i ≤ n. In the same way as in Step 1,
we have ∣∣∣θki − θk−1

i

∣∣∣ ≤ 2ξC1

λ1 − λi

√
log n

n
εk−2∆1 +

8ξ2C2
1

(λ1 − λi)2

log n

n
ε(k−3)+∆1.

In the right-hand term, the ratio of the second term on the first one is smaller that

4ξC1

λ1 − λi

√
log n

n
ε−1 ≤ ξn1/6f(n)ε−1 ≤ ε→ 0,

using Lemma 3.A.4, with f ∈ F . It follows that for n big enough (uniformly in k and i) one
has ∣∣∣θki − θk−1

i

∣∣∣ ≤ ξf(n)

λ1 − λi
n−1/2εk−2∆1. (3.33)

Equation (3.33) shows that the scheme (3.29) converges, and that the limits are indeed the
solutions θ1 = 1, θ2, . . . , θn of the fixed-point equations. By a simple summation of (3.33)
over k ≥ 2, applying Lemma 3.A.2 and inequality (3.27) we have

∣∣θi − θ1
i

∣∣ ≤ 2ξf(n)

λ1 − λi
n−1/2∆1 ≤

2ξ2f(n)

λ1 − λi
nδ,

where δ > 0 is a positive quantity of Lemma 3.A.2 specified later. Using Lemma 3.A.3 one
has the following control

n∑
i=2

∣∣θi − θ1
i

∣∣2 ≤ 4ξ4n2δf(n)n4/3.

Moreover, Lemma 3.2.1 shows that

n∑
i=2

∣∣θ1
i

∣∣2 � ξ2n1/3 ≥ g(n)−1ξ2n1/3,

where g is another function in F . This yields
n∑
i=2

∣∣θi − θ1
i

∣∣2 ≤ n∑
i=2

∣∣θ1
i

∣∣2 4ξ2n2δ+1f(n)g(n).

The proof is completed by taking δ = α/2 and applying (3.6).

3.A.3. Proof of Lemma 3.A.4

Proof of Lemma 3.A.4. This lemma provides a control of the spectral gap λ1 − λ2. Given
a good rescaling (in n2/3), the asymptotic joint law of the eigenvalues in the edge has been
investigated in a great amount of research work, for Gaussian ensembles, and for more general
Wigner matrices. The GOE case has been mostly studied by Tracy, Widom, and Forrester
among many others; in [For93] and [TW98], the convergence of the joint distribution of the
first k eigenvalues towards a density distribution is established:
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Proposition 3.A.1 ([For93], [TW98]). For a given k ≥ 1, and all s1, . . . , sk real numbers,

P
(
n2/3 (λ1 − 2) ≤ s1, . . . , n

2/3 (λk − 2) ≤ sk
)
−→
n→∞

F1,k(s1, . . . , sk), (3.34)

where the F1,k are continuous and can be expressed as solutions of non linear PDEs. Thus
the re-scaled spectral gap n2/3 (λ1 − λ2) has a limit probability density law supported by R+,
which implies that

P
(
n2/3 (λ1 − λ2) ≥ (log n)−C log logn

)
−→
n→∞

1.

Of course, the choice of the function n 7→ (log n)−C log logn is here arbitrary and the result is
also true for any function tending to 0.

3.A.4. Proof of Lemma 3.A.3

Proof of Lemma 3.A.3. This result needs an understanding of the behavior of the spectral
gaps of matrix A, in the bulk and in the edges (left and right). The eigenvalues in the edge
correspond to indices i such that i = o(n) (left) or i = n − o(n) (right). Eigenvalues in the
bulk are the remaining eigenvalues. For this, we use a result of rigidity of eigenvalues, due
to L. Erdös et al. [EYY10], which consists in a control of the probability of the gap between
the eigenvales of A and the typical eigenvalues γj of the semi-circle law, defined as follows

∀i ∈ {1, . . . , n} , 1

2π

∫ γj

−2

√
4− x2dx = 1− j

n
. (3.35)

Proposition 3.A.2 ([EYY10]). For some positive constants C5 > 0 and C6 > 0, for n large
enough,

P
(
∃j ∈ {1, . . . , n} | |λj − γj | ≥ (log n)C5 log logn (min (j, n+ 1− j))−1/3 n−2/3

)
≤ C5 exp

(
− (log n)C6 log logn

)
. (3.36)

Remark 3.A.1. Another similar result that goes in the same direction for the GOE is already
known: it has been shown by O’Rourke in [O’R10] that the variables λi−γi behave as Gaussian
variables when n→∞. However, the rigidity result in (3.36) obtained in [EYY10] can apply
in more general models. This quantitative probabilistic statement was not previously known
even for the GOE case.

Remark 3.A.2. Let us note that one of the assumptions made in [EYY10] is that variances
of each column sum to 1, which is not directly the case in our model (3.2). Nevertheless, one
may use (3.36) for the re-scaled matrix Ã := A

(
1 + 1

n

)−1/2, then easily check that there is a

possible step back to A: |λj−γj | ≤
∣∣∣λj (1 + 1

n

)−1/2 − γj
∣∣∣+n−1 +o(n−1), and n−1 +o(n−1) ≤

2 (min (j, n+ 1− j))−1/3 n−2/3 for n big enough. Tolerating a slight increase of the constant
C5, the result (3.36) is thus valid in the GOE.

Let us now compute an asymptotic expansion of γj in the right edge, which is for j = o(n).
Define

G(x) :=
1

2π

∫ x

−2

√
4− t2dt =

x
√

4− x2 + 4 arcsin(x/2)

4π
+

1

2
, (3.37)

for all x ∈ [−2, 2]. We have γj = G−1(1 − j/n) = −G−1(j/n), observing that the integrand
in (3.37) is an even function. We get the following expansion when x→ −2,

G(x) =
x→−2

2(x+ 2)3/2

3π
+ o

(
(x+ 2)3/2

)
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which implies that

G−1(y) =
y→0
−2 +

(
3πy

2

)2/3

+ o
(
y2/3

)
,

hence

γj =
j/n→0

2−
(

3πj

2n

)2/3

+ o
(

(j/n)2/3
)
. (3.38)

Remark 3.A.3. One can observe the coherence of this result that arises naturally in [O’R10]
as the expectation of the eigenvalues in the edge.

Let ε > 0, to be specified later. To establish our result we will split the variables j in
three sets:

A1 :=
{

2 ≤ j ≤ (log n)(C5+1) log logn
}

(a small part of the right edge),

A2 :=
{

(log n)(C5+1) log logn < j ≤ n1−ε
}

(a larger part of the right edge),

A3 :=
{
n1−ε < j ≤ n

}
(everything else).

We show that the sum over A1 is the major contribution in (3.31). The split in the right
edge in A1 and A2 is driven by the error term of (3.36): this term is small compared to γj if
and only if (log n)C5 log logn = o(j).

Step 1: estimation of the sum over A1. According to (3.36) and Lemma 3.A.4, w.h.p.

n−4/3 (log n)−C6 log logn ≤ (λ1 − λ2)2 ≤ C7n
−4/3 (log n)C6 log logn ,

where C6, C7 are positive constants. Hence, w.h.p.

n4/3

C7 (log n)C6 log logn
≤
∑
j∈A1

1

(λ1 − λj)2

≤
∑
j∈A1

1

(λ1 − λ2)2

≤ n4/3 (log n)(C5+C6+1) log logn .

Step 2: estimation of the sum over A2. Let us show that the sum over A2 is asymptot-
ically small compared to the sum over A1: using (3.36) and (3.38), we know that there exists
C8 > 0 such that for all j ∈ A2, w.h.p.

λj = 2− C8

(
j

n

)2/3

+ o
(

(j/n)2/3
)
,

and we know furthermore (se e.g. [AGZ09]) that w.h.p.

λ1 = 2 + o
(

(j/n)2/3
)
, ∀j ∈ A2 (3.39)

hence w.h.p. ∑
j∈A2

1

(λ1 − λj)2 = n4/3
∑
j∈A2

1

C9j4/3(1 + o(1))

= n4/3(1 + o(1))
∑
j∈A2

1

C9j4/3
= o

(
n4/3

)
,
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using in the last line the fact that the Riemann’s series
∑
j−4/3 converges.

Step 3: estimation of the sum under A3. With the previous results (3.36), (3.38) and
(3.39), assuming that ε < 1, we get w.h.p.

λ1 − λn1−ε = C8n
−2ε/3 +O

(
n−2ε/3

)
,

which gives w.h.p. the following control∑
j∈A3

1

(λ1 − λj)2 ≤
(
n− n1−ε) 1

(λ1 − λn1−ε)2

=
(
n− n1−ε) n4ε/3

C9(1 + o(1))
= O

(
n1+4ε/3

)
= o

(
n4/3

)
,

as long as ε < 1/4. Taking such a ε, these three controls end the proof.

3.A.5. Proof of Lemma 3.A.2

Proof of Lemma 3.A.2. We follow the same steps as in the proof of Lemma 3.A.3. Let’s take
δ > 0. We split the j variables in three sets:

A1 :=
{

2 ≤ j ≤ n1/3
}
,

A2 :=
{
n1/3 < j ≤ n1−δ

}
,

A3 :=
{
n1−δ < j ≤ n

}
.

We use Lemma 3.A.4 to obtain the following control w.h.p.∑
j∈A1

1

λ1 − λj
≤ n1/3n2/3 (log n)C5 log logn = O(n1+δ).

Similarly, for A2∑
j∈A2

1

λ1 − λj
≤
∑
j∈A2

1

o(n−2/3) + C8(j/n)2/3 +O
(

(log n)C5 log logn n−2/3j−1/3
)

= n2/3
∑
j∈A2

1

o(1) + C8j2/3
≤ C10n

2/3n(1−δ)/3 ≤ O(n1+δ).

Finally, using Cauchy–Schwarz inequality

∑
j∈A3

1

λ1 − λj
≤
√
n

∑
j∈A3

1

(λ1 − λj)2

1/2

≤
√
nO(n1/2+2δ/3) = O(n1+δ).

3.A.6. Proof of Lemma 3.2.1

Proof of Lemma 3.2.1. We show that w.h.p.

n∑
i=2

〈Hvi, v1〉2

(λ1 − λi)2 −
1

n

n∑
i=2

1

(λ1 − λi)2 = o

(
1

n

n∑
i=2

1

(λ1 − λi)2

)
(3.40)
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Let us recall that H is drawn according to the GOE, hence its law is invariant by rotation.
This implies that the 〈Hvi, v1〉 are independent variables with variance 1/n, independent of
λ1, . . . , λn. Define

Mn :=

n∑
i=2

〈Hvi, v1〉2 − 1/n

(λ1 − λi)2 .

Computing the second moment of Mn, we get

E
[
M2
n|λ1, . . . , λn

]
= Var(Mn|λ1, . . . , λn) =

1

n4

n∑
i=2

2

(λ1 − λi)4 .

Adapting the proof of Lemma 3.A.3, following the same steps, one can also show that w.h.p.

n∑
i=2

1

(λ1 − λi)4 � n
8/3. (3.41)

Let ε = ε(n) > 0 to be specified later. By Markov’s inequality

P

(
|Mn| ≥

ε

n

n∑
i=2

1

(λ1 − λi)2 |λ1, . . . , λn

)
≤ n2

ε2
E
[
M2
n|λ1, . . . , λn

](∑n
i=2

1
(λ1−λi)2

)2

� 1

ε2n2
,

by Lemma 3.A.3 and equation (3.41). Taking e.g. ε(n) = n−1/2 concludes the proof.

3.B. Additional proofs for Sections 3.3 & 3.4

3.B.1. Proof of Lemma 3.3.2

Proof of Lemma 3.3.2. We fix α > 0 and we want to prove

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
αk =

1√
1 + 4α

[(
1 +
√

1 + 4α

2

)n
−
(

1−
√

1 + 4α

2

)n]
. (3.42)

We denote in the following φ+ := 1+
√

1+4α
2 and φ− := 1−

√
1+4α
2 , and for all n ≥ 1:

un = un(α) :=

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
αk.

We clearly have un(α) ≤ (1 + α)n. For all t > 0 small enough (e.g. t < 1
1+α), define

f(t) :=

∞∑
n=1

unt
n.

On one hand,

t

1− t− αt2
= t

∞∑
m=0

(t+ αt2)m =

∞∑
m=0

m∑
l=0

(
m

l

)
αltl+m+1
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=
∞∑
n=1

 ∑
0≤l≤m

l+m=n−1

(
m

l

)
αl

 tn =
∞∑
n=1

unt
n = f(t).

On the other hand,

t

1− t− αt2
=

t

(1− φ−t) (1− φ+t)
=

1

φ+ − φ−

(
1

1− φ+t
− 1

1− φ−t

)
=

1√
1 + 4α

∞∑
n=1

(
φn+ − φn−

)
tn.

This proves (3.42).

3.B.2. Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. Let us represent the situation in the plane spanned by v1 and v′1, as
shown on Figure 3.4. Since ṽ1 is taken such that 〈v1, ṽ1〉 > 0 and ξ1 satisfies (3.6), we have

s - b

6

v′1

�
�
�
�
�
�
��

v1

A
A
A
A
AK

projP(ṽ′1)

√
p

Figure 3.4 – Orthogonal projection of ṽ1 on P := span(v′1, v1).

〈ṽ1, v
′
1〉 > 0 for n large enough by Proposition 3.1.1. Let p := 〈ṽ1, v

′
1〉2 and w̃ := ṽ1−

√
pv′1 ∈

(v′1)⊥. By invariance by rotation we can obtain that w̃
‖w̃‖ = w̃√

1−p is uniformly distributed on

the unit sphere Sn−2 of (v′1)⊥, and independent of p, v1 and v′1. Hence

〈b, ṽ1〉 = 〈b, w̃〉 (d)
=
√

1− p · Z̃1√∑n−1
i=1

(
Z̃i

)2
,

where the Z̃i are independent Gaussian standard variables, independent from everything else.
According to Section 3.2 we know that 1− 〈v1, v

′
1〉 � ξ2

1n
1/3 and thus 〈v1, b〉 � ξ1n

1/6. This
yields, for n large enough, w.h.p,

0 < 〈ṽ1, v1〉 ≤
√
p〈v1, v

′
1〉+

√
1− p
n

Z̃1ξ1n
1/6f(n)

≤ √p〈v1, v
′
1〉+

√
1− pn−4/3g(n)

≤ max
(√

p,
√

1− p
)
〈v1, v

′
1〉

≤ 〈v1, v
′
1〉,
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where f and g are two functions as defined in Lemma 3.A.3. From this point one can still
make the link with the toy model, as done in the beginning of Section 3.3. By invariance
by rotation, letting t := ṽ1 − 〈ṽ1, v1〉v1, we know that ‖t‖ and t

‖t‖ are independent, and that
t
‖t‖ is uniformly distributed on the unit sphere in v⊥1 . We have the following equality in
distribution:

(r1(v1), r1(ṽ1))
(d)
= (r1(X), r1(X + sZ)) ,

with w.h.p.

s ≥ s1 =
‖w‖‖X‖(∑n

i=2 Z
2
i

)1/2(
1− ‖w‖Z1

(
∑n
i=2 Z

2
i )

1/2

) � ξ1n
1/6,

where the Xi, Zi and w are defined in Section 3.3, for ξ = ξ1.

3.B.3. Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. Recall that we work in the case (i) (ξ = o(n−7/6−ε) for some ε > 0),
with 〈v1, v

′
1〉 > 0 and Π? = In. We want to show that w.h.p.

〈A,Π+BΠ>+〉 > 〈A,Π−BΠ>−〉. (3.43)

Define
G := {u,Π+(u) = Π?(u) = i} .

and
A :=

{
ξn1/6f(n)−1 ≤ s ≤ ξn1/6f(n)

}
,

with f ∈ F such that P (A) → 1. For n large enough, on the event A, we have 0 ≤ sn ≤
n−εf(n). Hence, retaking the proof of Proposition 3.1.2, we have

φx,z (n, s) ≥ P
(
N+(x, x+ sz) = N−(x, x+ sz) = 0

)
∼ exp (−snE(x) [z(2F (z)− 1) + 2E(z)]) = 1−O(n−εf(n)).

Thus, with dominated convergence, for n large enough,

P (Π+(u) = Π?(u)|A) =

∫∫
dxdzE(x)E(z)E [φx,z (n, s) |A] ≥ 1−O(n−εf(n)). (3.44)

We use Markov’s inequality with (3.44) to show that P
(
|G| ≤ n− n1−ε/2 | A

)
≤ O

(
n−ε/2f(n)

)
,

hence w.h.p.
|G| ≥ n− n1−ε/2. (3.45)

Splitting the sum

〈A,Π+BΠ>+〉 =
∑
u,v

Au,vBΠ+(u),Π+(v) =
∑

(u,v)∈G2
Au,vBu,v +

∑
(i,j)/∈G2

Au,vBΠ+(u),Π+(v),

one has, w.h.p.,

〈A,Π+BΠ>+〉 =
∑

(i,j)∈G2
A2
u,v +

∑
(i,j)/∈G2

(Π+(u),Π+(v))6=(v,u)

Au,vAΠ+(u),Π+(v)

+
∑

(i,j)/∈G2
(Π+(u),Π+(v))=(v,u)

A2
u,v + ξ

∑
1≤i,j≤n

Au,vHΠ+(u),Π+(v)
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≥ C1
|G|2

n
− C2

(
n2 − |G|2

) log n

n
− C2ξn

2 log n

n
.

We applied the law of large numbers for the first sum, lower-bounded the third sum by zero,
and the classical inequality maxu,v {Au,v, Hu,v} ≤ C2

logn
n (which holds w.h.p.) for the two

others.
Inequality (3.45) and condition (i) lead to, w.h.p.

〈A,Π+BΠ>+〉 ≥ C1n− 2C1n
1−ε/2 − 2C2n

1−ε/2 log n− C2n
−1/6−ε log n ≥ C3n.

On the other hand, since by definition Π−(i) = Π+(n+ 1− i), w.h.p.,

〈A,Π−BΠ>−〉 =
∑

(u,v)∈G2
Au,vBn+1−u,n+1−v +

∑
(u,v)/∈G2

Au,vBΠ−(u),Π−(v)

≤ O(log n) +
|G|2

n
o(1) + C2

(
n2 − |G|2

) log n

n
.

For the first sum, we used the law of large numbers: the variables Au,v and Bn+1−u,n+1−v are
independent in all cases but at most n+ 1, and this part of the sum is bounded by O(log n).
We used the same control on Gaussian variables as above.
This gives (

〈A,Π−BΠ>−〉
)

+
= oP(n),

where (x)+ := max(0, x), which proves (3.43).

3.B.4. Proof of Lemma 3.4.3

Proof of Lemma 3.4.3. Recall that we work in the case (ii) (ξ = ω(n−7/6+ε) for some ε > 0),
with 〈v1, v

′
1〉 > 0 and Π? = In. We want to show that the aligning permutation between v1

and −v′1 has a very bad overlap. Considering the pair (X,−Y ) where (X,Y ) ∼ J(n, s), one
can adapt the proof of Proposition 3.1.2, with the new definitions

S̃+(x, y) := P (X1 > x,−Y1 < −y) , and

S̃−(x, y) := P (X1 < x,−Y1 > −y) .

The analysis is even easier since for all x, z, there exist two constants c, C such that

0 < c ≤ S̃+(x, x+ sz), S̃−(x, x+ sz) ≤ C < 1.

It is then easy to check that the proof of Proposition 3.1.2, case (ii) adapts well.
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Chapter 4

Alignment of sparse Erdős-Rényi graphs:
information-theoretic results

In this chapter, we study fundamental limits of graph alignment: in the correlated Erdős-
Rényi model, we prove an impossibility result for partial recovery in the sparse regime, with
constant average degree and correlation, as well as a general bound on the maximal reachable
overlap. This bound is tight in the noiseless case (the graph isomorphism problem) and we
conjecture that it is still tight with noise. The proof of this negative result relies on a careful
application of the probabilistic method to build automorphisms between tree components of
a subcritical Erdős-Rényi graph.

This chapter is based on the paper Impossibility of partial recovery in the graph alignment
problem [GML21b], published at COLT 2021, which is a joint work with M. Lelarge and L.
Massoulié.

4.1. Introduction

As we have seen in Section 1.3.4 of the introduction, a vast majority of previous works
focus on the exact (resp. quasi-exact) alignment, which is known to be feasible in the dense
case, when nqs ≥ log n (resp. nqs → ∞). On the computational side, many algorithms are
proposed for (quasi-)exact alignment; however, none of these succeed in the sparse setting
with constant correlation and average degree λ > 0, i.e. with q = λ/n. It is thus natural and
interesting to tackle the challenging question of partial alignment in the sparse setting.

4.1.1. A colored view on the correlated Erdős-Rényi model

Let us recall the definition of the correlated Erdős-Rényi model (already introduced in
(1.10)) in the sparse case: in this chapter, we represent the graphs (G,G′) ∼ G(n, λ/n, s)
with respectively blue and red edges, and with the same set of nodes [n]. For each edge, the
colors are samples independently:

• with probability λs/n to get two-colored edges;

• with probability λ(1− s)/n to get a blue (monochromatic) edge;

• with probability λ(1− s)/n to get a red (monochromatic) edge;

• with probability 1− λ(2− s)/n to get a non-edge,

where λ > 0 and s ∈ [0, 1] are fixed parameters and n is large. In this model, G and G′ are
both sparse G(n, λ/n) graphs. For large values of n, the fraction of edges of one graph that
are shared with the other is of order s (see Figure 4.1).

We then relabel the vertices of the red graph G′ with a uniform independent permutation
π? ∈ Sn, and we observe G and H := G′π

? , see Figure 4.2. Upon observing G and H, the goal
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Figure 4.1 – A realization of (G,G′) from the correlated Erdős-Rényi model, with n = 11, λ = 1.9,
and s = 0.7. For the sake of readability, red edges are always dashed.

is to recover (or, reconstruct) partially the latent vertex correspondence π? with probability
converging to 1 as n→∞.
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Figure 4.2 – The pair (G,H) corresponding to (G,G′) of Figure 4.1, after relabeling G′ with the
permutation π? = (6)(1 5 3 11 9 2 8 4 7 10).

4.1.2. Partial alignment in the sparse regime

First note that since we are in the sparse regime, then even without noise, i.e. with s = 1,
there is no way to be able to map the Θ(n) isolated vertices1 in G and H better than chance.
Hence, we rather focus on the partial alignment problem where we ask for the best possible
fraction of matched vertices between G and H. More formally, an estimator π̂ (of π?) is a
Sn-valued measurable function of (G,H).

Note that in this problem, the graphs could very well be unlabeled in the first place. We
could assign the labels uniformly, the only interesting information being the correspondence
between vertices. Hence, any estimator π̂ must satisfy the equivariance property, in the sense
that for all σ ∈ Sn,

π̂(Gσ, H) = π̂(G,H) ◦ σ−1 . (4.1)

Remark 4.1.1. Note that unsurprisingly, the maximum a posteriori estimator π̂MAP, which
is the permutation solving the maximization problem (1.5), satisfies (4.1).

Another – though more cumbersome – approach to enforce some notion of equivariance
(and put aside some trivial estimators such as π̂ = id) would be to redefine the overlap as
follows:

ov(π̂(G,H), π?) :=
1

n · n!

∑
σ∈Sn

n∑
u=1

1π̂(Gσ ,H)(u)=π?◦σ−1(u) .

With this definition, it is ensured that for any σ ∈ Sn,

ov(π̂(Gσ, H), π?) = ov(π̂(G,H), π? ◦ σ) .

We recall that partial alignment consists in finding a estimator π̂ of π? satisfying ov(π̂, π?) >
αn with high probability, for some α > 0. Let us start by stating a conjecture2:

1We refer to Theorem 1.1 of the introduction for a proof of this result.
2At the time this manuscript is being completed, this conjecture and a more general form are proved in
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Conjecture.

(i) If λs ≤ 1, partial reconstruction is impossible, i.e. for any α > 0, for all estimator π̂,

P (ov(π̂, π?) > αn) −→
n→∞

0.

(ii) If λs > 1, partial reconstruction is possible (feasible), i.e. there exists α > 0 and an
estimator π̂ such that

P (ov(π̂, π?) > αn) −→
n→∞

1.

[WXY21]

λs = 4[This paper]

λs = 1

Ω(1)

[GM20]

λ

s

0

1

1 4 λ

Feasibility regime Infeasibility regime

1

Figure 4.3 – Diagram of the (λ, s) regions where partial reconstruction is known3 to be impossible
(resp. possible), in the sparse regime where λ, s are fixed constants.

Main result The main result of the chapter is as follows:

Theorem 4.1. For λ > 0 and s ∈ [0, 1], we have for any α > 0, for any estimator π̂:

P (ov(π̂, π?) > (c(λs) + α)n) −→
n→∞

0, (4.2)

where c(µ) is the greatest non-negative solution to the equation e−µx = 1− x.

Note that a well-known result (see e.g. [Bol01]) is that c(µ) is the typical fraction of
nodes in the largest component of an Erdős-Rényi graph with average degree µ, and that
c(µ) = 0 if µ ≤ 1, and c(µ) ∈ (0, 1) whenever µ > 1. Hence, Theorem 4.1 implies that
partial reconstruction is impossible for λs ≤ 1. Moreover, if λs > 1, any estimator can reach
an overlap of at most c(λs)n + o(n). Note that c(λs) is the typical fraction of nodes in the
largest component of the intersection graph.

Related work in the sparse regime In this chapter, we work in the regime where λ > 0
and s ∈ [0, 1] are fixed constants. Our results prove part (i) of the conjecture, which had not
been previously studied, and give an upper bound on the maximal reachable overlap in case
(ii).

[DD22]. The result of Theorem 4.1 however does not lose of its appeal, since it gives an upper bound on the
best reachable overlap.

3at the time of this contribution.
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4.2. Main results and global intuition

Most relevant related results4 for our conjecture [GM20] which proves5 that partial re-
covery is possible in polynomial time in a region R := {(λ, s); λ ∈ [1, λ0) and s ∈ (s∗(λ), 1]}
for some function s∗(λ) < 1, so that interestingly the case λ > λ0 is left open, nevertheless
much in step with (ii). Previous results from [HM20] showed that partial reconstruction was
feasible for λs > C, with an unspecified constant C > 20. The work [WXY21] significantly
improves these results, narrowing down the gap for (ii): when translated with our notations,
it is shown that partial alignment is possible (theoretically) if λs ≥ 4 + ε. In addition, an
impossibility condition of the form nqs ≤ 1−ε is also established, but in a denser case, where
nq/s = ω(log2 n). Note that this last impossibility result does not cover our regime, where
both the mean degree nq and the correlation parameter s are of order 1.

These results are summed up in a diagram in Figure 4.3. In particular, our bound is tight
and our conjecture is almost solved for the case s = 1, with a remaining gap [λ0, 4] being still
open.

For the impossibility part, [WXY21] works with the mutual information I(π?;G,G′),
closely related to the minimum mean squared error. They are able to derive an upper bound
on the expectation of ov(π̂, π?), for any estimator, which happens to be o(1) when the mean
degree in the parent graph of G and G′ is at least of order log2 n, but not when λ, s are
of order 1. In our result, we do not work directly with the mutual information, but we are
considering the posterior distribution of π?: in simple words, we show that under the as-
sumption λs ≤ 1 the posterior distribution puts equal weights on permutations that overlap
only on a vanishing fraction of points. This is done by building ad hoc permutations with
the probabilistic method.

In this work, we derive information-theoretic results: our proof is not related to a particu-
lar algorithm. The search for efficient algorithms in this field is a very active field of research:
we refer once again to Section 1.3.4. Unfortunately, all proposed algorithms are not known
to give a positive fraction of overlap in the regime λs ≥ 1, hence leaving the question of the
tightness of our bound open. New light will be shed on this question in Chapter 6.

4.2. Main results and global intuition

4.2.1. Some definitions

Let us first recall that for two permutations σ, σ′ ∈ Sn we denote by ov(σ, σ′) the number
of points on which σ = σ′, namely

ov(σ, σ′) :=
n∑
u=1

1σ(u)=σ′(u) .

Through all the chapter, we will implicitly consider that every graph G of size n has the
canonical vertex set [n]. We will denote by E(G) its edge set and e(G) its number of edges.

For any pair of graphs (G,G′), both labeled on [n], we denote by G∨G′ (resp. by G∧G′)
the union graph (resp. intersection graph) of G and G′, that is the graph with same node
set and edge set E(G)∪E(G′) (resp. E(G)∩E(G′)). The symmetric difference of G and G′,
denoted by G4G′, is the subgraph made of edges of G ∨G′ that are not in G ∧G′.

In the case where edges are colored, say edges of G (resp. G′) are blue (resp. red), these
definitions extend to ensure colour preservation: note e.g. that in this case G ∧G′ is simply
the subgraph of G ∨G′ consisting of two-colored edges (see Figure 4.4).

When the pair (G,G′) is drawn under the correlated Erdős-Rényi model, for all u, v ∈ [n],
we write u ←→ v (resp. u ←→ v) if u and v are connected in G, that is the edge is either

4at the time of this contribution.
5see Chapter 5.
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Figure 4.4 – The graph G∨G′ with (G,G′) of Figure 4.1. For the sake of readability, the two-colored
edges of G ∧G′ are always drawn thick and purple.

blue or two-colored (resp. in G′, either red or two-colored).
For G a graph with vertex set [n] and σ ∈ Sn, we denote by Gσ the relabeling of G with

σ, which is the graph with same vertex set [n] and edges {σ(u), σ(v)} for all {u, v} ∈ E(G).
Finally we recall the definition of c(µ): for all µ > 0, c(µ) is the greatest non-negative

solution to the equation e−µx = 1− x. We also recall the fact that for µ ≤ 1, c(µ) = 0.

4.2.2. General intuition on the main result

Let us describe the general intuition for our result : recall that we are given (G,H) drawn
under the correlated Erdős-Rényi model with planted relabeling π?. The idea of the argument
for impossibility is to show that, there are w.h.p. lots of permutations that have the same
weight for the posterior distribution of π? given G,H, and that are far apart. In other words,
an informal statement is as follows :

(Informal Statement). We want to show that there exists lots of relabelings Gσi of G such
that:

(i) There is no way of deciding (statistically) whether the two graphs we observe are (G,G′)
or some (Gσi , G′).

(ii) These relabelings are far apart from each other on small components of G ∧G′.

Let us give a formal version of the previous intuition. First note that for any labeled
graphs g, g′ on [n]:

P(G = g,G′ = g′) =

(
λs

n

)e(g∧g′)(λ(1− s)
n

)e(g4g′)(
1− λ(2− s)

n

)(n2)−e(g∨g
′)

.

Since

e(g ∨ g′) = e(g) + e(g′)− e(g ∧ g′) and e(g4g′) = e(g ∨ g′)− e(g ∧ g′),

P(G = g,G′ = g′) is uniquely determined by e(g), e(g′) and e(g ∧ g′). In particular, the
dependence of the joint distribution in e(g ∧ g′) is given by:

P(G = g,G′ = g′) ∝
(
s(n− λ(2− s))

λ(1− s)2

)e(g∧g′)
. (4.3)

In view of (4.3), preserving the posterior distribution by relabeling a graph G is simply
preserving the number of edges of their intersection graph. We now have a formal rephrasing
for our conditions (i) and (ii) above: we encapsulate them in a theorem, which will constitute
the bulk of this chapter.

Theorem 4.2. Fix an integer p > 0. Consider (G,G′) drawn under the correlated Erdős-
Rényi model G(n, λ/n, s). Then, with high probability, there exists {σi}i∈[p] – that depend on
the intersection graph G ∧G′ – such that

(i) ∀i ∈ [p], e (Gσi ∧G′) = e (G ∧G′),
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4.2. Main results and global intuition

(ii) ∀i, j ∈ [p], i 6= j =⇒ ov(σi, σj) ≤ c(λs)n + o(n), where the o(n) is independent of
i, j ∈ [p].

Let us now explain how Theorem 4.2 implies our impossibility result via a simple pigeon-
hole principle.

Proof of Theorem 4.1. Let us take α > 0. We want to control the probability that the overlap
between an estimator π̂ and π? is greater than αn + c(λs)n. Fix ε > 0, and take p large
enough so that

αεp > 2.

First note that point (i) together with (4.3) gives that the joint probability of (G,G′, π?)
is is equal to that of (Gσi , G′, π?), for all i ∈ [p]. Thus, for all estimator π̂ depending on
G,H = G′π

? , one has

∀i ∈ [p], ov (π̂(Gσi , H), π?)
(d)
= ov (π̂(G,H), π?) , (4.4)

and by (4.1), we also have

∀i ∈ [p], ov (π̂(Gσi , H), π?) = ov (π̂(G,H), π? ◦ σi) . (4.5)

Let
X :=

∑
i∈[p]

1ov(π̂,π?◦σi)>(c(λs)+α)n

Note that because of point (ii), all ov(π?◦σi, π?◦σj) are at most c(λs)n+o(n) for i 6= j ∈ [p].
Thus, there are at least X × (α − o(1))n distinct points among the node set [n]. This gives
that one necessarily has

X ≤ 1

α− o(1)
. (4.6)

Then, taking the expectation and considering the event on which the set {σi}i∈[p] of
Theorem 4.2 exists – which happens with probability 1− o(1) – gives

E [X] ≥
p∑
i=1

P (ov(π̂, π? ◦ σi) > (c(λs) + α)n)− p× o(1)

= p× P (ov(π̂, π?) > (c(λs) + α)n)− o(1).

Hence,

P (ov(π̂, π?) > (c(λs) + α)n) ≤ 1

p(α− o(1))
+ o(1). (4.7)

For n large enough, the right-hand side of the last term is less that 1
p(α/2) , which is less than

ε. This proves as desired that for all α > 0

P (ov(π̂, π?) > (c(λs) + α)n) −→
n→∞

0. (4.8)

We are now left to understand how to build ad hoc permutations verifying points (i) and
(ii) of Theorem 4.2. In order to build these permutations, we are going to relabel the vertices
on small tree components of the intersection graph G∧G′. As a first step, we hereafter check
that they indeed nearly cover the whole graph, when letting aside the giant component.
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4.2. Main results and global intuition

4.2.3. Vertices on small tree components

We briefly recall the definition of the simple Erdős-Rényi model G(n, p): it consist in
drawing a (single) graph with node set [n] in which every edge is independently present with
probability p. Let us begin with a classical result:

Lemma 4.2.1 ([Bol01], Corollary 5.8, Theorem 6.11). Let G ∼ G(n, µ/n) with µ > 0, and
an → ∞. Then, with high probability, G has a giant component of order c(µ)n + o(n) and
outside the giant component, at least (1− c(µ))n− an vertices are on tree components.

We need here a slight adaptation of this result, showing that (1− c(µ))n− o(n) vertices
are in fact on small tree components.

Lemma 4.2.2. Let G ∼ G(n, µ/n) with µ > 0, and K(n)→∞. Then with high probability,
(1− c(µ))n− o(n) vertices are on tree components of size at most K(n).

Proof. Assume without loss of generality that K(n) = o(log n). Let T> be the number of
vertices that are on tree components of size ≥ K(n). Taking an = o(n) in Lemma 4.2.1, it
remains to show that w.h.p., T> = o(n). This is done easily by bounding very roughly the
first moment. Another classical result (see e.g. [JLR00], Theorem 5.4) is that with probability
1− o(1), all tree components are of size O(log n), which gives

E [T>]

n
≤ o(1) +

O(logn)∑
k=K(n)

1

n
· k ·

(
n

k

)
kk−2

(µ
n

)k−1 (
1− µ

n

)k(n−k)+(k2)−k+1

≤ o(1) + (1 + o(1))

O(logn)∑
k=K(n)

ek

k
µk−1e−kµ,

using
(
n
k

)
≤
(
en
k

)k together with Cayley’s formula6 and the fact that for all indices K(n) ≤
k ≤ O(log n) in the sum, k2 ≤ o(n) (uniformly). Now, the series in the right hand term has
general terms which is O

(
e−k(µ−log µ+1)

)
, and since µ − logµ + 1 > 0 the series converges,

which implies that E [T>/n] = o(1). The proof is concluded by Markov’s inequality.

Since in our model G∧G′ is an Erdős-Rényi graph of parameters (n, λs/n), the previous
results ensures that all but a vanishing part of the (1 − c(µ))n vertices outside the giant
component are on small (i.e. ≤ K(n)) tree components of the intersection graph. For the
rest of the chapter, we will take

K(n) = b
√

log nc.

This first step suggests to build the permutations (relabelings) only by looking at G∧G′.
Hence, we will first consider the random generation of the intersection graph, then create
some permutations σi, and finally reveal the monochromatic edges.

The generating process is as follows: since almost all (1 − c(µ))n vertices are on small
trees in G ∧ G′, we can prove that each small tree up to isomorphism will have a number
of occurrences in the intersection graph of order n (this is claimed more precisely in Lemma
4.3.1). Permuting iteratively these isomorphic trees, we may derange them quite a lot, and
each time differently.

In order to prove Theorem 4.2, we use the probabilistic method7: we give in the next
section a simple detailed stochastic method to build p permutation candidates, and we will
next prove that these permutations satisfy conditions (i) and (ii) with positive probability,
hence proving the desired existence.

6Cayley’s formula states that the number of trees on k labeled vertices is kk−2.
7The main interest of this widely used method (see [AS16]) is to be non-constructive. Indeed, as detailed

in the next Sections, explicitly giving the p permutations considered in Theorem 4.2 is very cumbersome,
because of the extra double edges that may appear (see Section 4.3.3).
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4.3. Building automorphisms of G ∧G′ tree-wise

Through all this section, we work conditionally on the intersection graph G ∧G′ (that is
the two-colored edges).

4.3.1. Mathematical formalization

Recall that we fix K := K(n) = b
√

log nc. For all k ∈ [K], we will denote by Tk the set
of unlabeled trees of size k. Tk can also be viewed as the set of equivalence classes of labeled
trees of size k for the isomorphism relation. Note that Tk is finite and that we can roughly
upper bound its size by the number of labeled trees of size k which equals kk−2, by Cayley’s
formula8.

T4 =

{
,

}

T6 =

{
, , , , ,

}

1

Figure 4.5 – Explicit composition of T4 (of size 2) and T6 (of size 6).

For a given tree T ∈ Tk, we will denote by XT the number of distinct connected compo-
nents of G∧G′ that are isomorphic toT, HT := {T1, T2, . . . , TXT

} the set of the corresponding
labeled subgraphs of G ∧ G′, and V (HT) the set of vertices of [n] that belong to one of the
trees in HT.

