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Résumé /Abstract

Résumé

Les amplificateurs contiennent des composants linéaires passifs, ainsi que non-linéaires actifs, qui
peuvent tous être décrits par un nombre fini de variables d’état; ils contiennent aussi des lignes de
transmission, généralement modélisées par des équations aux dérivées partielles 1-D hyperboliques
comme les équations du Télégraphe sans perte qui rendent l’espace d’état de dimension infinie. En
utilisant une forme intégrée des équations du Télégraphe, on obtient un modèle composé d’équations
aux différence retardées et d’équations différentielles. Considérant une trajectoire périodique qui
s’établit dans l’amplificateur à cause d’un signal périodique forçant, la thèse vise à caractériser la
stabilité locale d’une telle trajectoire périodique. En utilisant une approximation de premier ordre,
cela se réduit à étudier la stabilité exponentielle du système linéaire périodique temporel obtenu
par linéarisation autour de la solution périodique, et qui est un réseau d’équations aux différences
retardées dont les conditions aux limites sont couplé par des équations différentielles. La stabilité de
ce type d’équations est fortement corrélée avec la stabilité d’un système périodique aux différences
linéaires (via un argument de perturbation compacte). La thèse établit alors des conditions pour
garantir la stabilité des systèmes retardés périodiques linéaires.

En raison du nombre énorme de composants électroniques, il est connu dans les livres d’ingénierie
électronique que la stabilité ne peut pas se déterminer directement à partir du système linéarisée.
Ainsi pour étudier les propriétés de stabilité du système linéarisé précédent, une famille de systèmes
entrées-sorties est construite, obtenue en perturbant le système linéarisé par un petit courant i
à un nœud du circuit et en observant la perturbation résultante de tension v entre deux nœuds.
Via un développement de Fourier, la stabilité se ramène à étudier les singularités de la fonction
de transfert harmonique (FTH) qui est une matrice infinie dépendant d’une variable complexe
et à valeur banachique. Sous des hypothèses de dissipation à haute fréquence qui sont toujours
vérifiées pour les amplificateurs, la thèse montre alors que la FTH possède au plus des pôles dans
un demi plan droit complexe contenant strictement l’axe imaginaire. Ces pôles sont en particulier
les logarithmes d’une famille finie de nombre complexe, et sous une hypothèse de contrôlabilité et
d’observabilité, la solution périodique est localement stable si et seulement si la FTH n’a pas de
poles dans le demi-plan droit complexe.

Mots clés: Système retardé à temps variant, Système hyperbolique 1-D à temps variant, Fonction
de transfert harmonique, Stabilité, Circuits électriques.
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Abstract

Amplifiers contain linear, passive components as well as nonlinear, active ones, all of which can
be described by finitely many state variables; but they also contain transmission lines, typically
modeled by simple hyperbolic Partial Differential Equations (PDE) like lossless telegrapher equations,
that make the global state space of the circuit infinite-dimensional. Using an integrated form of
telegraphers equations, one obtains a model comprised of delay difference and differential equations.
Using first order approximation, this reduces to exponential stability of the time-periodic linear
system obtained by linearizing around the periodic solution, which is a network of delay difference
equations whose boundary conditions are coupled by differential equations. The stability of this
kind of equation is strongly correlated with the stability of a periodic linear difference delay system
(via a compact perturbation argument). The thesis then establishes conditions to guarantee the
stability of periodic difference delay system systems.

Due to the huge number of electronic components, it is known in electronic engineering textbooks
that stability cannot be determined directly from the linearized system. To study the stability
properties of the previously-described linearized system, one constructs a family of input-output
systems, obtained by perturbing the linearized system by a small current i at some node of the
circuit and observing the resulting perturbation of the voltage v between two nodes. Via a Fourier
development, stability is studied through the singularities of the harmonic transfer function (HTF)
which is an infinite matrix depending on a complex variable with Banach value. Under high frequency
dissipativity assumption, which are always verified for amplifiers, the HTF has at most poles in
a complex right half-plane containing strictly the imaginary axis. These poles are in particular
the logarithms of a finite family of complex numbers, and under an assumption of controllability
and observability, the periodic solution is locally stable if and only if the HTF has no poles in the
complex right half-plane.

