Time-varying delay systems and 1-D hyperbolic equations, Harmonic transfer function and nonlinear electric circuits - Archive ouverte HAL Access content directly
Theses Year : 2020

Time-varying delay systems and 1-D hyperbolic equations, Harmonic transfer function and nonlinear electric circuits

Systèmes à retard instationnaires et EDP hyperboliques 1-D instationnaires, fonctions de transfert harmoniques et circuits électriques non-linéaires

Abstract

Amplifiers contain linear, passive components as well as nonlinear, active ones, all of which can be described by finitely many state variables; but they also contain transmission lines, typically modeled by simple hyperbolic Partial Differential Equations (PDE) like lossless telegrapher equations, that make the global state space of the circuit infinite-dimensional. Using an integrated form of telegraphers equations, one obtains a model comprised of delay difference and differential equations. Using first order approximation, this reduces to exponential stability of the time-periodic linear system obtained by linearizing around the periodic solution, which is a network of delay difference equations whose boundary conditions are coupled by differential equations. The stability of this kind of equation is strongly correlated with the stability of a periodic linear difference delay system (via a compact perturbation argument). The thesis then establishes conditions to guarantee the stability of periodic difference delay system systems. Due to the huge number of electronic components, it is known in electronic engineering textbooks that stability cannot be determined directly from the linearized system. To study the stability properties of the previously-described linearized system, one constructs a family of input-output systems, obtained by perturbing the linearized system by a small current $i$ at some node of the circuit and observing the resulting perturbation of the voltage $v$ between two nodes. Via a Fourier development, stability is studied through the singularities of the harmonic transfer function (HTF) which is an infinite matrix depending on a complex variable with Banach value. Under high frequency dissipativity assumption, which are always verified for amplifiers, the HTF has at most poles in a complex right half-plane containing strictly the imaginary axis. These poles are in particular the logarithms of a finite family of complex numbers, and under an assumption of controllability and observability, the periodic solution is locally stable if and only if the HTF has no poles in the complex right half-plane.
Les amplificateurs contiennent des composants linéaires passifs, ainsi que non-linéaires actifs, qui peuvent tous être décrits par un nombre fini de variables d'état; ils contiennent aussi des lignes de transmission, généralement modélisées par des équations aux dérivées partielles 1-D hyperboliques comme les équations du Télégraphe sans perte qui rendent l'espace d'état de dimension infinie. En utilisant une forme intégrée des équations du Télégraphe, on obtient un modèle composé d'équations aux différence retardées et d'équations différentielles. Considérant une trajectoire périodique qui s'établit dans l'amplificateur à cause d'un signal périodique forçant, la thèse vise à caractériser la stabilité locale d'une telle trajectoire périodique. En utilisant une approximation de premier ordre, cela se réduit à étudier la stabilité exponentielle du système linéaire périodique temporel obtenu par linéarisation autour de la solution périodique, et qui est un réseau d'équations aux différences retardées dont les conditions aux limites sont couplé par des équations différentielles. La stabilité de ce type d'équations est fortement corrélée avec la stabilité d'un système périodique aux différences linéaires (via un argument de perturbation compacte). La thèse établit alors des conditions pour garantir la stabilité des systèmes retardés périodiques linéaires. En raison du nombre énorme de composants électroniques, il est connu dans les livres d'ingénierie électronique que la stabilité ne peut pas se déterminer directement à partir du système linéarisée. Ainsi pour étudier les propriétés de stabilité du système linéarisé précédent, une famille de systèmes entrées-sorties est construite, obtenue en perturbant le système linéarisé par un petit courant $i$ à un nœud du circuit et en observant la perturbation résultante de tension $v$ entre deux nœuds. Via un développement de Fourier, la stabilité se ramène à étudier les singularités de la fonction de transfert harmonique (FTH) qui est une matrice infinie dépendant d'une variable complexe et à valeur banachique. Sous des hypothèses de dissipation à haute fréquence qui sont toujours vérifiées pour les amplificateurs, la thèse montre alors que la FTH possède au plus des pôles dans un demi plan droit complexe contenant strictement l'axe imaginaire. Ces pôles sont en particulier les logarithmes d'une famille finie de nombre complexe, et sous une hypothèse de contrôlabilité et d'observabilité, la solution périodique est localement stable si et seulement si la FTH n'a pas de poles dans le demi-plan droit complexe.\\[0.5cm]
Fichier principal
Vignette du fichier
these-sebastien_fueyo.pdf (3.51 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

tel-03105344 , version 1 (11-01-2021)

Identifiers

  • HAL Id : tel-03105344 , version 1

Cite

Sébastien Fueyo. Time-varying delay systems and 1-D hyperbolic equations, Harmonic transfer function and nonlinear electric circuits. Mathematics [math]. Université Cote d'Azur, 2020. English. ⟨NNT : ⟩. ⟨tel-03105344⟩
192 View
134 Download

Share

Gmail Mastodon Facebook X LinkedIn More