Our global finite recursion will be done on the finite set

T :=
K⋃
k=1

Tk = {T1,T2, . . . ,TM} , (4.9)

which we assume to have been ordered increasingly according to tree sizes, for convenience.
The global permutation σ is built block-wise by composing permutations σT for T ∈ T such
that each σT only acts on vertices of HT.

More precisely, for a fixed T ∈ T, σT will consists in permuting the vertices tree by
tree, so σT will be determined by a tree permutation ΣT of size XT. Assume that for all
trees T1, . . . , TXT

isomorphic to T in G ∧ G′, we fix some isomorphisms ψ1, . . . , ψXT
such

that Ti =̂
ψi

T for all i ∈ [XT]. More generally we will denote i(u) the index of the tree that

u ∈ V (HT) belongs to (when there is no ambiguity on T), and u ' u′ when two vertices of
G∧G′ are sent onto the same point of T by these isomorphisms. Then, the natural definition
of the node permutation σT according to ΣT and these isomorphisms is given by

σT : u 7→
{
ψ−1

ΣT(i(u)) ◦ ψi(u)(u) (∈ TΣT(i(u))) if u ∈ V (HT),

u if u /∈ V (HT).
(4.10)

Note that by definition, V (HT) is stable by σT, and σT fixes all nodes in [n]\V (HT). Recall
thatM denotes the total size of T as defined in (4.9). The recursive construction is as follows

8This upper bound is far from being optimal, but is enough for our use.
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4.3. Building automorphisms of G ∧G′ tree-wise

:

Algorithm 4.1: Recursive construction of σ
1 Initialize σ0 ← id;
2 for i = 1 to M do
3 Consider T = Ti and draw uniformly at random the tree permutation ΣT ∈ SXT

,
independently from the past;

4 Consider σT the node permutation associated with ΣT by (4.10);
5 σi ← σT ◦ σi−1;
6 end
7 return σ = σM

Note that at the end of the procedure, σ fixes all points that are either on the giant
component of the intersection graph, or on a component that is not a tree a size ≤ K(n).
Figure 4.6 gives an example of this random recursive construction (for convenience, λs < 1,
the true labels are in red, whereas blue labels enables to keep track of the relabeling recursively
built on the blue graph).
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Figure 4.6 – Example of recursive (tree-wise) generation of a permutation with Algorithm 4.1.
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Through the analysis we will need the following control on XT for T ∈ T:

Lemma 4.3.1. Recall that K(n) = b
√

log nc. For all k ∈ [K(n)], define f(k) := (λs)k−1e−λsk

k! .
Then, with high probability (on the intersection graph),

∀k ∈ [K(n)], ∀T ∈ Tk, XT ≥ n(1− o(1))f(k). (4.11)

The proof of this result is deferred to Appendix 4.B.1.

Remark 4.3.1. Note that since λse−λs < 1, k 7→ f(k) is decreasing with k. Moreover, for
K(n) ≤

√
log n, we have that for any t > 0,

f(K(n)) ≥ exp
(
−C
√

log n log logn
)
� n−t.

4.3.2. Ensuring that the permutations are ’far apart’

We check in this section that Algorithm 4.1 generates permutations that will verify con-
dition (ii) of Theorem 4.2, w.h.p. Let σ1, . . . , σp be generated independently with Algorithm
4.1. We then have the following results:

Lemma 4.3.2. With high probability, for all i 6= j ∈ [p],

ov(σi, σj) = c(λs)n+ o(n).

This lemma is proved in Appendix 4.B.2. In the sequel we will denote by V∞ the set of
vertices that are on the giant component of G∧G′ (if there is one), and by V> the vertices of
[n] \ V∞ that are not on tree components of size ≤ K(n). Finally we set V∞,> := V∞ ∪ V>.
Define

Sin :=

(
[n] \ V∞,>

2

)
, Sout :=

(
[n]

2

)
\
((

V∞,>
2

)
∩
(

[n] \ V∞,>
2

))
, S := Sin ∪ Sout.

(4.12)
Sin is the set of edges that have both endpoints outside V∞,>, whereas edges of Sout have
exactly one endpoint in V∞,>. We say that an edge (u, v) ∈

(
[n]
2

)
is a common fixed edge of

permutations σ1, . . . , σr if

{σ1(u), σ1(v)} = . . . = {σr(u), σr(v)} .

For all subset of edges W ⊆
(

[n]
2

)
, we define

F (W, σ1, . . . , σr) :=
∑
e∈W

1e is a common fixed edge of σ1,...,σr . (4.13)

We now state a result – which proof is deferred to 4.B.3 – that will be useful in next
section.

Lemma 4.3.3. With high probability, we have, for any t > 0,

• for any i1 6= i2 ∈ [p],
F (S, σi1 , σi2) ≤ n1+t, (4.14)

• for any i1, i2, i3 ∈ [p] pairwise distinct,

F (S, σi1 , σi2 , σi3) ≤ nt, (4.15)

• for any r ≥ 4, i1, . . . , ir ∈ [p] pairwise distinct,

F (S, σi1 , . . . , σir) = 0. (4.16)
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4.3.3. Emergence of extra double edges

In the example of Figure 4.6, we can see that the number of two-colored edges in the
relabeled union graph Gσi ∨ G′ is constant through time. This property is fundamental for
point (i) of Theorem 4.2. However, depending on the random σTi drawn through the process
– we recall that they are drawn independently from the monochromatic edges, that are
not revealed yet – we may see extra two-colored edges appear (extra double edges hereafter).
Figure 4.7 shows a case in which there is an emergence of an extra double edge in the process.
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Figure 4.7 – Example of the emergence of an extra double edge in Algorithm 4.1.

Note that the number of two-coloured edges can only be greater or equal to e(G ∧ G′)
through this process, since by definition we are preserving edges of the intersection graph.

The last part of our work is to prove that there is a positive probability that applying
independently Algorithm 4.1 p times gives p permutations that do not present extra double
edges, before using the probabilistic method. This step will require a Poisson approximation,
described hereafter.

4.4. Poisson approximation, proof of Theorem 4.2

In this section we introduce n′ to be the number of vertices that the permutations actually
act on:

n′ := |[n] \ V∞,>| ∼ (1− c(λs))n w.h.p. (4.17)

4.4.1. Poisson approximation for extra double edges

In the sequel, we will assume that we fix a set {σi}i∈[p] of p permutations of [n′], verifying
:

for all t > 0, for all m 6= m′ ∈ [p], F (S, σm, σm′) ≤ n1+t. (H1)

for all t > 0, for all m1,m2,m3 ∈ [p] pairwise distinct , F (S, σm1 , σm2 , σm3) ≤ nt. (H2)

There are no common fixed edge of any r-tuple in {σi}i∈[p]. (H3)

We will work under the event ES on which n′ ∼ (1 − c(λs))n and |S| ∼
(
n′

2

)
∼ n′2/2 =

(1− c(λs))2n2/2. It is easy (see e.g. [Bol01]) to show that ES is satisfied w.h.p. As explained
before, some extra double edges (e.d.e. hereafter) may appear when revealing the non double
edges of S (that is, blue and red edges that are not between vertices of V∞,>). Note that for
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every edge we have

P
(
u ←→ v | (u, v) /∈ E(G ∧G′)

)
= P

(
u ←→ v | (u, v) /∈ E(G ∧G′)

)
=

P (u ←→ v, (u, v) /∈ E(G ∧G′))
P ((u, v) /∈ E(G ∧G′))

=
λ(1− s)/n
1− λs/n

∼ λ(1− s)
n

.

For any permutation σ, define the number of created e.d.e. by the relabeling of G by σ as
follows:

∆(σ) :=
∑
{u,v}∈S

1u←→v1σ(u)←→σ(v). (4.18)

We now present the key result for our analysis, with the notation nk for the falling factorial

nk := n(n− 1) · · · (n− k + 1).

Theorem 4.3 (Asymptotic Poisson behavior of {∆(σi)}i∈[p]). Assume that {σi}i∈[p] verify
(H1), (H2) and (H3). Then, for all `1, `2, . . . , `p ≥ 0,

E
[
∆(σ1)`1∆(σ2)`2 · · ·∆(σp)

`p
∣∣G ∧G′, ES] −→

n→∞

(
λ2(1− s)2(1− c(λs))2

2

)`1+`2+...+`p

.

(4.19)
In other words, conditionally to graph G∧G′ and event ES , the random variables {∆(σi)}i∈[p]

are asymptotically distributed as independent Poisson variables of parameter λ2(1−s)2(1−c(λs))2
2 .

The proof of Theorem 4.3, based on a fine control of terms of unusually high contribution,
is deferred to Appendix 4.A.

4.4.2. Proof of Theorem 4.2

Proof. The proof is quite straightforward now. Fixing p > 0, Lemma 4.3.3 gives that (H1),
(H2) and (H3) are verified w.h.p. by some σ1, . . . , σp generated independently with Algorithm
4.1. Then, the probability (on the remaining monochrome edges) that the p permutations
given satisfy conditions (i) and (ii) of Theorem 4.2 is equivalent to

(1− o(1))× P
(
Poi

(
λ2(1− s)2(1− c(λs))2

2

)
= 0

)p
= (1− o(1)) exp

(
−pλ

2(1− s)2(1− c(λs))2

2

)
> 0,

which gives the existence with high probability of a set a permutations of size p satisfying
conditions (i) and (ii) of Theorem 4.2.
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Appendix of Chapter 4

4.A. Proof of Theorem 4.3

Proof of Theorem 4.3. Let `1, `2, . . . , `p be non negative integers. Recall that conditioned to
G ∧G′, each edge of S is independently blue (resp. red) with probability

q = q(λ, s, n) :=
λ(1− s)
n− λs

.

Now, let us explain why convergence (4.19) holds. First recall that for a given ` ≥ 0, E
[
∆(σ)`

]
is nothing else but the expected number of (ordered) p−tuples of edges {u, v} ∈ S such that
1u←→v1σ(u)←→σ(v) = 1. Using the notation

∑∗ for summation of ordered tuples of edges in
S as well as linearity of expectation, we get:

E
[
∆(σ1)`1∆(σ2)`2 · · ·∆(σp)

`p
]

=

∑∗

{u(1)1 ,v
(1)
1 },

{u(1)2 ,v
(1)
2 },

...,

{u(1)`1 ,v
(1)
`1
}

∑∗

{u(2)1 ,v
(2)
1 },

{u(2)2 ,v
(2)
2 },

...,

{u(2)`2 ,v
(2)
`2
}

. . .
∑∗

{u(p)1 ,v
(p)
1 },

{u(p)2 ,v
(p)
2 },

...,

{u(p)`p ,v
(p)
`p
}

E

 p∏
m=1

`m∏
j=1

1
u
(m)
j ←→v(m)

j

1
σm(u

(m)
j )←→σm(v

(m)
j )

 (4.20)

First observe that the total number of terms N in the previous sum is

N := |S|`1 × |S|`2 × · · · |S|`p ∼
(

(1− c(λs))2n2

2

)`1+...+`p

,

since |S| ∼ (1−c(λs))2n2

2 on event ES .

Lower bound. Observe that the N terms in the sum of eq. (4.20) are made in general of
2(`1 + . . .+`p) indicator variables, not necessarily distinct. For most of the terms however, all
involved edges are distinct, thus independent, and their contribution to the sum is q2(`1+...+`p).

Whenever a pair of blue (resp. red) indicators are equal, at least one term may be
canceled, so the contribution to the expectation is higher than q2(`1+...+`p).

Whenever a pair of edges that appear in a blue/red pair of indicators are equal, the
product of the indicators is necessarily 0 (indeed, an edge in S cannot be two-colored). These
terms, where at least one equality of the form {u(m)

j , v
(m)
j } = {σm′(u

(m′)
j′ ), σm′(v

(m′)
j′ )} occurs,

cover the case where the contribution is strictly less that q2(`1+...+`p) (it is 0). There are at
most (

`1 + . . .+ `p
2

)(
n2

2

)`1+...+`p−1
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4.A. Proof of Theorem 4.3

such terms. Thus

E
[
∆(σ1)`1∆(σ2)`2 · · ·∆(σp)

`p
]
≥

(
N −

(
`1 + . . .+ `p

2

)(
n2

2

)`1+...+`p−1
)
× q2(`1+...+`p)

∼
(

(1− c(λs))2n2

2

)`1+...`p

×
(
λ(1− s)

n

)2(`1+...+`p)

−→
n→∞

(
λ2(1− s)2(1− c(λs))2

2

)`1+`2+...+`p

.

Upper bound. The terms that we now want to study are the terms for which the con-
tribution is greater than q2(`1+...+`p). Looking closely at the general product in (4.20), an
unusual high contribution is the consequence of three possible type of constraints:

(i) constraints of the form {u(m)
j , v

(m)
j } = {u(m′)

j′ , v
(m′)
j′ }: note that since the sums are made

of ordered tuples, this equality may happen only for pairs such that m 6= m′. Moreover,
transitivity of equality implies that a constraint implying some {u(m)

j , v
(m)
j }may happen

at most once for each m′ ∈ [p],m′ 6= m (otherwise we would have a relationship of the
form {u(m′)

j′ , v
(m′)
j′ } = {u(m′)

k′ , v
(m′)
k′ }, which is impossible).

(ii) constraints of the form {σm(u
(m)
j ), σm(v

(m)
j )} = {σm′(u

(m′)
j′ ), σm′(v

(m′)
j′ )}. For the same

reasons as in case (i), a constraint implying some {σm(u
(m)
j ), σm(v

(m)
j )} may happen

at most once for each m′ ∈ [p],m′ 6= m.

(iii) the last case is made of intersection of cases (i) and (ii), i.e. edges satisfying both con-
straints {u(m)

j , v
(m)
j } = {u(m′)

j′ , v
(m′)
j′ } and {σm(u

(m)
j ), σm(v

(m)
j )} = {σm′(u

(m′)
j′ ), σm′(v

(m′)
j′ )}.

This implies in particular that {u(m)
j , v

(m)
j } is an common fixed edge for σm and σm′ .

By assumption (H3), note that there cannot be a connected path of constraints of the
form (iii) of length greater or equal to 3.

Let us now represent these constraints with a dependency graph. Each vertex a the
graph represent one edge {u(m)

j , v
(m)
j } of the sum, that we will align column-wise according

to m ∈ [p]. We put a plain (resp. dashed) edge between two nodes if they are enforced by
constraint (i) but not (iii) (resp. (ii) but not (iii)). Finally we draw a thick plain edge
between two nodes if they are enforced by constraint (iii).

In view of discussion in points (i)− (ii)− (iii), this dependency graph must be p-partite.
Moreover, the subgraph made of plain thick or plain edges (resp. plain thick of dashed edges)
only consists in a union of disjoint paths. The thick plain subgraph is only made of isolated
edges and paths fo size 3. Finally, transitivity of the equality relationship enables to draw
any path in any order: we shall take the left to right order by convention (no backtracking).

We denote by k1 (resp. k2) the number of plain (resp. dashed) edges. We also denote
track k3 the number of thick plain isolated edges, and k4 the number of thick plain isolated
paths of length 2. Figure 4.8 gives an example of such a dependency graph.

In order to upper bound the contribution due to large terms, we must understand both
the expectation of the product of indicators in (4.20) (this only depends on (k1, k2, k3, k4)),
as well as the number of possible (labeled) dependency graphs with a given (k1, k2, k3, k4).

First, all plain (resp. dashed) dependency edge makes 1 (resp. 1) indicators disappear
in the expectation (for any event A,12

A = 1A). In the same way, all thick plain isolated
edge (resp. thick plain isolated path of length 2) makes 2 (resp. 4) indicators disappear the
expectation for a given case with given (k1, k2, k3, k4) is

q2(`1+...+`p)−(k1+k2+2k3+4k4) ≤ C1n
−2(`1+...+`p)+(k1+k2+2k3+4k4) (4.21)
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4.B. Proofs of Lemmas

`1 = 4 `2 = 3 `3 = 3

1

Figure 4.8 – Example of a dependency graph, with (k1, k2, k3, k4) = (3, 2, 1, 0).

where C1 is a constant depending on `1, . . . , `p,

Second, an upper bound for the number of possible (labeled) dependency graphs with a
given (k1, k2, k3, k4) can be established as follows. First, we have k1 +k2 +k3 +2k4 equalities,
leaving at most `1 + . . . + `p − (k1 + k2 + k3 + 2k4) degrees of freedom in the choices of
the edges. Moreover, we force k3 of these edges to be common fixed edges between two
(distinct) permutations, and k4 of them to be common fixed edges between three (pairwise
distinct) permutations. In view of hypotheses (H1) and (H2), the number of possible (labeled)
dependency graphs with a given (k1, k2, k3, k4) is at most(

k1 + k2 + k3 + k4

k3 + k4

)
|S|`1+...+`p−(k1+k2+k3+2k4)−k3−k4 × (n1+t)k3 × ntk4

≤ C2n
2(`1+...+`p)−2(k1+k2)−(3−t)k3−(6−t)k4 , (4.22)

where C2 is a constant depending on `1, . . . , `p.

Hence, in view of (4.21) and (4.22), the total contribution of higher terms is upper
bounded by

`1+...+`p∑
s=1

∑
k1+k2+k3+2k4=s

C1C2n
−2(`1+...+`p)+(k1+k2+2k3+4k4)n2(`1+...+`p)−2(k1+k2)−(3−t)k3−(6−t)k4

≤ C1C2

`1+...+`p∑
s=1

∑
k1+k2+k3+2k4=s

n−k1n−k2n−(1−t)k3n−(2−t)k4

≤ C1C2 × (`1 + . . .+ `p)× (`1 + . . .+ `p)
4(`1+...+`p) × n−(1−t) −→

n→∞
0.

This last convergence concludes the proof.

4.B. Proofs of Lemmas

4.B.1. Proof of Lemma 4.3.1

Proof. For the control of XT we follow classical computations made in [Bol01] to establish
asymptotic behavior of XT. For our purpose, we only need the two first moments. Assume
that T is of size k = k(T) ≤ K, and that its automorphism group has a = a(T) elements.
Then, letting µ = λs,

E [XT] =

(
n

k

)
× k!

a
×
(µ
n

)k−1 (
1− µ

n

)k(n−k)+(k2)−k+1
.
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Indeed, we have
(
n
k

)
choices for the nodes, then k!

a ways of putting the edges. Using
(
n
k

)
∼ nk

k!

and
(
1− µ

n

)−k2+(k2)−k+1 ∼ 1 as soon as k = o(
√
n), we get

E [XT] ∼ nµk−1e−µk/a.

We now compute E [XT(XT − 1)] by classically counting the number of ordered pairs of
distinct isolated tree components of G∧G′ isomorphic to T. This number is then multiplied
by the probability of observing these two distinct isolated components. This gives

E [XT(XT − 1)] =

(
n

k

)(
n− k
k

)
×
(
k!

a

)2

×
(µ
n

)2(k−1) (
1− µ

n

)2(k(n−2k)+(k2)−k+1) (
1− µ

n

)k2
.

Here again, k = o(
√
n) gives that

E [XT(XT − 1)] ∼ n2µ2(k−1)e−2µk/a2.

Denoting α = α(T) := nµk−1e−µk/a(T), these computations give that E [XT] ∼ Var (XT) ∼
α(T) when n→∞, uniformly in k ≤ K(n) as soon as K(n) = o(

√
n). Let us fix ε = ε(n) > 0

small enough. Applying Chebyshev’s inequality together with the union bound gives

P (∃(k,T) ∈ [K(n)]× T, XT ≤ (1− ε)α(T)) ≤
K(n)∑
k=1

∑
T∈Tk

P (XT − E [XT] ≤ (1− ε)α(T)− E [XT])

(a)

≤
K(n)∑
k=1

∑
T∈Tk

Var (XT)

((1− ε)α(T)− E [XT])2

(b)

≤ (1 + o(1))

K(n)∑
k=1

∑
T∈Tk

1

ε2α(T)

(c)

≤ (1 + o(1))

K(n)∑
k=1

∑
T∈Tk

1

ε2nf(k)

(d)

≤ (1 + o(1))K(n)K(n) 1

ε2nf(K(n))
,

where

f(k) :=
µk−1e−µk

k!
. (4.23)

We used in (a) that all (1−ε)α(T)−E [XT] are negative for n large enough, in (b) uniformity
in k ≤ K(n), in (c) the lower bound nf(k) for α(T ), and finally in (d) that k 7→ f(k) is
decreasing since µe−µ < 1.

Taking now e.g. ε = n−1/4, the last fact to check to establish the Lemma is that
KK/f(K) = o(n1/2) when K = K(n) = log1/2(n):

KK/f(K) = KKK!(1/µ)K−1eµK

≤ exp (2K logK + (log(1/µ) + µ)K)

= exp
(

log1/2(n) log log n+ (log(1/µ) + µ) log1/2(n)
)

= o(n1/2).
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4.B.2. Proof of Lemma 4.3.2

Proof. Denote T∞ := |V∞| and T> := |V>|. First notice that for any permutations σi, σj
with i 6= j generated with Algorithm 4.1, we have the following equality:

ov(σi, σj) = T∞ + T> +

K(n)∑
k=1

∑
T∈Tk

k · ov(Σ
(i)
T ,Σ

(j)
T ), (4.24)

where Σ
(i)
T (resp. Σ

(j)
T ) is the tree permutation associated with T in σi (resp. in σj). We

know that T∞ = c(λs)n+ o(n) w.h.p. and by Lemma 4.2.2, T> = o(n) w.h.p.
Define

ov′(σi, σj) :=

K(n)∑
k=1

∑
T∈Tk

k · ov(Σ
(i)
T ,Σ

(j)
T ), (4.25)

the second term in (4.24). We dominate ov′(σi, σj) as follows:

Lemma 4.B.1. If X = ov(Σ
(i)
T ,Σ

(j)
T ),, then for all t ∈ R,

E
[
etX
]
≤ exp(et). (4.26)

Proof.

E
[
etX
]

=
∑
m≥0

etmP(X ≥ m).

Noting that P(X ≥ m) ≤ E
[(
X
m

)]
and that

E
[(
X

m

)]
=

1

m!
E [X(X − 1) . . . (X −m+ 1)]

=
1

m!
k(k − 1) . . . (k −m+ 1)

(k −m)!

k!
=

1

m!

gives

E
[
etX
]
≤
∑
m≥0

etm

m!
≤ exp(et).

Using independence of the X variables, Equation (4.26) of Lemma 4.B.1 give that for all
t ∈ R,

E
[
et·ov′(σi,σj)

]
≤

K(n)∏
k=1

∏
T∈Tk

exp(etk) ≤ exp
(
etK(n)K(n)K(n)+1

)
. (4.27)

Now, we use the classical Chernoff bound, for positive t,

P
(
ov′(σi, σj) ≥ nα

)
≤ exp

(
−tnα + etK(n)K(n)K(n)+1

)
≤ exp

(
− nα

K(n)

[
log

(
n1−α

K(n)K(n)+2

)
− 1

])
,

taking t = 1
K(n) log

(
nα

K(n)K(n)+2

)
. The right hand side tend to 0 for any α ∈ (0, 1), and a
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simple use of the union bound ends the proof.

4.B.3. Proof of Lemma 4.3.3

Proof. Fix t > 0. We use a standard first moment method. We will use the results of Lem-
mas 4.2.2 and 4.3.1, conditioning on the event A where the corresponding results hold. Since
P(A) = 1− o(1), this conditioning is legitimate for our purpose.

Step 1. Let us first control the term F (Sout, σi1 , . . . , σir): edges of Sout are made of exactly
one vertex in V∞,>. There are at most n2 such edges, and the probability for a given edge
of Sout being a common fixed edge of σi1 , . . . , σir is

1
Xr−1

T

, which can be upper-bounded on A

by (nf(K(n)))1−r ≤ n1−r+t/2 by Remark 4.3.1.
Edges of Sout thus have a contribution in E [F (σi1 , . . . , σir)|A] of at most n3−r+t/2.
Step 2. In the edges appearing in F (σi1 , . . . , σir), we consider three cases:

(i) edges of Intra: these are edges made with two vertices in the same tree T =̂ T ∈ T.
On event A, there are at most

K(n)∑
k=1

∑
T∈Tk

XTk
2 ≤ nK(n)

such edges. The probability for a given edge of Intra made of vertices of T ∈ T
being a common fixed edge of σi1 , . . . , σir is 1

Xr−1
T

, which can be upper-bounded by

(nf(K(n)))1−r ≤ n1−r+t/2. Edges of Intra thus have a contribution in E [F (σi1 , . . . , σir)|A]
of at most n2−r+t/2.

(ii) edges of Inter1: these are edges made with two vertices u, v in different trees T 6= T ′

(but that may be ∼ to the same T ∈ T), and verifying u 6' v. There are at most n2

such edges. Since u 6' v, there are only one possibility to map two edges of Inter1.
The probability for a given edge of Inter1 made of vertices of T =̂ T, T ′ =̂ T′ being a
common fixed edge is 1

(XT(XT−1))r−1 , and edges of Inter1 thus have a contribution in
the expectation of at most n4−2r+t/2.

(iii) edges of Inter2: these are edges similar to case (ii), except that their endpoints belong
necessarily to isomorphic trees, and verifying u ' v. There are at most n2 such edges.
Since u ' v, there are two ways to map two edges of Inter2. The probability for a
given edge of Inter2 made of vertices of T, T ′ =̂ T being a common fixed edge is time(

2
XT(XT−1)

)r−1
, and edges of Inter2 thus have a contribution in the expectation of at

most n4−2r+t/2.

Step 3. The first two steps show that E [F (σi1 , . . . , σir)|A] ≤ Cn3−r+t/2 for all t > 0.
Summing over all possible r-tuples of permutations, Markov inequality yields

P (∃r ≥ 4, ∃σi1 , . . . , σir pairwise distinct, F (S, σi1 , . . . , σir) ≥ 1) ≤ o(1) +
∞∑
r=4

prCn3−r+t/2

≤ Cp4nt/2−1 → 0,

for t small enough, and

P
(
∃σi1 , σi2 , σi3 pairwise distinct, F (S, σi1 , σi2 , σi3) ≥ nt

)
≤ o(1) + p3 × Cn−t/2 → 0,
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and

P
(
∃σi1 6= σi2 , F (S, σi1 , σi2) ≥ n1+t

)
≤ o(1) + p2 × Cn−t/2 → 0.

105



4.B. Proofs of Lemmas

106



Chapter 5

From tree matching to sparse graph alignment

In this chapter, we consider alignment of sparse graphs, for which we introduce the Neigh-
borhood Tree Matching Algorithm (NTMA), based on a measure of similarity between trees.
For correlated Erdős-Rényi random graphs, we prove that the algorithm returns – in poly-
nomial time – a positive fraction of correctly matched vertices, and a vanishing fraction of
mismatches. This result holds with average degree of the graphs in O(1) and correlation pa-
rameter s that can be bounded away from 1, conditions under which random graph alignment
is particularly challenging. As a byproduct of the analysis we introduce a matching metric
between trees and characterize it for several models of correlated random trees. These results
may be of independent interest, yielding for instance efficient tests for determining whether
two random trees are correlated or independent1.

This chapter is based on the paper From tree matching to sparse graph alignment [GM20],
published at COLT 2020, a joint work with L. Massoulié.

5.1. Introduction

As seen in the introduction (Section 1.3.4), previously existing methods for Erdős-Rényi
graph alignment only succeed in a dense regime where the mean degree of the graphs is
Ω(log n). When the mean degree is constant, several phenomena occur – degrees do not
concentrate any more and the graph looses its connectivity (see Theorem 1.1), among other
things – and make the performance of standard dense methods collapse.

We recall in particular that results from [CK17, CKMP18] show that in the sparse regime,
there is no hope of recovering π? exactly or almost exactly, or in other words, of perfectly
re-aligning G and H. Nevertheless, their result does not rule out the possibility of partially
recovering the unknown permutation π?. For the applications mentioned earlier in Section
1.3.1, it is at the same time natural to assume that the graphs involved are sparse, and
potentially useful to recover only a fraction of the unknown matches (u, π?(u)).

This motivates the present work, whose goal is to show that partial alignment of sparse
correlated graphs is feasible, and to introduce a polynomial-time algorithm for producing such
partial alignments.

We do not recall here the definition of the correlated Erdős-Rényi model, already intro-
duced in the introduction (see (1.10)), and specified in Section 4.1.1 of Chapter 4 in the
sparse case. We only recall that the parameters of G(n, λ/n, s) are the number of nodes n,
the mean degree λ > 0 and the correlation parameter s ∈ [0, 1]. The vertices of the second
graph G′ are relabeled with a uniform independent permutation π? ∈ Sn, and we observe G
and H := G′π

? .

Notations Let us recall a few notations. For an undirected graph G, denote by V (G) its
set of vertices, E(G) (resp.

−→
E (G) := {(u, v), {u, v} ∈ E(G)}) its set of non-oriented (resp.

1This related problem first appeared in this contribution, and will be the focus of Chapter 6.
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oriented) edges. We use the notations u ←→ v if {u, v} ∈ E(G) and u→ v if (u, v) ∈
−→
E (G).

The usual graph distance in G will be denoted δG. For u ∈ V (G), let NG(u) denote the
neighborhood – the set of neighbors – of v in G, and degG(v) its degree.

For d ≥ 1 we also define BG(v, d) the set of vertices at (graph) distance at most d from
v, and SG(v, d) := BG(v, d) \ BG(v, d− 1) the set of vertices at distance exactly d from v.

For a rooted tree t, we let ρ(t) denote its root node. For any u ∈ V (T ) \ {ρ(t)}, we
let πt(u) denote the parent of node u in T . For d ≥ 1, we note Bd(t) = Bt(ρ(t), d) and
Ld(t) = St(ρ(t), d).

We omit the dependencies in G or t of these notations when there is no ambiguity.

Objectives and main result Our main result is the proposal of the so-called Neighborhood
Tree Matching Algorithm (NTMA hereafter) together with the following

Theorem 5.1. For some λ0 > 1, for all λ ∈ (1, λ0], there exists s∗(λ) < 1 such that, provided
s ∈ (s∗(λ), 1], for (G,H) ∼ G(n, λ/n, s). NTMA returns a matching S = S(G,H) verifying the
following properties with high probability:

|S ∩ {(u, π?(u)), u ∈ [n]}| = Ω(n) and |S \ {(u, π?(u)), u ∈ [n]}| = o(n) . (5.1)

In words, our algorithm returns a set of node alignments which contains a negligible
fraction of mismatches, and Ω(n) good matches, that is performs one-sided partial alignment
(see 1.4.4). This result covers values of λ arbitrarily close to 1, and thus applies to very sparse
graphs. For λs < 1, Erdős-Rényi graphs in our correlated model have connected components
of size at most logarithmic in n, and we saw earlier on in Chapter 4 that there is no hope to
recover a positive fraction of correct matches. This result can be interpreted as follows. For
partial graph alignment of sparse Erdős-Rényi correlated random graphs, there is an “easy
phase” that includes the parameter range {(λ, s) : λ ∈ (1, λ0], s ∈ (s∗(λ), 1]}.

Organization of the chapter The description of the Neighborhood Tree Matching Al-
gorithm and the proof strategy for establishing Theorem 5.1 are given in Section 5.3. Our
algorithm relies essentially on a tree matching operation. To pave the way for Section 5.3, we
introduce in Section 5.2 a notion of matching weight between trees that is key for our algo-
rithm, and can be computed efficiently in a recursive manner. We further obtain probabilistic
guarantees on the matching weights between random trees drawn according to some (corre-
lated) Galton-Watson branching processes. These are instrumental in the proof of Theorem
5.1, but also of independent interest. Indeed we introduce in Section 5.2 a natural hypoth-
esis testing problem on pairs of random trees, for which we obtain a successful test based
on computation of tree matching weights. This last problem will next be the main focus of
Chapter 6.

5.2. Tree matching

In this section, we introduce the matching weight between rooted trees and the related
matching rate. We then establish high probability bounds on the latter for (correlated)
Galton-Watson random trees. We also give an application to a hypothesis testing problem of
correlation detection in trees.

5.2.1. Matching weight of two rooted trees

For any pair of rooted trees (τ, t), we say that a mapping g : V (τ)→ V (t) is tree-preserving
if

• f(ρ(τ)) = ρ(t) (the root of τ is sent onto the root of t), and

• ∀u ∈ V (τ) \ {ρ(τ)}, f(πτ (u)) = πt(f(u)) (the parent of u is matched on the match of
its parent).
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For any d ≥ 0, let Ad denote the collection of rooted trees whose leaves are all of depth
d. Given two rooted trees t and t′ of depth at most d, let {t ∩ t′} denote the collection of
trees τ ∈ Ad such that there exist tree-preserving injective embeddings f : V (τ) → V (t),
f ′ : V (τ)→ V (t′). The matching weight of t and t′ at depth d, as introduced in Section 1.4.4,
is defined as follows:

Wd(t, t
′) := sup

τ∈{t ∩ t′}
|Ld(τ)| , (5.2)

i.e. the size of the largest common subtree of t and t′, measured in terms of the number of
leaves at depth d.

Remark 5.2.1. Note that by definition (5.2),

W0(t, t′) = 1 and W1(t, t′) = max
(
degt(ρ(t)),degt′(ρ(t′))

)
.

ρ ρ′

1

Figure 5.1 – Example of two trees t, t′ with W3(t, t′) = 7, where an optimal t ∈ A3 is drawn in red.

Before going any further, we need to recall and introduce a few new notations. For a
rooted tree t of depth at most d, u ∈ V (t), tu is the downstream subtree of t re-rooted at u.
More generally2 u, v ∈ V (t) such that v → u, tu←v denotes the subtree of t re-rooted at u
where edge {u, v} has been removed, that is the subtree pointed by the oriented edge v → u.

ρ

v

u

1

Figure 5.2 – An example of a tree t and its corresponding tu←v highlighted in blue.

For a given pair of trees t and t′ of depth at most D, for pairs of vertices (u, u′), (v, v′) ∈
V (t)× V (t′) such that v → u, v′ → u′, tu←v and t′u′←v′ are of depth at most d, the matching
weight of edges v → u and v′ → u′ is then defined as:

Wd(u← v, u′ ← v′) := sup
τ∈{tu←v ∩ t′u′←v′}

|Ld(τ)| . (5.3)

Remark 5.2.2. Note that by definition (5.3),

W0(u← v, u′ ← v′) = 1 and W1(u← v, u′ ← v′) = max
(
degt(u), degt′(u

′)
)
− 1 .

2Note that in tree t, tu = tu←ρ(t).
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5.2.2. Recursive computation of Wd

From definition (5.3), doing a first step conditioning, i.e. distinguishing on the matching
of pairs of nodes at depth 1 in both trees, gives the following:

Wd(u← v, u′ ← v′) = sup
m∈M(Nt(u)\{v} ,Nt′ (u′)\{v′})

∑
(w,w′)∈m

Wd−1(w ← u,w′ ← u′) , (5.4)

where for all sets U, V ,M (U, V ) is the set of all partial matchings between U and V , that is
one-to-one mappings m : U0 ⊆ U → V . In the same way, for two trees t, t′ of depth at most
d, we have

Wd(t, t
′) = sup

m∈M(Nt(ρ(t)) ,Nt′ (ρ(t′)))

∑
(u,u′)∈m

Wd−1(u← ρ(t), u′ ← ρ(t′)) . (5.5)

These recursive formulae (5.5) and (5.4) show that matching weights at depth d can be
obtained by computing weights at depth d−1 and solving a linear assignment problem (LAP)
[Kuh55], and yield the following simple recursive algorithm to compute matching weights at
depth d.

Algorithm 5.1: Wd(u← v, u′ ← v′)

1 if d = 0 then
2 return 1;
3 else
4 U ← Nt(u) \ {v} ;
5 V ← Nt′(u′) \ {v′} ;
6 for (w,w′) ∈ E × F do
7 Compute Wd−1(w ← u,w′ ← u′);
8 end
9 Solve the LAP problem W ∗ := supm∈M(U,V )

∑
(w,w′)∈mWd−1(w ← u,w′ ← u′);

10 return W ∗;
11 end

Remark 5.2.3. It is easy to show that computing the matching weight Wd(t, t
′) with the

recursive algorithm 5.1 takes O
(
d2d

max

)
time, where dmax is the maximal degree in t and t′,

which is not polynomial in d.
However, we can do better using dynamic programming, namely storing for all k ∈ [d]

the weights Wk(e, e
′) in a array of size the number of pairs (e, e′) where e and e′ are two

oriented edges in t,t′ (there are 4× |t| × |t′| such pairs). Each time we increase k and update
the array, we solve one LAP for each pair (e, e′), e.g. with the Hungarian algorithm that
running in cubic time complexity [Kuh55]. The size of the – small – matrix on which the
LAP is done does not exceed dmax × dmax, hence updating the array from k to k + 1 is done
in O(|t| × |t′| × d3

max) steps. This gives a time complexity of O
(
d× |t| × |t′| × d3

max

)
, which

is better in general3.

5.2.3. Matching rate of random trees

For each d ≥ 0, let us consider a pair of random trees (Td, T
′
d) sampled according to some

distribution µd (we will further introduce models in the sequel). The matching rate of the
family of distributions {µd}d≥0 is defined as follows

γ({µd}d≥0) :=

3Note that however, if |t|, |t′| = Θ(nα) and dmax = O(logn), which will be the case later in Section 5.3,
then for small values of d and large values of n, the recursive algorithm 5.1 is faster.
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inf
{
γ : ∃m, c, d0 > 0, ∀x ≥ 0, ∀d ≥ d0, µd({(t, t′) :Wd(t, t

′) ≥ mxγd}) ≤ e−(x−c)+
}
.

(5.6)

This important quantity (5.6) captures the asymptotic geometric growth rate of matching
weights of random trees drawn under µd. A simpler alternative definition could have been

γ̃({µd}d≥0) := inf

{
γ : µd({(t, t′) :Wd(t, t

′) ≥ γd}) −→
d→∞

0

}
.

However, definition (5.6) better suits our purpose.

Remark 5.2.4. By definition, note that for any γ > γ({µd}d≥0), µd
(
Wd(t, t

′) ≥ γd
)
con-

verges to 0 very fast, like O
(
exp

(
−c(γ)d

))
with c(γ) > 1, so that γ̃({µd}d≥0) ≤ γ({µd}d≥0).

5.2.4. Models of random trees

We now introduce4 three models of random trees that are relevant to sparse graph align-
ment.

Galton-Watson trees with Poisson offspring The Galton-Watson tree with offspring
Poi(µ) up to depth d, denoted by GW

(µ)
d , is defined recursively as follows. First, the distribu-

tion GW
(µ)
0 is a Dirac at the trivial tree, containing only the root. Then, for d ≥ 1, sample

a number Z ∼ Poi(µ) of independent GW(λ)
d−1 trees, and attach each of them as c children of

the root, to form a tree of depth at most d.