Keywords: Time-varying difference delay equations, Time-varying 1-D hyperbolic systems,
Harmonic transfer function, Stability, electric circuit.
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Introduction

Motivation, Computer Assisted Design for circuits
This work applies to more general active circuits than amplifiers, like pure oscillators, but we restrict
the motivations to amplifiers for simplicity. An ideal amplifier would be an active circuit that
outputs exactly the input signal multiplied by some gain that does not depend on the signal. In
practice, amplifier design consists in proposing a circuit, made of available elementary elements, so
as to obtain a gain that does not vary too much when the input belongs to some class of signals.
The available elementary elements are of three sorts:

• passive components: resistors, capacities and inductances,

• active nonlinear components: diodes and transistors (fed by an external power source),

• lines that induce some delay effect, negligible at low frequencies.

The specification of an amplifier is always given in terms of a “frequency response”, i.e. the output
occurring for sinusoidal input signals of all possible frequencies. The purpose of computer aided
design (CAD) tools is to compute this frequency response for a given circuit design proposed by the
user. For RLC circuits, this may be readily computed, even analytically, possibly using computer
algebra if the number of components is very large. For more complex ones, where the response
of some elements may be available numerically only, specialised tools are needed, (see e.g. [Key]).
They rely on a dynamical model of the circuit, obtained from the models of all components, and
compute numerically a forced periodic solution of this dynamical system under periodic excitation,
through a numerical method, often referred to as “Harmonic Balance”, that we briefly describe in
Section 1.2.
There is substantial recent literature on the subject in Electronic Engineering, see for instance
[Kun06, SQ02, Sua09], because this is important for circuit design. Knowing whether the computed
periodic solution corresponds to the steady state response to periodic excitation that will be observed
in real life is obviously very important. Two related points are commonly raised. First, there may be
more than one possible response to a given sinusoidal signal, at least for the mathematical/numerical
model used by the CAD tool: it would be more correct to state that these tools compute one
response. We do not investigate this point further. The second point is certainly more determining
and has received a lot of attention: the stability of the computed response is not a priori guaranteed,
and if the response happens to be unstable it will simply not be observed because it would occur
only for very special initial conditions of inner variables of the circuit, that are in practice never
exactly achieved. On the contrary, with the additional information that all the computed responses
are stable, it would be granted that numerical tools predict the frequency response (at least if the
basin of attraction is reasonably large in terms of the inner variables of the circuit, but we do not
deal with this question here and consider local stability only, obviously necessary). Stability is by
no means a straightforward side-result of the estimation of the response: it may happen that a
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computed response is unstable (although the numerical process converged). Determining stability
of the computed response is hence crucial, it has retained a lot of attention and some methods are
indeed even implemented [STA, CSO+16, Sua15, SQ02].

The initial motivation of this thesis is the mathematical framework to determine stability of a
given response as computed by these CAD tools. We hope to provide some mathematical insight.

The stability question
Let us now say a work about the model of the circuit, examine what the response for a fixed
harmonic/periodic/sinusoidal signal is, and state the stability question more precisely. Without
transmission lines, the equations of a circuit composed of the above mentioned elementary components
are given by a set of ordinary differential equations (ODEs), hence a model with an finite dimensional
state; this case is reviewed in Chapter 1. Taking the lines into account, as in most of this thesis,
leads, on the contrary, to a model with an infinite dimensional state, containing for instance currents
and voltages distributed along the lines, the model is of a more complex nature, it is a set of
hyperbolic partial differential equations (PDEs) modeling the lines, coupled by ODEs through their
boundary conditions; when the PDEs are lossless Telegrapher’s equations, as always assumed here,
the model can also, thanks to explicit integration of the PDEs, be viewed as a “hybrid” system
including delay equations and differential equations (see (1) below), the state being then more
abstract.

For a given periodic input signal, the amplifier, including the excitation by that signal, can
be seen as a complex periodic time-varying dynamical system, whose state is all the currents and
voltages, possibly distributed in the lines. We are interested in periodic solutions of this dynamical
system, with the same period as the input. As mentioned above, there might be more than one;
without discussing existence or uniqueness, we assume that we are provided with a periodic solution,
i.e. a possible response of the amplifier, obtained numerically, and we need to decide on its stability.
Recall that this stability (i.e. the property that starting from initial conditions close to the solution
leads to remaining close and even to converge to the solution) is certainly a necessary condition for
this solution to be observed in reality: without stability, the observed behaviour may be an escape
to high currents and burn, or convergence to another periodic solution, or actually more chaotic
behavior.

