Courbes symplectiques de haute auto-intersection dans les surfaces symplectiques - Archive ouverte HAL Access content directly
Theses Year : 2021

Symplectic curves with high self-intersection in symplectic surfaces

Courbes symplectiques de haute auto-intersection dans les surfaces symplectiques

Fabien Kutle
  • Function : Author
  • PersonId : 1116191

Abstract

We first study symplectically embedded curves in symplectic surfaces with high self-intersection numbers compared to their genus. We prove in two different ways that such a curve completely determines both the diffeomorphism type of the surface in which it is embedded and the embedding itself. The first proof uses Seiberg--Witten theory whereas the second one only involves pseudoholomorphic techniques. We deduce from this result that the contact $3$--manifolds naturally associated with those curves admit a unique strong symplectic filling up to diffeomorphism. We next examine symplectic sections of geometrically ruled complex surfaces over elliptic curves. We show that such a section is symplectically isotopic to a complex section.
On étudie dans un premier temps les courbes symplectiquement plongées dans les surfaces symplectiques dont les nombres d'auto-intersection sont suffisamment grands par rapport leurs genres. On montre de deux manières différentes qu'une telle courbe détermine à la fois la classe de difféomorphisme de la surface symplectique qui la contient et la manière dont elle est plongée dans cette surface. La première démonstration fait appel à la théorie de Seiberg--Witten, alors que la seconde se restreint aux techniques pseudoholomorphes. On déduit de ce résultat l'unicité à difféomorphisme près des remplissages symplectiques forts des variétés de contact de dimension $3$ naturellement associées à ce type de courbes. Dans un second temps, on s'intéresse aux sections symplectiques des surfaces complexes géométriquement réglées au-dessus de courbes elliptiques. On montre qu'une telle section est symplectiquement isotope à une section complexe.
Fichier principal
Vignette du fichier
Manuscrit KUTLE.pdf (1.53 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

tel-03419992 , version 1 (08-11-2021)

Identifiers

  • HAL Id : tel-03419992 , version 1

Cite

Fabien Kutle. Courbes symplectiques de haute auto-intersection dans les surfaces symplectiques. Géométrie symplectique [math.SG]. Université de Nantes, 2021. Français. ⟨NNT : ⟩. ⟨tel-03419992⟩
56 View
38 Download

Share

Gmail Facebook X LinkedIn More