Independent model P(λ)
d Under the independent model P(λ)

d , t and t′ are two independent
GW

(λ)
d , where λ > 0 is the mean number of children in the graph.

Tree augmentation For λ > 0 and s ∈ [0, 1], a (random) (λ, s)−augmentation of a given
tree τ = (V,E), denoted by Aug

(λ,s)
d (τ), is defined as follows. First, to each node u in V

of depth < d, we attach a number Z+
u of additional children, where the Z+

u are i.i.d. of
distribution Poi(λ(1− s)). Let V + be the set of these additional children. To each v ∈ V + at
depth dv, we attach another random tree of distribution GW

(λ)
d−dv , independently of everything

else.

Correlated shifted model P(λ,s,δ)
d In the correlated shifted model P(λ,s,δ)

d , the tree T is
rooted at ρ and T ′ is rooted at ρ′, and ρ′ is also a node of T , at distance δ from its root
ρ. The two trees are generated as follows. First, all nodes u in T on the path from ρ to
the parent of ρ′ in T have, besides their child leading to ρ′, extra Z+

u ∼ Poi(λ) children in
T , and all extra child v at depth dv has an additional offspring in T sampled from GW

(λ)
d−dv .

Then, sample an intersection tree τ? ∼ GW
(λs)
d−δ starting from ρ′. Independently, we finish the

construction of T (resp. of T ′) with a (λ, s)−augmentation of τ? of depth d − δ (resp. of
depth d). See Figure 5.3 for an illustration. We denote (T, T ′) ∼ P(λ,s,δ)

d .

Correlated model P(λ,s)
d It is the previous model with δ = 0, so that the two correlated

trees T and T ′ have same root ρ. We denote (T, T ′) ∼ P(λ,s)
d . In other words, the correlated

model P(λ,s)
d is built as follows: starting from an intersection tree τ? ∼ GW

(λs)
d , and T and

T ′ are obtained as two independent (λ, s)−augmentations of τ?. We denote (T, T ′) ∼ P(λ,s)
d .

In all these models, the labels of the trees T and T ′ are always forgotten, or randomly
uniformly re-sampled. We however still distinguish the roots af the two trees. It can easily
be verified that the marginals of T and T ′ are the same under P(λ)

d and P(λ,s)
d , namely GW

(λ)
d .

The parameters are λ, the mean number of children of a node, and the correlation s.
4Some of them are already mentioned in the introduction, see Section 1.4.
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ρ
ρ′

1

Figure 5.3 – Random trees T (blue) and T ′ (red) from model P(λ,s,δ)
d with δ = 3.

We now move to the analysis of matching rates for these models, which as explained
before are crucial quantities which can help discriminate between the independent and the
correlated setting.

5.2.5. Matching rate of independent and correlated Galton-Watson trees

Proposition 5.2.1. Let λ > 1 and s ∈ [0, 1] such that λs > 1. Then, letting γ(λ, s) :=

γ({P(λ,s)
d }d≥0), we have:

γ(λ, s) ≥ λs.

Proof. Let τ? be the intersection tree between T and T ′. Branching process theory implies
that (λs)−d

∣∣Ld(τ?)∣∣ converges almost surely to a random variable Z as d → ∞, such that
P (Z > 0) = 1 − pext, with pext the extinction probability of the branching tree τ?. Since
pext < 1 when λs > 1, and for every small enough ε > 0,

lim
d→∞

P(λ,s)
d

(
Wd(T, T

′) ≥ (λs(1− ε))d
)
≥ 1− pext > 0 ,

the result follows.

Theorem 5.2. Let γ(λ) := γ({P(λ)
d }d≥0). There exists λ0 > 1 such that for all λ ∈ (1, λ0],

we have
γ(λ) < λ. (5.7)

Evaluations of γ(λ) by simulations, confirming and illustrating Theorem 5.2, are provided
in Appendix 5.A.1.

Outline of proof of Theorem 5.2. The full proof of Theorem 5.2 is detailed in Appendix
5.B.1, but we here give the key steps. We introduce some notations. First, for a tree t of
depth at most d, let rd(t) denote the tree obtained by iteratively pruning leaves of depth
strictly less than d. When computing Wd(t, t

′), the only informative subtrees are precisely in
rd(t) and in rd(t′), one of these being empty if t or t′ doesn’t survive up to depth d. In the
rest of the chapter, we define Td the random variable rd(T ) where T is conditioned to survive
up to depth d.

Consider (T, T ′) ∼ P(λ)
d . We let Ed (respectively, E ′d) denote the event that tree T (respec-

tively, T ′) becomes extinct before d generations, i.e. Ld(T ) = ∅ (respectively, Ld(T ′) = ∅).
We let pd = P(Ed) = P(E ′d). It is well known that it satisfies the recursion

p0 = 0, pd = e−λ(1−pd−1).
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We now state a lemma on the structure of Td.

Lemma 5.2.1. For any λ > 1, Td can be constructed by first sampling the number of children
D of the root ρ(T ) according to distribution

P(D = k) = 1k>0
P(Poi(λ(1− pd−1)) = k)

P(Poi(λ(1− pd−1)) > 0)
=: qd,k,

and then attaching D independent copies of Td−1 to the D children of ρ(T ).

Proof of Lemma 5.2.1. For a tree t, we identify t to (t1, . . . , tk) the tuple of offsprings of its
k children. Write, defining D the number of children of ρ(T ), fixing k ≥ 1, t1, . . . , tk ∈ Ad−1,
and letting S = i1 < . . . < ik run over all k subsets of [`]:

P(Td = (t1, . . . , tk)) =
∑
`≥0

P(Td = (t1, . . . , tk), D = `)

=
∑
`≥k

∑
S

P
(
D = `, rd(Tij ) = tj , j ∈ [k], rd(T

v) = ∅, v /∈ S
∣∣Ed)

=
1

1− pd

∑
`≥k

(
`

k

)
e−λ

λ`

`!
p`−kd−1

k∏
j=1

P(Td−1 = tj)(1− pd−1)

=
1

1− pd
(λ(1− pd−1))k

k!

k∏
j=1

P(Td−1 = tj)
∑
`≥k

e−λ
(λpd−1)`−k

(`− k)!

=
e−λ(1−pd−1)

1− pd
(λ(1− pd−1))k

k!

k∏
j=1

P(Td−1 = tj) .

The conclusion follows by noting that 1− pd = 1− e−λ(1−pd−1).

Assume ε = λ− 1 to be small enough. Fix r ∈ (0, 1), let γ = 1 + rε. We first show using
exponential moments that there exist m, c > 0 and d0 > 0 such that for all x > 0

P
(
Wd0

(
Td0 , T

′
d0

)
≥ mx

)
≤ e−x+c.

Then we define the random variables

Xd := γ−(d−d0)m−1Wd

(
Td, T

′
d

)
.

Then, considering the number D of children of the root in Td (resp. D′ in T ′d), using the
previous lemma, one can establish, for all x > 0, a recursive formula of the following form

P (Xd ≥ x) ≤
∑
k,`≥1

qd,kqd,`P

∃m ∈M ([k], [`]) ,
∑

(i,u)∈m

Xd−1,i,u ≥ γx

 ,

where the Xd−1,i,u are i.i.d. copies of Xd−1. The union bound yields

P (Xd ≥ x) ≤
∑
k,`≥1

qd,kqd,` min

(
1, (k ∨ `)k∧` × P

(
k∧∑̀
i=1

Xd−1,i,u ≥ γx

))
,

where mp := m(m − 1) . . . (m − p + 1) = m!
(m−p)! . This inequality enables, with a few more

technical steps (see 5.B.1), to propagate recursively the inequality

P (Xd ≥ x) ≤ e−(x−c)+ .
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5.2.6. Implications for a hypothesis testing problem

Let a pair of trees (T, T ′) be distributed according to P(λ)
d under the null hypothesis H0,

and according to P(λ,s)
d under the alternative hypothesis H1. They are thus independent

under H0, and correlated under H1. Consider the following test:

Decide H0 if Wd(T, T
′) < γd, H1 otherwise.

Assume that γ(λ) < γ < λs. Then in view of Remark 5.2.4 and Theorem 5.2 one has for
some c(γ) > 1:

P
(
decide H1

∣∣H0

)
= O(e−c(γ)d),

thus a super-exponential decay of the probability of false positive (first type error). Con-
versely, in view of Proposition 5.2.1, noting τ? the intersection tree under H1, one has

P
(
decide H0

∣∣H1, non-extinction of τ?
)

= od(1).

The false negative probability of this test thus also goes to zero, provided the intersection
tree survives. As we will see in next section, this hypothesis testing problem on a pair of
random trees is related to our original graph alignment problem much as the so-called tree
reconstruction problem, reviewed in [MP03], is related to community detection in sparse
random graphs (see e.g. [BLM15]). This fundamental correspondence is studied in detail in
Chapter 6.

5.2.7. Matching rate of correlated shifted trees

Theorem 5.3. Let γ(λ, s, δ) := γ({P(λ,s,δ)
d }d≥0). There exists λ0 > 1 such that for all

λ ∈ (1, λ0] we have
sup
δ≥1

γ(λ, s, δ) < λ. (5.8)

Evaluations of γ(λ, s, δ) by simulations, confirming and illustrating Theorem 5.3, are
provided in Appendix 5.A.1.

Outline of proof of Theorem 5.3. The full proof of Theorem 5.3 is detailed in Appendix
5.B.2, but we here give the key steps. The proof will again be by induction on d, the initial
step being established with the same argument as in the proof of Theorem 5.2. The difference
ε = λ− 1 is assumed to be small enough. We fix r ∈ (0, 1), and we let γ = 1 + rε′. We now
work with the random variables

X ′d := γ−(d−d0)m−1Wd

(
Td, T

′
d

)
,

conditionally on the event that the path from ρ to ρ′ survives down to depth d in T . Then,
considering D the number of children of ρ in Td, D′ the number of children of ρ′ in T ′d that are
in the intersection tree Td ∩ T ′d, and D′′ the number of children of ρ′ in T ′d \ Td, we establish
for all x > 0 a recursive formula of the following form

P
(
X ′d ≥ x

)
≤
∑
k,`≥1

P
(
D′ +D′′ = k,D = `

)
min

(
1, (k ∨ `)k∧` P

(
X ′d−1 +

k∧`−1∑
i=1

Xd−1,i,u ≥ γx

))
,

where the Xd−1,i,u are i.i.d. copies of Xd−1 as defined in the proof of Theorem 5.2. Again,
with a few more technical steps (see 5.B.2), we are able to propagate recursively the inequality

P
(
X ′d ≥ x

)
≤ e−(x−c)+ .
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5.3. Sparse graph alignment by matching trees

We now describe our main algorithm and its theoretical guarantees. For simplicity we
assume that the underlying permutation π? is the identity.

5.3.1. Neighborhood Tree Matching Algorithm (NTMA), main result

The main intuition for the NTMA algorithm is as follows. In order to distinguish matched
pairs of nodes (u, u′), we consider their neighborhoods at a certain depth d, that are close
to Galton-Watson trees. In the case where the two vertices are actual matches, the largest
common subtree measured in terms of children at depth (exactly) d is w.h.p. of size ≥ (λs)d.
However, when the two nodes u and u′ are sufficiently distant in the union graph aligned
with the ground truth, G ∩G′, previous study of matching rates shows that the growth rate
of largest common subtree will be < λs. The natural idea is thus to apply the test comparing
Wd(BG(u, d),BH(u′, d)) to γd for some well-chosen γ to decide whether u is matched to u′.

However, as the reader may have noticed, testing Wd(BG(u, d),BH(u′, d)) > γd is not
enough, because two-hop neighbors in G ∩ G′ would dramatically increase the number of
incorrectly matched pairs, making the performance collapse. To fix this, we use the dangling
trees trick : instead of just looking at their neighborhoods, we look for the downstream trees
from two distinct neighbors v 6= w of u, and v′ 6= w′ of u′. The trick is now to compare both
Wd−1(v ← u, v′ ← u′) and Wd−1(w ← u,w′ ← u′) to γd−1. This way, even if u 6= u′ and u
and u′ are close by, the pairs of rooted trees that can be considered will lead to one of the
four cases considered and illustrated on Figure 5.4, that are settled in the proof of Theorem
5.5.

Our algorithm is as follows, where matching tree weights Wd−1(j ← i, v ← u) are defined
in (5.3):

Algorithm 5.2: Neighborhood Tree Matching Algorithm for sparse graph alignment
1 Input: Two graphs G and H of size n, average degree λ, depth d, parameter γ.
2 Output: A set of pairs S ⊂ V (G)× V (H).
3 S ← ∅
4 for (u, u′) ∈ V (G)× V (H) do
5 if BG(u, d) and BH(u′, d) contain no cycle, and

∃v 6= w ∈ NG(u), ∃v′ 6= w′ ∈ NH(u′) such that Wd−1(v ← u, v′ ← u′) > γd−1

and Wd−1(w ← u,w′ ← u′) > γd−1 then
6 S ← S ∪ {(u, u′)}
7 end
8 end
9 return S

Remark 5.3.1. For d = bc log nc, in view of Remark 5.2.3, with high probability the com-
plexity of NTMA is

O
(
|V (G)| |V (H)| (log n)2n2c log λd2

max

)
+O

(
|E(G)| |E(H)| (log n)d3

max

)
,

where dmax is the maximum degree in G and H. In the context of Theorems 5.4 and 5.5 the
complexity is then O

(
(log n)4n5/2

)
.

The two results to follow will readily imply Theorem 5.1.

Theorem 5.4. Let (G,H) ∼ G(n, λ/n, s) be s−correlated Erdős-Rényi graphs such that
λs > 1. Let d = bc log nc with c log (λ (2− s)) < 1/2. Then for γ ∈ (1, λs), with high
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probability, if S denotes the matching returned by NTMA,

1

n

∑
u∈[n]

1{(u,u)∈S} = Ω(1). (5.9)

In other words, a non vanishing fraction of nodes is correctly recovered by NTMA (Algorithm
5.2).

Theorem 5.5. Let (G,H) ∼ G(n, λ/n, s) be two s−correlated Erdős-Rényi graphs. Assume
that γ0(λ) := max

(
γ(λ), supδ≥1 γ(λ, s, δ)

)
< λs, and that d = bc log nc with c log λ < 1/4.

Then for γ ∈ (γ0(λ), λs), with high probability,

err(n) :=
1

n

n∑
u=1

1{∃u′ 6=u, (u,u′)∈S} = o(1) , (5.10)

i.e. only at most a vanishing fraction of nodes are incorrectly matched by NTMA (Algorithm
5.2).

Remark 5.3.2. The set S returned by the NTMA is not necessarily a matching. Let S ′ be
obtained by removing all pairs (i, u) of S such that i or u appears at least twice. Theorems
5.4 and 5.5 guarantee that S ′ still contains a non-vanishing number of correct matches and a
vanishing number of incorrect matches. Theorem 5.1 easily follows. Simulations of NTMA–2,
a simple variant of of NTMA, are reported in Appendix 5.A.2. These confirm our theory, as
the algorithm returns many good matches and few mismatches.

5.3.2. Proof of Theorems 5.4 and 5.5

We start by stating Lemmas, adapted from [Mas14] and [BLM15] and proven in Appendix
5.C, that are instrumental in the proofs of Theorems 5.4 and 5.5.

Lemma 5.3.1 (Control of the sizes of the neighborhoods). Let G ∼ G(n, λ/n), d = bc log nc
with c log λ < 1. For all γ > 0, there is a constant C = C(γ) > 0 such that with probability
1−O (n−γ), for all u ∈ [n], t ∈ [d]:

|SG(u, t)| ≤ C(log n)λt. (5.11)

Lemma 5.3.2 (Cycles in the neighborhoods in an ER graph). Let G ∼ G(n, λ/n), d =
bc log nc with c log λ < 1/2. There exists ε > 0 such that for any vertex u ∈ [n], one has

P (BG(u, d) contains a cycle) = O
(
n−ε

)
. (5.12)

Lemma 5.3.3 (Two logarithmic neighborhoods are typically size-independent). Let G ∼
G(n, λ/n) with λ > 1, d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that
for any fixed nodes u 6= v, the variation distance between the joint law of the neighborhoods
L
(

(SG(u, t),SG(v, t))t≤d

)
and the product law L

(
(SG(u, t))t≤d

)
⊗ L

(
(SG(v, t))t≤d

)
tends

to 0 as O (n−ε) for some ε > 0 when n→∞.

Lemma 5.3.4 (Coupling the |SG (i, t)| with a Galton-Watson process). Let G ∼ G(n, λ/n),
d = bc log nc with c log λ < 1/2. For a fixed u ∈ [n], the variation distance between the law
of (|SG(u, t)|)t≤d and the law of (Zt)t≤d where (Zt)t is a Galton-Watson process of offspring
distribution Poi(λ) tends to 0 as O (n−ε) when n→∞.

Proof of Theorems 5.4 and 5.5

Proof of Theorem 5.4. Define the joint graph G∪ = G ∪ G′. We recall that we assume that
π? = id, without loss of generality, hence H = G′. For u ∈ [n], let Mu denote the event
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that the algorithm matches u in G with u in H, i.e. on which BG(u, d) and BH(u, d) contain
no cycle, and ∃v 6= w ∈ NG(u),∃v′ 6= w′ ∈ NH(u) such that Wd−1(v ← u, v′ ← u) > γd−1

and Wd−1(w ← u,w′ ← u) > γd−1. Denote by C∪,u,d the event that there is no cycle in
BG∪(u, d).

With the same arguments as in the proof of Lemma 5.3.4, the two neighborhoods BG(u, d)

and BH(u, d) can be coupled with trees distributed as P(λ,s)
d of Section 5.2. However, we will

instead consider the intersection graph G∩ = G ∩ H. Obviously, G∩ ∼ G(n, λs/n). By
Lemma 5.3.4, the random variables |SG∩(u, t)| can be coupled with a Galton-Watson process
with offspring distribution Poi(λs) up to depth t = d. Let Pu denote the event that this
coupling succeeds. Since λs > 1, there is a probability 2α > 0 that the first generation has
at least two children whose offsprings survive up to depth d − 1. Note S this event. On
event S, the matching given by the identity on the intersection tree implies the existence
of two neighbors v 6= w ∈ NG(u) and v′ 6= w′ ∈ NH(u) such that with high probability
Wd−1(v ← u, v′ ← u) > γd−1 and Wd−1(w ← u,w′ ← u) > γd−1, by standard martingale
arguments, as in Proposition 5.2.1. This gives the lower bound for P(Mu):

P(Mu) ≥ P (C∪,u,d ∩ Pu ∩ S) ≥ 2α− o(1) > α > 0.

It is easy to see that G∪ ∼ G(n, λ(2− s)/n). For u 6= v ∈ [n], define Iu,v the event on which
the two neighborhoods of u and v in G∪ coincide with their independent couplings up to
depth d. By lemma 5.3.3, P(Iu,v) = 1− o(1). Then for 0 < ε < α Markov’s inequality yields

P

 1

n

∑
u∈[n]

1{(u,u)∈S} < α− ε

 ≤ P

∑
u∈[n]

(P(Mu)− 1Mu) > εn

 (5.13)

≤ 1

n2ε2
(nVar (1M1) + n(n− 1)Cov (1M1 ,1M2)) (5.14)

≤ Var (1M1)

nε2
+

1− P (I1,2)

ε2
→ 0. (5.15)

Proof of Theorem 5.5. Define

dmax := max

(
max
u

degG(u),max
u′

degH(u′)

)
.

We use the same notations as in the former proof: G∪ = G∪H and G∩ = G∩H. Fix u ∈ [n].
In the rest of the proof we work conditionally to the event C∪,u,2d that BG∪(u, 2d) has no
cycle. Since c log λ < 1/4, P (C∪,u,2d) = 1− o(1) by Lemma 5.3.2.

Fix another vertex u′ 6= u. The d−neighborhoods BG(u, d) and BH(u′, d) have offspring
distribution stochastically dominated by Bin(n, λ/n), which is also dominated by Poi(λ′) as
soon as λ′ = λ + O(1/n) (see e.g. [KM09]). We can choose λ′ such that γ > γ(λ′, 0) still
holds: indeed, by a standard coupling argument, one can see that γ : λ 7→ γ(λ) is increasing.
We now build two dominating (in the usual edge presence sense) tree-like d−neighborhoods
of i and u with the following construction.

• First, if the two neighborhoods do not intersect, we simply sample two independent
trees from model P(λ′)

d rooted in u and in u′.

• If the two neighborhoods intersect, condition to the event that α is the contact point in
the path p∪ (unique by conditioning on C∪,u,2d) from u to u′ in the joint graph. Then
there is a path of edges of G (say, blue) from u to α, then a path of edges of H (say, red)
from α to u′. Next, complete this construction: along p∪, propagate the blue path from
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5.3. Sparse graph alignment by matching trees

α towards u′ with probability s on each edge, stopping at the first time when one red
edge is not selected. Do the symmetrical construction to propagate the red path from α
towards u. Finally, to each double-colored vertex w, attach independent realizations of
model P(λ′,s)

d(w) of adapted depth, and to each single-colored vertex z, attach independent

realizations of model P(λ′)
d(z) of adapted depth.

Note that these constructions lead to at most one path p∪ between u and v′ in BG(u, d) ∪
BH(u′, d), so a fortiori in BG(u, d) ∩ BH(u′, d). Denote by p∩ this hypothetical path (cf.
Figure 5.4). We then distinguish between several cases.

w
u

v

w′
u′

v′

v
u

w
w′

u′

v′

u

w

v

w′
u′

v′

v
u

w
w′

u′

v′

1

Figure 5.4 – Possible realizations of BG(u, d) (blue) and BH(u′, d) (red), with distinct cases (i) (top
left), (ii) (top right), (iii.a) (bottom left) and (iii.b) (bottom right).

Case (i): δG∪(u, u′) > 2d (Figure 5.4, top left), i.e. BG(u, d) ∩ BH(u′, d) = ∅. The
construction gives a coupling with two independent trees from model P(λ)

d . By assump-
tion γ(λ) < λs, the probability that there exist v in NG(u) and v′ in NH(u′) such that
Wd−1(v ← u, v′ ← u′) > γd−1 is upper bounded by O

(
d2

max exp (−nε)
)
, following Remark

5.2.4. Hence u is matched to u′ with at most this probability.

Case (ii): δG∪(u, u′) ≤ 2d but p∩ does not exist (see Figure 5.4, top right). Take v 6= w
two neighbors of u and v′ 6= w′ two neighbors of u′. Then (at least) one of these vertices is
not on p∪ (e.g. vertex v on Figure 5.4): the downstream tree from this vertex is independent
from every other neighborhood in the other graph. They can be coupled with model P(λ)

d ,
and the same bound as in case (i) holds.

Now assume that p∩ exists, and let v 6= w two neighbors of u and v 6= v′ two neighbors
of u′.

Case (iii.a): at least one of the edges {u, v}, {u,w}, {u′, v′}, {u′, w′} is not in G∩ (e.g.
edge (u, v) on Figure 5.4, bottom left): again, the same argument applies.

Case (iii.b): Edges {u, v}, {u,w}, {u′, v′}, {u′, w′} are all in G∩ (see Figure 5.4, bottom
right). Then one pair of vertices (say (w,w′) as on Figure 5.4) can be on p∩ and bring a high
Wd−1(w ← u,w′ ← u′) > γd−1 matching weight, if their descendants spread over a great part
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of the intersection. In that case, since v and v′ can’t be on p∩, the associated downstream
trees are independent, and again Wd−1(j ← i, v ← u) < γd−1 with high probability.

The remaining subcase to be considered is that of matches (v, w′) and (w, v′), with w,w′ on
p∩. All trees involved are then correlated. However, the coupling construction induces a cou-
pling of the two pairs of (d−1)−neighborhoods (from (v, w′) and from (w, v′), see Figure 5.4)
with two pairs of trees from model GW (λ′, s, δ) where δ = |p∩|. We assume in the Theorem
that γ(λ, s, δ) < λs so by Theorem 5.3, the probability that Wd−1(v ← u,w′ ← u′) > γd−1

and Wd−1(w ← u, v′ ← u′) > γd−1 is upper bounded by O (exp (−nε)).

Thus, for u fixed, one has

P
(
∃u′ 6= u, (u, u′) ∈ S

)
≤ 1− P (C∪,u,2d) + n× P (C∪,u,2d)× d2

max ×O (exp (−nε)) = o(1).

The theorem then follows by appealing to Markov’s inequality.
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Appendix of Chapter 5

5.A. Numerical experiments

5.A.1. Simulations for tree matching

We here present some simulations of matching rates γ(λ) (Figure 5.5) and γ(λ, s, δ) for
s = 1 (Figure 5.6) in order to illustrate Theorems 5.2 and 5.3 and the final conjecture. For
these simulations, error bars correspond to one standard deviation.

(a) – λ = 1.2, log λ ∼ 0.18. Red
dashed slope ∼ 0.12

(b) – λ = 2.2, log λ ∼ 0.79. Red
dashed slope ∼ 0.65

(c) – λ = 3.2, log λ ∼ 1.16. Red
dashed slope ∼ 1.03

Figure 5.5 – Comparison of d log λ (blue) and logWd(T, T
′) (red) for Wd(T, T

′) ∼ P(λ)
d conditioned

to survive (100 iterations)

(a) – λ = 2.1, log λ ∼ 0.74, δ = 1.
Red dashed slope ∼ 0.63

(b) – λ = 2.1, log λ ∼ 0.74, δ = 2.
Red dashed slope ∼ 0.63

(c) – λ = 2.1, log λ ∼ 0.74, δ = 5.
Red dashed slope ∼ 0.62

Figure 5.6 – Comparison of d log λ (blue) and logWd(T, T
′) (red) for Wd(T, T

′) ∼ P(λ,s,δ)
d with s = 1,

conditioned to survive (50 iterations)
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5.A.2. Simulations for a simple variant algorithm of NTMA

We here present some simulations of simple variant algorithm of NTMA, NTMA–2, which
happens to be more efficient in practice. The Algorithm NTMA–2 is as follows.
Algorithm 5.3: NTMA–2
1 Input: Two graphs G and H of size n, average degree λ, depth d, parameter γ.
2 Output: A set of pairs S ⊂ V (G)× V (H).
3 S ← ∅
4 for (u, u′) ∈ V (G)× V (H) do
5 if BG(u, d) and BH(u′, d) contain no cycle, and if, denoting

Wd(u, v
′) := 1BG(u, d) and BH(v′, d) contain no cycleWd(BG(u, d),BH(v′, d)) ,

one has Wd(u, u
′) > γd, Wd(u, u

′) = maxvWd(v, u
′) and

Wd(u, u
′) = maxv′Wd(u, v

′) then
6 S ← S ∪ {(u, v′)}
7 end
8 end
9 for (u, u′) 6= (v, v′) ∈ S do

10 if u = v then
11 S ← S \ {(u, y), y ∈ V (H)}
12 end
13 if u′ = v′ then
14 S ← S \ {(x, u′), x ∈ V (G)}
15 end
16 end
17 return S

This algorithm only selects rows and columns weight maximums and match the corre-
sponding pairs. The last part ensures that S is a matching. For these simulations, error
bars correspond to a confidence interval for the mean value of scores. In Figures 5.7 and
5.8 we compare the scores of NTMA–2 for s = 0.95 with the isomorphism case s = 1.0, for
different values of n. We illustrate the fact that nearly no vertex is mismatched, whereas a
non-negligible fraction of nodes is indeed recovered. In Figure 5.9, we compare the scores of
NTMA–2 for fixed n but varying s, illustrating the existence of a ’critical’ parameter s∗(λ).

5.B. Detailed proofs for Section 5.2

5.B.1. Proof of Theorem 5.2

Proof of Theorem 5.2. We first state an easy corollary:

Corollary 5.B.1. For any d ≥ 1, the random variable X = |Ld (Td)| is such that E
[
eθX

]
<

∞ for all θ > 0.

Proof. This is easily seen by induction, based on the structure of Td given in Lemma 5.2.1.

Recall that we let Ed (respectively, E ′d) denote the event that tree T (respectively, T ′)
becomes extinct before d generations, i.e. Ld(T ) = ∅ (respectively, Ld(T ′) = ∅). We let
pd = P(Ed). It is well known that it satisfies the recursion

p0 = 0, pd = e−λ(1−pd−1),

and converges monotonically to the smallest root in [0, 1] of x = e−λ(1−x). This root, that we
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(a) – s = 0.95

(b) – Isomorphism case, s = 1.0

Figure 5.7 – Mean score of NTMA–2 for λ = 2.1, d = 5 (25 iterations per value of n)

denote pe, is the probability of ultimate extinction. For small enough ε = λ− 1, it holds that

pe = 1− 2ε+O(ε2),

as can be seen by analysis of the fixed point equation satisfied by pe. Let then d0 be such
that for all d ≥ d0, pd = 1− 2ε+ O(ε2). Clearly, on the event Ed ∪ E ′d, the set of matchings
M(T, T ′) is empty, so that Wd(T, T

′) = 0. Recall that we define Td the random variable
rd(T ) where T is conditioned to survive up to depth d.
Now fix r ∈ (0, 1). We shall prove that for sufficiently small ε > 0, letting γ = 1 + rε, there
exists some constants c,m, d0 > 0 such that for all x > 0, all d ≥ d0, one has

P
(
Wd(Td, T

′
d) ≥ γd−d0mx

)
≤ e−(x−c)+ . (5.16)

We proceed by induction over d − d0. To initialize the induction, notice that one obviously
has Wd0(Td0 , T

′
d0

) ≤ |Ld0(Td0)| =: X. By Corollary 5.B.1, for all m,x, θ > 0, one has:

P
(
Wd0(Td0 , T

′
d0) > mx

)
≤ P(X > mx) ≤ EeθXe−θmx.

Let now θ = 1/m. By taking m sufficiently large, from dominated convergence we can make

123



5.B. Detailed proofs for Section 5.2

(a) – s = 0.95

(b) – Isomorphism case, s = 1.0

Figure 5.8 – Mean score of NTMA–2 for λ = 3.1, d = 4 (25 iterations per value of n)

Ee(1/m)X as close to 1 as we like. Choose for instance m such that Ee(1/m)X ≤ 2. Then

P(Wd0(Td0 , T
′
d0) > mx) ≤ 2e−x ≤ e−x+c.

for any c ≥ ln(2). Hence, for sufficiently large m, we can initialize the induction at d = d0

with any c ≥ ln(2).

Recall we set γ = 1 + rε. Define the random variables

Xd := γ−(d−d0)m−1Wd

(
Td, T

′
d

)
.

Let D (resp. D′) denote the number of children of the root in Td (resp. D′ in T ′d). Given D
and D′, noting Td = (Td−1,1, . . . , Td−1,D) and T ′d =

(
T ′d−1,1, . . . , T

′
d−1,D′

)
, we have that

Wd(Td, T
′
d) = sup

m∈M([D],[D′])

∑
(i,u)∈m

Wd−1(Td−1,i, T
′
d−1,u),

whereM([D], [D′]) denotes the set of all (D ∨D′)D∧D′ maximal injective mappings between
E0 ⊆ [D] and [D′]. Let

Xd−1,i,u := γ−(d−1−d0)m−1Wd−1(Td−1,i, T
′
d−1,u).

Note that conditional on D and D′, for each matching m ∈ M([D], [D′]), the variables
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(a) – s = 0.95

(b) – Isomorphism case, s = 1.0

Figure 5.9 – Mean score of NTMA–2 with different values of s (25 iterations per value of n)

(Xd−1,i,u)(i,u)∈m are i.i.d. with the same distribution as Xd−1. The induction hypothesis
states that each Xd−1,i,u is less, for the strong stochastic ordering of comparison of cumulative
distribution functions, than c plus an exponential random variable with parameter 1. With
an easy union bound, we can derive the following bounds:

P (Xd > x) ≤
∑

1≤k≤`<∞
P
(
D ∧D′ = k,D ∨D′ = `

)
min

(
1, `k P (E1 + . . .+ Ek > γx− kc)

)
,

(5.17)
where E1, . . . , Ek are independent exponential random variables of parameter 1. Lemma 5.2.1
states that

P(D = k) = e−λ(1−pd−1)λ
k(1− pd−1)k

k! (1− pd)
=: qd,k.

We can increase d0 such that for some constant κ > 0, for all d ≥ d0:

qd,1 ≤ 1− ε+ κε2, qd,k ≤
(3ε)k−1

k!
, k ≥ 2.

Note that for x ≤ c, there is nothing to prove in (5.16), since a probability is always upper-
bounded by 1. We thus only need to consider the case x > c. We conclude the proof of this
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Theorem by appealing to the following technical Lemma, proved later on in Appendix 5.B.3:

Lemma 5.B.1. Let κ,C > 0 and r ∈ (0, 1) be given constants. Then there exists c > 0
large enough and ε0 > 0 such that, for all ε ∈ (0, ε0), letting γ = 1 + rε, q1 = 1 − ε + κε2,
qk = (Cε)k−1/k! for k ≥ 2, one has

∀x > c,
∑
k,`≥1

qkql min
(

1, (k ∨ `)k∧` P (E1 + . . .+ Ek∧` > γx− (k ∧ `)c)
)
≤ e−(x−c), (5.18)

where the Ei are independent exponential random variables of parameter 1.

Its assumptions are indeed verified here with C = 3, so (5.16) can be propagated by using
this Lemma in (5.17), and the conclusion of Theorem 5.2 follows.

5.B.2. Proof of Theorem 5.3

Proof of Theorem 5.3. We assume that λ = 1 + ε. We fix r ∈ (0, 1), and we let γ = 1 + rε

for some fixed r ∈ (0, 1). We work with trees such that (T, T ′) ∼ P(λ,s,δ)
d . If we assume that

the path from ρ to ρ′ does not survive down to depth d in T , then this path is no more
present in Td, and the two trees Td and T ′d can be coupled with two trees T̃d and T̃ ′d where
(T̃ , T̃ ′) ∼ P(λ)

d , and we are in the case of Theorem 5.2.
In the following proof, we will thus condition to the event Sρ,d that the path from ρ to ρ′

survives down to depth d in T . Recall that the tree Td (resp. Td) is obtained, conditionally
on the fact that T (resp. in T ′) survives down to depth d, by suppressing nodes at depth
greater than d in T (resp. in T ′), and then pruning alternatively leaves of depth strictly less
than d. As in the proof of Theorem 5.2, we shall establish that for sufficiently small ε > 0,
there exist constants c,m, d0 > 0 such that for all x > 0, all d ≥ d0, one has

P
(
Wd(Td, T

′
d) ≥ γd−d0mx

∣∣Sρ,d) ≤ e−(x−c)+ . (5.19)

Define the random variables

X ′d := γ−(d−d0)m−1Wd

(
Td+δ, T

′
d

)
,

conditional on Sρ,d. The proof will again be by induction on d, the initial step being estab-
lished with the same argument as in the proof of Theorem 5.2. Note that this argument does
not depend on δ.

Denote by D the number of children of ρ in Td, D′ the number of children of ρ′ in T ′d
that are in the intersection tree Td ∩ T ′d, and D′′ the number of children of ρ′ in T ′d \ Td. By
branching property, note that these three variables are independent.

Recall that pd denotes the probability that a Galton-Watson tree with offspring Poi(λ)
becomes extinct before d generations. Then, conditionally on Sρ,d, the random variables
D,D′ and D′′ have the following distributions:

D ∼ 1 + Poi (λ (1− pd−1)) , D′ ∼ Poi (λs (1− pd−1)) ,

D′′ ∼ Poi (λ(1− s) (1− pd−1)) , conditionally on D′ +D′′ > 0.

We show an illustration on Figure 5.10.
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ρ
ρ′

ρ
ρ′

1

Figure 5.10 – Random trees T (blue) and T ′ (red) from Figure 5.3 (left), and the results Td and T ′d
after applying rd (right). In this example, δ = 3 and d = 6, D = 2, D′ = 2 and D′′ = 1.

We condition on the values `, k′, k′′ taken by D,D′, D′′. The number of maximal one-to-
one mappings between the children of ρ in Td and those of ρ′ in T ′d is given by [(k′ + k′′) ∨
`](k

′+k′′)∧`, and each of them is of size `∧ (k′+k′′). Note here again that for a fixed matching
between the children of ρ and ρ′, the weights of the matched subtrees are independent. We
distinguish between several cases (to help understand these cases, the reader could keep
Figure 5.10 in mind):

• For a child u of ρ that is not on the path to ρ′, the corresponding subtrees are in-
dependent so that the corresponding weight is distributed as Wd−1(T̃d−1, T̃

′
d−1) in the

independent model P(λ)
d .

• If the child of ρ on the path to ρ′ is matched with a child of ρ′ that is not in the
intersection tree, again the corresponding weight is similarly distributed.

• Finally, if the child u of ρ leading to ρ′ is matched to a child u′ of ρ′ in the intersection
tree, setting the new root at ρ̃ := u in T and at ρ̃′ := u′ in T ′, the corresponding weight
has the same distribution asWd−1(Td−1, T

′
d−1) in the model P(λ,s,δ)

d−1 , still conditioned to
Sρ̃,d−1. Indeed, there is a path from ρ̃ to ρ̃′, and the corresponding Poisson distributions
are conserved.

The induction hypothesis for case 3, together with Theorem 5.2 for cases 1 and 2, therefore
give us:

P
(
X ′d ≥ x

)
≤
∑
k,`

P
(
D′ +D′′ = k,D = `

)
min

(
1, (k ∨ `)k∧` P (E1 + . . .+ Ek∧` > γx− (k ∧ `)c)

)
,

where the Ei are independent exponential random variables of parameter 1. Assume, as in
the proof of Theorem 5.2, that d0 is chosen such that for all d ≥ d0,

pλd = 1− 2ε+O(ε2).

With simple computations, we can then ensure that for some κ > 0, noting qd,· the distribution
of D, one has

qd,1 ≤ 1− ε+ κε2, qd,k ≤
(3ε)k−1

(k − 1)!
≤ (6ε)k−1

k!
, k ≥ 2,
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where we used k ≤ 2k−1 in the last step. By independence of D′ and D′′, D′ +D′′ follows a
Poi(λ(1− pd−1)) distribution, conditional on being positive. Noting q′d,· this distribution, we
have, as in the previous proof,

q′d,1 ≤ 1− ε+ κε2, q′d,k ≤
(3ε)k−1

k!
, k ≥ 2.