A classical step to determine stability is to linearise the dynamical system around the now
known periodic solution, obtaining a periodic time-varying linear dynamical system, whose (strict
exponential) stability amounts to local stability of the periodic solution. This stability could be
determined by computing Floquet exponents, or the spectrum of the discrete flow pushing the
state one period ahead, but these computations are out of reach, because of the great number of
transmission lines and because the periodic solution we linearise around is only known numerically.
The way around is to analyse this stability in an indirect manner, through an auxiliary linear
input-output system that relates a fictitious input to a fictitious output and whose dynamics (drift)
is the considered time-varying linear system; the input is for instance a current added between two
points and the output the measurement of some voltage, in the linearised circuit. The point that
makes this construction relevant is that this fictitious input-output system can be made real for the
CAD tool, and this tool can compute its frequency response, that in turn may be used to assess the
desired stability.

To describe the way one uses this frequency response, let us make, for a while, a simplifying
assumption, that occurs for instance if the periodic signal to be amplified is the zero signal and
hence the periodic solution is simply an equilibrium point: we assume in this paragraph that the
the linear input-output system is time-invariant. Its frequency response is then simply the value on
the imaginary axis of its transfer function. Determining stability from the knowledge of the transfer
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function on the imaginary axis led to a large literature from a theoretical or numerical viewpoint. It
is well known that, provided that the auxiliary input-output system is controllable and observable,
the spectrum of the operator defining the linear dynamics is the locus of singularities of the transfer
function, so that local exponential stability of the origin for the linear dynamical system occurs if
and only if the transfer function has no singularity in the right half plane (see [PW97]). It has been
proven in [BCC+18] that the transfer function is meromorphic for such time-invariant systems, even
in the presence of transmission lines; this legitimates the use of rational approximation to determine
the possible unstable poles, all the more so as the same reference also proves that there are at most
a finite number of such poles in the right half plane if the system is “dissipative at high frequency”,
which is the case of any realistic circuit. Rational approximation methods are not in the scope of
this thesis, we only make a rough sketch in Section 1.5 (Chapter 1), but we retain the principle
that a method that amounts to find poles of a function in a domain where it is meromorphic is
feasible. Modulo this principle, one now sees how to determine stability in the case of an equilibrium
point, leading to a time-invariant linear approximation. The two ingredients that make this method
(use of an auxiliary input-ouptut system, estimation of the transfer function of the imaginary axis,
rational approximation) workable are on the one hand that stability is captured by the location of
the singularities of the transfer function and on the other hand that the part of the singularities
that have to be identified to decide stability are poles, so that rational approximation is relevant.

Let us go back to the more general case of a periodic excitation creating a periodic solution,
leading to a periodic time-varying linear approximation and an auxiliary periodic time-varying
linear input-output system. There is a generalisation of the concept of transfer function to these
latter systems, it is called harmonic transfer function (further denoted HTF). It was introduced
rather recently [Wer90] in the context of circuits, it is not very well known in the control theory
community, probably because time-varying linear systems have retained little attention. Since it
is a central object in the thesis, we define it with some care, for finite-dimensional systems (i.e.
neglecting transmission lines) in Chapter 1, for an example (with lines) that we treat extensively in
Chapter 2, and in general in Chapter 6. Its definition is based on the Fourier development of the
system. The HTF is a more sophisticated object than the usual transfer function: instead of a single
function of the complex variable, it is an infinite matrix with square integrable lines, whose entries
are analytic function of a complex variable, analytic in some domain of the complex plane, or it can
also be seen as an operator valued (operators l2(Z)→ l2(Z)) function of the complex variable. The
values on the imaginary axis of the coefficients of this infinite matrix also derive from the frequency
response computed by the CAD tool. This suggests a similar route as the one we just described
for time-invariant systems. However, to complete the analysis, the two “ingredients” mentioned
at the end of the previous paragraph have to be provided in the case of periodic system too. On
the one hand, we have to link the local stability of the periodic solution with the singularities of
the harmonic transfer function, or of the entries of the infinite matrix than encodes it. On the
other hand, we have to determine what the structure of the HTF is and wether this operator is
meromorphic or not on the domain that matters for stability, namely the right-half plane, in order to
apply, for instance to a few entries of the infinite matrix defining the HTF, rational approximation
algorithms as discussed in Section 1.5. The arguments given in [BCC+18], based on complex valued
function analysis, are not sufficient anymore when we consider the harmonic transfer function; in
fact, as mentioned above, the HTF takes its values in a complex Banach space and the theory for
these objects is less tractable than for complex functions. Solving the problem will lead us through
the theory of the delay systems, functional analysis via a compact perturbation argument, the
Lyapunov functions and a constant back and forth between time-domain and frequency-domain.
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Mathematical point of view, models, summary of contributions
Let us move to a more mathematical viewpoint to describe our work in more details. Each lossless
transmission line is modeled, in this thesis, by a Telegrapher’s equation. An amplifier is a directed
graph where the edges are the lossless transmission lines and the nodes are composed of the active
nonlinear components and the passive components. Under the assumption that at each node we can
express all the currents and voltages in function of the voltages of the condensators, the currents of
the inductors and the currents of the lines which arrive at this node, the resolved form of these 1-D
hyperbolic equations leads to the following type of periodic nonlinear “hybrid” delay system (this is
detailed in Chapter 3):{