We can then invoke Lemma 5.B.1 to conclude. Note that every control in the proof is made
uniformly on δ ≥ 1.

5.B.3. Proof of Lemma 5.B.1

Proof of Lemma 5.B.1. . Let

S1 := ex−cq2
1e
−(γx−c)+ + 4q1q2e

−(γx−c)+ , S2 := 2ex−cq1

∑
`≥3

q` min
(

1, `e−(γx−c)+
)
,

S3 := 2ex−c
∑

2≤k≤`
qkq` min

(
1, `k P (E1 + . . .+ Ek > γx− kc)

)
.

Our goal is to show that for a suitable choice of c, for all x > c, S1 + S2 + S3 ≤ 1. One has

S1 ≤ e−rεx
(
(1− ε+ κε2)2 + 2Cε

)
≤ e−rεx(1 + 2Cε), (5.20)

and

S2 ≤ 2e−rεx(1− ε+ κε2)
∑
`≥3

(Cε)`−1

(`− 1)!
≤ 2e−rεx

(
eCε − 1− (Cε)

)
≤ 2e−rεxC2ε2. (5.21)

We let k0 be such that γx ∈ [k0c, (k0 + 1)c). We then upper-bound S3 by A+B where

A = 2ex−c
k0∑
k=2

qk
∑
`≥k

q`
`!

(`− k)!
P (E1 + . . .+ Ek > γx− kc) , (5.22)

B = 2ex−c
∑

k≥(k0+1)∨2

∑
`≥k

qkq`. (5.23)

One readily has

B ≤ 2e−rεxeγx−c
∑

k≥(k0+1)∨2

(Cε)k−1

k!

∑
`≥k

(Cε)`−1

`!
(5.24)

≤ 2e−rεxeγx−c
∑

k≥(k0+1)∨2

(Cε)2(k−1)

k!
(5.25)

≤ 2e−rεxek0c(Cε)2((k0+1)∨2−1) (5.26)

≤ 2e−rεx (Cεec)2 , (5.27)

where in the last steps we assumed that Cεec < 1, so that

ek0c(Cε)2((k0+1)∨2−1) ≤ (Cεec)2((k0+1)∨2−1) ≤ (Cεec)2 .
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Note that for y ≥ 0, P (E1 + . . .+ Ek > y) = P(Poi(y) < k) = e−y
∑k−1

j=0 y
j/j!. Write then

A ≤ 2ex−c
k0∑
k=2

(Cε)2(k−1)

k!

k−1∑
j=0

e−γx+kc (γx)j

j!

≤ 2e−rεx
k0∑
k=2

(C2ec)k

k!

k−1∑
j=0

(
γxε2

)j
j!

ε2(k−1−j)

≤ 2e−rεx
k0∑
k=2

(C2ec)k

k!

[
ε2(k−1) + eγxε

2 − 1
]

≤ 2e−rεx
[
ε−2

(
eε

2C2ec − 1− ε2C2ec
)

+ eC
2ec
(
eγxε

2 − 1
)]

(5.28)

Summing the upper bounds (5.20)-(5.28), the desired property will then hold if for all x > c,
one has:

e−rεx
[
1 + 2Cε+ 2C2ε2 + 2[Cεec]2 + 2ε−2

(
eε

2C2ec − 1− ε2C2ec
)]

+2e−rεxeC
2ec
(
eγxε

2 − 1
)
≤ 1.

(5.29)
The first term is, for any fixed c, and for sufficiently small ε, upper bounded by

e−rεx (1 + (2C + 1)ε) .

We now distinguish three cases for x.
Case 1: x ∈ [c, 1/

√
ε]. The second term is then O(ε

√
ε). Provided rc > 2C + 1, since

e−rεx ≤ e−rεc = 1 − rεc + O(ε2), the left-hand side of (5.29) is then upper-bounded by
1− (rc− 2C − 1)ε+O(ε

√
ε), and is thus less than 1.

Case 2: x ∈ [1/
√
ε, 1/ε]. Since e−rεx ≤ e−r

√
ε = 1−Ω(

√
ε), and eγxε2−1 ≤ eγε−1 = O(ε),

the left-hand side of (5.29) is upper-bounded by 1− Ω(
√
ε) and is thus less than 1.

Case 3: x ≥ 1/ε. The first term is then bounded by e−r(1 + (2C + 1)ε), which is less
than 1− Ω(1) for ε small enough. Letting y = εx, the second term reads

e−ry[eεγy − 1](2eC
2ec).

For small ε, this function is maximized for y = 1/r + O(ε), at which point it evaluates to
O(ε). Thus the left-hand side of (5.29) is upper-bounded by 1− Ω(1) in that range.

We have thus shown that for any r > 0, provided c > (2C + 1)/r, then for all sufficiently
small ε, the desired property holds with γ = 1 + rε.

5.C. Detailed proofs for Section 5.3

The following proofs are adapted from the previous work of [Mas14] and [BLM15].

5.C.1. Proof of Lemma 5.3.1

Proof of Lemma 5.3.1. Fix K > 0 to be specified later and γ > 0. Fix u ∈ [n], and define

T := inf {t ≤ d, |SG(u, t)| ≥ K log n} .
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If T =∞, there is nothing to prove. Given |SG(u, T − 1)|,

|SG(u, T )| ∼ Bin(n− |SG(u, 0)| − . . .− |SG(u, T − 1)| , 1− (1− λ/n)|SG(u,T−1)|).

Thus
|SG(u, T )|

sto.
≤ Bin (n, λK(log n)/n) .

Using Bennett’s inequality, for K ′ > λK:

P
(
|SG(u, T )| ≥ K ′ log n

)
≤ exp

[
−λKh

(
K ′ − λK
λK

)
log n

]
,

with h(x) = (1 + x) log(1 + x) − x. This probability is ≤ n−2−γ if K ′ is large enough
to verify λKh

(
K′−λK
λK

)
> γ + 2. With a simple use of the union bound, one gets that

|SG(u, T )| ∈ [K log n,K ′ log n] for all u ∈ [n] with probability 1−O(n−1−γ).

Fix ε > 0 to be specified later. We then check by induction that with high probability,
for all T ≤ t ≤ d,

|SG(u, t)| ∈

[
K(λ/2)t−T (log n)

t∏
s=T

(
1− ε (λ/2)−(s−T )/2

)
,K ′λt−T (log n)

t∏
s=T

(
1 + ελ−(s−T )/2

)]
.

(5.30)
The case t = T is proved here above. We will next use the inequality

λx/(2n) ≤ λx/n− λ2x2/(2n2) ≤ 1− (1− λ/n)x ≤ λx/n. (5.31)

that holds as soon as λx/n < 1.
Assuming (5.30) holds up to t, inequality (5.31) holds for x = |SG(u, t)| for n large enough,
since |SG(u, t)| < n/λ for c log λ < 1. Thus for n large enough E |SG(u, t+ 1)| lies in the
interval[

K (λ/2)t−T (log n)

t∏
s=T

(
1− ε (λ/2)−(s−T )/2

)
︸ ︷︷ ︸

=1−O(ε)

, λK ′λt−T (log n)

t∏
s=T

(
1 + ελ−(s−T )/2

)]
,

with ε̂ > 0 to be specified later, Bennett’s inequality writes

P
(∣∣ |SG(u, t+ 1)| − E |SG(u, t+ 1)|

∣∣ ≥ ε̂E |SG(u, t+ 1)|
)

≤ 2 exp
[
− (λ/2)t−T+1 log n (1−O (ε))h (ε̂)

]
,

which is ≤ n−2−γ if K (λ/2)t+1−T h(ε̂) > 2 + γ. Since for u → 0, h(u) = u2/2 + o(u2), it
suffices to take ε̂ = ε (λ/2)−(t+1−T )/2 with ε small enough and K large enough such that
Kε > 2 + γ. Thus (5.30) holds for t+ 1 with probability 1−O(n−2−γ).

All this ensures that the desired inequality (5.11) holds for all u ∈ [n], t ∈ [d] with
probability 1−O(n−γ).

5.C.2. Proof of Lemma 5.3.2

Proof of Lemma 5.3.2. Fix u ∈ [n]. Define

k∗ := inf{t ≤ d, BG(u, t) contains a cycle}.
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Note that k∗ ≥ 2, and that if k∗ =∞ then BG(u, d) does not contain any cycle. Now assume
that k∗ <∞. For any k ≥ 2, k∗ = k if and only if there are two vertices of SG(u, k− 1) that
are connected, or if there is a vertex of SG(u, k) connected to two vertices of SG(u, k − 1).
On the event

A :=
⋂
t≤d

{
|SG(u, t)| < C(log n)λt

}
,

this happens with probability at most

|SG(u, k − 1)|2 × λ

n
+ |SG(u, k)| × |SG(u, k − 1)|2 × λ2

n2
≤ C2 (log n)2λ2k

n
+ C3 (log n)3λ3k

n2
.

Taking ε > 0 such that c log λ ≤ 1/2− ε, choosing C such that P (A) = 1−O
(
n−2ε

)
with

Lemma 5.3.1, the probability that BG(u, d) contains a cycle is less than

P (k∗ <∞) ≤ P
(
Ā
)

+

d∑
k=2

P (k∗ = k | A)

≤ O
(
n−2ε

)
+O

(
(log n)2λ2d

n

)
+O

(
(log n)3λ3d

n2

)
≤ O

(
n−2ε

)
+O

(
(log n)2n−2ε

)
+O

(
(log n)3n−3ε

)
≤ O(n−ε).

5.C.3. Proof of Lemma 5.3.3

Proof of Lemma 5.3.3. For fixed u 6= v ∈ [n], let
(
S̃(u, t)

)
t≤d

and
(
S̃(v, t)

)
t≤d

denote two

independent realizations of the neighborhoods (i.e. with independent underlying Bernoulli
variables). We then construct recursively a coupling (S(u, t),S(v, t))t≤k:

• For k = 1, take S(u, t) to be a set of vertices uniformly chosen among sets of [n] of size∣∣∣S̃(u, 0)
∣∣∣. Independently, take S(v, t) to be a set of vertices uniformly chosen among

sets of [n] of size
∣∣∣S̃(v, 0)

∣∣∣.
• Now if k > 1, construct S(u, k) as follows: select a subset of [n] \

( ⋃
s≤k−1

S(u, s)

)
of

size
∣∣∣S̃(u, k)

∣∣∣ uniformly at random. Then we construct independently S(v, k) taking a

uniform subset of [n] \

( ⋃
s≤k−1

S(v, s)

)
of size

∣∣∣S̃(v, k)
∣∣∣.

This coupling is well defined, and coincides with the independent setting up to step k as
long as the sets

⋃
s≤k
S(u, s) and

⋃
s≤k
S(v, s) do not intersect. On the event

A :=
⋂
t≤d

{
|S(u, t)| , |S(v, t)| < C(log n)λt

}
,

one has

E

∣∣∣∣∣∣
⋃
k≤d
S(u, s) ∩

⋃
k≤d
S(v, s)

∣∣∣∣∣∣
 ≤ E

[
d∑

k=1

Bin

(
C(log n)λk,

∑k
t=1C(log n)λt

n−
∑k

t=1C(log n)λt

)]
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≤ C2(log n)2

(
λ

λ− 1

) d∑
k=1

λ2k

n− λ
λ−1C(log n)λk

≤ O
(

(log n)2λ2d/n
)

if (log n)λd = o(n), which is the case if c log λ < 1. The expectation is upper-bounded by
O
(
(log n)2λ2d/n

)
= O

(
(log n)2n−2ε

)
if c log λ ≤ 1/2− ε.

With Lemma 5.3.1, choosing C such that P (A) = 1−O
(
n−2ε

)
, we get

dTV

(
L
(

(SG(u, t),SG(v, t))t≤d

)
,L
(

(SG(u, t))t≤d

)
⊗ L

(
(SG(v, t))t≤d

))
≤ O((log n)2n−2ε) + P

(
Ā
)
≤ O(n−ε).

5.C.4. Proof of Lemma 5.3.4

Proof. We work here conditionally on

A :=
⋂
t≤d

{
|SG(u, t)| < C(log n)λt

}
.

Let’s define a Galton-Watson process as follows: set Z0 = 1, and for t > 0, L (Zt|Gt−1) =
Poi (λZt−1), where Gt = σ (Zs, s ≤ t). Fix t > 0. Conditionally on Ft−1 := σ (|SG(u, s)| , s ≤ t− 1),
define a random variable Wt with distribution Poi (λ |SG(u, t− 1)|). Note that

L
(
|SG(u, t)|

∣∣Fu−1

)
= Bin(n− |SG(u, 0)| − . . .− |SG(u, t− 1)| , 1− (1− λ/n)|SG(u,t−1)|).

The Stein-Chen method (see e.g. [BC05]) enables to bound dTV (Bin(n, λ/n),Poi(λ)) by
min(1, λ−1)λ2/n ≤ λ/n. We also use the classical bound dTV (Poi(λ),Poi(λ′)) ≤ |λ− λ′|
together with inequality (5.31) (which holds for n large enough since c log λ < 1) to obtain
that conditionally on Ft−1:

dTV (|SG(u, t)| ,Wt) ≤ n−1 (n− |SG(u, 0)| − . . .− |SG(u, t− 1)|) λ |SG(u, t− 1)|
n

+
∣∣∣(n− |SG(u, 0)| − . . .− |SG(u, t− 1)|)

(
1− (1− λ/n)|SG(u,t−1)|

)
− λ |SG(u, t− 1)|

∣∣∣
≤ λ |SG(u, t− 1)|

n
+ λ |SG(u, t− 1)| − (n− |SG(u, 0)| − . . .− |SG(u, t− 1)|) λ |SG(u, t− 1)|

n

+
λ2 |SG(u, t− 1)|2

2n
.

Now, for ε > 0 such that c log λ ≤ 1/2−ε, on the event A, all variables |SG(u, s)| are bounded
by C(log n)n1/2−ε. This leads to

dTV (|SG(u, t)| ,Wt) ≤ O
(

(log n)n−1/2−ε
)

+O
(
(log n)3n−2ε

)
+O

(
(log n)2n−2ε

)
= O

(
(log n)3n−2ε

)
.

This proves by induction that the total variation distance between (|SG(u, t)|)t≤d and (Zt)t≤d
is bounded by O

(
(log n)4n−2ε

)
= O (n−ε), taking C large enough in Lemma 5.3.1 so that

P (A) ≥ 1−O
(
n−2ε

)
.
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Chapter 6

Detecting correlation in trees

Following the way paved in Chapter 5, motivated by alignment of correlated sparse random
graphs, we are now studying more in detail the hypothesis testing problem of deciding whether
or not two random trees are correlated. We obtain conditions under which this task is
impossible or feasible.

We propose MPAlign, a message-passing algorithm for graph alignment inspired by the
tree correlation detection problem. We prove MPAlign to succeed in polynomial time at
partial alignment whenever tree detection is feasible. As a result, our analysis of correlation
detection in trees reveals new ranges of parameters for which partial alignment of sparse
random graphs is feasible in polynomial time.

We then conjecture that graph alignment is not feasible in polynomial time when the asso-
ciated tree detection problem is impossible. If true, this conjecture together with our sufficient
conditions on tree detection impossibility would imply the existence of a hard phase for graph
alignment, i.e. a parameter range where alignment cannot be performed in polynomial time
even though it is known to be feasible in non-polynomial time.

This chapter is based on the paper Correlation detection in trees for partial graph align-
ment [GML21a] (submitted), a joint work with M. Lelarge and L. Massoulié. A short version
of this work, Correlation Detection in Trees for Planted Graph Alignment, [GML22] is pub-
lished at ITCS 2021.

6.1. Introduction

We refer to Section 1.3 for a presentation of the graph alignment, so as not to repeat
ourselves.

As done in Chapter 5, we do not recall here the definition of the correlated Erdős-Rényi
model, already introduced in the introduction (see (1.10)), and specified in Section 4.1.1
of Chapter 4 in the sparse case. We only recall that the parameters of G(n, λ/n, s) are
the number of nodes n, the mean degree λ > 0 and the correlation parameter s ∈ [0, 1].
The vertices of the second graph G′ are relabeled with a uniform independent permutation
π? ∈ Sn, and we observe G and H := G′π

? .
The previous model is used to study planted graph alignment – the mean-case version

of graph alignment – consisting in finding an estimator π̂ of the planted solution π? upon
observing G and H. As stated earlier, for any subset C ⊂ [n], the performance of any one-
to-one estimator π̂ : C → [n] is now assessed through ov(π?, π̂), its overlap with the unknown
permutation π?, defined as

ov(π?, π̂) :=
1

n

∑
u∈C

1π̂(u)=π?(u). (6.1)

Note that the estimator π̂ may not be in Sn, and only consists in a partial matching. The
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(a) – Union graph (G,G′)
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(b) – Graphs G,G′ in separate views
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(c) – Graphs G,H

Figure 6.1 – A sample from model G(n, λ/n, s) with n = 11, λ = 1.9, s = 0.7 (for the sake of
readability, the two-colored edges are drawn thick and purple).

error fraction of π̂ with the unknown permutation π? is defined as

err(π?, π̂) :=
1

n

∑
u∈C

1π̂(u)6=π?(u) =
|C|
n
− ov(π?, π̂). (6.2)

We recall that sequence of injective estimators {π̂n}n – omitting the dependence in n –
is said to achieve

• Exact recovery if P(π̂ = π?) −→
n→∞

1,

• Almost exact recovery if P(ov(π?, π̂) = 1− o(1)) −→
n→∞

1,

• Partial recovery if there exists some ε > 0 such that P(ov(π?, π̂) > ε) −→
n→∞

1,

• One-sided partial recovery if it achieves partial recovery and P(err(π?, π̂) = o(1)) −→
n→∞

1.

Remark 6.1.1. One-sided partial recovery is by definition at least as hard as partial recovery.
As already stated in the introduction, from an application standpoint it is more appealing than
partial recovery: indeed, it may be of little use to know one has a permutation with 30% of
correctly matched nodes if one does not have a clue about which pairs are correctly matched.
Our proposed algorithm will achieve one-sided partial recovery under suitable conditions.

Phase diagram In the studied sparse regime where the graphs have constant mean degree
λ, it is known [CK17, CKMP18, GML21b] that the presence of Ω(n) isolated vertices in the
underlying intersection graph of G and H makes exact and almost exact recovery impossible.
The main questions consist then in determining the phase diagram of the model G(n, λ/n, s)
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6.1. Introduction

for partial alignment (or recovery), which we here recall the definition. We are interested in
the range of parameters (λ, s) for which, in the large n limit:

• Any sequence of estimators fails to achieve partial recovery for any ε > 0. We refer to
the corresponding range as the impossible phase;

• There is a sequence of estimators π̂ achieving partial recovery (not necessarily one-sided)
with some ε > 0, which we refer to as the IT-feasible phase;

• There is a sequence of estimators π̂ that can be computed in polynomial-time achieving
partial recovery with some ε > 0 (and sometimes even more, achieving also one-sided
partial recovery): the easy phase.

An interesting perspective on this problem is provided by research on community detec-
tion, or graph clustering, for random graphs drawn according to the stochastic block model.
In that setup, above the so-called Kesten-Stigum threshold, polynomial-time algorithms for
clustering are known [BLM18, KMM+13, MNS16], and the consensus among researchers in
the field is that no polynomial-time algorithms exist below that threshold. Yet, there is a
range of parameters with non-empty interior below the Kesten-Stigum threshold for which
exponential-time algorithms are known to succeed at clustering [BMNN16]. In other words,
for graph clustering, it is believed that there is a non-empty hard phase, consisting of the set
difference between the IT-feasible phase and the polynomial-time feasible phase.

The picture available to date1 for partial graph alignment is as follows. Work presented
in Chapter 4 [GML21b] shows that the IT-impossible phase includes the range of parameters
{(λ, s) : λs ≤ 1}, and Wu et al. [WXY21] have established that the IT-feasible phase includes
the range of parameters {(λ, s) : λs > 4} (condition λs > C for some large C had previously
been established in [HM20]). For the easy phase, we established in Chapter 5 [GM20] that it
includes the range of parameters {(λ, s) : λ ∈ [1, λ0], s ∈ [s(λ), 1]} for some parameter λ0 > 1
and some function s(λ) : (1, λ0]→ [0, 1]. The NTMA algorithm proposed in Chapter 5 based on
tree matching weights achieves in this regime one-sided partial recovery. Figure 6.2 depicts
a phase diagram describing these prior results together with the new results of this chapter.

Problem description and main contributions This partial picture leaves open the
question of whether, similarly to the case of graph clustering, graph alignment features a
hard phase or not. The contribution of the present work can be summarized in three points:

(1) We investigate a fundamental statistical problem, which to the best of our knowledge
had not been previously studied: hypothesis testing for correlation detection in trees.
We study the regimes in which the optimal test on trees succeeds or fails in the setting
when the trees are correlated Galton-Watson trees (see Theorem 6.1);

(2) For this detection problem on trees, the computation of the likelihood ratio can be
made recursively on the depth, which yields an optimal message-passing algorithm for
this task running in polynomial-time in the number of nodes;

(3) We remark that the previous detection problem on trees arises naturally from a local
point of view in the related problem of one-sided partial recovery for graph alignment.
In light of the previous analysis we then draw conclusions for our initial problem on
graphs and doing so we precise the phase diagram shown in Figure 6.2, extending the
regime for which one-sided partial alignment is provably feasible in polynomial time,
and exhibiting the presence of a conjectured hard phase (see Theorem 6.2).

1at the time of this contribution.
2at the time of this contribution.
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Figure 6.2 – Diagram of the (λ, s) regions where partial recovery is known2 to be IT-impossible
([GML21b]), IT-feasible ([WXY21]), or easy ([GM20] and this chapter). In the orange region, though
partial graph alignment is IT-feasible, one-sided detectability is impossible in the tree correlation
detection problem, and partial graph alignment is conjectured to be hard (this chapter).

Our approach to point (3) follows the way paved in Chapter 5. It essentially relies on
an algorithm which lets π̂(u) = u′ for u such that the local structure of graph G in the
neighborhood of node u is ’close’ to the local structure of graph H in the neighborhood of
node u′. As exploited in Chapter 5, the neighborhoods to distance d of two nodes u, u′ in G
and H, provided that u′ = π?(u), are asymptotically distributed as correlated Galton-Watson
branching trees (denoted P(λ,s)

d hereafter). On the other hand, for pairs of nodes (u, u′) taken
at random in [n], the joint neighborhoods of nodes u and u′ in G and H respectively, up to
depth d, are asymptotically distributed as a pair of independent Galton-Watson branching
trees (distribution denoted P(λ)

d ).
Thus a fundamental step in our approach is to determine the efficiency of tests for deciding

whether a pair of branching trees is drawn from either a product distribution, or a correlated
distribution. [GM20] relied on tests based on a so-called tree matching weight to measure
the similarity between two trees. In the present work we are instead interested in studying
the existence of one-sided tests, which are tests asymptotically guarantying a vanishing type
I error and a non vanishing power. According to the Neyman-Pearson Lemma, optimal
one-sided tests are based on the likelihood ratio Ld of the distributions under the distinct
hypotheses P(λ,s)

d and P(λ)
d (trees correlated or not)3. The mathematical formalization of point

(1) here above is the following

Theorem 6.1 (Correlation detection in trees). Let

KLd := KL(P(λ,s)
d ‖P(λ)

d ) = E1,d [log(Ld)] .

Then the following propositions are equivalent:

(i) There exists a one-sided test for deciding P(λ)
d versus P(λ,s)

d ,

3This guarantees that whenever the test based on tree matching weight in Chapter 5 [GM20] succeeds,
the optimal test studied in this chapter also succeeds. On this point, Theorem 6.4 (see Section 6.4) extends
the sufficient conditions established in Chapter 5 for partial alignment (for small λ and s close to 1).
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6.2. Notations and problem statement

(ii) lim
d→∞

KLd = +∞ and λs > 1,

(iii) There exists (ad)d such that ad →∞, P(λ)
d (Ld > ad)→ 0 and lim infd P

(λ,s)
d (Ld > ad) >

0.

(iv) The martingale (Ld)d (w.r.t. P(λ)
∞ ) is not uniformly integrable.

(v) λs > 1 and P(λ,s)
∞

(
lim infd→∞(λs)−d logLd > 0

)
≥ 1 − pext(λs), where pext(λs) is the

probability that a Galton-Watson tree with offspring distribution Poi(λs) gets extinct.

Remark 6.1.2. This Theorem gives general necessary and sufficient conditions for the ex-
istence of a one-sided test in the tree correlation detection problem. Several more explicit
conditions in terms of λ and s will be obtained throughout the chapter which guarantee that
the equivalent conditions of Theorem 6.1 either fail or hold. Condition (v) will be used in the
design of the algorithm in Section 6.7, choosing an appropriate threshold that will guarantee
for the method to output both a substantial part of the underlying permutation and a vanishing
number of mismatches.

The link between the problem on trees and sparse graph alignment is given in the following

Theorem 6.2 (Consequences for one-sided partial graph alignment). For given (λ, s), if
one-sided correlation detection is feasible, i.e. any of the conditions in Theorem 6.1 holds,
then one-sided partial alignment in the correlated Erdős-Rényi model G(n, λ/n, s) is achieved
in polynomial time by our algorithm MPAlign (Algorithm 6.1 in Section 6.7).

Conjecture. We conjecture that if one-sided correlation detection in trees fails, i.e. none of
the equivalent conditions in Theorem 6.1 holds, then no polynomial-time algorithm achieves
partial recovery. In view of Theorem 6.6 of Section 6.6, which guarantees existence of a non-
empty parameter region where one-sided tree detection fails while partial graph alignment can
be done in non-polynomial time, our conjecture would imply the hard phase to be non-empty.

Chapter organization The outline of the chapter is as follows. We recall some notations
and model of random trees and the in Section 6.2. The derivation of the likelihood ratio
between the relevant distributions is done in Section 6.3, where points (iii) and (iv) of
Theorem 6.1 are proved (see 6.3.3). In Section 6.4, points (ii) and (v) of Theorem 6.1
are proved (see Section 6.4.1) and a first sufficient condition for one-sided tree detectability
(Theorem 6.4) is obtained by analyzing Kullback-Leibler divergences: this condition is of
the same kind as the one following from [GM20] in Chapter 5, however with a more direct
derivation as well as a more explicit condition. Using a different approach, a second sufficient
condition – that of Theorem 6.5 – is established in Section 6.5 by analyzing the number of
automorphisms of Galton-Watson trees.

Next, we prove in Section 6.6 another condition (see Theorem 6.6) for the failure of one-
sided detectability, hence showing that the conjectured hard phase is non-empty. The precise
message-passing method for aligning graphs is introduced in Section 6.7, and guarantees on
its output are established as well as the proof of Theorem 6.2.

Appendix 6.A is dedicated to numerical experiments as well as the description of the
algorithm used in practice (MPAlign2). Some additional proofs are deferred to Appendix
6.B.

6.2. Notations and problem statement

6.2.1. Notations

In this first part we briefly introduce – or recall – some basic definitions that are used
throughout the chapter.
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Finite sets, permutations. For all n > 0, we define [n] := {1, 2, . . . , n}. For any finite
set X , we denote by |X | its cardinal. SX is the set of permutations on X . We also de-
note Sk = S[k] for brevity, and we will often identify Sk to SX whenever |X | = k. For any
0 ≤ k ≤ `, we will write S(k, `) (resp. S(A,B)) for the set of injective mappings from [k] to
[`] (resp. between finite sets A and B). By convention, |S(0, `)| = 1.

Graphs. In a graph G = (V,E) – with node set V and edge set E – we denote by dG(u) the
degree of node u in G and NG,d(u) (resp. SG,d(u)) the set of vertices at distance ≤ d (resp.
exactly d) from node u in G, SG,d(i). The neighborhood of a node u ∈ V is NG(u) := NG,1(u),
i.e. the set of all vertices that are connected to u by an edge in G.

Labeled rooted trees. A labeled rooted tree t = (V,E) is an undirected graph with node
set V and edge set E with no cycle. The root of t is a given distinguished node ρ ∈ V , and
the depth of a node is defined as its distance to the root ρ. The depth of tree t is given as
the maximum depth of all nodes in t. Each node u at depth d ≥ 1 has a unique parent in t,
which can be defined as the unique node at depth d − 1 on the path from u to the root ρ.
Similarly, the children of a node u of depth d are all the neighbors of u at depth d+ 1.

For any u ∈ V , we denote by tu the subtree of t rooted at node u, and ct(u) the number
of children of u in t – or simply c(u) where there is no ambiguity. Finally we define Vd(t)
(resp. Ld(t)) to be the set of nodes of t at depth less than or equal to d (resp. exactly d).

Canonical labeling. A labeled rooted tree can be canonically labeled by ordering nodes’
children, giving the following labels. First, the label of the root node is set to the empty list
∅. Then, recursively, the label of a node u is a list {m, k} where m is the label of its parent
node, and k is the rank of u among the children of its parent.

We denote by Yd the collection of such canonically labeled rooted trees of depth no larger
than d. Obviously, Y0 contains a single element, namely the rooted tree with only one node –
its root. Each tree t in Yd can be represented with a unique ordered list (t1, . . . , tc(ρ)) where
each tu is the subtree of t rooted at the u−th child of the root, and thus belongs to Yd−1.
When c(ρ) = 0, the previous ordered list is empty.

Tree subsampling. For s ∈ (0, 1), a s−subsampling of a tree t is obtained by conserving
every edge independently with probability s, and outputting the connected component of the
root (which is still a tree). The nodes in the resulting tree inherit a canonical labeling from
their order in the original tree.

Relabelings of trees. A relabeling r(t) of a tree t ∈ Yd is recursively identified as a
permutation σ ∈ Sc(ρ) of the children of the root node, together with relabelings ru(tu) of its
subtrees, resulting in tree

r(t) =
(
rσ(1)(tσ(1)), . . . , rσ(c(ρ))(tσ(c(ρ)))

)
.

A random uniform relabeling r(t) of a (un-)labeled tree t of depth at most d is defined as
follows. Associate independently to each node i of t a permutation σi of its children, uniformly
distributed in Sc(i). The relabeling is then defined by induction on the depth of nodes: the
new label r(ρ) of the root is ∅, and recursively, if the label of u is {m, k} and v is the parent
of u, we assign to u the new label

r(u) := {r(v), σv(k)}.

An important and easily verified property is that, for a given labeled tree t ∈ Yd, r(t) is
indeed uniformly distributed on the set of all possible relabelings of t.
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∅

{∅, 1} {∅, 2}

{{∅, 1} , 1} {{∅, 1} , 2} {{∅, 2} , 1}

{{{∅, 1} , 1} , 1}

{{{∅, 1} , 1} , 2}

{{{∅, 1} , 1} , 3} {{{∅, 2} , 1} , 1}
{{{∅, 2} , 1} , 2}

{{{{∅, 2} , 1} , 2} , 1}

1

(a) – unlabeled rooted tree t

∅

{∅, 1} {∅, 2}

{{∅, 1} , 1} {{∅, 1} , 2} {{∅, 2} , 1}

{{{∅, 1} , 1} , 1}

{{{∅, 1} , 1} , 2}

{{{∅, 1} , 1} , 3} {{{∅, 2} , 1} , 1}
{{{∅, 2} , 1} , 2}

{{{{∅, 2} , 1} , 2} , 1}

1

(b) – a random uniform relabeling of t

Figure 6.3 – A rooted tree t ∈ Yd with n = 4 (the root is highlighted in yellow).

Automorphisms of labeled trees. Some of the relabelings of a labeled tree t may be in-
distinguishable from t, that is, equal to t as labeled trees. These relabelings are called
automorphisms of t, and their set is denoted by Aut(t).

Injective mappings between labeled trees. For two labeled trees τ, t ∈ Yd, the set of
injective mappings from τ to t, denoted S(τ, t), is the set of injective mappings from the
labels of vertices of τ to the labels of vertices of t that preserve the rooted tree structure, in
the sense that any σ ∈ S(τ, t) must verify

σ(∅) = ∅ and σ({p, k}) = {σ(p), j} for some j.

Note that S(τ, t) is not empty if and only if τ is, up to some relabeling, a subtree of t.

Probability. For the sake of readability, we will denote by πµ the Poisson distribution of
parameter µ, namely for all k ≥ 0, πµ(k) := e−µ µ

k

k! .

6.2.2. Models of random trees, hypothesis testing

We recall hereafter two models of random trees of Chapter 5.

Independent model P(λ)
d Under the independent model P(λ)

d , t and t′ are two independent
GW

(λ)
d , where λ > 0 is the mean number of children in the graph.

Tree augmentation For λ > 0 and s ∈ [0, 1], a (random) (λ, s)−augmentation of a given
tree τ = (V,E), denoted by Aug

(λ,s)
d (τ), is defined as follows. First, to each node u in V

of depth < d, we attach a number Z+
u of additional children, where the Z+

u are i.i.d. of
distribution Poi(λ(1− s)). Let V + be the set of these additional children. To each v ∈ V + at
depth dv, we attach another random tree of distribution GW

(λ)
d−dv , independently of everything

else.

Correlated model P(λ,s)
d The correlated model P(λ,s)

d is built as follows: starting from an
intersection tree τ? ∼ GW

(λs)
d , and T and T ′ are obtained as two independent (λ, s)−augmentations

of τ?. We denote (T, T ′) ∼ P(λ,s)
d .

In all these models, the labels of the trees T and T ′ are then uniformly resampled at ran-
dom by the procedure described above. It can easily be verified that T and T ′ are marginally
both GW

(λ)
d under P(λ)

d and P(λ,s)
d , namely. The parameters are λ, the mean number of

children of a node, and the correlation s.

Hypothesis testing, one-sided test As mentioned earlier, we observe finite trees in
practice. A property that we will use implicitly in the sequel is that for T, T ′ ∼ P(λ)

d (resp.
∼ P(λ,s)

d ) and d′ < d, then pd′(T ), pd′(T
′) ∼ P(λ)

d′ (resp. ∼ P(λ,s)
d′ ).
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(a) – Samples T, T ′ from P(λ)
d .

(b) – Samples T, T ′ from P(λ,s)
d . The common subtree τ is drawn thick and purple.

Figure 6.4 – Samples from models P(λ)
d and P(λ,s)

d , with λ = 1.8, s = 0.8, and d = 5. The root node
is highlighted in yellow. Labels are not shown.

The hypothesis testing considered in this study can be formalized as follows: given the
observation of a pair of trees (t, t′) in Yd × Yd, we want to test

H0 = "t, t′ are realizations under P(λ)
d " versus H1 = "t, t′ are realizations under P(λ,s)

d ".
(6.3)

More specifically, we are interested in being able to ensure the existence of a (asymptotic)
one-sided test, that is a test Tn : Yd×Yd → {0, 1} such that Tn chooses hypothesis H0 under
P(λ)
d with probability 1 − o(1), and chooses H1 with some positive probability uniformly

bounded away from 0 under P(λ,s)
d , guaranteeing a vanishing type I error and a non vanishing

power.

Remark 6.2.1. We here motivate one-sided tests once again. In statistical detection prob-
lems, the commonly considered tasks are that of

• strong detection, i.e. tests Td that verify

lim
n→∞

[
P(λ)
d

(
Td(T, T ′) = 1

)
+ P(λ,s)

d

(
Td(T, T ′) = 0

)]
= 0,

• weak detection, i.e. tests Td that verify

lim
n→∞

[
P(λ)
d

(
Td(T, T ′) = 1

)
+ P(λ,s)

d

(
Td(T, T ′) = 0

)]
< 1.

In other words, strong detection corresponds to discriminate w.h.p. exactly the hypotheses,
whereas weak detection corresponds to strictly outperforming random guess. We recall here-
after why neither strong detection nor weak detection are relevant for our problem.
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First, because of the event that the intersection tree does not survive, which is of positive
probability under P(λ,s)

d : we always have P(λ,s)
d (t, t′) ≥ C · P(λ)

d (t, t′), with

C :=
πλs(0)πλ(1−s)(c)πλ(1−s)(c

′)

πλ(c)πλ(c′)
,

where c (resp. c′) is the degree of the root in t (resp t′). This implies that P(λ)
d is always

absolutely continuous w.r.t. P(λ,s)
d , hence strong detection can never be achieved.

Second, weak detection is always achievable as soon as s > 0: with the same notations
as here above, the distribution of c − c′ is always centered but has different variance under
P(λ)
d and under P(λ,s)

d , hence these two distributions can be weakly distinguished, without any
further assumption than s > 0. Since we know by [GML21b] that partial graph alignment is
not feasible for λs ≤ 1, we conclude that weak detection in tree detection is not a relevant
task either for graph alignment.

6.2.3. Warm-up discussion: the isomorphic case (s = 1)

In this section, we discuss the graph alignment problem in the case where s = 1 in the
correlated Erdős-Rényi model (1.10), namely when the graphs G and H are isomorphic, π?
being one of the graph isomorphisms between G and H. We then ask the question: what is
the best fraction of nodes that can be recovered with high probability?

The answer to the above question comes with the following easy remark: the joint dis-
tribution of (G,H) is invariant by any relabeling of G according to some σ ∈ Aut(G), where
Aut(G) denotes the automorphism group of G. The set of nodes that can be aligned w.h.p.
is hence

I(G) := {u ∈ V (G), ∀σ ∈ Aut(G), σ(u) = u} . (6.4)

In other words, I(G) is the set of vertices of G invariant under any automorphism.
Let us denote C1(G) the largest connected component of G (the giant component), and

C1(G) the subgraph made of all the smaller components. It is clear that

Aut(G) = Aut(C1(G))×Aut(C1(G)).

Recent work [GML21b] shows that I(G) ∩ C1(G) contains at most a vanishing fraction of
the points: it is not hard to see indeed that smaller components mainly consist in isolated
trees, which are proved to have many copies in the graph when n gets large, yielding some
automorphisms that swap almost all vertices in C1(G). Hence, for our purpose, the main part
of I(G) comes from the study of Aut(C1(G)) and I(C1(G)).

When G ∼ G(n, q), these sets have been thoroughly studied by Łuczak in [Luc88]. Vertices
of the giant component that are not invariant under automorphism are mainly (i.e. up to
o(n) errors) vertices that do not belong to the 2-core4 of G, denoted by C(2)(G).

Simple structures appearing in C1(G) \ I(G) are leaves (degree one nodes) v, w with
common a neighbor u in C1(G). [Luc88] upper-bounds the size of C1(G) \ I(G) by the
number of (generalizations) of such structures, thus obtaining the following

Theorem 6.3 ([Luc88], Theorems 3 and 4). Let G ∼ G(n, q) with q = λ/n. Let (Kn)n be
a sequence such that Kn → ∞. There exists λ0 > 0 such that if λ > λ0, then with high
probability,∣∣∣C(2)(G)

∣∣∣− ∣∣∣I(C(2)(G))
∣∣∣ ≤ Kn, and |C1(G)| − |I(C1(G))| ≤ λ(λ+ 5)e−2λn. (6.5)

Equation (6.5) of Theorem 6.3 states that for λ large enough, almost all vertices of the
2-core of G are invariant, whereas at most a fraction λ(λ + 5)e−2λ of the nodes are in the

4The 2-core of a graph is defined as the maximal subgraph of minimal degree at least 2.
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Figure 6.5 – Sample G from model G(n, λ/n), with λ = 2 and n = 250. Vertices of C1(G) (resp. of
C1(G) \ C(2)(G), C(2)(G)) are drawn in green (resp. blue, red).

giant component and not in I(G). In this case, with high probability, any isomorphism π̂
between G and H will achieve partial recovery and will satisfy

ov (π̂, π?) ≥ 1− pext(λ)− λ(λ+ 5)e−2λ,

where pext(λ) is defined as the probability that a Galton-Watson tree of offspring Poi(λ)
survives.

However, finding efficiently such an isomorphism π̂ is known to be challenging in the
general case (see e.g. [AK02]): hence, whether there exists a polynomial-time algorithm
achieving this optimal bound remains an open question5.

6.3. Derivation of the likelihood ratio

For t, t′ ∈ Yd, we introduce the likelihood ratio

Ld(t, t
′) :=

P(λ,s)
d (t, t′)

P(λ)
d (t, t′)

. (6.6)

6.3.1. Recursive computation

In this section, our aim is to obtain a recursive representation of the likelihood ratio Ld.
First note that for two trees t = (t1, . . . , tc), t′ = (t′1, . . . , t

′
c′) both in Yd, we have

P(λ)
d (t, t′) = GW

(λ)
d (t)× GW

(λ)
d (t′), (6.7)

5We can however cite a famous result of Bollobás ([Bol01], Theorem 9.9) showing that in the dense case
np ≥ Θ(logn), the vertices of every G ∼ G(n, p) graph are uniquely determined by their distance sequences,
and the automorphism group of G is w.h.p. trivial.
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and that conditioned to c, GW(λ)
d (t) satisfies the recursion

GW
(λ)
d (t) = πλ(c)

∏
u∈[c]

GW
(λ)
d−1(tu). (6.8)

In the construction of t, t′ under H1, partitioning on the permutations σ ∈ Sc, σ′ ∈ Sc′ used
to shuffle the children of the root nodes of t, t′, as well as on the number k of children of the
root in τ?, we have the following

P(λ,s)
d (t, t′) =

c∧c′∑
k=0

πλs(k)πλ(1−s)(c− k)πλ(1−s)(c
′ − k)

×
∑

σ∈Sc,σ′∈Sc′

1

c!× c′!

(
k∏

u=1

P1,n−1(tσ(u), t
′
σ′(u))

)

×

(
d∏

u=k+1

GW
(λ)
d−1(tσ(u))

)
×

(
d′∏

i=k+1

GW
(λ)
d−1(t′σ′(u))

)
.

This together with Equations (6.7), (6.8) readily implies the following recursive formula
for the likelihood ratio Ld:

Ld(t, t
′) =

c∧c′∑
k=0

πλs(k)πλ(1−s)(c− k)πλ(1−s)(c
′ − k)

πλ(c)πλ(c′)× c!× c′!
∑

σ∈Sc,σ′∈Sc′

k∏
u=1

Ld−1(tσ(u), t
′
σ′(u)). (6.9)

In this expression, by convention the empty product equals 1. We will use in the sequel the
following shorthand notation

ψ(k, c, c′) :=
πλs(k)πλ(1−s)(c− k)πλ(1−s)(c

′ − k)

πλ(c)πλ(c′)
× (c− k)!× (c− k′)!

c!× c′!

= eλs × sk(1− s)c+c′−2k

λkk!
,

which enables an alternative, more compact recursive expression:

Ld(t, t
′) =

c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈S(k,c)
σ′∈S(k,c′)

k∏
u=1

Ld−1(tσ(u), t
′
σ′(u)), (6.10)

where we recall that S(k, `) denotes the set of injective mappings from [k] to [`] and that by
convention |S(0, `)| = 1.

Remark 6.3.1. The above expression (6.10) will be useful for efficient computations of the
likelihood ratio in Algorithm 6.1 in Section 6.7, through message-passing.

6.3.2. Explicit computation

We now use the recursive expression (6.10) to prove by induction on d the following
explicit formula for Ld.

Lemma 6.3.1. With the previous notations, we have

Ld(t, t
′) =

∑
τ∈Yd

∑
σ∈S(τ,t)
σ′∈S(τ,t′)

∏
u∈Vd−1(τ)

ψ
(
cτ (u), ct(σ(u)), ct′(σ

′(u))
)
. (6.11)
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Proof of Lemma 6.3.1. We prove this result by recursion on d. An empty product being set
to 1, there is nothing to prove in the case d = 0. Let us first establish formula (6.11) for
d = 1. In that case, the depth 1 trees t, t′ are identified by the degrees c, c′ of their root
node. Since Y0 is a singleton, L0 is identically 1, and from (6.9) we have that

L1(t, t′) =
c∧c′∑
k=0

πλs(k)πλ(1−s)(c− k)πλ(1−s)(c
′ − k)

πλ(c)πλ(c′)
. (6.12)

On the other hand, in evaluating expression (6.11), we only need consider trees τ in Y1 with
root degree k ≤ c ∧ c′, since for larger k, one of the two sets S(τ, t) or S(τ, t′) is empty. For
such k, we have |S(τ, t)| = c!/(c− k)!. The right-hand term in (6.11) thus writes

c∧c′∑
k=0

c!× c′!
(c− k)!× (c′ − k)!

ψ(k, c, c′),

which gives precisely (6.12).
Assume that (6.11) has been established up to some n − 1 ≥ 1. Expressing Ld in terms

of Ld−1 based on (6.9), and replacing in there the expression of Ld−1 by (6.11) , we get

Ld(t, t
′) =

c∧c′∑
k=0

ψ(k, c, c′)

(c− k)!(c′ − k)!

×
∑

σ∈Sc,σ′∈Sc′

k∏
u=1


∑

τu∈Yd−1

∑
σu∈S(τu,tσ(u))

σ′u∈S(τu,t′σ(u))

∏
v∈Vd−1(τu)

ψ
(
cτu(v), ctσ(u)(σu(v)), ct′

σ′(u)
(σ′u(v))

)
 .

Note that the product term in the above expression depends on the permutations σ, σ′
only through their restriction to [k]: for given such restrictions there are (c− k)!× (c′ − k)!
corresponding pairs of permutations σ, σ′.

Moreover, there is a bijective mapping between an integer k ∈ {0, . . . , c ∧ c′}, pairs of
injections σ : [k] → [c], σ′ : [k] → [c′], k trees τ1, . . . , τk ∈ Yd−1, injections σu ∈ S(τu, tσ(u))
and σ′u ∈ S(τu, t

′
σ′(u)) for all u ∈ [k] and a tree τ ∈ Yd together with a pair of injections

σ, σ′ ∈ S(τ, t)× S(τ, t′). This establishes formula (6.11) at step d.

6.3.3. Martingale properties and the objective of one-sided test

In this part, we assume that we observe T, T ′ drawn under one of the two models P(λ)
∞ or

P(λ,s)
∞ . For d ≥ 0, let Fd := σ(pd(T ), pd(T

′)) be the sigma-field of the two trees T, T ′ observed
down to depth d. We then have

Lemma 6.3.2. The sequence {Ld := Ld(pd(T ), pd(T
′))}d≥0 is a Fd-martingale under P(λ)

∞ .

The above martingale property follows from general considerations of likelihood ratios. It
is however informative to derive it by calculus, which we now do.

Proof of Lemma 6.3.2. There are several ways to see that {Ld}d≥0 is a Fd-martingale under

P(λ)
∞ , depending on the formula used to write Ld+1 in terms of Ld. We here choose to use the

developed expression (6.11), enabling simple computations:
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Ld+1 =
∑

τ∈Yd+1

∑
σ∈S(τ,T )
σ′∈S(τ,T ′)

∏
u∈Vd(τ)

ψ
(
cτ (u), cT (σ(u)), cT ′(σ

′(u))
)

=
∑
χ∈Yd

∑
σ∈S(χ,pd(T ))
σ′∈S(χ,pd(T ′))

∏
i∈Vd−1(χ)

ψ
(
cχ(u), cpd(T )(σ(u)), cpd(T ′)(σ

′(u))
)

×
∏

u∈Ld(χ)

cT (σ(u))∧cT ′ (σ′(u))∑
k=0

cT (σ(u))!cT ′(σ
′(u))!

(cT (σ(u))− k)!(cT ′(σ′(u))− k)!
ψ(k, cT (σ(u)), cT ′(σ

′(u))).

The last product is independent from Fd. Moreover, under P(λ)
∞ , all terms in the last product

are independent, the cT (u) and cT ′(u) being independent Poi(λ) random variables. Since for
any independent Poi(λ) random variables c, c′, one has

E

[
c∧c′∑
k=0

πλs(k)πλ(1−s)(c− k)πλ(1−s)(c
′ − k)

πλ(c)πλ(c′)

]
= 1,

taking the expectation conditionally to Fd entails the desired martingale property.

We now consider the martingale almost sure limit L∞, and define ` := E(λ)
∞ [L∞]. Using

the recursive formula (6.9) and conditioning on the root degrees c and c′, it follows that `
verifies the following fixed point equation

` =
∑
k≥0

πλs(k)`k. (6.13)

This is also (!) the fixed point equation for the extinction probability pext(λs) of a Galton-
Watson branching process with offspring distribution Poi(λs). For λs ≤ 1, the only solution
of (6.13) is ` = 1. For λs > 1, the equation also admits a non-trivial solution pext(λs) ∈ (0, 1).

Our goal is to find conditions on (λ, s) for which the martingale {Ld}d≥0 is not uniformly
integrable and looses mass at infinity, i.e. the conditions for which the martingale limit L∞
has expectation E(λ)

∞ [L∞] < 1. By the previous calculation we know that if this holds, then
necessarily E(λ)

∞ [L∞] = pext(λs) < 1. Simulations of Ld displayed on Figure 6.7 seem to
indicate that its transition to non-uniform integrability does not coincide with the condition
λs > 1. We shall obtain a theoretical confirmation of this fact with Theorem 6.6.

Our interest in conditions for non-uniform integrability stem from the following simple
Lemma:

Lemma 6.3.3. Assume that E(λ)
∞ [L∞] < 1. Then there exists a one-sided test.

Proof of Lemma 6.3.3. Let us take a > 0 a continuity point of the law of L∞ under P(λ)
∞ . We

have
lim
d→∞

P(λ)
∞ (Ld > a) = P(λ)

∞ (L∞ > a). (6.14)

Moreover,

1 = E(λ)
∞ [Ld] = E(λ)

∞ [Ld1Ld>a] + E(λ)
∞ [Ld1Ld≤a]

= P(λ,s)
∞ (Ld > a) + E(λ)

∞ [Ld1Ld≤a] .

The last equation implies, under the assumption E(λ)
∞ [L∞] < 1 (that is E(λ)

∞ [L∞] = pext(λs)),
that

lim inf
d→∞

P(λ,s)
∞ (Ld > a) ≥ 1− E(λ)

∞ [L∞] = 1− pext(λs) > 0. (6.15)
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In view of (6.14) and (6.15), we can thus choose ad →∞ such that:

lim
d→∞

P(λ)
∞ (Ld > ad) = 0 and lim inf

d→∞
P(λ,s)
∞ (Ld > ad) ≥ 1− pext(λs) > 0.

Proof of (i) ⇐⇒ (iii) ⇐⇒ (iv) in Theorem 6.1

Proof. The previous proof shows first that (i) ⇐⇒ (iii) in Theorem 6.1 (applying Neyman-
Pearson’s Lemma and a diagonal extraction procedure) as well as (iii) ⇐⇒ (iv), since
condition

∃ ε > 0, ∀a > 0, lim inf
d→∞

P(λ,s)
∞ (Ld > a) ≥ ε > 0 (6.16)

is exactly the condition of non-uniform integrability of the martingale (Ld)d with respect to
P(λ)
∞ .

6.3.4. A Markov transition kernel on trees

In this section, we introduce a Markov transition semi-group on trees that arises naturally
in our study. Indeed, the joint distribution of the pair of trees (T, T ′) under P(λ,s)

d will be, up
to relabeling, interpreted as the joint distribution of (X0, Xr), where X0 is the initial state of
this Markov process, distributed according to its stationary distribution GW

(λ)
d , and Xr is its

state at time r. The time parameter r is in one-to-one correspondence with the correlation
parameter s of our model, through the relation

r = − log(s).

For n > 0, we define Md the linear operator indexed on trees of Yd, defined as follows:

Md(t, t
′) :=

P(λ,s)
d (t, t′)

P(λ)
d (t)

. (6.17)

Md is identified to the transition kernel of the Markov chain with transitions denoted t −→
λ,s

t′

where t′ is obtained from t following the following three-step procedure:

1. Extracting τ , a s−subsampling of t;

2. Draw τ+, an augmentation Aug
(λ,s)
d of τ ;

3. Take t′ to be a uniform relabeling of τ+.

We next denote Md(s) this transition kernel to emphasize its dependence on s.
A remarkable property of this kernel is the following semi-group structure:

Proposition 6.3.1 (Consistency of kernels Md(s)). Let λ > 0 and s, s′ ∈ [0, 1]. Then, for
all n ≥ 1,

Md(s)Md(s
′) = Md(s

′)Md(s) = Md(ss
′). (6.18)

Proof. The proof consists in verifying that applying transitions Md(s) and Md(s
′) succes-

sively is equivalent in distribution to applying transition Md(ss
′). Let us first show that the

unlabeled structures of the trees are equivalent in distribution. For t ∈ Yd, let us sample a
sequence t −→

s
t̃ −→

s′
t′ as follows.

For t ∈ Yd, let us apply a first transition t −→
s
t̃: we extract τ̃ , a s−subsampling of t. To

each vertex u of τ̃ we attach an independent number Poi(λ(1− s)) of new children. The set
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Figure 6.6 – Example of a transition described hereabove, with λ = 1.85, s = 0.85, at depth d = 5.
The original tree t is drawn on the left. On the right, t′ is obtained as follows: first extracting a
s−subsampling τ of t (dashed blue edges are deleted), and drawing a (λ, s)−augmentation of τ –
first attaching new children to all vertices of τ (dark red nodes with thick edges), and attaching new
Galton-Watson trees to these new children (light red nodes with standard edges). Labels are not shown.

of these new vertices is denoted Ṽ+. Then, to each vertex u ∈ Ṽ+ we attach an independent
tree t̃u with distribution GWλ. We just sampled the unlabeled version of t̃.

Let us now apply the second transition t̃ −→
s′

t′. We sample t as follows:

1. First, we sample all vertices of τ̃ in t̃, keeping them independently with probability s′.
The obtained subtree is denoted by τ ;

2. To any vertex u of τ , we keep each previous child vertex in Ṽ+ independently with
probability s′, the set of children that are kept is denoted by V 1

+;

3. To any vertex u of τ , we attach an independent number Poi(λ(1− s′)) of new children.
The set of these new vertices are referred to as V 2

+.

4. To any vertex u ∈ V 1
+, we sample a transition t̃u −→

s′
tu, and attach tu to node u.

5. To each vertex v ∈ V 2
+ we attach an independent tree tv with distribution GWλ.

Eventually we performed the following process: from the initial tree t, we extracted τ as a
ss′−subsampling of t, and we attached to each vertex of τ some new children: the sum of two
independent Poi(λ(1−s)s′) (for children in V 1

+) and Poi(λ(1−s′)) (for children in V 2
+), hence

again of Poisson distribution with parameter λ(1 − s)s′ + λ(1 − s′) = λ(1 − ss′). By steps
4. and 5., the trees attached to every vertex in V+ := V 1

+ ∪ V 2
+ are i.i.d. with distribution

GWλ, independent of t. Hence, the unlabeled version of t′ can also be obtained from t with
the transition t −→

ss′
t′.

Finally, the definition of the tree subsampling ensures that the composition of the two
relabelings in the two steps gives indeed a uniform relabeling of t, which ends the proof.

6.4. Conditions based on Kullback-Leibler divergences

In the sequel we shall denote

KLd := KL(P(λ,s)
d ‖P(λ)

d ) = E(λ,s)
d [log(Ld)] . (6.19)

Note that by convexity of φ : x → x log(x), the martingale property of likelihood ratios
Ld under P(λ)

d and Jensen’s inequality, the sequence KLd is increasing with d and therefore
admits a limit KL∞ as d→∞.
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6.4.1. Phase transition for KL∞

Let us start with a simple proposition.

Proposition 6.4.1. One has KLd ≤ Ent(GW
(λs)
d ).

Proof. Consider the Markov transition kernel Kd from Y2
d to Y2

d such that Kd((τ, τ
′), (t, t′))

is the probability that independent (λ, s)−augmentations and relabelings of (τ, τ ′) to depth
d produce the two trees (t, t′).

Thus P(λ,s)
d is the law obtained by applying kernel Kd to the distribution of (τ, τ), where

τ ∼ GW
(λs)
d whereas P(λ)

d is the law obtained by applying kernel Kd to the distribution of two
independent GW

(λs)
d trees (τ, τ ′). Standard monotonicity properties of Kullback-Leibler di-

vergence then guarantee that KLd is upper-bounded by KL(L(τ, τ)‖L(τ, τ ′)). This divergence
reads ∑

τ∈Yd

GW
(λs)
d (τ) log

(
GW

(λs)
d (τ)

GW
(λs)
d (τ)2

)
= Ent(GW

(λs)
d ).

This readily implies the following

Corollary 6.4.1. Assume λs < 1. Then

KL∞ = lim
d→∞

KLd ≤
1

1− λs
Ent(πλs) < +∞. (6.20)

Proof. Entropy Ent(GW
(λs)
d ) can be evaluated by the conditional entropy formula as

Ent(GW
(λs)
d ) = Ent(GW

(λs)
d−1) + (λs)d−1Ent(πλs).

The result follows from Proposition 6.4.1.

We then have the following result:

Proposition 6.4.2. Existence of one-sided tests holds if λs > 1 and KL∞ = +∞, whereas
it fails if KL∞ < +∞.

Proof. Assume existence of one-sided tests. As previously mentioned, equivalently there
exists ε > 0 such that

∀a > 0, lim inf
d→∞

P(λ,s)
d (Ld > a) ≥ ε.

Fix a > 0, and define for d ∈ N, Cd := {x ∈ Y2
d : Ld(x) > a}. Write then, noting

φ(u) := u log(u):

KLd ≥ P(λ,s)
d (Cd) log(a) +

∑
x∈Cd

P(λ,s)
d (x) log

P(λ,s)
d (x)

P(λ)
d (x)

≥ P(λ,s)
d (Cd) log(a) + P(λ)

d (Cd)
∑
x∈Cd

P(λ)
d (x)

P(λ)
d (Cd)

φ(Ld(x))

(a)

≥ P(λ,s)
d (Cd) log(a) + P(λ)

d (Cd)φ

∑
x∈Cd

P(λ)
d (x)

P(λ)
d (Cd)

Ld(x)


= P(λ,s)

d (Cd) log(a) + P(λ,s)
d (Cd) log

(
P(λ,s)
d (Cd)

)
− P(λ,s)

d (Cd) log(P(λ)
d (Cd))
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≥ P(λ,s)
d (Cd) log(a) + inf

u∈[0,1]
φ(u) ≥ P(λ,s)

d (Cd) log(a)− e−1 .

We used convexity of φ in (a). It thus follows from characterization of one-sided testability
that for all a > 0,

KL∞ ≥ ε log(a)− e−1,

and thus KL∞ = +∞.
Conversely, assume λs > 1 and KL∞ = +∞. Let under P(λ,s)

∞ define

w := lim
d→∞

|Ld(τ?)|(λs)−d .

On the event that τ? survives, which has strictly positive probability for λs > 1, it holds that
w > 0. In addition, we let π?, (π′)? denote the injections from τ? to T and T ′ respectively
that result from uniform shuffling of the augmentations of τ?.

Let d,m be two integers. One then has the lower bound:

Ld+m(T, T ′) ≥
∏

u∈Vd−1(τ?)

ψ(cτ?(u), cT (π?(u)), cT ′((π
′)?(u))

∏
u∈Ld(τ?)

Lm(Tπ?(u), T
′
(π′)?(u))

≥
∏

u∈Vd−1(τ?)

ψ(cτ?(u), cT (π?(u)), cT ′((π
′)?(u)))e|Ld(τ?)|[E(λ,s)

m [logLm]−o(1)].

For d large, by the law of large numbers, the first product is with high probability lower-
bounded by eCw(λs)d for some fixed constant C. Choosing m of order 1 but sufficiently large,
since by assumption limm→∞ E(λ,s)

m [log(Lm)] = +∞, we can ensure that the second factor
is larger than eC

′w(λs)d for some arbitrary C ′. Taking C ′ large enough ensures that, on
the event that τ? survives, limd→∞ Ld = +∞ almost surely. This readily implies one-sided
testability.

Proof of (i) ⇐⇒ (ii) ⇐⇒ (v) in Theorem 6.1

Proof. Proposition 6.4.2 gives the implication (ii) =⇒ (i). Its proof further gives (ii) =⇒
(v). The converse (v) =⇒ (ii) is obvious. The second statement in Proposition 6.4.2 gives
(i) =⇒ KL∞ = +∞. To obtain that (i) =⇒ (ii) and conclude, it thus only remains to
show that (i) =⇒ λs > 1.

As will be shown in Section 6.7, one-sided testability implies (polynomial-time) feasibility
of partial graph alignment. However, [GML21b] established that partial alignment is not
feasible when λs ≤ 1 (see Chapter 4). This establishes (i) =⇒ λs > 1 as required.

6.4.2. Applications

To apply condition (ii) of Theorem 6.1, let us first establish the following

Lemma 6.4.1. For all d ≥ 1, one has

KLd+1 ≥ λsKLd + λs (log(s/λ) + 1) + 2λ(1− s) log(1− s). (6.21)

Proof. Let c denote under P(λ,s)
d the degree of τ?’s root, and c + ∆ (respectively c + ∆′)

the degree of the root nodes in T and T ′. By the recursive formula for Ld, considering
only the term for k = c in the first summation as well as the injections σ : [c] → [c + ∆],
σ′ : [c]→ [c+ ∆′] that correctly match the c children of τ?’s root in T and T ′, of which there
are exactly c! pairs, one has:

Ld(T, T
′) ≥ ψ(c, c+ ∆, c+ ∆′)× c!×

c∏
u=1

Ld−1(Tu, T
′
u)
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≥ eλs s
c(1− s)∆+∆′

λc
×

c∏
u=1

Ld−1(Tu, T
′
u).

Taking logarithms and then expectations, since E(λ,s)
d [c] = λs and E(λ,s)

d [∆] = E(λ,s)
d [∆′] =

λ(1− s), the result follows.

We then have

Corollary 6.4.2. Assume that λs > 1 and

KL1 >
1

λs− 1
[λs(log(λ/s)− 1)− 2λ(1− s) log(1− s)] . (6.22)

Then KL∞ = +∞.

Proof. This follows from (6.21): indeed together with (6.22) it implies that for all d ≥ 1,

KLd+1 −KL1 ≥ λs(KLd −KL1),

hence KLd diverges geometrically to infinity, provided we have KL2 > KL1. The latter
property is established by writing

KL2 = E(λ)
∞ [φ(L2)] = E(λ)

∞

[
E(λ)
∞ [φ(L2)|F1]

]
where φ(x) = x log(x) is strictly convex. Jensen’s inequality thus guarantees KL2 ≥ KL1 =

E(λ)
∞ [φ(L1)], with equality only if almost surely, L2 = L1. However this almost sure equality

does not hold, hence the result.

These results have the following consequence:

Theorem 6.4. Assume that λ ∈ (1, e). Let

s∗(λ) := sup{s ∈ [0, 1] : s(log(λ/s)− 1)− 2(1− s) log(1− s) ≥ 0}. (6.23)

Then s∗(λ) < 1, and under the conditions

λ ∈ (1, e) and s ∈ (s∗(λ), 1], (6.24)

one-sided detectability holds.

Proof. The fact that s∗(λ) < 1 follows by continuity, since for s = 1 the function

s→ s(log(λ/s)− 1)− 2(1− s) log(1− s)

evaluates to log(λ) − 1, which is negative by the assumption λ < e. By definition, for
s ∈ (s∗(λ), 1], the right-hand side of (6.22) is less than or equal to zero. Since KL1 > 0, the
result is a consequence of Corollary 6.4.2 and Proposition 6.4.2.

Remark 6.4.1. A result similar to that of Theorem 6.4 follows from [GM20]. The present
derivation is however more direct, and allows for more explicit upper bound λ0 = e on the
range of values of λ considered, as well as characterization of the function s∗(λ) involved.

Condition (6.22) of Corollary 6.4.2 can also be used to identify conditions on s for one-
sided testability for large values of λ, based on corresponding evaluations of KL1. However,
the resulting conditions do not appear as sharp as those obtained by the analysis of auto-
morphisms of τ?, that is the object of the next Section.
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6.5. Number of automorphisms of Galton-Watson trees

In this Section, we show how counting automorphisms of Galton-Watson trees gives a suf-
ficient condition for the existence of one-sided tests in the tree correlation detection problem,
and provide evaluations of this number of automorphisms.

6.5.1. A lower bound on the likelihood ratio

Under P(λ,s)
∞ , recall that τ? is the true intersection tree used to perform correlated con-

struction of T and T ′, and π?, (π′)? denote the injections from τ? to T and T ′ respectively
that result from uniform shuffling of the augmentations of τ?. Without loss of generality,
we assume in this section that π? and (π′)? are the identity map. We denote, for each
u ∈ Vd−1(τ?):

cu := cτ?(u), ∆u := cT (u)− cτ?(u), ∆′u := cT ′(u)− cτ?(u). (6.25)

We now prove the following

Lemma 6.5.1. Under P(λ,s)
d we have the lower bound:

Ld = Ld(T, T
′) ≥ |Aut(τ?)|

∏
u∈Vd−1(τ?)

sci(1− s)∆u+∆′u

e−λsλcu

∏
u∈Ld−1(τ?)

(
cu + ∆u

cu

)(
cu + ∆′u
cu

)
,

(6.26)
where we recall that Aut(τ?) denotes the set of tree automorphisms of τ?.

Proof. In view of the developed expression (6.11), we can lower-bound Ld(T, T ′) by writing

Ld(T, T
′) ≥

∑
τ∈Yd
τ≡τ?

∑
σ∈S(τ,T )
σ′∈S(τ,T )

∏
u∈Vd−1(τ)

ψ
(
cτ (u), cT (σ(u)), cT ′(σ

′(u))
)
, (6.27)

where ≡ is used to denote equality up to some relabeling. Let us compute the right hand
term in (6.27). Note that any tree τ ∈ Yd such that τ ≡ τ? can be determined by a collection

ξ(τ) :=
{
ξu(τ) ∈ Scτ? (u), u ∈ Vd−1(τ?)

}
,

giving the reordering of the children of each node of τ? at depth d−1. Moreover, the number
of such permutations that produce this particular tree τ is precisely given by |Aut(τ?)|. Thus
the number of trees in the summation (6.27) is precisely

|{τ ∈ Yd : τ ≡ τ?}| =
∏
u∈Vd−1(τ?) cτ?(u)!

|Aut(τ?)|
. (6.28)

Note that for any tree τ ≡ τ?, we can construct

|Aut(τ?)|2 ×
∏

u∈Ld−1(τ?)

(
cu + ∆u

cu

)(
cu + ∆′u
cu

)
(6.29)

pairs of injections (σ, σ′) ∈ S(τ, T ) × S(τ, T ′). Indeed the factor
(
cu+∆u

cu

)
(respectively,(

cu+∆′u
cu

)
) denotes the number of subsets of the cu + ∆u children of u in t (respectively,

of the cu+∆′u children of u in t′) that we can associate as children of u in the injection σ (re-
spectively, σ′), the order in which they are considered being determined by the permutation
ξu in ξ. We thus have the following lower bound, for any tree τ ≡ τ?:

151



6.5. Number of automorphisms of Galton-Watson trees

∑
σ∈S(τ,T )
σ′∈S(τ,T )

∏
u∈Vd−1(τ)

ψ
(
cτ (u), cT (σ(u)), cT ′(σ

′(u))
)

≥ |Aut(τ?)|2
∏

u∈Vd−1(τ?)

scu(1− s)∆u+∆′u

cu!e−λsλcu

∏
u∈Ld−1(τ?)

(
cu + ∆u

cu

)(
cu + ∆′u
cu

)
.

(6.30)

Combined, (6.28) and (6.30) imply (6.26).

We now turn to lower-bounding the number |Aut(τ?)| of automorphisms for τ? ∼ GW
(λs)
d :

Proposition 6.5.1. Let r be a sufficiently large constant (in particular, r > 1). For τ? ∼
GW

(r)
d , let us denote by w the almost sure limit:

w := lim
d→∞

1

rd
|Ld(τ?)|. (6.31)

We place ourselves on the event on which τ? survives, which occurs with probability 1 −
pext(r) > 0, and on which w > 0. We let

K :=
wrd

r − 1
· (6.32)

We then have with high probability the lower bound

log

(
|Aut(τ?)|∏

u∈Vd−1(τ?) e
−rrcτ? (u)

)
≥ K(1− oP(1))

[
log3/2 r

3
√
r

+Or

(
log5/4 r√

r

)]
. (6.33)

Note that hereabove, K is a high probability equivalent of |Vd−1(τ?)|. Proposition 6.5.1,
proved in Appendix 6.B.1, could be of independent interest. We believe that a little more work
could easily show that inequality (6.33) is exponentially tight, i.e. gives the right exponential
order for the estimation of the number of automorphism of a Galton-Watson tree. We next
show that Lemma 6.5.1 together with Proposition 6.5.1 yield a sufficient condition for the
existence of one-sided test.

6.5.2. A sufficient condition for one-sided tests

We are now in a position to prove the following

Theorem 6.5. There exists a constant r0 such that if

λs > r0 and 1− s ≤ 1

(3 + η)

√
log(λs)

λ3s
, (6.34)

for some η > 0, then one-sided detectability of tree correlation holds.

Proof. The proof consists in showing that in this regime, Ld goes to +∞ with positive prob-
ability under P(λ,s)

∞ . Throughout, Xµ will denote a Poisson random variable with parameter
µ. In the lower bound (6.26) of Lemma 6.5.1, consider the factor

∏
u∈Vd−1(τ?)

scu(1− s)∆u+∆′u

e−λsλcu

∏
u∈Ld−1(τ?)

(
cu + ∆u

cu

)(
cu + ∆′u
cu

)
.
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Placing ourselves on the event on which τ? survives, reusing the notations w and K defined
in equations (6.31) and (6.32), another appeal to the law of large numbers gives the following
equivalents:

A := log

 ∏
u∈Vd−1

scu(1− s)∆u+∆′u

e−λsλcu

 ∼ K (λs(log(s/λ) + 1) + 2λ(1− s) log(1− s)) (6.35)

and

B := log

 ∏
u∈Ld−1(τ?)

(
cu + ∆u

cu

)(
cu + ∆′u
cu

)
∼ w(λs)n−1

(
2E [log(Xλ!)]− 2E

[
log(Xλ(1−s)!)

]
− 2E [log(Xλs!)]

)
. (6.36)

Let us introduce the notations r := λs, α := λ(1− s), such that λ = α+ r and s = r
α+r . We

will identify equivalents of exponents of interest as α→ 0 and r →∞. In this regime, (6.35)
becomes

A ∼ K
(
−2r log(1 + α/r) + 2α log

(
α/r

1 + α/r

)
− r log r + r

)
∼ K (−r log r + r − 2α log r + 2α logα+O(α))

We have the classical estimate for large µ:

E [log(Xµ!)] = µ log(µ)− µ+
1

2
log(2πeµ) +O

(
1

µ

)
, (6.37)

Using (6.37) and noting that in this regime, E [log(Xα!)] = O(α2), (6.36) becomes

B ∼ 2wrn−1

(
(r + α) log(r + α)− r − α+

1

2
log(2πe(r + α))− r log(r) + r − 1

2
log(2πer)−O(α2)

)
∼ 2wrn−1

(
r log(1 + α/r) + α log(1 + α/r) + α log r − α+

1

2
log(1 + α/r) +O(α)

)
∼ 2wrn−1 (α log(r) +O(α)) .

Combined, these approximations give:

A+B ∼ K
((

1− 1

r

)
× 2α log(r)− r log r + r − 2α log(r) + 2α log(α) +O(α)

)
∼ K (−r log r + r + 2α log(α) +O(α)) . (6.38)

Appealing to the strong law of large numbers gives

log

 ∏
u∈Vd−1(τ?)

e−rrcτ? (u)

 = (1 + oP(1)) |Vd−1(τ?)|E [−r + cτ?(ρ(τ?)) log r]

= (1 + oP(1))K (−r + r log(r)) . (6.39)

Combining (6.38) and (6.39) with the results of Proposition 6.5.1 entails

logLd ≥ K

[
r log r − r +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
+K [−r log r + r + 2α log(α) +O(α)]
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= K

[
2α logα+

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)
+O(α)

]
.

Then, under assumption (6.34), we have α ≤ 1
3+η

√
log(r)/r so that, for sufficiently large r,

2α logα+
log3/2(r)

3
√
r

> Ω

(
log3/2(r)√

r

)
.

It follows that on the event on which τ? survives, which happens with probability 1 −
pext(λs) > 0, under condition (6.34), Ld goes to +∞ with d. Thus one-sided detectabil-
ity holds.

6.6. Impossibility of correlation detection: conjectured hard phase for
partial graph alignment

In the present section we establish that, for λs2 < 1 and sufficiently large λ, KL∞ < +∞
and hence, by Theorem 6.1, one-sided testability fails for our tree correlation problem. Since
there exists a range of parameters (λ, s) for which partial alignment can be information-
theoretically achieved while λs2 < 1 (it suffices to have 4 < λs < s−1 in view of [WXY21])
we therefore conclude that the conjectured hard phase for partial graph alignment (see the
conjecture at the end of Section 6.1) is non empty.

6.6.1. Mutual information formulation

Note that the Kullback-Leibler divergence KLd also coincides with the mutual information
between Td := pd(T ) and T ′d := pd(T

′) under P(λ,s)
∞ . To emphasize this interpretation we

rewrite
KLd = I(Td;T

′
d).

Note that under P(λ,s)
∞ , conditionally on τ?d := pd(τ

?), Td and T ′d are mutually independent,
a property that we will depict with the dependence diagram

Td —- τ?d —- T ′d.

By the data processing inequality, we thus have

KLd = I(Td;T
′
d) ≤ I(τ?d ;Td).

To establish that KL∞ <∞, it therefore suffices to prove that I(τ?d ;Td) is bounded, uniformly
in d. Write then

I(τ?d , td) = E(λ,s)
d ln

(
P(λ,s)
d (τ?d , Td)

P(λ,s)
d (τ?d )P(λ,s)

d (Td)

)

≤ E(λ,s)
d

[
P(λ,s)
d (τ?d , Td)

P(λ,s)
d (τ?d )P(λ,s)

d (Td)
− 1

]
≤ E(λ,s)

d

[
P(λ,s)
d (τ?d , Td)

P(λ,s)
d (τ?d )P(λ,s)

d (Td)

]
.

We have established the bound

I(τ?d , Td) ≤ Vd := E(λ,s)
d

[
P(λ,s)
d (τ?d |Td)
P(λ,s)
d (τ?d )

]
. (6.40)
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6.6.2. Bounding the mutual information

Let us denote by c the degree of the root node in τ? and c + ∆ the degree of the root
node in T . Let us further write

τ? = (τ?1 , . . . , τ
?
c ), T = r(A(τ?1 ), . . . , A(τ?c ), θ1, . . . , θ∆) = (T1, . . . , Tc+∆),

where the A(τ?u) are (λ, s)−augmentations, the θu are GW
(λ)
d−1 trees, and r is a uniform

relabeling. Observe that

P(λ,s)
d (τ?|T ) =

GW
(λs)
d (τ?)

GW
(λ)
d (T )

e−λ(1−s) (λ(1− s))∆

∆!

×
∑

σ∈S(c,c+∆)

∆!

(c+ ∆)!

∏
u∈[c]

P(λ,s)
d−1 (Tσ(u)|τ?u)

c+∆∏
u=c+1

GW
(λ)
d−1(Tσ(u))

=
e−λs(λs)c/c!

e−λλc+∆/(c+ ∆)!
e−λ(1−s) (λ(1− s))∆

∆!

∑
σ∈S(c,c+∆)

∆!

(c+ ∆)!

∏
u∈[c]

P(λ,s)
d−1 (τ?u |Tσ(u))

=
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

∏
u∈[c]

P(λ,s)
d−1 (τ?u |Tσ(u)),

so that
P(λ,s)
d (τ?|T )

P(λ,s)
d (τ?)

=
sc(1− s)∆

c!πλs(c)

∑
σ∈S(c,c+∆)

∏
u∈[c]

P(λ,s)
d−1 (τ?u |Tσ(u))

P(λ,s)
d−1 (τ?u)

.

Taking expectation entails the following formula for Vd defined in equation (6.40):

Vd =
∑
c≥0

∑
∆≥0

πλ(1−s)(∆)
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

E(λ,s)
d−1

[
c∏
i=1

P(λ,s)
d−1 (τ?i |Tσ(i))

P(λ,s)
d−1 (τ?i )

∣∣∣∣c,∆
]
. (6.41)

To evaluate the previous expression, we need to introduce the following notion of cycles.

Open paths, closed cycles For two integers c,∆ ≥ 0 and an injective mapping σ ∈
S(c, c+ ∆), a sequence (i1, . . . , i`) of elements of [c] is

• an open path of σ if

i1 /∈ σ([c]), ∀k = 1, . . . , `− 1, σ(ik) = ik+1, and σ(i`) /∈ [c].

• a closed cycle of σ if

∀k = 1, . . . , `− 1, σ(ik) = ik+1 and σ(i`) = i1.