dx(t)
dt = f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN ))
y(t) = g(t, y(t− τ1), · · · , y(t− τN ), x(t))

(1)

where f and g are obtained through the implicit function theorem from implicit equations, we
neglect this difficulty and assume these maps reasonably smooth. This assumption is systematically
made in electronic engineering, the justification is not immediate for singularities in the equations
may occur, see for instance [Sma72], but it seems that algorithms in the CAD tools would not
manage to find periodic solutions going through these singularities.

We assume that System (1) admits a periodic solution (x(t), y(t)) and we are interested in local
stability of this periodic solution. Linearising System (1) around this periodic solution yields a
linear time-varying system:

dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1
i (t)y(t− τi),

y(t) =
N∑
i=1

B2
i (t)y(t− τi) +A2(t)x(t),

(2)

where the smoothness of the functions of time depend on the smoothness of f and g and on the
smoothness of the periodic solution.

Under adequate smoothness assumptions, we prove in Chapter 6 that the periodic solution
(x(t), y(t)) of System (1) is locally stable if the origin of the linearised system (2) is exponentially
stable. Thus local stability is reduced to exponential stability of the linearised system. We also
prove that we have this exponential stability if and only if the monodromy operator of System (2)
has its spectrum strictly inside the unit disk, the monodromy operator being the operator which
integrates the solution one period ahead. These preliminary results are classical but needed technical
adaptation. The core of the thesis is devoted to describing this spectrum in relation with the
singularities of the HTF (Harmonic Transfer function, introduced above) of some input-ouptput
system. Let us keep in mind that the spectrum of an operator defined on an infinite dimensional
Banach space is usually more complicated than a finite set of eigenvalues.

One step in that direction is to consider the “high frequency limit” of System (2), that puts to
zero the x component and leads to the following periodic linear difference delay system:

z(t) =
N∑
i=1

B2
i (t)z(t− τi). (3)

For circuits, the behavior of the system at high frequency means that, the condensators become
wires and the inductors become open switches. This is of help for two reasons.

• On the one hand, we prove (see Chapters 2 and 6) that the monodromy operator of System (2)
is a compact perturbation of the monodromy operator of System (3). So, if one proves
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exponential stability of (3), i.e. if one proves that the spectrum of the monodromy operator
of (3) is contained in a disk of radius strictly less than 1, this establishes that the spectrum of
the monodromy operator of System (2) is composed of a finite number of eigenvalues outside
a disk with radius strictly less than one and some part of that disk, that we do not have to
describe because it does not impair stability.

• On the other hand, exponential stability of difference delay systems of the type (3) is studied
in a detailed manner in Chapters 4 and 5. The literature on such equations is really scarce in
the time-dependent case, we believe that the material in these two chapters has an interest
beyond microwave circuits, but in any case they prove that exponential stability holds for
these systems, i.e. for (3), under a passivity property that is always, implicitely or explictely,
assumed in electrical engineering.