It is an easy fact to check that each injective mapping σ ∈ S(c, c+ ∆) can be factorized
in disjoint open paths and closed cycles. Since each term i in the product in (6.41) only
depends on the other terms j in its own open path (resp. closed cycle), the expectation term
in (6.41) factorizes according to the path/cycle decomposition of σ.
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Figure 6.8 – Representation of σ ∈ S(c, c+ ∆) with c = 6,∆ = 3, and σ(1) = 4, σ(2) = 6, σ(3) = 2,
σ(4) = 5, σ(5) = 1, σ(6) = 8. In this example, (1, 4, 5) (resp. (3, 2, 6)) is an open path (resp. closed
path) of σ.

First consider an open path O` of σ of length `, assumed without loss of generality to be
given by (1, . . . , `), so that σ(1) = 2, . . . , σ(`− 1) = `, and σ(`) = c+ 1. The expectation of
the corresponding factor reads:

E(λ,s)
d−1

∏
i∈O`

P(λ,s)
d−1 (τ?i |Tσ(i))

P(λ,s)
d−1 (τ?i )

 = E(λ,s)
d−1

[
`−1∏
k=1

P(λ,s)
d−1 (τ?k |A(τ?k+1))

P(λ,s)
d−1 (τ?k )

×
P(λ,s)
d−1 (τ?` |θ1)

P(λ,s)
d−1 (τ?` )

]
.

Now integrated over θ1, P
(λ,s)
d−1 (τ?` |θ1) evaluates to P(λ,s)

d−1 (τ?` ) and the last factor disappears.
Integrating then successively with respect to A(τ?k ), k = `, ` − 1, . . . , 2, we obtain that the
factors corresponding to open cycles evaluate to 1.

Consider next a closed cycle C` of σ of length `. Assuming without loss of generality that
Ti = A(τ?i ), the expectation reads

E(λ,s)
d−1

∏
i∈C`

P(λ,s)
d−1 (τ?i |Tσ(i))

P(λ,s)
d−1 (τ?i )

 = E(λ,s)
d−1

∏̀
k=1

P(λ,s)
d−1 (τ?k |A(τ?(k+1) mod `))

P(λ,s)
d−1 (τ?k )

 .
This reads, using for t, τ ∈ Yd−1 the notations pd−1(t) := GW

(λ)
d−1(t), qd−1(τ |t) := P(λ,s)

d−1 (τ |t),
rd−1(τ) := GW

(λs)
d−1(τ):

∑
τ1,t1,...,τ`,t`∈Yd−1

∏
i∈[`]

pd−1(ti)qd−1(τi|ti)×
qd−1(τi|t(i+1) mod `)

rd−1(τi)
. (6.42)

Introduce the operator Ψd−1, indexed by trees in Yd−1:

Ψd−1(τ1, τ2) :=
∑

t∈Yd−1

pd−1(t)
qd−1(τ1|t)qd−1(τ2|t)√
rd−1(τ2)rd−1(τ2)

. (6.43)

M is symmetric and semi-definite positive, hence the operator is diagonalizable and its spec-
trum lies in R+. Note that the expectation in (6.42) coincides with the trace of matrix Ψ`

d−1.
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It follows that 6

E(λ,s)
d−1

∏
i∈C`

P(λ,s)
d−1 (τ?i |Tσ(i))

P(λ,s)
d−1 (τ?i )

 = Tr(Ψ`
d−1) ≤ Tr(Ψd−1)` = Vd−1.

We now have the ingredients in place to prove the following

Lemma 6.6.1. The quantity Vd verifies

Vd ≤ f(Vd−1), (6.44)

where
f(x) =

1

1− sx
exp

(
κ(1− s)(x− 1)

1− sx

)
(6.45)

with κ := λs2.

Proof. For given c,∆ ≥ 0 and an injection σ ∈ S(c, c + ∆), let F (σ) denote the number of
elements i ∈ [c] that belong to closed cycles of σ. From the previous evaluations (6.41) –
(6.43) we already have obtained the bound

Vd ≤
∑
c,∆≥0

πλ(1−s)(∆)
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

V
F (σ)
d−1 .

To upper-bound this quantity, we use the facts that Vd−1 ≥ 1 and that F (σ) ≤ |[c] ∩ σ([c])|.
Then, for any 0 ≤ k ≤ c, there are

(
c
k

)(
∆
c−k
)
ways to chose the set σ([c]) such that |[c] ∩ σ([c])| =

k, and c! distinct injections σ with the same set σ([c]). Hence Vd ≤ f(Vd−1) with

f(x) :=
∑
c,∆≥0

e−λ(1−s) s
c(λ(1− s)2)∆

∆!

c∑
k=0

(
c

k

)(
∆

c− k

)
xk

= e−λ(1−s)
∑
k,∆≥0

xk
(λ(1− s)2)∆

∆!

∑
c≥k

(
c

k

)(
∆

c− k

)
sc

= e−λ(1−s)
∑
k,∆≥0

xk
(λ(1− s)2)∆

∆!
sk

∆∑
c=0

(
c+ k

k

)(
∆

c

)
sc

= e−λ(1−s)
∑
k,c≥0

1

c!

(
c+ k

k

)
(sx)ksc(λ(1− s)2)c

∑
∆≥c

(λ(1− s)2)∆−c

(∆− c)!

= e−λs(1−s)
∑
c≥0

(λs(1− s)2)c

c!

∑
k≥0

(
c+ k

k

)
(sx)k

= e−λs(1−s)
1

1− sx
∑
c≥0

1

c!

(
λs(1− s)2

1− sx

)c
=

1

1− sx
exp

(
λs2(1− s)(x− 1)

1− sx

)
.

We are now in a position to prove the following

6To make this argument fully rigorous we can consider truncated summations so that we are dealing with
finite dimensional matrices, for which the trace inequality to follow clearly holds, and then use monotone
convergence to obtain the desired inequality as written.
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Theorem 6.6. Assume κ = λs2 is fixed such that κ < 1. Then for λ sufficiently large, it
holds that

lim sup
d→∞

Vd < +∞, (6.46)

so that one-sided testability fails.

Proof. Let κ < 1 be fixed, together with ε ∈ (0, 4κ) such that κ + ε < 1. Let γ > 0 be an
arbitrary constant chosen such that

γ >
1

1− κ− ε
.

We shall consider s > 0 sufficiently small, or equivalently λ large enough, in particular such
that γs < 1. Let y ∈ [0, γs]. Note that

exp

(
κ

y(1− s)
1− s(y + 1)

)
≤ exp (κy/(1− 2s)) .

Then, assuming 1
1−2s ≤ 1 + ε/(4κ) as well as 2e2κ2γs/ε ≤ 1, we get

exp (κy/(1− 2s)) ≤ exp (κy + εy/4) ≤ 1 + (κ+ ε/2)y. (6.47)

Note also that, 1/(1 − t) ≤ 1 + t + 3t2 for t ∈ (0, 2/3). Assuming s(y + 1) ≤ 2s < 2/3, and
using y ≤ γs ≤ 1, we get

1

1− s(y + 1)
≤ 1 + s(y + 1) + 3[s(y + 1)]2 ≤ 1 + s+ Cs2, (6.48)

where C := γ+12. Together, these last two bounds (6.47) and (6.48) entail, for any y ∈ [0, γs]:

f(1 + y)− 1 ≤ (1 + (κ+ ε/2)y)(1 + s+ Cs2)− 1 ≤ s+ Cs2 + (κ+ ε)y,

where we assumed s sufficiently small that (κ + ε/2)(1 + s + Cs2) ≤ κ + ε. Note now that,
provided

1 + (γ + 12)s+ (κ+ ε)γ ≤ γ,

it holds that
f(1 + y)− 1 ∈ [0, γs]. (6.49)

Note that this condition can be enforced, for any choice of γ such that γ > 1
1−κ−ε taking s

sufficiently small.
By induction on d, monotonicity of f (which is easily obtained from the series expansion

of f), and the initialization V0 = 1, it follows from (6.49) that for sufficiently small s one has:

Vd − 1 ≤ (s+ Cs2)

d−1∑
i=0

(κ+ ε)i.

Since the right-hand side is uniformly bounded in d, the result follows.

6.7. Consequences for polynomial time partial graph alignment

We now apply the previous results of Sections 6.3 – 6.5 to one-sided partial graph align-
ment. We will now describe our polynomial-time algorithm and its theoretical guarantees
when one-sided detectablity holds in Theorem 6.1 – in particular under condition (6.24) of
Theorem 6.4 or condition (6.34) of Theorem 6.5.
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6.7.1. Intuition, algorithm description

In all this part we assume that (λ, s) satisfy one of the conditions in Theorem 6.1.

Extending the tree correlation detection problem Let (G,H) be a pairs of relabeled
G(n, λ/n, s) graphs, with underlying alignment π?. As done in Chapter 5, in order to distin-
guish matched pairs of nodes (u, u′), we consider their neighborhoods Nd,G(u) and Nd,H(u′)
at a given depth d: these neighborhoods are close to Galton-Watson trees. In the case where
the two vertices are actual matches, i.e. u′ = π?(u), we are exactly in the setting of our
tree correlation detection problem under P(λ,s)

d : Point (v) of in Theorem 6.1 shows that there
exists a threshold βd such that with probability at least 1− pext(λs) > 0,

Ld(u, u
′) := Ld

(
Nd,G(u),Nd,H(u′)

)
> βd,

when d→∞. Point (v) of Theorem 6.1 shows that this threshold βd can be e.g. taken to be
exp(nγ) for some γ ∈ (0, c log(λs)).

At the same time, when nodes u′ and π?(u) are distinct and sufficiently far away, we
can argue that we are also – with high probability – in the setting of the tree correlation
detection problem under P(λ)

d : since E(λ)
d [Ld] = 1, Markov’s inequality shows that with high

probability when d→∞,
Ld(u, u

′) ≤ βd.

Computation of the likelihood ratios As mentioned in Remark 6.3.1, Formula (6.10)
enables to compute such likelihood ratios efficiently on a graph, giving the exact expression
for a message passing procedure, assuming that all neighborhoods are locally tree-like at
depth d. Let us first define oriented likelihood ratios: for any u, v ∈ V (G) and u′, v′ ∈ V (H),
we write Ld(u← v, u′ ← v′) for the likelihood ratio at depth d of two trees, the first one (resp.
second one) being rooted at u in G (resp. u′ in H) where the edge {u, v} (resp. {u′, v′}), if
initially present, has been deleted. In view of (6.10) these oriented likelihood ratios satisfy
the following recursion:

Ld(u← v, u′ ← v′) =

du∧d′u′−1∑
k=0

ψ
(
k, du − 1, d′u′ − 1

) ∑
σ∈S([k],NG(u)\{v})
σ′∈S([k],NH(u′)\{v′})

k∏
`=1

Ld−1(σ(`)← u, σ′(`)← u′) , (6.50)

where du := dG(u) and d′u′ := dH(u′). The likelihood ratio at depth d between u and u′ is
then obtained by computing

Ld(u, u
′) =

du∧d′u′∑
k=0

ψ
(
k, du, d

′
u′
) ∑
σ∈S([k],NG(u))
σ′∈S([k],NH(u′))

k∏
`=1

Ld−1(σ(`)← u, σ′(`)← u′) . (6.51)

A natural idea is then to compute for each pair (u, u′) the likelihood ratio Ld(u, u′) with
d large enough (typically scaled in Θ(log n) where n is the number of vertices in G and H)
and to compare it to βd to decide whether u in G is matched to u′ in H.

A refined dangling trees trick However, as previously noted in Chapter 5, without
additional constraint, this strategy produces many falsely positive matches, tending e.g. to
match u with u′ if there exists v such that {u, v} is an edge of G and {u′, π?(v)} is an edge
of H, making the errors increase and the performance collapse.

To fix this issue, we use the dangling trees trick, already introduced in [GM20], and
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improved here by considering three rather than two dangling trees: instead of just looking
at their neighborhoods, we look for the downstream trees from distinct neighbors of u in G
and of u′ in H. The trick is now to match u with u′ if and only if there exists three distinct
neighbors v, w, x of u in G (resp. v′, w′, x′ of u′ in H) such that all three of the likelihood
ratios Ld−1(v ← u, v′ ← u′), Ld−1(w ← u,w′ ← u′) and Ld−1(x← u, x′ ← u′) are larger than
β. The proof of Theorem 6.8 explains how this trick avoids false positives and why three
dangling trees is a good choice.

Algorithm description Our algorithm is as follows:
Algorithm 6.1: MPAlign: Message-passing algorithm for sparse graph alignment
1 Input: Two graphs G and H of size n, average degree λ, depth d, threshold

parameter β
2 Output: A set of pairsM⊂ V (G)× V (H).
3 M← ∅
4 Compute Ld(u← v, u′ ← v′) for all {u, v} ∈ E and {u′, v′} ∈ E′ with (6.50)
5 for (u, u′) ∈ V (G)× V (H) do
6 if NG(u, d) and NH(u′, d) contain no cycle, and

∃{v, w, x} ⊂ NG(u),∃{v′, w′, x′} ⊂ NG(u′) such that Ld−1(v ← u, v′ ← u′) > β,
Ld−1(w ← u,w′ ← u′) > β and Ld−1(x← u, x′ ← u′) > β then

7 M←M∪ {(u, u′)}
8 end
9 end

10 returnM

Remark 6.7.1. To update the matrix of all likelihood ratios with (6.50), we update a matrix
of size O(n2), each entry of which can be computed in time O

(
(dmax!)2

)
– where dmax is the

maximum degree in G and H. Under the correlated Erdős-Rényi model, dmax = O
(

logn
log logn

)
[Bol01], so that dmax! is polynomial in n. Each iteration is thus polynomial in n and since d
is taken order log(n), MPAlign (Algorithm 6.1) runs in polynomial time.

We now state two results, of the same flavour as Theorems 5.4 and 5.5 in Chapter 5 for
NTMA, which will readily imply Theorem 6.2.

Theorem 6.7. Let (G,H) be drawn under the planted model with correlated G(n, λ/n, s)
graphs such that any of the equivalent conditions of Theorem 1 holds. Let d = bc log nc with
c log (λ (2− s)) < 1/2. Let M be the output of Alg. 6.1, taking β = exp(nγ) for some
γ ∈ (0, c log(λs)). Then with high probability

1

n

n∑
u=1

1{(u,π?(u))∈M} ≥ Ω(1). (6.52)

In other words, a non vanishing fraction of nodes is correctly recovered by Algorithm 6.1.

Theorem 6.8. Let (G,G′) ∼ G(n, λ/n, s) be two s−correlated Erdős-Rényi graphs. Assume
that d = bc log nc with c log λ < 1/4. Let M be the output of Alg. 6.1, taking β = exp(nγ)
for some γ ∈ (0, c log(λs)). Then with high probability

err(n) :=
1

n

n∑
u=1

1{∃u′ 6=π?(u), (u,u′)∈M} = o(1), (6.53)

i.e. only a vanishing fraction of nodes are incorrectly matched by Algorithm 6.1.

Remark 6.7.2. The setM returned by Algorithm 6.1 is not necessarily an injective mapping.
LetM′ be obtained by removing all pairs (u, u′) ofM such that i or u appears at least twice.
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Theorems 6.7 and 6.8 guarantee that M′ still contains a non-vanishing number of correct
matches and a vanishing number of incorrect matches, hence one-sided partial alignment
holds. Theorem 6.2 easily follows, the proposed local algorithm achieving one-sided partial
graph alignment.

A slight adaptation of MPAlign (Alg. 6.1), MPAlign2 (Alg. 6.2), can be found in Appendix
6.A, where some results are also reported. These confirm our theory, as the algorithm returns
many good matches and few mismatches. A similar algorithm has been recently studied in
[PSSZ21].

6.7.2. Proof strategy

We start by recalling Lemmas that precise the link between sparse graph alignment and
correlation detection in trees, as explained in Section 6.7.1. These Lemmas are directly taken
from Chapter 5 (to which we refer for the proofs, see Lemmas 5.3.1, 5.3.2, 5.3.3 and 5.3.4)
and are instrumental in the proofs of Theorems 6.7 and 6.8.

Lemma 6.7.1 (Control of the sizes of the neighborhoods). Let G ∼ G(n, λ/n), d = bc log nc
with c log λ < 1. For all γ > 0, there is a constant C = C(γ) > 0 such that with probability
1−O (n−γ), for all u ∈ [n], t ∈ [d]:

|SG(u, t)| ≤ C(log n)λt. (6.54)

Lemma 6.7.2 (Cycles in the neighborhoods in an Erdős-Rényi graph). Let G ∼ G(n, λ/n),
d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for any vertex u ∈ [n], one
has

P (NG,d(u) contains a cycle) = O
(
n−ε

)
. (6.55)

Lemma 6.7.3 (Two neighborhoods are typically independent). Let G ∼ G(n, λ/n) with
λ > 1, d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for any fixed nodes
u 6= v of G, the total variation distance between the joint distribution of the neighborhoods
L
(

(SG(u, t),SG(v, t))t≤d

)
and the product distribution L

(
(SG(u, t))t≤d

)
⊗L

(
(SG(v, t))t≤d

)
tends to 0 as O (n−ε) when n→∞.

Lemma 6.7.4 (Coupling neighborhoods with Galton-Watson trees). We have the following
couplings:

(i) Let G ∼ G(n, λ/n), d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that
for any fixed node u of G, the variation distance between the distribution of NG,d(u)

and the distribution GW
(λ)
d tends to 0 as O (n−ε) when n→∞.

(ii) For (G,H) two correlated G(n, λ/n, s) graph with planted alignment π?, d = bc log nc
with c log(λs) < 1/2 and c log(λ(1−s)) < 1/2, there exists ε > 0 such that for any fixed
node u of G, the variation distance between the distribution of (NG,d(u),NH,d(π?(u)))

and the distribution P(λ,s)
d (as defined in Section 6.2.2) tends to 0 as O (n−ε) when

n→∞.

Proof of Theorems 6.7 and 6.8

Proof of Theorem 6.7. First, since c log (λ (2− s)) < 1/2, we also have c log (λ (1− s)) < 1/2
and c log (λs) < 1/2. For i ∈ [n], point (ii) of Lemma 6.7.4 implies that the two neighborhoods
NG,d(u) and NH,d(π?(u)) can be coupled with trees drawn under P(λ,s)

d as defined in Section
6.2.2 with probability ≥ 1−O(n−ε).

Under this coupling, there is a probability α3 > 0 that the root in the intersection
tree has at least three children, and since we work under the conditions of Theorem 6.1
point (v) implies that the three likelihood ratios are greater than β with positive probability
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(1 − pext(λs))
3 > 0. Hence, the probability of Mu := {(u, π?(u)) ∈M} is at least (1 −

o(1))α3(1− pext(λs))
3 =: α > 0.

Let G∪ be the true union graph, that is G∪ := Gπ
? ∪H where Gπ? is the relabeling of G

according to permutation π?. We have G∪ ∼ G(n, λ(2 − s)/n). For u 6= v ∈ [n], define Iu,v
the event on which the two neighborhoods of u and v in G∪ coincide with their independent
couplings up to depth d. Since c log (λ (2− s)) < 1/2, by Lemma 6.7.3, P(Iu,v) = 1 − o(1).
Then for 0 < ε < α, Markov’s inequality yields

P

(
1

n

n∑
u=1

1{(u,π?(u))∈M} < α− ε

)
≤ P

(
n∑
u=1

(P(Mu)− 1Mu) > εn

)

≤ 1

n2ε2
(nVar (1M1) + n(n− 1)Cov (1M1 ,1M2))

≤ Var (1M1)

nε2
+

1− P (I1,2)

ε2
→ 0,

which ends the proof.

Remark 6.7.3. Note that in view of the proof here above, the recovered fraction Ω(1) guar-
anteed by in Theorem 6.7 can be taken as close as wanted to

α(λs) := (1− pext(λs))
3 (1− πλs(0)− πλs(1)− πλs(2)) .

This fraction is a priori not optimal, and can be interestingly compared with recent results in
[GML21b] (Chapter 4) showing that no more than a fraction 1− pext(λs) of the nodes can be
recovered.

Proof of Theorem 6.8. First, we condition on the event A that all d−neighborhoods in G and
H are of size at most C(log n)λd, which happens with probability 1− o(1) by Lemma 6.7.1.
Note that by assumption this uniform upper bound is O((log n)n1/4).

In order to control the probability that u is matched with some ’wrong’ u′ 6= π?(u) by our
algorithm, we follow the same first steps as in the proof of Theorem 5.5 of Chapter 5: we will
first fix u in G and work on the event Eu where NG∪,2d(u) has no cycle. Since c log(λ) < 1/4,
this event happens with probability 1− o(1) by Lemma 6.7.2.

Consider then u′ in H such that u′ 6= π?(u). If u and u′ are matched by MPAlign, then
necessarily NG(u, d) and NH(u′, d) contain no cycle: the d−neighborhoods are thus tree-like.
For any choice of distinct neighbors v, w, x of u in G (resp. v′, w′, x′ of u′ in H), we define
the corresponding pairs of trees of the form (T`, T

′
`), where T` (resp. T

′
`) is the tree of depth

d− 1 rooted at ` ∈ {v, w, x} in G (resp. ` ∈ {v′, w′, x′} in H) after deletion of edge {u, `} in
G (resp. {u′, `} in H). A moment of thought shows that, no matter the choice of v, w, x and
v′, w′, x′, on event Ei, one of these three pairs (T`, T

′
`) must be made of two disjoint trees.

We now focus on a pair (T, T ′) of such disjoint trees: these trees of depth d−1 can be built
recursively by sampling a binomial number of children for each vertex. Since we condition on
the fact that the trees are not intersecting, if at some point k vertices have been uncovered,
then the number of children to be drawn is exactly of distribution Bin (n− k, λ/n). With
this exact construction, we denote by P̃d the distribution of the pair (T, T ′). Define

Md−1 :=
P̃d−1(T, T ′)

P(λ)
d−1(T, T ′)

. (6.56)

We have that

P̃d−1(Ld−1(T, T ′) > β ∩ A) = E(λ)
d−1

[
Md−1 × 1A × 1Ld−1(T,T ′)>β

]
≤ E(λ)

d−1[M2
d−11A]1/2β−1/2 ,
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6.7. Consequences for polynomial time partial graph alignment

by a successive use of Cauchy-Schwarz and Markov’s inequalities, using that E(λ)
d−1 [Ld−1(T, T ′)] =

1. We now state the following Lemma, proved in Appendix 6.B.3:

Lemma 6.7.5. With the previous notations, we have

E(λ)
d−1

[
M2
d−11A

]
= O(1). (6.57)

Together with the previous Lemma, noting that with high probability the maximum
degree in G and H is less than log n, union bound gives

P
(
A ∩

{
∃u′ 6= π?(u), (u, u′) ∈M

})
≤ P(Ēi) + o(1) + n× log6 n× β−1/2

= O
(

(log6 n)× n× exp(−nγ/2)
)

= o(1).

The proof follows by appealing to Markov’s inequality.
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Appendix of Chapter 6

6.A. Numerical experiments for MPAlign2

In this section, we give some details on a practical implementation of our algorithm. We
start by introducing some notations. Given an edge {u, v} of a graph, we denote by u→ v and
v → u the associated directed edges. Now given two graphs G = (V,E) and H = (V ′, E′),
we define the matrix (mt

u→v,u′→v′){u,v}∈E,{u′,v′}∈E′ ∈ R2|E|×2|E′|
+ recursively in t, as follows:

mt+1
u→v,u′→v′ =

du∧du′−1∑
k=0

ψ̃(k, du − 1, du′ − 1)
∑

{`1,...`k}∈∂u\v
{w1,...wk}∈∂u′\v′

∑
σ∈Sk

k∏
a=1

mt
`a→u,wσ(a)→u′ , (6.58)

where du := dG(u), d′u′ := dH(u′), ψ̃(k, d1, d2) = k!ψ(k, d1, d2), and ∂u\v (resp. ∂u′\v′) is a
shorthand notation for NG(u) \ {v} (resp. NH(u′) \ {v′}) and by convention m0

u→v,u′→v′ = 1.

Denoting ∂u := NG(u) (resp. ∂u′ := NH(u′)), for t ∈ N we define the matrix (mt
u,u′) ∈

RV×V
′

+ as follows:

mt
u,u′ =

du∧du′∑
k=0

ψ̃(k, du, du′)
∑

{`1,...`k}∈∂u
{w1,...wk}∈∂u′

∑
σ∈Sk

k∏
a=1

mt
`a→u,wσ(a)→u′ . (6.59)

It is easy to see that if the graphs G and H are tree-like up to depth t, then mt
u,u′ is

exactly the likelihood ratio Lt(su, s′u′) where su (resp. s′u′) is the tree neighborhood of u in
G (resp. of u′ in H).

In experiments, we run our algorithms on correlated Erdős-Rényi model with possible
cycles, so that the matrix mt

u,u′ is interpreted as an approximation of the true likelihood
ratio. From such an approximation, we compute two mappings πt : V → V ′ as

πt(u) = arg max(mt
u,·)

and σt : V ′ → V as
σt(u′) = arg max(mt

·,u′)

which are candidates for matching vertices from G to H or from H to G. If t is small, then
the approximation mt

u,u′ will not be accurate as it does not incorporate sufficient information
(only at depth t in both graphs). When t is large, cycles will appear in both graphs so that
the recursion is not anymore valid. In order to choose an appropriate number of iterations t,
we adopt the following simple strategy: we compute all the matrices mt

u,u′ for all values of t
less than a parameter d; then from these matrices, we compute the corresponding mappings
πt and σt as described above; we then compute:

e(t) := match-edges(G,H, πt, σt)
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6.A. Numerical experiments for MPAlign2

:=
1

|E|
∑
{u,v}∈E

1(πt(u),πt(v))∈E′ +
1

|E′|
∑

{u′,v′}∈E′
1(σt(u′),σt(v′))∈E . (6.60)

Finally, we choose
t∗ = arg max(e(t)) .

Note that, we are considering sparse Erdős-Rényi graphs which are typically not connected
(the diameter is infinite). We know from [GML21b] (Chapter 4) that only the giant compo-
nents of G and H can possibly be aligned. Hence as a first pre-processing step, we remove all
the small connected components from G and H and keep only the largest one. As a result,
our algorithm takes as input 2 connected graphs of (possibly) different sizes. The pseudo-code
for our algorithm is given below:
Algorithm 6.2: MPAlign2
1 Input: Two connected graphs G = (V,E) and H = (V ′, E′), parameter d and

parameters of the correlated Erdős-Rényi model λ (average degree) and s
2 for t ∈ {1, . . . , d} do
3 compute mt

u→v,u′→v′ thanks to (6.58)
4 compute mt

u,u′ thanks to (6.59)
5 compute πt : V → V ′ as πt(u) = arg max(mt

u,·)

6 compute σt : V ′ → V as σt(u′) = arg max(mt
·,u′)

7 compute e(t) = match-edges(G,H, πt, σt) thanks to (6.60)
8 end
9 t∗ = arg max(e(t))

10 Return πt
∗ , σt∗ , mt∗

Figure 6.9 shows some empirical results for graphs of size 200 for values λ = 2; 2, 5; 3
where the overlap is the mean of the overlaps given by πt∗ and σt∗ . The maximum number of
iterations is fixed to d = 15. For more numerical experiments on this algorithm, see [PSSZ21].

Figure 6.9 – Overlap as a function of the parameter s for graphs with (initial) size n = 200 for
various values of λ (parameter d = 15). Each point is the average of 10 simulations.

This choice of d = 15 is validated by the results presented in Figure 6.10. We plot for each
simulation the mean overlap of πt and σt as a function of t ≤ 15. We see that for low values
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of s (on the left s = 0.4), the overlap behaves randomly. In this scenario, increasing the
value of d will probably not help as cycles will deteriorate the performance of the algorithm.
For high value of s (on the right s = 0.9), we see that the overlap starts by increasing and
then decreases abruptly to zero, this is due to numerical issues: some messages in mt are
too large for our implementation of the algorithm to be able to deal with them. Finally for
values of s, where signal is detected (in the middle s = 0.675), we see that when the signal is
detected, the overlap start by increasing until reaching a maximum and then decreases before
numerical instability. We also note that our choice of t∗ thanks to the number of matched
edges can be fairly sub-optimal. We believe that a better understanding of the performance
of our algorithm for finite n is an interesting open problem. Indeed, we refer to [PSSZ21]
which provides more detailed experimental results on a similar algorithm.

Figure 6.10 – Overlap as a function the number of iterations t for graphs with (initial) size n = 200
for λ = 2.5 (parameter d = 15) and various values of s. The dotted point on each curve corresponds
to t∗. Note that the y-axis of each plot have different scale. When overlap reaches zero, our algorithm
hits infinity.

6.B. Additional proofs

6.B.1. Proof of Proposition 6.5.1

Proof. Throughout the proof, let Xµ denote a Poisson random variable with parameter µ. A
node u ∈ Ln−2(τ?) has, independently for each k ∈ N, a number Nk ∼ Poi(rπr(k)) children
who themselves have k children. To each such node, we can associate∏

k∈N
Nk!

permutations of its children that will preserve the labeled tree. Likewise, for each node
u ∈ Ld−1(τ?), there are cu! permutations of its children that don’t modify the tree, where
cu := cτ?(u). Thus by the strong law of large numbers, we have:

log |Aut(τ?)| ≥ (1 + oP(1))

[
wrn−1E [log(Xr!)] + wrn−2

∑
k∈N

E
[
log(Xrπr(k)!)

]]
. (6.61)
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Recall the classical estimate for large µ:

E log(Xµ!) = µ log(µ)− µ+
1

2
log(2πeµ) +O

(
1

µ

)
, (6.62)

and Stirling’s formula gives

log(k!) = k log k − k +
1

2
log(2πk) +O

(
1

k

)
. (6.63)

We now give some estimates of the distribution πr(k) in the following Lemma, which proof
is deferred to Appendix 6.B.2.

Lemma 6.B.1. Let ε(r) be such that ε(r)→ 0 and ε(r) log r → +∞ when r → +∞. Let

Ir,ε :=
[
r − (1− ε(r))

√
r log r, r + (1− ε(r))

√
r log r

]
.

Then

(i) we have
P (Xr /∈ Ir,ε) = O

(
r−1/2eε(r) log r

)
. (6.64)

(ii) for all k ∈ Ir,ε, letting xk = k−r√
r
, we have

πr(k) =
1√
2πr

e−x
2
k/2

[
1 +

x3
k

6
√
r
− xk

2
√
r

+O

(
x6
k

r

)]
. (6.65)

(iii) Note that (6.65) implies that for each k ∈ Ir,ε, it holds that rπr(k) = Ω
(
eε(r) log r(1−o(1))

)
,

thus diverges to +∞.

Consider the function ε(r) := log log r
4 log r , which satisfies the assumptions of Lemma 6.B.1.

Using expansion (6.65) together with (6.62) gives:∑
k∈Ir,ε

E
[
log(Xrπr(k)!)

]
=
∑
k∈Ir,ε

rπr(k) log(rπr(k))− rπr(k) +
1

2
log(2πerπr(k)) +O

(
1

rπr(k)

)

=
∑
k∈Ir,ε

rπr(k)

[
1

2
log(r)− 1

2
log(2π)−

x2
k

2
+

x3
k

6
√
r
− xk

2
√
r

+O

(
log2 r

r

)
− 1

]

+
∑
k∈Ir,ε

1

2

[
log(2πe) +

1

2
log(r)− 1

2
log(2π)−

x2
k

2
+O

(
log3/2(r)√

r

)]
+O

(√
r log r

)
(a)
=

1

2
r log(r)−

(
1

2
log(2π) +

1

2
+ 1

)
r +O(

√
r log5/4 r)

+O(
√
r log r) +

1

2
(1− ε(r))

√
r log3/2(r)− 1

4

∑
k∈Ir,ε

x2
k

(b)
=

1

2
r log(r)−

(
1

2
log(2π) +

3

2

)
r +

1

3

√
r log3/2(r) +O(

√
r log5/4 r). (6.66)

Let us give hereafter all the required details for the above computation.

• At step (a), we first used point (i) of Lemma 6.B.1, which gives that

r log r × P (Xr /∈ Ir,ε) = O
(√

r log1/4 r
)

= O
(√

r log5/4 r
)
.
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For the sum of the x2
k, we remark that

∑
k∈Ir,ε

rπr(k)
x2
k

2
=
r

2

(
1− E

[(
Xr − r√

r

)2

1Xr /∈Ir,ε

])
,

and that the expectation in the right-hand term can be written as follows

E

[(
Xr − r√

r

)2

1∣∣∣Xr−r√
r

∣∣∣≥2
√

log r

]
+ E

[(
Xr − r√

r

)2

1
(1−ε(r))

√
log r≤

∣∣∣Xr−r√
r

∣∣∣≤2
√

log r

]

≤ E

[(
Xr − r√

r

)4
]1/2

P
(∣∣∣∣Xr − r√

r

∣∣∣∣ ≥ 2
√

log r

)1/2

+ 4 log r × P (Xr /∈ Ir,ε)

≤ O
(
r−1/2

)
+O

(
r−1/2 log5/4 r

)
.

Hence,
∑

k∈Ir,ε rπr(k)
x2k
2 = r

2−O
(√

r log5/4 r
)
. Finally, using the fact that E

[(
Xr−r√

r

)3
]

and E
[
Xr−r√

r

]
areO(1), the sums of the x3

k and xk easily incorporate into theO
(√

r log5/4 r
)

term.

• At step (b), we first used the fact that ε(r)
√
r log3/2 = O

(√
r log5/4 r

)
. The only term

requiring more computations is

∑
k∈Ir,ε

x2
k =

∑
k∈Ir,ε

(
k − r√

r

)2

= 2×
(1−ε(r))

√
r log r∑

`=0

`2

r
=

2

3

√
r log3/2 r +O

(√
r log5/4 r

)
.

Copying (6.66) together with (6.62) in (6.61) yields:

log(|Aut(τ?)|) ≥ (1 + oP(1))wrn−1

[
r log(r)− r +

1

2
log(2πer) +O

(
1

r

)]
+ (1 + oP(1))wrn−1

[
1

2
log(r)− 1

2
log(2π)− 3

2
+

log3/2 r

3
√
r

+O

(
log5/4 r√

r

)]

= (1 + oP(1))wrn−1

[
r log(r)− r + log(r)− 1 +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
.

Another appeal to the strong law of large numbers entails that

log

 ∏
u∈Vd−1(τ?)

e−rrcτ? (u)

 = (1 + oP(1)) |Vd−1(τ?)|E [−r + cτ?(ρ(τ?)) log r]

= (1 + oP(1))K (−r + r log(r)) .

Combined, these last two evaluations yield a lower bound of log

(
|Aut(τ?)|∏

u∈Vd−1(τ
?) e
−rrcτ? (u)

)
under the event on which τ? survives, of the form

(1− oP(1))K

[
−r log(r) + r +

(
1− 1

r

)(
r log(r)− r + log(r)− 1 +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

))]
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= (1− oP(1))K

[
log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
.

6.B.2. Proof of Lemma 6.B.1

Proof. (i) The result follows directly from the classical Poisson concentration inequality

P (|Xr − r| ≥ x) ≤ 2 exp

(
− x2

2(r + x)

)
,

noting that for x = (1− ε(r))
√
r log r, x2

2(r+x) ≥
1
2 log r − ε log r − o(1).

(ii) When k runs over Ir,ε, xk runs over
[
−(1− ε(r))

√
log r, (1− ε(r))

√
log r

]
. Using

Stirling’s formula (6.63), we get

log πr(k) = log πr(r + xk
√
r) = −r + k log r − log(k!)

= −r + (r + xk
√
r) log r − (r + xk

√
r) log(r + xk

√
r) + r + xk

√
r − 1

2
log(2π(r + xk

√
r)) +O

(
1

r

)
= −r + r log r + xk

√
r log r − (r + xk

√
r)

[
log r +

xk
r1/2

−
x2
k

2r
+

x3
k

3r3/2
+O

(
x4
k

r2

)]
+ r + xk

√
r − 1

2
log(2π)− 1

2
log(r)− 1

2

xk
r1/2

+O

(
x2
k

r

)
= −r − xk

√
r − x2

k +
x2
k

2
+

x3
k

2
√
r
−

x3
k

3
√
r

+O

(
x4
k

r

)
+ r + xk

√
r − 1

2
log(2πr)− 1

2

xk
r1/2

+O

(
x2
k

r

)
= −

x2
k

2
− 1

2
log(2πr) +

x3
k

6
√
r
− xk

2
√
r

+O

(
x4
k

r

)
.

Taking the exponential gives

πr(k) =
1√
2πr

e−x
2
k/2

[
1 +

x3
k

6
√
r
− xk

2
√
r

+O

(
x6
k

r

)]
.

(iii) follows directly from (ii).

6.B.3. Proof of Lemma 6.7.5

Proof. We condition on P be the number of recursive steps in the previous construction,
which is O((log n)n1/4) under A. For each s ∈ [P ], we denote by cs the number of newly
sampled children, and Vs :=

∑s−1
s′=0 cs′ the number of uncovered vertices before step s (we set

V0 := 0). With these notations, it is easily seen than Md−1 can be factorized as follows:

Md−1 =
∏
s∈[P ]

P (Bin (n− 2− Vs, λ/n) = cs)

πλ(cs)
≤
∏
s∈[P ]

exp

(
λ

n
(Vs + 2 + cs)

)

= exp

2λP

n
+
λ

n

∑
s∈[P ]

(P − s)cs

 .

170



6.B. Additional proofs

Under P(λ)
d , the variables cs are independent Poi(λ) variables, hence

E(λ)
d

[
M2
d−11A

]
≤ exp

4λP

n
+ λ

∑
s∈[P ]

(
e2λ(P−s)/n − 1

)1P=O((logn)n1/4)

≤ exp
(
C ′P 2/n+ o(P 2/n)

)
1P=O((logn)n1/4) = O(1).
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Chapter 7

Addendum: new results for correlation
detection in trees

This addendum, which concludes the manuscript, presents new results for correlation in trees
from a recent joint work with L. Massoulié and G. Semerjian (paper in preparation). These
results are significantly improving on previous work and give a general understanding of
the fundamental limits of the problem, as well as some interesting perspectives discussed
afterwards in the conclusion.

We do not redefine here the problem of correlation detection in trees, since we already
thouroughly did in Chapters 5 and 6, but we rather introduce some auxiliary definitions that
proved useful for the analysis made his the sequel. For related work, we refer to Section 1.3.4
of the introduction.

We straightaway mention that the results presented in this last part are very much related
to the recent study of Mao, Wu, Xu and Yu [MWXY21] who studied the correlation detection
problem in Erdős-Rényi graphs, and proposed an algorithm based on counting (signed) trees,
which can provably distinguish graph correlation efficiently as soon as s >

√
α, where α

is the Otter’s constant defined below in Proposition 7.1.1. The results presented here are
different for several reasons: first, we study the problem on trees and consider an optimal
test, which thus also meets the informational bounds. Moreover, we show that s <

√
α

implies impossibility of one-sided detection, and that one-sided detection exhibits a sharp
threshold at s =

√
α, asymptotically in λ, see Figure 7.1.

We believe that this study paves the way for many other works in this field, generalizing
to other graph models, analyzing the computational hardness of the problem with different
tools, and designing more efficient algorithms for tree correlation detection or graph alignment
– for more insights and details on these research directions, we refer to the conclusion.

7.1. Main results

7.1.1. Definitions and notations

Trees We start by stating some familiar definitions, in the general context of unlabeled
trees, that are part of the rationale for results to follow.

Definition 7.1.1 (Finite rooted unlabeled trees). We recursively define the set Xd of finite
rooted unlabeled trees of depth at most d ≥ 0.

For d = 0, Xd contains the trivial tree reduced to its root node, denoted by •.
For d ≥ 1, having defined X0, . . . ,Xd−1, we define Xd as follows: a finite rooted unlabeled

tree t ∈ Xd consists in an integer sequence {Nτ}τ∈Xd−1
with finite support, that is such that

|{τ ∈ Xd−1, Nτ 6= 0}| <∞,

where Nτ is the number of children of the root in t which subtrees are copies of τ .
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Throughout all the chapter, we will only work with finite trees (with finite degrees), hence
the adjective ’finite’ will be omitted as a shortcut.

Remark 7.1.1. With the previous definition, equality between two rooted unlabeled trees
t := {Nτ}τ∈Xd−1

and t′ := {N ′τ}τ∈Xd−1
is defined as Nτ = N ′τ for all τ ∈ Xd−1.

Remark 7.1.2. Denoting one-to-one correspondence by ', we remark that X1 ' N (the set
of non-negative integers), and that more generally for each d ≥ 1,

Xd '
⋃
`≥1

⋃
τ1,...,τ`∈Xd−1
i 6=j =⇒ τi 6=τj

N`.

Hence, Xd is countably infinite, by recursion, for all d ≥ 1.

Definition 7.1.2 (Size of a rooted unlabeled tree). The size, or number of nodes, of a tree
t ∈ Xd is denoted by |t| and defined recursively as follows. First, if d = 0, we set |•| = 1.
Then, for d ≥ 1, writing t = {Nτ}τ∈Xd−1

, one has

|t| = 1 +
∑

τ∈Xd−1

Nτ · |τ | .

Definition 7.1.3 (Depth of a rooted unlabeled tree). The depth of a tree t ∈ Xd is denoted
by depth(t) and defined recursively as follows. First, if d = 0, we set depth(•) = 0. Then,
for d ≥ 1, writing t = {Nτ}τ∈Xd−1

, one has

depth(t) = 1 + max {1Nτ≥1 · depth(τ), τ ∈ Xd−1} .

Definition 7.1.4 (Child of a rooted unlabeled tree). A rooted unlabeled tree s ∈ Xd−1 is said
to be a child of a tree t = {Nτ}τ∈Xd−1

if Ns ≥ 1. Moreover, if Ns ≥ 1, t is said to have Ns

children of type s. Note that since the tree t is finite, it has a finite number of children, given
by
∑

τ Nτ .

Definition 7.1.5 (Subtree of a rooted unlabeled tree). Let us define recursively the notion
of subtree. First, the only subtree of • is • itself. Then for d′ ≤ d, an element s ∈ Xd′ is a
subtree of t ∈ Xd if either s = t or if s is a subtree of some child of t.

Formal power series If f is a formal power series in the variable x, we denote [xn]f(x)
the coefficient of the monomial xn in f , i.e. if f(x) =

∑
n≥0 anx

n then [xn]f(x) := an.
If f is a formal power series in m variables (x1, . . . , xm), and ` := (`1, . . . , `m) is a tuple

of non negative integers, we use the shorthand notation

[x`]f(x1, . . . , xm)

for [x`11 · · ·x`mm ]f(x1, . . . , xm).
Throughout the paper we will often consider families indexed by a countably infinite

set Z, and in particular use the same shorthand [x`] for [
∏
z∈Z x

`z
z ], where x = {xz}z∈Z

is a family of formal variables, and ` = {`z}z∈Z a family of non-negative integers; in such
occurences only a finite number of `z will be non-zero, the definition thus reduces to the
finite-dimensional one by taking xz = 0 whenever `z = 0. This finite support property will
also make summations over z ∈ Z of functions of `z well-defined.

By convention {uz}z∈Z will stand for non-negative integer sequences {uz}z∈Z with fi-
nite support, hence from the definition of Xd the sum

∑
t∈Xd will be equivalently denoted∑

{Nτ}τ∈Xd−1

.
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Cardinality of unlabeled trees with given size and depth We are now interested in
the cardinality of the set of unlabeled trees with given size and depth.

Definition 7.1.6 (Trees with given size and depth). For n ≥ 1, let us define

An :=

∣∣∣∣∣∣
t ∈ ⋃

d≥0

Xd, |t| = n


∣∣∣∣∣∣ , (7.1)

that is An is the number of (distinct) unlabeled rooted trees of size n. For d ≥ 0, we further-
more define

Ad,n := |{t ∈ Xd, |t| = n}| , (7.2)

that is Ad,n is the number of (distinct) unlabeled rooted trees of size n and depth at most d.

We now state a celebrated result by Otter [Ott48], together with a proposition that will
be useful in the sequel.

Proposition 7.1.1 (Asymptotic number of unlabeled trees, [Ott48]). One has

An ∼
n→∞

C

n3/2

(
1

α

)n
, (7.3)

for some C > 0, where α ∈ (0, 1) is the Otter constant, numerically α = 0.3383219...

Proposition 7.1.2 (Control of the generating function of the Ad,n). For all d ≥ 0, let

Φd(x) :=
∑
n≥1

Ad,nx
n−1 . (7.4)

We have, for all x > 0,
Φd(x) −→

d→∞
Φ(x) , (7.5)

where
Φ(x) :=

∑
n≥1

Anx
n−1 . (7.6)

Moreover, for all d ≥ 0 and t ∈ [0, 1), there exists A = A(d, t) such that

∀x ∈ [0, t], |Φd(x)| ≤ A . (7.7)

Proof of Proposition 7.1.2. Convergence (7.5) follows from Ad,n −→
d→∞

An and monotone con-
vergence theorem.

We will now establish a recursion property on the Φd, adapting the proof of Otter [Ott48]
of the case d =∞ to general depth d. We can decompose a tree t of depth at most d+1 with
n vertices according to its subtrees. For i ≥ 1, we denote by µi ≥ 0 the number of subtrees
of t with i nodes. The µi subtrees are then distributed in the Ad,i categories, the only thing
that distinguish them being the number in each Ad,i. For a given i, there is

(
Ad,i+µi−1

µi

)
such

choices. This gives the following recursion formula:

Ad+1,n =
∑
{µi}i≥1

∏
i≥1

(
Ad,i + µi − 1

µi

)
1n=1+

∑
i≥1 iµi

.

Plugging the last equation in the definition of Φd+1 gives

Φd+1(x) =
∑
n≥1

xn−1
∑
{µi}i≥1

∏
i≥1

(
Ad,i + µi − 1

µi

)
1n=1+

∑
i≥1 iµi

175



7.1. Main results

=
∑
{µi}i≥1

∏
i≥1

[(
Ad,i + µi − 1

µi

)
xiµi

]
=
∏
i≥1

∑
µ≥0

[(
Ad,i + µ− 1

µ

)
xiµ
]

=
∏
i≥1

1

(1− xi)Ad,i
= exp

−∑
i≥1

Ad,i log(1− xi)

 = exp

∑
i,j≥1

Ad,i
xij

j


= exp

∑
j≥1

xj

j

∑
i≥1

Ad,i(x
j)i− 1

 = exp

∑
j≥1

xj

j
Φd(x

j)

 .

Equation (7.7) is then very easy to propagate by recursion with this last formula. For d = 0,
Ad,n = 1n=1, hence Φ0(x) = 1 and (7.7) holds with A = 1. Assume that (7.7) holds at depth
d for all t ∈ [0, 1) with constant A(d, t). Then, by the previous computation, for all t ∈ [0, 1)
and x ∈ [0, t], since xj ∈ [0, t] for all j ≥ 1 we have

Φd+1(x) = exp

∑
j≥1

xj

j
Φd(x

j)

 ≤ exp

∑
j≥1

xj

j
A(d, t)


= exp (−A(d, t) log(1− x)) =

(
1

1− x

)A(d,t)

≤
(

1

1− t

)A(d,t)

=: A(d+ 1, t) .

Thus, (7.7) holds at depth d+ 1.

Models of random trees We now define the models and random trees considered in
the study. They are the same as models of Chapter 6, but we restate them here with an
equivalent1 definition that fits the description t = {Nτ}τ∈Xd−1

of elements of Xd.

Definition 7.1.7 (Galton-Watson trees with Poisson offspring). Let µ > 0. For d = 0, GW(µ)
d

is the Dirac mass at the trivial tree • ∈ X0. For d ≥ 1, a tree t = {Nτ}τ∈Xd−1
∼ GW

(µ)
d is

sampled as follows: for all τ ∈ Xd−1, Nτ ∼ Poi(µGW
(µ)
d−1(τ)) independently from everything

else. Note that since the Poisson variables are independent, we have

∑
τ∈Xd−1

Nτ ∼ Poi

µ ∑
τ∈Xd−1

GW
(µ)
d−1(τ)

 = Poi(µ)

which is a.s. finite. Hence, we have t ∈ Xd a.s.
Throughout all the study, we will only work with Galton-Watson trees with Poisson off-

spring, which we will simply refer to as Galton-Watson trees, as a notation shortcut.

Definition 7.1.8 (Null model P(λ)
d ). The null distribution P(λ)

d on Xd × Xd of parameter
λ > 0 is simply defined as the product GW(λ)

d ⊗ GW
(λ)
d : under the null model, the two trees

are independent Galton-Watson trees with offspring Poi(λ).

Definition 7.1.9 (Correlated model P(λ,s)
d ). The correlated model P(λ,s)

d on Xd × Xd with
parameters λ > 0 and s ∈ [0, 1) first verifies that P(λ,s)

0 is the same as P(λ)
0 .

For d ≥ 1, a pair of trees (t, t′) = ({Nτ}τ∈Xd−1
, {N ′τ}τ∈Xd−1

) ∼ P(λ,s)
d is sampled as

follows.
Nτ := Mτ +

∑
τ ′∈Xd1

Nτ,τ ′ and N ′τ := M ′τ +
∑

τ∈Xd−1

Nτ,τ ′ , (7.8)

1Note that with this ‘unlabeled’ view, there is no need to define a tree augmentation for the correlated
model P(λ,s)

d – as in previous Chapter.
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with Mτ and M ′τ i.i.d. Poi(λ(1− s)GW(µ)
d−1(τ)) and Nτ,τ ′ i.i.d. Poi(λsP(λ,s)

d−1 (τ, τ ′)) variables.
Note that for all d, P(λ,s)

d = P(λ)
d if s = 0.

7.1.2. Main new results

We recall from Chapter 6 that the likelihood ratio Ld is defined as

Ld(t, t
′) :=

P(λ,s)(t, t′)

P(λ)(t, t′)
,

as well as the following result

Theorem (Chapter 6, Theorem 6.1). Let

KLd := KL(P(λ,s)
d ‖P(λ)

d ) = E1,d [log(Ld)] .

Then there exists a one-sided test for testing P(λ)
d versus P(λ,s)

d if and only if lim
d→∞

KLd = +∞
and λs > 1.

We now state the main results of this addendum. Let α be the Otter constant introduced
in Proposition 7.1.1.

Theorem 7.1 (Negative result). If s ≤
√
α, then for all λ > 0, lim supd KL(P(λ,s)

d ||P(λ)
d ) <

∞. Hence, one-sided detection is impossible.

Theorem 7.2 (Positive result). If s >
√
α, then there exists λ(s) > 0 such that for all

λ ≥ λ(s), KL(P(λ,s)
d ||P(λ)

d ) −→
d→∞

+∞. One-sided detection is thus feasible for λ large enough,
and an optimal one-sided test is the likelihood-ratio test Td := 1Ld(t,t′)>βd for some appropriate
βd (see Theorem 6.1).

Remark 7.1.3. These new results establish an almost sharp result for correlation detection
in trees. The regime s ≤

√
α always lies within the impossible phase, and s >

√
α is in the

easy phase for high mean degree λ.
In view of Theorem 6.2 proved in Chapter 6, these results also extend the knowledge on

the analysis of MPAlign, and doing so on the phase diagram for partial graph alignment, for
which a state-of-the-art version is given in Figure 7.1 below.

Instrumental to the proofs of these results is the diagonalization of the likelihood ratio
Ld(t, t

′) in an orthogonal basis of eigenvectors (or eigenfunctions). A very noticeable result
given in Theorem 7.3 in the following section is that these eigenvectors (resp. eigenvalues)
only depend on λ (resp. on s) (!)

7.2. The impossible phase for s ≤
√
α

7.2.1. Eigendecomposition of the likelihood ratio

Let us start by stating the master result of this section, which will render the analysis
easier and bring important corollaries for our analysis.

Theorem 7.3 (Eigendecomposition of the likelihood ratio). For all λ > 0, d ≥ 0, there exists
a collection {f (λ)

d,α}α∈Xd with f (λ)
d,α : Xd → R, such that for all s ∈ [0, 1),

∀t, t′ ∈ Xd, Ld(t, t′) =
∑
α∈Xd

s|α|−1f
(λ)
d,α(t)f

(λ)
d,α(t′), (7.9)

Moreover, the f (λ)
d,α are independent of s and verify the following properties:
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Figure 7.1 – State-of-the art phase diagram for partial graph alignment.

• Value at the trivial tree:
∀t ∈ Xd, f

(λ)
d,• (t) = 1 , (7.10)

• Orthogonality:

∀α, α′ ∈ Xd,
∑
t∈Xd

GW
(λ)
d (t)f

(λ)
d,α(t)f

(λ)
d,α′(t) = 1α=α′ . (7.11)

∀t, t′ ∈ Xd, GW
(λ)
d (t)

∑
α∈Xd

f
(λ)
d,α(t)f

(λ)
d,α(t′) = 1t=t′ . (7.12)

• Limit of higher-order mixed moments: more generally, for n ≥ 2, d ≥ 1 and β(1) =

{β(1)
α }α∈Xd−1

, . . . , β(n) = {β(n)
α }α∈Xd−1

∈ Xd, one has

∑
t∈Xd

GW
(λ)
d (t)f

(λ)

d,β(1)(t) · · · f
(λ)

d,β(n)(t) −→
λ→∞

∏
α∈Xd−1

√√√√ n∏
i=1

β
(i)
α !

[
xβ

(1)
α

1 · · · xβ
(n)
α
n

]
e
∑

1≤i<j≤n xixj .

(7.13)

Remark 7.2.1. Note that in the above properties, (7.11) implies the following first moment
condition:

∀α ∈ Xd,
∑
t∈Xd

GW
(λ)
d (t)f

(λ)
d,α(t) = 1α=•.

Remark 7.2.2. As remarked earlier, the eigenvectors f (λ)
d,α (resp. the eigenvalues) only depend

on λ and are independent of s (resp. on s, independent of λ).

Remark 7.2.3. The f (λ)
d,α(`) for d = 1, hence indexed by α, ` ∈ X1 ' N, are given by

f
(λ)
1,α(`) :=

√
α![xα]e−x

√
λ

(
1 +

x√
λ

)`
,

see equation (7.14) in the proof. These functions are known as Charlier polynomials, which
are orthogonal for the Poisson distribution. Theorem 7.3 provides an extension of these
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polynomials, on trees of depth d ≥ 2, that are orthogonal for the GW(λ)
d distribution, consistent

with GW
(λ)
1

(d)
= Poi(λ).

Also, note that equation (7.9) exhibits a duality between trees t, t′ in Xd and the trees
α ∈ Xd. This duality turns out to be very helpful for analysis, as shown below, e.g. giving a
nice space in which one can prove weak convergence results – see Section 7.3.1.

Proof of Theorem 7.3. We will prove the decomposition (7.9) as well as the properties (7.10),
(7.11), (7.13) by induction on d.

Step 1: initialization at d = 1. We identify X1 to N, and a tree t of depth d = 1 to its
number of children ` ∈ N: in this case, |t| = `+1. Denote by P̂(λ,s)

1 the characteristic function
defined on [0, 2π]2 by P̂(λ,s)

1 (k, k′) := E
[
eik`+ik

′`′
]
where (`, `′) ∼ P(λ,s)

1 . We have that

P̂(λ,s)
1 (k, k′) = exp

[
λ(1− s)(eik + eik

′ − 2) + λs(ei(k+k′) − 1)
]

= eλ(eik−1)eλ(eik
′−1) exp

[
λs(eik − 1)(eik

′ − 1)
]

=
∑
α≥0

sα
λα

α!
(eik − 1)αeλ(eik−1)(eik

′ − 1)αeλ(eik
′−1) =

∑
α≥0

sαĝ
(λ)
1,α(k)ĝ

(λ)
1,α(k′) ,

with

ĝ
(λ)
1,α(k) := e−λ

√
λα

α!
eλe

ik
(eik − 1)α = e−λ

√
α!eλe

ik
[xα]ex

√
λ(eik−1) = e−λ

√
α![xα]e−x

√
λe(λ+x

√
λ)eik .

We have an easy upper bound of the form
∣∣∣ĝ(λ)

1,α(k)
∣∣∣ ≤ Cα√

α!
, independently of k, which

established normal convergence of the series P̂(λ,s)
1 (k, k′) in the above. Hence, inverting the

Fourier transform, we get

P(λ,s)
1 (`, `′) =

∫
[0,2π]2

dkdk′

(2π)2
e−ik`−ik

′`′P̂(λ,s)
1 (k, k′) =

∑
α≥0

s|α|−1g
(λ)
1,α(`)g

(λ)
1,α(`′) ,

with

g
(λ)
1,α(`) :=

∫
[0,2π]

dk

2π
e−ik`ĝ

(λ)
1,α(k)

= e−λ
√
α![xα]e−x

√
λ

∫
[0,2π]

dk

2π
e−ik`e(λ+x

√
λ)eik

= e−λ
√
α![xα]e−x

√
λ (λ+ x

√
λ)`

`!
.

We hence have that L1 satisfies (7.9) with f (λ)
1,α given by

f
(λ)
1,α(`) =

eλ`!

λ`
g

(λ)
1,α(`) =

√
α![xα]e−x

√
λ

(
1 +

x√
λ

)`
. (7.14)

Taking α = 0 in (7.14) gives f (λ)
1,• = 1 and proves condition (7.10) at d = 1. For orthogonality

(7.11), note that for all α, α′ ∈ N,

∑
`≥0

GW
(λ)
1 (`)f

(λ)
1,α(`)f

(λ)
1,α′(`) =

√
α!α′!

∑
`≥0

e−λ
λ`

`!
[xαyα

′
]e−x

√
λ−y
√
λ

[(
1 +

x√
λ

)(
1 +

y√
λ

)]`
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=
√
α!α′![xαyα

′
]e−x

√
λ−y
√
λ exp

[
−λ+ λ

(
1 +

x√
λ

)(
1 +

y√
λ

)]
=
√
α!α′![xαyα

′
]exy = 1α=α′ ,

which establishes (7.11) for d = 1. Previous computations are made rigorous by noticing that
the series in (7.14) has infinite radius of convergence, and appealing to Fubini’s theorem.
With the same arguments, writing

f
(λ)
1,α(`) =

√
α!`![xαy`]e−x

√
λ+y(1+x/

√
λ)

=
√
α!`![xαy`]ey+x(y/

√
λ−
√
λ)

=
`!√
α!

[x`]ex
(
x√
λ
−
√
λ

)α
. (7.15)

For orthogonality (7.12), note that for all α, α′ ∈ N,∑
α≥0

f
(λ)
1,α(`)f

(λ)
1,α(`′) = `!(`′)![x`y`

′
]ex+y

∑
α≥0

1

α!

(
x√
λ
−
√
λ

)α( y√
λ
−
√
λ

)α
= `!(`′)![x`y`

′
]exy/λ+λ = 1`=`′`!e

λλ−` =
1`=`′

GW
(λ)
1 (`)

,

which establishes (7.12) for d = 1.

More generally, for n ≥ 2,

∑
`≥0

GW
(λ)
1 (`)f

(λ)
1,α1

(`) · · · f (λ)
1,αn

(`) =

√√√√ n∏
i=1

αi!
∑
`≥0

e−λ
λ`

`!
[xα1

1 · · · x
αn
n ]e−

√
λ
∑n
i=1 xi

n∏
i=1

(
1 +

xi√
λ

)`

=

√√√√ n∏
i=1

αi! [xα1
1 · · · x

αn
n ] exp

[
−λ−

√
λ

n∑
i=1

xi + λ
n∏
i=1

(
1 +

xi√
λ

)]

=

√√√√ n∏
i=1

αi! [xα1
1 · · · x

αn
n ] exp

 ∑
1≤i<j≤n

xixj + ελ(x1, . . . , xn)

 , (7.16)

with

ελ(x1, . . . , xn) :=

n∑
p=3

λ1−p/2
∑

1≤i1<...<ip≤n
x
αi1
i1
· · ·xαipip .

The terms corresponding to [xα1
1 · · · xαnn ] in the expansion of exp

[∑
1≤i<j≤n xixj + ελ(x1, . . . , xn)

]
to which ελ(x1, . . . , xn) contributes are in finite number (independently of λ) and are all of
order O(λ−1/2). Hence, taking λ→∞, property (7.13) is proved for d = 1 in (7.16).

Step 2: recursion at d+ 1. Let us take a pair of random trees in Xd+1 sampled from
the correlated model given in Definition 7.1.9, with N,N ′ ∈ RXd their corresponding vector
representations. Given k, y ∈ RXd we shall write k · y :=

∑
α∈Xd kαyα. The characteristic

function of P(λ,s)
d+1 is defined as P̂(λ,s)

d+1 (k, k′) := E
[
eik·N+ik′·N ′

]
and writes

P̂(λ,s)
d+1 (k, k′) = exp

λ(1− s)
∑
t∈Xd

GW
(λ)
d (t)(eikt + eik

′
t − 2) + λs

∑
t,t′∈Xd

P(λ,s)
d (t, t′)(eikt+ik

′
t′ − 1)
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= e
λ
∑
t∈Xd

GW
(λ)
d (t)(eikt−1)+λ

∑
t∈Xd

GW
(λ)
d (t)(eik

′
t−1)

exp

λs ∑
t,t′∈Xd

P(λ,s)
d (t, t′)(eikt − 1)(eik

′
t′ − 1)


= e

λ
∑
t∈Xd

GW
(λ)
d (t)(eikt−1)+λ

∑
t∈Xd

GW
(λ)
d (t)(eik

′
t−1)

×
∑
n≥0

sn
λn

n!

 ∑
t,t′∈Xd

P(λ,s)
d (t, t′)(eikt − 1)(eik

′
t′ − 1)

n

︸ ︷︷ ︸
(i)

. (7.17)

Let us use the decomposition (7.9) at step d in (i). Denoting g(λ)
d,α(t) := f

(λ)
d,α(t)GW

(λ)
d (t), this

gives

(i) =

∑
α∈Xd

s|α|−1

∑
t∈Xd

g
(λ)
d,α(t)(eikt − 1)

∑
t∈Xd

g
(λ)
d,α(t)(eik

′
t − 1)

n

=
∑

β=(βα)α∈Xd

n!s
−n+

∑
α∈Xd

βα|α|

×
∏
α∈Xd

1

βα!

∑
t∈Xd

g
(λ)
d,α(t)(eikt − 1)

βα ∑
t∈Xd

g
(λ)
d,α(t)(eik

′
t − 1)

βα 1∑
α∈Xd

βα=n .

Summing (i) for n ≥ 0 gives an overall sum over all β = (βα)α∈Xd that is over all Xd+1.
Moreover, for β = (βα)α∈Xd ∈ Xd+1, one always has

|β| = 1 +
∑
α∈Xd

βα|α| .

Hence, equation (7.17) becomes

P̂(λ,s)
d+1 (k, k′) =

∑
β∈Xd+1

β=(βα)α∈Xd

s|β|−1
∏
α∈Xd

1

βα!

λ
∑
t∈Xd

g
(λ)
d,α(t)(eikt − 1)

∑
t∈Xd

g
(λ)
d,α(t)(eik

′
t − 1)

βα

× eλ
∑
t∈Xd

GW
(λ)
d (t)(eikt−1)+λ

∑
t∈Xd

GW
(λ)
d (t)(eik

′
t−1)

=
∑

β∈Xd+1

β=(βα)α∈Xd

s|β|−1ĝ
(λ)
d+1,β(k)ĝ

(λ)
d+1,β(k′) ,

with

ĝ
(λ)
d+1,β(k) := e

λ
∑
t∈Xd

GW
(λ)
d (t)(eikt−1)

∏
α∈Xd

1√
βα!

√λ∑
t∈Xd

g
(λ)
d,α(t)(eikt − 1)

βα

= e−λ
√∏

α

βα! [xβ]e
λ
∑
t∈Xd

GW
(λ)
d (t)eikt+

∑
α∈Xd

xα
√
λ
∑
t∈Xd

g
(λ)
d,α(t)(eikt−1)

= e−λ
√∏

α

βα! [xβ]e
−
√
λ
∑
α,t∈Xd

xαg
(λ)
d,α(t)+

∑
t e
ikt

[
λGW

(λ)
d (t)+

∑
α xα
√
λg

(λ)
d,α(t)

]
,

where x = {xα}α∈Xd is a family of formal variables and xβ denotes
∏
α x

βα
α when β =
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(βα)α∈Xd . Note that since the trees are finite, only a finite number of coordinates βα are non
zero, which makes the infinite product problem disappear. The same arguments of normal
convergence as in the case d = 1 apply to justify the integral/sum permutations.

As done in Step 1, we can invert the Fourier transform by integrating over every kt, which
gives

g
(λ)
d+1,β(N) = e−λ

√∏
α

βα! [xβ]e
−
√
λ
∑
α,t∈Xd

xαg
(λ)
d,α(t)

∏
t∈Xd

[
λGW

(λ)
d (t) +

∑
α xα
√
λg

(λ)
d,α(t)

]Nt
Nt!

.

It is now established that Ld+1(N,N ′) satisfies the decomposition (7.9) with f (λ)
d+1,β given by

the following recursion

f
(λ)
d+1,β(N) :=

√∏
α

βα! [xβ]e
−
√
λ
∑
α,t∈Xd

xαg
(λ)
d,α(t)

∏
t∈Xd

1 +
∑
α∈Xd

xα√
λ
f

(λ)
d,α(t)

Nt

. (7.18)

Taking β = • in (7.18), that is βα = 0 for all α, gives f (λ)
d+1,• = 1 and proves condition (7.10)

at d+ 1.

Step 2.1: recursion for (7.11) at d+ 1. For any β = {βα}α∈Xd ,β′ = {β′α}α∈Xd ∈ Xd+1,
recursion (7.18) gives

∑
N∈Xd+1

GW
(λ)
d+1(N)f

(λ)
d+1,β(N)f

(λ)
d+1,β′(N) =

√∏
α

βα!

√∏
α

β′α!

×
[
xβyβ

′
]
e
−λ−

√
λ
∑
α,t∈Xd

(xα+yα)g
(λ)
d,α(t)+λ

∑
t∈Xd

GW
(λ)
d (t)

(
1+
∑
α∈Xd

xα√
λ
f
(λ)
d,α(t)

)(
1+
∑
α∈Xd

yα√
λ
f
(λ)
d,α(t)

)
.

The expression in the exponential in the above factorizes in several terms, that of order λ
being −1 + 1 = 0. The term in

√
λ is

−
∑

α,t∈Xd

(xα + yα)g
(λ)
d,α(t) +

∑
α,t∈Xd

GW
(λ)
d (t)xαf

(λ)
d,α(t) +

∑
α,t∈Xd

GW
(λ)
d (t)yαf

(λ)
d,α(t) = 0 ,

since g(λ)
d,α(t) = GW

(λ)
d (t)f

(λ)
d,α(t) by definition. The only remaining term is constant and

evaluates to ∑
α,α′

xαyα′
∑
t∈Xd

GW
(λ)
d (t)f

(λ)
d,α(t)f

(λ)
d,α′(t) =

∑
α

xαyα ,

using the orthogonality property (7.11) at step d. Hence,

∑
N∈Xd+1

GW
(λ)
d+1(N)f

(λ)
d+1,β(N)f

(λ)
d+1,β′(N) =

√∏
α

βα!

√∏
α

β′α!
[
xβyβ

′
]
e
∑
α xαyα = 1β=β′ ,

which proves (7.11) at d + 1. Previous computations are made rigorous since the trees
are finite, and by noticing that the series in (7.18) has infinite radius of convergence, and
appealing to Fubini’s theorem. We use the same arguments to make computations rigorous
in the rest of the proof.

Step 2.2: recursion for (7.12) at d+ 1. We are going to transform equation (7.18) as for
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the step d = 1, as follows:

f
(λ)
d+1,β(N) =

√∏
α

βα!
∏
t

Nt! [xβyN ]e
−
√
λ
∑
α,t∈Xd

xαg
(λ)
d,α(t)+

∑
t∈Xd

yt+
∑
α,t∈Xd

xαyα√
λ
f
(λ)
d,α(t)

=

∏
tNt!√∏
α βα!

[xN ]e
∑
t xt
∏
α

(∑
t

f
(λ)
d,α(t)

(
xt√
λ
−
√
λGW

(λ)
d (t)

)βα)
. (7.19)

Using (7.19) gives that for all N,N ′ ∈ Xd+1,∑
β∈Xd+1

f
(λ)
d+1,β(N)f

(λ)
d+1,β(N ′) =

∏
t

Nt!N
′
t ! [xNyN

′
]e
∑
t(xt+yt)

× e
∑
α,t,t′ f

(λ)
d,α(t)f

(λ)
d,α(t′)

(
xt√
λ
−
√
λGW

(λ)
d (t)

)(
yt′√
λ
−
√
λGW

(λ)
d (t′)

)

=
∏
t

Nt!N
′
t ! [xNyN

′
]e

∑
t(xt+yt)+

∑
t

1

GW
(λ)
d

(t)

(
xt√
λ
−
√
λGW

(λ)
d (t)

)(
yt√
λ
−
√
λGW

(λ)
d (t)

)
,

where we used (7.12) at step d in the last step. This simplifies to

∑
β∈Xd+1

f
(λ)
d+1,β(N)f

(λ)
d+1,β(N ′) =

∏
t

Nt!N
′
t ! [xNyN

′
] e
λGW

(λ)
d (t)+

∑
t

xtyt

λGW
(λ)
d

(t)

=
∏
t

1N=N ′e
λGW

(λ)
d (t)(λGW

(λ)
d (t))−NtNt! =

1N=N ′

GW
(λ)
d+1(N)

,

which proves (7.12) at step d+ 1.

Step 2.3: recursion for (7.13) at d+ 1. Let us now prove property (7.13). For any β(1) =

{β(1)
α }α∈Xd , . . . , β(n) = {β(n)

α }α∈Xd ∈ Xd+1, recursion (7.18) gives

∑
N∈Xd+1

GW
(λ)
d+1(N)f

(λ)

d+1,β(1)(N) · · · f (λ)

d+1,β(n)(N) =

√√√√ n∏
i=1

∏
α

βα!

[
n∏
i=1

(x(i))β
(i)

]

× exp

−λ−√λ ∑
α,t∈Xd

n∑
i=1

x(i)
α g

(λ)
d,α(t) + λ

∑
t∈Xd

GW
(λ)
d (t)

n∏
i=1

1 +
∑
α∈Xd

x
(i)
α√
λ
f

(λ)
d,α(t)

 .
As in Step 2.1, when expanding the product in the exponential, the zero and first order terms
simplify, which yields∑

N∈Xd+1

GW
(λ)
d+1(N)f

(λ)

d+1,β(1)(N) · · · f (λ)

d+1,β(n)(N) =

√√√√ n∏
i=1

∏
α

βα!

[
n∏
i=1

(x(i))β
(i)

]
e
∑

1≤i<j≤n
∑
α,α′∈Xd

x
(i)
α x

(j)

α′
∑
t∈Xd

GW
(λ)
d (t)f

(λ)
d,α(t)f

(λ)

d,α′ (t)+ελ(x(1),...,x(n))
,

(7.20)

with

ελ(x(1), . . . , x(n)) :=

n∑
p=3

λ1−p/2
∑

1≤i1<...<ip≤n

∑
α1,...,αp∈Xd

xi1αi1
· · ·xipαip

∑
t∈Xd

GW
(λ)
d (t)f

(λ)
d,α1

(t) · · · f (λ)
d,αp

(t) .
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Using orthogonality (7.11) at step d, (7.20) writes∑
N∈Xd+1

GW
(λ)
d+1(N)f

(λ)

d+1,β(1)(N) · · · f (λ)

d+1,β(n)(N) =

√√√√ n∏
i=1

∏
α

βα!

[
n∏
i=1

(x(i))β
(i)

]
e
∑

1≤i<j≤n
∑
α∈Xd

x
(i)
α x

(j)
α × exp

[
ελ(x(1), . . . , x(n))

]
, (7.21)

Using property (7.13) at step d,
∑

t∈Xd GW
(λ)
d (t)f

(λ)
d,α1

(t) · · · f (λ)
d,αp

(t) has a finite limit when

λ→∞. Hence, as in Step 1, the terms corresponding to
[∏n

i=1(x(i))β
(i)
]
in (7.21) to which

ελ(x(1), . . . , x(n)) contributes are in finite number (independent of λ) and are all of order
O(λ−1/2).

Taking λ → ∞ thus establishes property (7.13) for d + 1 and completes the proof of
Theorem 7.3.

7.2.2. Computation of cyclic moments, proof of Theorem 7.1

Theorem 7.3 hereabove has a very natural corollary that enables to compute the cyclic
moments of the likelihood ratio.

Corollary 7.2.1 (Cyclic moments). The n−th cyclic moment of Ld is defined as follows

C
(λ,s)
d,m := E(λ)

d [Ld(T1, T2) · · ·Ld(Tm−1, Tm)Ld(Tm, T1)] ,

where T1, . . . , Tm are i.i.d. GW
(λ)
d in the above expectation. One has that

C
(λ,s)
d,m =

∑
α∈Xd

(sm)|α|−1 =
∑
n≥1

Ad,n(sm)n−1 = Φd(s
m), (7.22)

where Ad,n, as defined in (7.2), denotes the number of unlabeled trees with n vertices of
depth at most d, and Φd is the generating function defined in Proposition 7.1.2. Note that in
particular, the C(λ,s)

d,m do not depend on λ (!) and by Proposition 7.1.2 they are upper bounded

for each d and s ∈ [0, 1) by some constant A = A(d, s). We thus denote C(s)
d,m := C

(λ,s)
d,m in the

sequel.

Proof of Corollary 7.2.1. By Theorem 7.3 we have

Ld(t, t
′) =

∑
α∈Xd

s|α|−1f
(λ)
d,α(t)f

(λ)
d,α(t′) ,

hence, setting αm+1 = α1,

C
(λ,s)
d,m = E(λ)

d [Ld(T1, T2) · · ·Ld(Tm−1, Tm)Ld(Tm, T1)]

=
∑

α1,...,αm∈Xd

s
∑m
i=1(|αi|−1)E(λ)

d

[
m∏
i=1

f
(λ)
d,αi

(Ti)f
(λ)
d,αi+1

(Ti)

]

=
∑

α1,...,αm∈Xd

s
∑m
i=1(|αi|−1)

m∏
i=1

E(λ)
d

[
f

(λ)
d,αi

(T )f
(λ)
d,αi+1

(T )
]

=
∑

α1,...,αm∈Xd

s
∑m
i=1(|αi|−1)1α1= ...=αm
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=
∑
α∈Xd

(sm)|α|−1 .

All steps in the above computations are legitimate by Fubini’s theorem, since

E(λ)
d

[∣∣∣f (λ)
d,α(T )f

(λ)
d,α′(T )

∣∣∣] ≤ E(λ)
d

[
(f

(λ)
d,α(T ))2

]1/2
E(λ)
d

[
(f

(λ)
d,α′(T ))2

]1/2
= 1 ,

by property (7.12) of Theorem 7.3.

We are now ready to give a proof of Theorem 7.1.

Proof of Theorem 7.1. According to Corollary 7.2.1, one has

E(λ)
d

[
Ld(T, T

′)2
]

= C
(s)
d,2 =

∑
n≥1

Ad,ns
2(n−1). (7.23)

Moreover, since Ad,n ≤ An (by Definition 7.1.6) and An ∼
n→∞

C
n3/2

(
1
α

)n by Proposition 7.1.1,

the assumption s ≤
√
α ensures that E(λ)

d

[
Ld(T, T

′)2
]

=
∑

n≥1Ad,ns
2(n−1) ≤

∑
n≥1Ans

2(n−1) <
∞, uniformly in d.

Then, applying Jensen’s inequality yields

KL(P(λ,s)
d ||P(λ)

d ) = E(λ,s)
d

[
logLd(T, T

′)
]
≤ logE(λ,s)

d

[
Ld(T, T

′)
]

= logE(λ)
d

[
L2
d(T, T

′)
]
<∞,

uniformly in d, and concludes the proof.

For the positive result, we need to study the weak convergence of the likelihood ratio
when λ→∞, which is the scope of the next Section, concluded by the proof of Theorem 7.2.

7.3. The high-degree regime: positive result when s >
√
α in the gaussian

approximation

In view of definition 7.1.9, we recall that a pair of correlated trees (t, t′) of depth at most
d+ 1 sampled from P(λ,s)

d+1 are of the form t = {Nτ}τ∈Xd and t′ = {N ′τ}τ∈Xd with

Nτ := Mτ +
∑
τ ′∈Xd

Nτ,τ ′ and N ′τ := M ′τ +
∑
τ∈Xd

Nτ,τ ′ . (7.24)

with
Mτ ,M

′
τ

i.i.d.∼ Poi(λ(1− s)GW(λ)
d (τ)) and Nτ,τ ′ ∼ Poi(λsP(λ,s)

d (τ, τ ′)) .