The fact that any real life circuit, like an amplifier, is passive, or dissipative, at high frequency
roughly means that, although active, the circuit does not inject energy in high frequency
enough signals. When making a “theoretical” circuit out of ideal diodes, transistors, capacitors,
inductors and lines, one may easily come up with a circuit that does not have this property,
hence is not “real life”. Assuming this property for our models amount to not forget to add
some small capacities or inductances or resistances here and there, to make “ideal” elements
more real. Dissipativity is also a well known idea in mathematics to study the stability of the
systems [BC16, Wil72, BLME07, TGTN+07, Wil13].

Since high frequency passivity is always assumed, this closes the needed description of the
unstable part of the spectrum of the monodromy operator of (2), now known to be composed of
isolated eigenvalues only.

The last point needed in the process, and addressed by the thesis, is to link the unstable part
of the spectrum of the monodromy operator with the unstable singularities of the HTF of the
input-ouptut system obtained by disturbing the circuit represented by System (3) with a current
u and observe the voltage response v1 at some node; the resulting input-output system is of the form:



dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1
i (t)y(t− τi) + C1(t)u(t)

y(t) =
N∑
i=1

B2
i (t)y(t− τi) +A2(t)x(t) + C2(t)u(t)

v1(t) =
N∑
i=0

B3
i (t)y(t− τi) +A3(t)x(t) + C3(t)u(t),

(4)

for suitable periodic time varying matrices B3
i (.), A3(.), C1(.), C2(.), C3(.).

The development of the matrices depending periodically on time in System (4) into Fourier
series and the Laplace transform allow us to better describe the concept of the HTF: it can be
defined as the infinite matrix H(·) function of the complex variable s such that the input and the
output are linked (modulo transients) by



...
L{v1}(s+ iω0)
L{v1}(s)

L{v1}(s− iω0)
...


= H(s)



...
L{u}(s+ iω0)
L{u}(s)

L{u}(s− iω0)
...


, (5)
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where ω0 = 2π/T denotes the proper frequency of the system and L{·} denotes the Laplace
transform:

L{v1}(s) :=
∫ +∞

0
e−stv1(t)dt , L{u}(s) :=

∫ +∞

0
e−stu(t)dt . (6)

The definition of the HTF will be re-stated and made more precise in Chapters 1, 2 and 6.
Let us briefly state how this thesis links the HTF of System (4) with the monodromy operator

of System (2). Under the stability at high frequency of the amplifier, we are able to prove that
the HTF is meromorphic in some “extended” right half-plane {z ∈ C, <(z) > −α} with α positive,
and that all its poles in that half plane are logarithms of eigenvalues of the monodromy operator
of System (2). This justifies the paradigm that under the stability at high frequency, all unstable
singularities are poles. This is proved into details on a class of examples in Chapter 2 (on this
class of example, system (3) reads z(t) = a z(t− τ) with z scalar real, τ > 0 and |a| < 1 so that its
stability is not the major problem) and in Chapter 6 for general systems (4). A difficult unsolved
problem is to tell in advance which logarithms will indeed be singularities and which entries of the
infinite matris H(·) do carry these singularities. Partial results are given. The notion of singularities
of this infinite matrix, or of this operator valued function, is subtle.

We describe our contributions in a more detailed way, chapter by chapter, in the next “Plan
and contributions of the thesis”.
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Generalities

Chapter 1 is an overview of the knowledge concerning the Harmonic Balance (HB) techniques, the
Harmonic Transfer Function (HTF) and the link with the local stability for the circuits modeled by
nonlinear ordinary differential equations ([Wer90, Lou14, Sua09, Hal69]). Chapter 1 establishes the
major ideas to study the periodic systems in finite dimension:

• the Floquet theory which sa ys that a linear periodic differential equation is equivalent to a
constant differential equation modulo a periodic change of basis.

• the fact that the local stability is given by the spectrum of the monodromy operator, i.e. the
operator solution that we integrate after one period.

• the variation of constant formula which permits to express the solution of a periodic linear
differential equation disturbed by a pertubation in function of the periodic linear differential
equation itself.

• the Harmonic Transfer Function is an operator valued analytic map, where the values are the
continuous operator from l2(Z) to l2(Z) with l2(Z) denoting the square summable series.

• the singularities of the Harmonic transfer function are at most the logarithm of the eigenvalues
of the monodromy operator.

• under the classical controllability and observability assumption, if the Harmonic Transfer
Function is analytic in the closed right half plane then the periodic solution is locally stable.

Chapter 2 is devoted to the study of a simple circuit which possesses only one lossless
transmission line. This circuit reduces to a nonlinear neutral differential equation and we follow
the theory that we can find in [HVL93]. The theory stated in [HVL93] deals with the continuous
solutions (space C0) for the neutral differential system. In fact, the theory can be generalized for
the square integrable functions (L2 space) and for the absolutely continuous functions with a square
integrable derivative (W 1

2 space). The necessity to use the square integrable functions comes from
the fact that the harmonic transfer function is viewed as an infinite matrix defined on the space of
the square summable series. The absolutely continuous function with square integrable derivative
occurs because, via the resolution of a first kind Volterra equation, the system is controllable on this
space with a square integrable function; i.e. each element of W 1

2 can be reached with an element
of L2. The semigroup theory, a compact perturbation argument and the variation of constant
formula permit to prove that the HTF is a meromorphic operator in the closed right half plane
where the poles are the complex logarithm of a finite number of complex numbers, and if the HTF
is holomorphic in the closed right half plane then the periodic solution is locally stable. Moreover
if we add observability assumptions, the HTF has essential singularities view as a Banach valued
operator in the left half plane when the delay and the period are not commensurable.
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Chapter 3 reduces the network of lossless Telegrapher’s equations with nonlinear differential
boundaries to difference differential equations coupled with nonlinear difference equations. The
result is not new but it seems difficult to find a proper reference in the literature. Moreover, this
reduction is allowed under the assumption that at each nodes of the network, we can express all the
voltages and currents of this node in function of the voltage of the condensators, the current of the
inductors and the current at the end of the lines connected to this node.

Linear time-variant difference delay systems

Chapters 4 and 5 focus on the stability of the linear time-varying difference delay equations. The
literature is relatively large for linear time-invariant delay equations ([CH70, Hen74, HVL93]) but
becomes sparse when the equations are time dependent, where the most complete study can be
found in [CMS16].

Chapter 4 gives a sufficient and necessary stability condition for a periodic linear difference
delay system with continuous Hölder derivative.

The proof of the sufficiency follows the ideas of [Hen74, BC63]. More precisely, we establish a
variation of constant formula which permits to express all the solutions of the periodic difference
delay system in function of one so called fundamental solution and the initial data. The use of the
Fourier development and the Laplace transform allow us to bound exponentially the variation of
the fundamental solution and we conclude the exponential stability of the system. Contrary to the
time-invariant case, the difficulties come from:

• we have to invert an analytic almost periodic operator a Banach space on a vertical strip and
the theory of the analytic almost periodic complex function does not apply anymore ([Bes54]),

• we have to justify the swapping between the series coming from the Fourier developpment
and the integral coming from the Laplace transform.

The proof of the necessity used in [Hen74, BC63] uses the spectral semigroup properties for time-
invariant difference delay systems. In our case we cannot follow this path because the periodicity.
However we are able to prove the necessity of our stability condition with the use of an input-output
system.

The result is applied to the 1-D hyperbolic equations with continuous Hölder derivative bound-
aries, equations which are a little more general than the lossless Telegrapher’s equations. We also
give some conjectures for different periodic delay systems, systems more general than the periodic
difference delay system with a finite number of delays that we considered in this chapter.

Chapter 5 undertake the study of the time-varying (not necessarily periodic) linear difference
delay system which comes from a network of lossless Telegrapher’s equations. When the system is
time-invariant, we can find all the classic stability results in [BC16]. The idea of this chapter is to
exploit the equivalence between the L2 exponential stability (for the square integrable solution) and
the C0 exponential stability (for the continuous solution). This result can be found in [CMS16], but
we hope to prove in a slight easier way the same result in Chapter 5. Assuming that the network
dissipates energy at each node, we utilise a Lyapunov function to prove the L2 exponential stability
and so the C0 exponential stability. In particular, the reasonning permits to give a stability criteria
for the subclass of difference delay system which have the column disjoint.