7.3.1. Gaussian approximation

Let us define y = (yα)α∈Xd and y′ = (y′α)α∈Xd as follows:

yα :=
1√
λ

∑
τ∈Xd

f
(λ)
d,α(τ)(Nτ − λGW(λ)

d (τ)) (7.25)

y′α :=
1√
λ

∑
τ∈Xd

f
(λ)
d,α(τ)(N ′τ − λGW

(λ)
d (τ)) (7.26)

where the f (λ)
d,α are defined in Theorem 7.3. In other words, y (resp. y′) is a centered version

of N (resp. N ′), projected onto the basis of eigenvectors.
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Let (z, z′) = ((zα)α∈Xd , (z
′
α′)α′∈Xd)) be an (infinite-dimensional) centered Gaussian vector

defined by its covariance matrix:

∀α, α′ ∈ Xd, E[zαzα′ ] = E[z′αz
′
α′ ] = 1α=α′ , E[zαz

′
α′ ] = s|α|1α=α′ . (7.27)

Let us denote by p
(λ,s)
d+1 the joint distribution of (y, y′), and gw

(λ)
d+1 the marginal distribution

of y (or y′). Since the transformations N → y in (7.25) and N ′ → y′ in (7.26) are bijective
in view of the orthogonality property (7.12) in Theorem 7.3, one has

KL(P(λ,s)
d+1 ‖GW

(λ)
d+1 ⊗ GW

(λ)
d+1) = KL(p

(λ,s)
d+1 ‖gw

(λ)
d+1 ⊗ gw

(λ)
d+1) . (7.28)

Lemma 7.3.1. When λ→∞, we have the following convergence in distribution:

(y, y′)
(d)−→ (z, z′). (7.29)

Proof of Lemma 7.3.1. With the canonical product sigma-field, convergence in distribution
of (y, y′) amounts to convergence of all finite-dimensional distributions. Let us denote by
(k, k′) a pair of real vectors in RXd×Xd such that only a finite number of entries are non-zero.
We shall write k ·y :=

∑
α∈Xd kαyα. We will also define the following characteristic functions:

p̂(λ,s)(k, k′) := E
[
eik·y+ik′·y′

]
and r̂(s)(k, k′) := E

[
eik·z+ik

′·z′
]
. (7.30)

Proving Lemma 7.3.1 thus amounts to showing the simple convergence p̂(λ,s)(k, k′)→ r̂(s)(k, k′)
when λ→∞. Since the (gaussian) limit distribution is entirely determined by its moments,
it suffices to show the convergence of the cumulants [JLR00]. The covariance structure of
(z, z′) given in (7.27) immediately yields

r̂(s)(k, k′) = exp

−1

2

∑
α∈Xd

((kα)2 + (k′α)2 + 2s|α|kαk
′
α)

 . (7.31)

Then, in view of (7.24), (7.25) and (7.26), writing f (λ)
d (τ) := (f

(λ)
d,α(τ))α∈Xd , one has

eik·y+ik′·y′ = exp

−√λ ∑
τ∈Xd

GW
(λ)
d (τ)(ik · f (λ)

d (τ) + ik′ · f (λ)
d (τ))


×

∏
τ,τ ′∈Xd

(
exp

[
1√
λ

(ik · f (λ)
d (τ) + ik′ · f (λ)

d (τ ′))

])Nτ,τ ′
×
∏
τ∈Xd

(
exp

[
1√
λ
ik · f (λ)

d (τ)

])Mτ

×
∏
τ∈Xd

(
exp

[
1√
λ
ik′ · f (λ)

d (τ)

])M ′τ
.

Variables Nτ,τ ′ ,Mτ ,M
′
τ being independent Poisson variables, taking the expectation gives

p̂(λ,s)(k, k′) = exp

−√λ ∑
τ∈Xd

GW
(λ)
d (τ)(ik · f (λ)

d (τ) + ik′ · f (λ)
d (τ))


× exp

λ(1− s)
∑
τ∈Xd

GW
(λ)
d (τ)

(
e

1√
λ
ik·f (λ)d (τ)

+ e
1√
λ
ik′·f (λ)d (τ) − 2

)
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× exp

λs ∑
τ,τ ′∈Xd

P(λ,s)
d (τ, τ ′)

(
e

1√
λ

(ik·f (λ)d (τ)+ik′·f (λ)d (τ ′)) − 1

) .
The cumulants are obtained by expanding the logarithm of the last expression in power series
in k, k′. Using that

∑
τ ′∈Xd P

(λ,s)
d (τ, τ ′) = GW

(λ)
d (τ), the first-order (linear) terms compensate

to 0, which is coherent with the fact that E[yα] = E[y′α] = 0. The second-order terms in
log p̂(λ,s)(k, k′) evaluate to

− λ(1− s)
∑
τ∈Xd

GW(λ)(τ)
1

2λ

∑
α,α′∈Xd

f
(λ)
d,α(τ)f

(λ)
d,α′(τ)

(
kαkα′ + k′αk

′
α′
)

− λs
∑

τ,τ ′∈Xd

P(λ,s)
d (τ, τ ′)

× 1

2λ

∑
α,α′∈Xd

(
f

(λ)
d,α(τ)f

(λ)
d,α′(τ)kαkα′ + f

(λ)
d,α(τ ′)f

(λ)
d,α′(τ

′)k′αk
′
α′ + 2f

(λ)
d,α(τ)f

(λ)
d,α′(τ

′)kαk
′
α′

)
.

Using the orthogonality property of the eigenvectors in Theorem 7.3, namely that

∀α, α′ ∈ Xd,
∑
τ∈Xd

GW
(λ)
d (τ)f

(λ)
d,α(τ)f

(λ)
d,α′(τ) = 1α=α′ ,

the previous equation simplifies to

−1

2

∑
α∈Xd

(
(kα)2 + (k′α)2

)
− s

∑
τ,τ ′∈Xd

P(λ,s)
d (τ, τ ′)

∑
α,α′∈Xd

f
(λ)
d,α(τ)f

(λ)
d,α′(τ

′)kαk
′
α′ ,

which in turn writes, using P(λ,s)
d (τ, τ ′) = GW

(µ)
d (τ)GW

(µ)
d (τ ′)

∑
α∈Xd s

|α|−1f
(λ)
d,α(τ)f

(λ)
d,α(τ ′)

− 1

2

∑
α∈Xd

(
(kα)2 + (k′α)2

)
− s

∑
α,α′,α′′∈Xd

s|α
′′|−1kαk

′
α′

×

∑
τ∈Xd

GW
(µ)
d (τ)f

(λ)
d,α(τ)f

(λ)
d,α′′(τ)

 ∑
τ ′∈Xd

GW
(µ)
d (τ ′)f

(λ)
d,α′(τ

′)f
(λ)
d,α′′(τ

′)


= −1

2

∑
α∈Xd

(
(kα)2 + (k′α)2 + 2s|α|kαk

′
α′

)
,

which is exactly the second cumulant of (z, z′) in (7.31). The remaining step is to show that
the higher order cumulants tend to 0 when λ gets large. Note that the cumulants of order
≥ 3 have a factor 1/

√
λ, but the implicit dependence of the f (λ)

d,α needs to be controlled. The
previous computations show that the cumulants depend on terms of the form∑

t∈Xd

GW
(λ)
d (t)f

(λ)
d,α1

(t) · · · f (λ)
d,αp

(t),

which are proved to remain finite when λ→∞ by property (7.13) of Theorem 7.3. This shows
that all the cumulants of order ≥ 3 tend to 0 and hence establishes the desired convergence
in distribution.

7.3.2. Kullback-Leibler divergence in the high-degree regime

In view of the previous weak convergence established in Lemma 7.3.1, we will now prove
the following result, which compares the KL−divergence with finite λ to the KL−divergence
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between the limiting Gaussian distributions of Lemma 7.3.1.

Proposition 7.3.1. Denoting

KL
(λ,s)
d := KL(P(λ,s)

d ||P(λ)
d ) , (7.32)

one has the following:

∀d ≥ 1, lim inf
λ→∞

KL
(λ,s)
d ≥ KL

(s)
d := −1

2

∑
α∈Xd−1

log(1− s2|α|) =
1

2
logC

(s)
d,2 . (7.33)

We recall that
C

(s)
d,2 = E(λ,s)

d [Ld] =
∑
n≥1

Ad,n(s2)n−1 . (7.34)

Proof of Theorem 7.3.1. Fix d ≥ 1. In (7.28), we established that KL
(λ,s)
d is also the KL-

divergence KL(p
(λ,s)
d ‖gw(λ)

d ⊗gw
(λ)
d ) where p(λ,s)

d is the distribution of (y, y′) defined in Section
7.3.1. Moreover, Lemma 7.3.1 establishes that (y, y′) converges in distribution a centered
gaussian vector (z, z′) defined by its covariance matrix:

∀α, α′ ∈ Xd−1, E[zαzα′ ] = E[z′αz
′
α′ ] = 1α=α′ , E[zαz

′
α′ ] = s|α|1α=α′ . (7.35)

If we denote by p(s)
1 the joint distribution of the gaussian vector (z, z′) and p(s)

0 the product
of the marginals, the KL-divergence KL(p

(s)
1 ||p

(s)
0 ) is easily given by −1

2 log det Σ, where Σ is
the covariance matrix of (z, z′), which is similar to a matrix with diagonal blocks of the form(

1 s|α|

s|α| 1

)
for all α ∈ Xd−1, which gives

KL(p
(s)
1 ||p

(s)
0 ) = −1

2
log

∏
α∈Xd−1

1

1− s2|α| .

The last term is indeed KL
(s)
d as defined in (7.33), since

E(λ,s)
d [Ld] =

∑
β∈Xd

s2|β|−1 =
∏

α∈Xd−1

∑
βα≥0

s2βα|α| =
∏

α∈Xd−1

1

1− s2|α| .

The roof is concluded by appealing to the lower semi-continuity property of the KL-
divergence (see e.g. [PW17], Theorem 3.6), namely that

lim inf
λ→∞

KL
(λ,s)
d ≥ KL

(s)
d .

7.3.3. Propagating bounds on the KL−divergence, proof of Theorem 7.2

The goal of this section is to use the result of Proposition 7.3.1 and the fact that in view
of (7.34) for s >

√
α (where α is Otter’s constant), KL

(s)
d → +∞ with d, in order to obtain

Theorem 7.2, that is that for fixed s >
√
α, there exists λ = λ(s) such that:

λ ≥ λ(s)⇒ lim
d→∞

KL
(λ,s)
d = +∞ .

The following Lemma shows that if s >
√
α, for any small (resp. any large but bounded)

probability that we fix, there exists a depth d0 and an event S that has this small (resp.
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large) probability under P(λ)
d0

(resp. P(λ,s)
d0

). The proof is deferred to Appendix 7.A.1.

Lemma 7.3.2. Assume that s >
√
α. Then for any c ∈ (0, 1/15) and any ε ∈ (0, 1), there

exists λ1 = λ1(s, c, ε) > 0 and d0 = d0(s, c, ε) ∈ N such that, for all λ ≥ λ1, there exists an
event S = S(s, c, ε) ⊂ X 2

d0
for which the following inequalities hold:

P(λ,s)
d0

(S) ≥ c and P(λ)
d0

(S) ≤ ε .

Now that we know that this event S exists at a certain initial depth d0, we want to prop-
agate the bounds for arbitrary depth d ≥ d0. This is the object of the following Proposition,
proved in Appendix 7.A.2.

Proposition 7.3.2. For any fixed c ∈ (0, 1) there exist constants ε = ε(s, c) ∈ (0, 1) and
λ0 = λ0(s, c) > 0 such that the following holds. For any λ ≥ λ0, any d ∈ N, if there exists an
event S ⊂ X 2

d such that
P(λ)
d (S) ≤ ε and P(λ,s)

d (S) ≥ c ,

then there exists an event S′ ⊂ X 2
d+1 such that

P(λ)
d+1(S′) ≤ 1

2
P(λ)
d (S) ≤ ε

2
and P(λ,s)

d+1 (S′) ≥ c .

In fact, using the usual notations t = {Nτ}τ∈Xd , t′ = {N ′τ}τ∈Xd for elements of Xd+1,
and denoting, for all τ ∈ Xd

Ñτ := Nτ − λGW(λ)
d (τ) and Ñ ′τ = N ′τ − λGW

(λ)
d (τ) ,

the event S′ in the above is defined from S in the following way

S′ = {ZS ≥ σ} ,

where
ZS :=

∑
(τ,τ ′)∈S

Ñτ Ñ
′
τ ′ , (7.36)

and for some suitable threshold σ = σ(S).

Together, Lemma 7.3.2 and Proposition 7.3.2 yield the proof of Theorem 7.2.

Proof of Theorem 7.2

Proof of Theorem 7.2. Assume that s >
√
α. Choose c ∈ (0, 1/15) and let ε = ε(s, c),

λ0 = λ0(s, c) be the corresponding quantities from Proposition 7.3.2. Now that c, ε are fixed,
we appeal to Lemma 7.3.2 to obtain some λ1 = λ1(s, c, ε) and d0 = d0(s, c, ε) ∈ N such that,
taking λ ≥ λ0 ∨ λ1, there exists some event Sd ⊂ X 2

d such that

P(λ)
d (S) ≤ ε and P(λ,s)

d (S) ≥ c .

Proposition 7.3.2 then ensures the existence of a sequence of events Sd ⊂ X 2
d , d > d0 such

that
P(λ)
d (Sd) ≤ 2−(d−d0)ε and P(λ,s)

d (Sd) ≥ c.

It follows that, for all d > d0,

KL
(λ,s)
d ≥ P(λ,s)

d (Sd) log

(
P(λ,s)
d (Sd)

P(λ)
d (Sd)

)
+ (1− P(λ,s)

d (Sd)) log

(
1− P(λ,s)

d (Sd)

1− P(λ)
d (Sd)

)
≥ c log(2d−d0/ε)− h(P(λ,s)

d (Sd))− (1− P(λ,s)
d (Sd)) log((1− P(λ)

d (Sd)))
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≥ c log(2d−d0/ε)− h(P(λ,s)
d (Sd)) ,

where for x ∈ [0, 1], h is defined by h(x) := −x log(x) − (1 − x) log(1 − x). Function
h is maximal at x = 1/2 and h(1/2) = log(2), which gives the final bound KL

(λ,s)
d ≥

c log(2)(d− d0)− c log(ε)− log(2). It readily follows that limd→∞KLλ,d = +∞.
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Appendix of Chapter 7

7.A. Postponed proofs

7.A.1. Proof of Lemma 7.3.2

Proof of Lemma 7.3.2. Fix c < 1/15 and ε ∈ (0, 1). Since s >
√
α, we have that KL

(s)
d →∞

when d→∞, in view of (7.34), the fact that Ad,n → An when d→∞, and Otter’s formula
7.3. For arbitrarily large C = C(c, ε) to be specified later, we can thus choose d0 = d0(s, c, ε)

such that KL
(s)
d0

= 1
2 log(C

(s)
d0,2

) ≥ C.

In turn, in view of (7.33), we can choose λ1 = λ1(s, c, ε) such that

λ ≥ λ1 ⇒ KL
(λ,s)
d0
≥ 1

2
KL

(s)
d0
≥ C/2 .

Write then

1

4
log(C

(s)
d0,2

) ≤ KL
(λ,s)
d0
≤
∫ ∞

1
log(x)P(λ,s)

d0
(Ld0 ∈ dx) =

∫ ∞
1

1

u
P(λ,s)
d0

(Ld0 ≥ u)du.

Also, since C(s)
d0,2

= E(λ,s)
d0

[Ld0 ],

C
(s)
d0,2

=

∫ ∞
0

xP(λ,s)
d0

(Ld0 ∈ dx) ≥
∫ ∞

1
P(λ,s)
d0

(Ld0 ≥ u)du.

Now, for any A,B > 1, A < B we then have

1

4
log(C

(s)
d0,2

) ≤
∫ A

1

1

u
du+ P(λ,s)

d0
(Ld0 ≥ A)

∫ B

A

du

u
+

∫ ∞
B

1

B
P(λ,s)
d0

(Ld0 ≥ u)du

≤ log(A) + P(λ,s)
d0

(Ld0 ≥ A) log(B/A) +
1

B
C

(s)
d0,2

.

This yields

P(λ,s)
d0

(Ld0 ≥ A) ≥
1
4 log(C

(s)
d0,2

)− log(A)− 1
BC

(s)
d0,2

log(B/A)
.

Choose A = (C
(s)
d0,2

)1/16, B = 16C
(s)
d0,2

/ log(C
(s)
d0,2

). This yields

P(λ,s)
d0

(Ld0 ≥ A) ≥ 1

8

log(C
(s)
d0,2

)

log(16) + (1− 1/16) log(C
(s)
d0,2

)− log(log(C
(s)
d0,2

))
.

Recall that d0 is taken such that 1
2 log(C

(s)
d0,2

) ≥ C, where C is some constant as large as
we want. The right-hand side being equivalent to c∞ := 2

15 when C → ∞, and c∞ > c by
definition of c. By Markov’s inequality we also have P(λ)

d0
(Ld0 ≥ A) ≤ A−1 ≤ exp(−C/8), we
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can thus choose C = C(ε, c) such that

P(λ,s)
d0

({Ld0 ≥ A}) ≥ c and P(λ)
d0

({Ld0 ≥ A}) ≤ ε .

The claimed result is proved with S = S(s, c, ε) = {Ld0 ≥ A}.

7.A.2. Proof of Proposition 7.3.2

The proof of Proposition 7.3.2 relies on the following lemma.

Lemma 7.A.1. Assume λ ≥ 1. The random variable Z := ZS defined in (7.36) verifies the
following:

(i) E(λ)
d+1[Z] = 0 .

(ii) E(λ,s)
d+1 [Z] = λsP(λ,s)

d (S) .

(iii) E(λ)
d+1[Z4] ≤ 36λ4P(λ)

d (S)2 + 13λ3P(λ)
d (S) .

(iv) Var
(λ,s)
d+1 [Z] ≤ E(λ,s)

d+1 [Z] + λ2(1 + s2)P(λ)
d (S) .

Proof of Lemma 7.A.1. Recall the definition of Z = ZS :

ZS :=
∑

(τ,τ ′)∈S

Ñτ Ñ
′
τ ′ ,

where
Ñτ = Nτ − λGW(λ)

d (τ) and Ñ ′τ = N ′τ − λGW
(λ)
d (τ) .

Point (i) is immediate because under P(λ)
d+1, for each pair (τ, τ ′) ∈ X 2

d , the random vari-
ables Ñτ , Ñ ′τ ′ are independent and zero mean.

Point (ii). Recall that under P(λ,s)
d+1 , N and N ′ are sampled as follows:

Nτ = ∆τ +
∑
θ′∈Xd

Mτ,θ′ and N ′τ = ∆′τ +
∑
θ∈Xd

Mθ,τ ′ ,

with ∆τ and ∆′τ i.i.d. Poi(λ(1 − s)GW(λ)
d (τ)) and Mθ,θ′ i.i.d. Poi(λsP(λ,s)

d (θ, θ′)) variables.
Introduce the notations:

∆̃τ := ∆τ−λ(1−s)GW(λ)
d (τ), ∆̃′τ ′ := ∆′τ ′−λ(1−s)GW(λ)

d (τ ′), M̃θ,θ′ = Mθ,θ′−λsP
(λ,s)
d (θ, θ′) .

Since the marginals of P(λ,s)
d are given by GW

(λ)
d , it holds that

Ñτ = ∆̃τ +
∑
θ′∈Xd

M̃τ,θ′ and Ñ ′τ ′ = ∆̃′τ ′ +
∑
θ∈Xd

M̃θ,τ ′ ,

which shows that
E(λ,s)
d+1 [Ñτ Ñ

′
τ ′ ] = Var

(λ,s)
d+1 (Mτ,τ ′) = λsP(λ,s)

d (τ, τ ′) .

Point (ii) follows.

Point (iii). Write

E(λ)
d+1[Z4] =

∑
(τ1,τ ′1)∈S,(τ2,τ ′2)∈S
(τ3,τ ′3)∈S(τ4,τ ′4)∈S

E(λ)
d+1

[
4∏
i=1

Ñτi

]
E(λ)
d+1

[
4∏
i=1

Ñ ′τ ′i

]
.
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The only non-zero terms in the above summation are such that:

|{τi, i ∈ [4]}| ∈ {1, 2} and |
{
τ ′i , i ∈ [4]

}
| ∈ {1, 2} .

We let σ(u, v) denote the summation of terms with |{τi, i ∈ [4]}| = u, |{τ ′i , i ∈ [4]}| = v, for
u, v ∈ {1, 2}.

We have σ(1, 1) =
∑

(τ,τ ′)∈S E
(λ)
d+1[Ñ4

τ ]E(λ)
d+1[Ñ ′4τ ′ ]. We use the following

Lemma 7.A.2. If X ∼ Poi(µ) then E[(X − µ)4] = 3µ2 + µ.

Lemma 7.A.2 implies, using the fact that GW(λ)
d (τ),GW

(λ)
d (τ ′) ≤ 1, that

σ(1, 1) =
∑

(τ,τ ′)∈S

[
3λ2GW

(λ)
d (τ)2 + λGW

(λ)
d (τ)

] [
3λ2GW

(λ)
d (τ ′)2 + λGW

(λ)
d (τ ′)

]
≤ 9λ4

∑
(τ,τ ′)∈S

GW
(λ)
d (τ)2GW

(λ)
d (τ ′)2 + [6λ3 + λ2]P(λ)

d (S) ≤ 9λ4P(λ)
d (S)2 + 7λ3P(λ)

d (S)

since λ ≥ 1 which we shall assume, and using the easy bound
∑

i x
2
i ≤ (

∑
i xi)

2 for positive
xi.

The term σ(1, 2) verifies

σ(1, 2) ≤ 3
∑
τ

E(λ)
d+1[Ñ4

τ ]
∑

τ ′:(τ,τ ′)∈S
θ′:(τ,θ′)∈S

E(λ)
d+1[Ñ ′2τ ′ ]E

(λ)
d+1[Ñ ′2θ′ ]

= 3
∑
τ

[
3λ2GW

(λ)
d (τ)2 + λGW

(λ)
d (τ)

] ∑
τ ′:(τ,τ ′)∈S
θ′:(τ,θ′)∈S

λ2GW
(λ)
d (τ ′)GW

(λ)
d (θ′)

≤ 9λ4
∑
τ

GW
(λ)
d (τ)2

∑
τ ′:(τ,τ ′)∈S
θ′:(τ,θ′)∈S

GW
(λ)
d (τ ′)GW

(λ)
d (θ′) + 3λ3

∑
(τ,τ ′)∈S

GW
(λ)
d (τ)GW

(λ)
d (τ ′) ,

where we used the fact that
∑

θ′:(τ,θ′)∈S GW
(λ)
d (θ′) ≤ 1. Note now that∑

τ ′:(τ,τ ′)∈S
θ′:(τ,θ′)∈S

GW
(λ)
d (τ ′)GW

(λ)
d (θ′) ≤ P(λ)

d (S)2

to conclude that σ(1, 2) ≤ 9λ4P(λ)
d (S)2+3λ3P(λ)

d (S), and the same bound also holds for σ(2, 1).

Finally, σ(2, 2) can be bounded as follows. Having fixed τ1, there must be one index
j ∈ {2, 3, 4} such that τj = τ1. Consider thus that j = 3 and τ4 = τ2. By symmetry, when
accounting only for this case, we just need to multiply our evaluation by 3. This leads to the
following bound:

σ(2, 2) ≤ 3
∑
τ1,τ2

λ2GW
(λ)
d (τ1)GW

(λ)
d (τ2)

∑
τ ′i ,i∈[4]

1(τ1,τ ′1)∈S,(τ2,τ ′2)∈S,(τ1,τ ′3)∈S,(τ2,τ ′4)∈S1|{τ ′i}i|=2E0

[
4∏
i=1

Ñ ′τ ′i

]

≤ 3
∑
τ1,τ2

λ2GW
(λ)
d (τ1)GW

(λ)
d (τ2)

∑
τ ′1,τ

′
2

3λ2GW
(λ)
d (τ ′1)GW

(λ)
d (τ ′2)1(τ1,τ ′1)∈S,(τ2,τ ′2)∈S .

Indeed, there are three possibilities for the choice of index j′ such that τ ′j = τ ′1, and for
each such choice the contribution is upper bounded by the same term. This yields σ(2, 2) ≤
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9λ4P(λ)
d (S)2.

Summing our bounds on σ(u, v) for u, v ∈ {1, 2} yields (iii).

Point (iv). Write E(λ,s)
d+1 (Z2) is the form

E(λ,s)
d+1

∑
(τ,τ ′)∈S

∑
(θ,θ′)∈S

[
∆̃τ +

∑
u′

M̃τ,u′

][
∆̃′τ ′ +

∑
u

M̃u,τ ′

][
∆̃θ +

∑
v′

M̃θ,v′

][
∆̃′θ′ +

∑
v

M̃v,θ′

]
.

When expanding the product of brackets, the only terms that will yield a non-zero expectation
must have the following sequence of degrees in variables (∆̃, ∆̃′, M̃): (2, 2, 0), (2, 0, 2), (0, 2, 2),
or (0, 0, 4). Denote σ(u, v, w) the summation of terms corresponding to exponents (u, v, w).
We have:

σ(2, 2, 0) =
∑

(τ,τ ′)∈S

E(λ,s)
d [∆̃2

τ ∆̃′2τ ′ ] = λ2(1− s)2P(λ)
d (S) .

We next have

σ(2, 0, 2)
∑

(τ,τ ′)∈S

E(λ,s)
d

[
∆̃2
τ

∑
u

M̃2
u,τ ′

]
= λ2s(1− s)P(λ)

d (S) ,

and the same expression holds for σ(0, 2, 2). We finally evaluate σ(0, 0, 4). It reads

σ(0, 0, 4) =
∑

(τ,τ ′)∈S
(θ,θ′)∈S

∑
u,u′,v,v′

E(λ,s)
d+1

[
M̃τ,u′M̃u,τ ′M̃θ,v′M̃v,θ′

]
.

The non-zero terms in this expectation must comprise either the same term at the power
4, or two distinct terms each at power 2. This yields 4 contributions, that we denote by
A,B,C,D, which satisfy

A =
∑

(τ,τ ′)∈S

E(λ,s)
d+1 [M̃4

τ,τ ′ ] =
∑

(τ,τ ′)∈S

[
3λ2s2P(λ,s)

d (τ, τ ′)2 + λsP(λ,s)
d (τ, τ ′)

]
,

B =
∑

(τ,τ ′)∈S

E(λ,s)
d+1 [M̃2

τ,τ ′ ]
∑

(θ,θ′)∈S
(θ,θ′)6=(τ,τ ′)

E(λ,s)
d+1 [M̃2

θ,θ′ ] = λ2s2P(λ,s)
d (S)2 − λ2s2

∑
(τ,τ ′)∈S

P(λ,s)
d (τ, τ ′)2 ,

and

C =
∑

(τ,τ ′)∈S

[∑
u′

E(λ,s)
d+1 [M̃2

τ,u′ ]

] ∑
u:(u,τ ′)6=(τ,u′)

E(λ,s)
d+1 [M̃2

u,τ ′ ]


= λ2s2P(λ)

d (S)− λ2s2
∑

(τ,τ ′)∈S

P(λ,s)
d (τ, τ ′)2 ,

D =
∑

(τ,τ ′)∈S

∑
(θ,θ′)∈S

(τ,θ′)6=(θ,τ ′)

E(λ,s)
d+1 [M̃2

τ,θ′ ]E
(λ,s)
d+1 [M̃2

θ,τ ′ ]

≤
∑

(τ,τ ′)∈S

∑
θ,θ′

E(λ,s)
d+1 [M̃2

τ,θ′ ]E
(λ,s)
d+1 [M̃2

θ,τ ′ ]− λ2s2
∑

(τ,τ ′)∈S

P(λ,s)
d (τ, τ ′)2

= λ2s2P(λ)
d (S)− λ2s2

∑
(τ,τ ′)∈S

P(λ,s)
d (τ, τ ′)2.
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Summing the expressions of σ(2, 2, 0), σ(2, 0, 2), σ(0, 2, 2), A, B, C and the upper bound
of D we obtain

E(λ,s)
d+1 [Z2] ≤ E(λ,s)

d+1 [Z]2 + E(λ,s)
d+1 [Z] + λ2(1 + s2)P(λ)

d (S) ,

and upper bound (iv) follows.

With the help of Lemma 7.A.1, we are now ready to turn to the proof of Proposition
7.3.2.

Proof of Proposition 7.3.2. Assuming that S ⊂ X 2
d is such that

P(λ)
d (S) ≤ ε and P(λ,s)

d (S) ≥ c ,

Our goal is to choose a threshold σ such that

P(λ)
d+1(Z ≥ σ) ≤ 1

2
P(λ)
d (S) ≤ ε

2
and P(λ,s)

d+1 (Z ≥ σ) ≥ c .

First point. Using point (iii) of Lemma 7.A.1, and Markov’s inequality we have

P(λ)
d+1(Z ≥ σ) ≤ 1

σ4
E(λ)
d+1[Z4] ≤ 1

σ4
(36λ4P(λ)

d (S)2 + 15λ3P(λ)
d (S)) .

It thus suffices to choose σ4 = max
(

144λ4P(λ)
d (S), 60λ3

)
to ensure the first property, that is

guarantying that P(λ)
d+1(Z ≥ σ) ≤ 1

2P
(λ)
d (S). We can a fortiori take σ = max(4λP(λ)

d (S)1/4, 3λ3/4).

Second point. By point (ii) of Lemma 7.A.1, since E(λ,s)
d+1 [Z] = λsP(λ,s)

d (S) ≥ λsc we shall
have E(λ,s)

d+1 [Z] ≥ 2σ provided

8P(λ)
d (S)1/4 ≤ sc and 6λ−1/4 ≤ sc

or equivalently

P(λ)
d (S) ≤

(sc
8

)4
and λ ≥

(
6

sc

)4

. (7.37)

This provides the conditions on λ0 and ε required in the statement of the proposition, but
let us assume that (7.37) is satisfied for now. Using σ ≤ E(λ,s)

d+1 [Z]/2, Chebyshev’s inequality
as well as the bound (iv) of Lemma 7.A.1:

P(λ,s)
d+1 (Z ≤ σ) ≤ P(λ,s)

d+1

(
|Z − E(λ,s)

d+1 [Z]| ≥ 1

2
E(λ,s)
d+1 [Z]

)
≤ 4

Var
(λ,s)
d+1 (Z)

E(λ,s)
d+1 [Z]2

≤ 4
λsP(λ,s)

d (S) + 2λ2P(λ)
d (S)

λ2s2P(λ,s)
d (S)2

≤ 4

λsc
+

8P(λ)
d (S)

s2c2
.

In order to ensure that P(λ,s)
d+1 (Z < σ) ≤ 1− c, it thus suffices to require

4

λsc
+

8P(λ)
d (S)

s2c2
≤ 1− c .
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We can for instance require

λ ≥ 8

sc(1− c)
, P(λ)

d (S) ≤ (1− c)s2c2

16
.

Combining this requirement with (7.37) we have the announced property by requiring

λ ≥ λ0(s, c) := max

(
8

sc(1− c)
,

(
6

sc

)4
)
, P(λ)

d (S) ≤ ε(s, c) := min

((sc
8

)4
,
(1− c)s2c2

16

)
.

Proof of Lemma 7.A.2. Let X be a Poisson random variable with parameter µ. Write

E[X2] = µ2 + µ,

E[X3] = E
[
X(X − 1)(X − 2) +X[X2 − (X − 1)(X − 2)]

]
= µ3 + E [X[3X − 2]]

= µ3 + 3(µ2 + µ)− 2µ

= µ3 + 3µ2 + µ,

E[X4] = E
[
X(X − 1)(X − 2)(X − 3) +X[X3 − (X − 1)(X − 2)(X − 3)]

]
= µ4 + E

[
X[6X2 − 11X + 6]

]
= µ4 + 6[µ3 + 3µ2 + µ]− 11(µ2 + µ) + 6µ

= µ4 + 6µ3 + 7µ2 + µ.

Write next

E[(X − µ)4] = E
[
X4 −

(
4

1

)
X3µ+

(
4

2

)
X2µ2 −

(
4

3

)
Xµ3 + µ4

]
= [µ4 + 6µ3 + 7µ2 + µ]− 4[µ4 + 3µ3 + µ2] + 6[µ4 + µ3]− 4µ4 + µ4

= 3µ2 + µ,

as announced.
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Conclusion and research directions

We have described through this dissertation several contributions to graph alignment and to
the tree correlation detection problem. We studied the Gaussian and the Erdős-Rényi models,
both from the information-theoretic side (Chapters 2, 4, 6, 7) and from the computational
side (Chapters 3, 5, 6, 7). We proposed several methods and algorithms, sometimes spec-
tral (Chapter 3), based on message-passing using tree similarity (Chapter 5) or computing
likelihood ratios for detecting local correlation (Chapter 6).

This field of research is young, and it is certain that many work still remains to be done in
order to understand this problem in more generalized settings. We hereafter briefly mention
some open questions and research directions that we believe are of particular interest.

Typical values of QAP and matching weights in the null model Recall that the
non-planted version of graph alignment of two graphs with adjacency matrices A and B
consists in solving the quadratic assignment problem (1.5). A question of interest is the value
of the objective

max
Π
〈A,ΠBΠT 〉

in the large size limit in the null model, e.g. when A,B are independent Erdős-Rényi graphs.
Some upper bounds are obtained in the literature [WXY20] – to study the detection problem
– but to the best of our knowledge no exact equivalent is known.

In Chapter 5, a similarity score between trees t are t′ is studied: the tests are based on the
matching weight, defined as the largest number of leaves at depth d of a common subtree of t
and t′. Here again, under the null model, where t and t′ are e.g. independent Galton-Watson
trees, understanding more thoroughly the typical matching weight of t and t′ is still open.

Optimal fraction for partial recovery One could be very interested in the optimal
overlap – or, the largest subset C∗ – that one can hope to align in the sparse regime. It is
shown in Chapter 4 that – up to some vanishing fraction of the nodes – C∗ is contained in
the giant component C1 of the intersection graph. In Section 6.2.3 we dealt with the exact
isomorphism case s = 1, for which C∗ is almost – i.e, up to some vanishing fraction – the set
of all points invariant by any automorphism. We conjecture that this observation could be
generalized to the non-isomorphic case s < 1, namely that C∗ is almost the set I of invariant
nodes in the intersection graph.

Generalization to other locally tree-like models Detection of correlation in trees,
introduced and studied in this manuscript, is a fundamental statistical task of intrinsic interest
besides its original motivation from graph alignment. While in this manuscript we focused on
Erdős-Rényi graphs and hence Galton-Watson branching trees with Poisson offspring, more
general locally tree-like graphs could be considered, such as the configuration model, giving
rise to correlation detection problems on more general branching trees, for which an extension
of the MPAlign method could very well be obtained.

More efficient algorithms Efficient methods proposed in the literature have up to now
rather high time complexity – at least O(n3) most of the time. We are in a position to ask
whether some other methods could perform with a better scaling to large graphs. For graph
alignment and related inference problems on graphs, graph neural networks suggest relevant
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architectures and obtain competitive results with lower time complexity (see Azizian and
Lelarge [AL21]); giving exact theoretical guarantees however still remains thorny and may
be the object of future research in this field.

Another class of algorithms that may shed a new light on the problem are the spectral
methods on non-backtracking matrices, following the way paved by community detection
literature (see e.g. [BLM18, Moo17]). In our context, there is a chance that these non-local
methods may exploit more information than local neighborhoods, and may still be able to
perform partial alignment even below the threshold s <

√
α for the correlation detection

problem on trees, which would re-localize the conjectured hard phase.

Computational hardness Other active branches of research are seeking for insights on
computational hardness for inference problems (see [BBH18] for a reduction-based approach).
Giving more quantitative results on hardness of graph alignment is still open: several ideas are
worth being investigated. The low degree method [KWB19], also mentioned in [MWXY21],
suggests that projecting the likelihood ratio on the space of low-degree polynomials gives
strong insights on the poly-time feasibility of a detection problem. Let us mention another
concept originally introduced in spin-glass theory, the overlap gap property, which is postu-
lated to reveal algorithmic hardness in planted models, and has recently been exhibited for
the planted clique problem [GZ19].

Extensions to other settings The study of graph alignment for Erdős-Rényi graphs is
fundamental and exhibits interesting phenomena, but real-life graphs are known to contain
more geometry and enjoy scale-free properties. Studying graph alignment in preferential
attachment models – for instance the Barabási–Albert model – seems a natural direction for
future research.

Also, a recent paper by Wang, Wu, Xu and Yolou establishes interesting results for
alignment of geometric graphs [WWXY22], and [RS21] studies the correlated stochastic block
model: results from both community detection and graph alignment are merged together and
enable to recover the communities upon observing multiple correlated SBMs, even in regimes
where one observation would not suffice. These works can foreshadow similar interesting
extensions, enhancing any inference problem on graphs with graph alignment – e.g, planted
clique with additional information coming from several correlated observations.

We close these research directions by mentioning a locally tree-like model in which graph
alignment appears very challenging: the regular model. In particular, any method based on
exploiting the locally tree-like structure – if no other information such as labels on nodes
is known – will fail. So, we may ask the question: what are the information-theoretic and
computational limits for regular graph alignment?
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ABSTRACT 
 
This thesis studies the graph alignment problem, the noisy version of the graph 
isomorphism problem, which aims to find a matching between the nodes of two graphs 
which preserves most of the edges. Focusing on the planted version where the graphs are 
random, we are interested in understanding the fundamental information-theoretical limits 
for this problem, as well as designing and analyzing algorithms that are able to recover the 
underlying alignment in the data. For these algorithms, we give some theoretical high 
probability guarantees of the regime in which they succeed or fail. 

MOTS CLÉS 
 
inférence statistique, graphes aléatoires, alignement de graphes, détection de corrélation 
dans des arbres, algorithmes de message-passing, machine learning, probabilités. 

RÉSUMÉ 
 
Cette thèse a pour objet l'étude du problème d'alignement de graphes, qui consiste à 
trouver un appariement entre les sommets de deux graphes préservant au mieux 
l'adjacence. Il s'agit de la version bruitée du problème d'isomorphisme de graphes. Nous 
nous intéressons à l'approche plantée dans laquelle les graphes sont aléatoires, et 
cherchons à comprendre les limites fondamentales informationnelles pour ce problème, 
ainsi qu'à proposer et analyser des algorithmes qui peuvent reconstruire l'appariement 
sous-jacent avec forte probabilité. Pour ces méthodes, nous donnerons des garanties 
théoriques sur les régimes dans lesquels elles sont performantes. 

KEYWORDS 
 
statistical inference, random graphs, graph alignment, correlation detection in trees, 
message-passing algorithms, machine learning, probability. 
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