Hybrid delay systems, harmonic transfer function and application to the circuits
containing lossless transmission lines

Chapter 6 deals with generalities concerning the nonlinear hybrid delay equations, i.e. difference
delay equations coupled with difference differential equations. The results are non-trivial generaliza-
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tions obtained in the periodic neutral differential case in Chapter 2; the results are based on the
establishment of a variation of a constant formula and a compact perturbation argument.

These theoretical results about delay systems are applied to nonlinear electric circuits containing
lossless transmission lines. Under the assumption of the dissipativity at high frequency of each
components of the circuit, we are able to prove that the harmonic transfer function is meromorphic
in the closed right half plane and the poles are the logarithm of a finite number of complex numbers.
Moreover, under controllability and observability assumptions, if the harmonic transfer function is
analytic in the closed right half plane then the periodic solution is locally stable.

The outcomes of this chapter legitimate the harmonic balance techniques and the search of poles
in the closed right half plane via meromorphic or rational approximations under the rather weak
assumption of the dissipativity at high frequency of the circuit.





Chapter 1
Theory of the circuits modeled by
ordinary differential equations

Although the thesis is devoted to active circuits in which the effect of transmission lines is important,
we start with a chapter on the case where this effect can be neglected. The resulting models
are ordinary differential equations rather than a coupling of these with propagation equations, as
described in Chapter 2 for an example and Chapter 3 and further in general. In this simpler setting,
we review here known facts and ideas, but we also show that the mathematical treatment still
contains some challenges and open questions.

The considered circuits contain resistors, diodes (introducing nonlinearities), capacitors and
inductors, as well as a periodic generator that represents a (periodic) signal to be amplified.The
“amplifying” energy is brought by the diodes, that make the circuit active (non conservative).

We first recall how to obtain the equations of such a circuit. We then show that it is reasonable
to assume that these equations have a periodic solution and describe a practical method to compute
an approximation of this solution and of the linearized equations around this solution; the goal is to
determine whether this periodic solution is stable.

Stability of this periodic solution is given by (global) exponential stability of the origin for
the linear time-varying ordinary differential equation obtained by linearizing around the periodic
solution. The most practical way to decide numerically on this stability is to generate the frequency
response of a linear time-varying input-output system obtained by adding a perturbation to the
linearized circuit, produced by an artificial additionnal current in some branch and imagining
the measure of (for instance) a voltage between two nodes; there is some freedom in chosing this
perturbation and this measure.

We describe briefly this process and the resulting linear time-varying input-output system, and
then proceed to introduce the notion of harmonic transfer function, a generalisation of the well-known
transfer function in the time-invariant case, that is not so classical and plays an important role in the
thesis; it is more sophisticated than the transfer function: it is an operator valued (rather than scalar
or matrix-valued) function of the complex variable. We discuss the relation between the singularities
of this harmonic transfer function and exponential stability of the above mentionned time-varying
linear ordinary differential equation. We prove that, if the perturbation and measure have been
chosen so that the input-output system enjoys controllability and observability properties, the zero
solution of the linear time-varying ordinary differential equation is exponentially stable if and only
if the harmonic transfer function is holomorphic in the right half plane. Since it can be proved
to be meromorphic in general, this justifies existing methods that apply rational approximation
to a finite number of values of the frequency response of the input-output system (computed by
Harmonic Balance methods) to locate poles. Here a discussion takes place on the fact that one
only locates poles of coefficients in a Fourrier expansion of the Harmonic Transfer Function and
not of the Harmonic Transfer Function as an operator value function. We also discuss rational
approximation in this context.
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1.1 Equations in finite dimension
We consider in this chapter the simplest nonlinear circuits that we can have, ie a circuit made of
with two kind of electronic components : dipoles (inductors, capacitors, resistors and diodes) and
transistors. More precisely :

i. A dipole, also called a branch [CC98], is an electronic box with 2 terminals, labeled 1, 2, such
that the current through the box, oriented from 1 to 2, is related to the potentials V1, V2 at
the terminals by a linear, nonlinear or differential form. Elementary dipoles considered in this
thesis are the following (see Figure 1.1):

• Ideal resistor, with :

vr = Rir, (1.1)

where R > 0 and vr = V2 − V1.
• Ideal inductor, with Ldildt = vl, L > 0, vl = V2 − V1.
• Ideal capacitor, with C dvc

dt = ic, C > 0, vc = V2 − V1.
• Ideal diode with :

vd = f(id) (1.2)

where f is a function and vd = V2 − V1. In a circuit with a periodic solution, the ideal
diode is often approximate by its linearization around the periodic trajectory which leads
to the equation :

vd = R(t)id, (1.3)

where R(t) is a periodic function (possibly negative).
• Ideal periodic voltage generator :

v(t) = p(t), (1.4)

where p(·) is a C∞ periodic function and v = V2 − V1.

ii. A transistor is typically modeled by a controlled current source, usually combined with some
resistors and (non-linear) capacitors. After linearization the latter become ordinary capacitors,
so we are left to describe the current sources and their linearization. A controlled current
source has 3 terminals. When the transistor if a Field Effect Transistor (FET), these terminals
are called gate, source, and drain, denoted respectively by G, S and D (see Figure 1.2). Their
behavior is described by a relation of the form :

iD = f(vGS , vDS) and iG = h(vGS , vDS), (1.5)

where f, h are a non-linear real-valued function and vGS = VG − VS , vDS = VD − VS . As in
the case of diodes, this simple model assumes no inductive nor capacitive effect, as f and
g only depends on vGS , vDS and not on their time derivatives, nor on the derivative of iD.
Moreover the function f are increasing in both variables. Like the diode, we will often consider
linearized transistor. In a circuit with a periodic solution, the ideal diode is often approximate
by its linearization around the periodic trajectory which leads to the equation :

iD = gm(t)vGS + gd(t)vDS and iG = g̃m(t)vGS + g̃d(t)vDS , (1.6)

where gm(t), gd(t), g̃m(t) and g̃m(t) are periodic functions. And gm(t) and gd(t) are strictly
positive with the assumption on f .
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(a) Resistor (b) Inductor

(c) Capacitor (d) Diode

(e) Periodic Voltage Generator

Figure 1.1 : Elementary dipoles



28 Chapter 1. Theory of the circuits modeled by ordinary differential equations

Figure 1.2 : Controlled current source.

The components defined in i and ii are put together to form a connected graph and we call
this object a circuit. In a circuit, The link between the currents and the voltages in the circuit is
given by the Kirchhoff law, ie the current arriving at each node is equal to the current leaving the
node and the directed sum of the voltages around any closed loop is zero. We are interested to
obtain the equations which governs the behavior of the circuit. Given a circuit, if we assume that
all the voltages and all the currents of the circuit can be reconstructed from the knowledge of all
the inductors’ currents and the capacitor’s voltages in the circuit thus the circuit is modeled by a
nonsingular ordinary differential equation (result due to Brayon-Moser [BM64]). We have in the
same way that if there exists some currents and some voltages which can give all the currents and
voltages in the circuit, then the equations of the circuit are (possibly singular) ordinary differential
equations (see chapter 10 of [HS74]). The more general result on the structure of the equation of
such circuits has been proved by S. Smale ([Sma72]). He proved that these circuits are generically
differential equation on a real submanifold.

Theorem 1.1 ([BM64]). Noting by abuse of notation all the inductors current il and all the
capacitors voltage vc of the circuit and assuming that all voltages and currents in the circuit can be
expressed by il and vc, then there exists two functions hl and hc such that :

dil
dt

= hl(t, il, vc),

dvc
dt

= hc(t, il, vc).
(1.7)

Moreover hl or hc have the minimum regularity of the functions in equations (1.2) and (1.5).

Theorem 1.2 ([Sma72]). Assuming that all voltages and currents in the circuit can be expressed
by x ∈ Rn which is a vector composed of some currents and voltages of the circuit (n is equal to the
number of capacitors and inductors), then there exists two functions f and g such that :

df(t, x(t))
dt

= g(t, x(t)), (1.8)

Moreover f or g have the minimum regularity of the functions in equations (1.2) and (1.5).

Remark 1.3. Theorems 1.1 and 1.2 stated here are a weaker version than the originals. In fact,
the function hl, hc, f and g are a particular structure (almost like an Hamiltonian System) but we
do not take advantage of this more precise information in the rest of the thesis.
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1.2 Harmonic Balance Approach to compute a periodic solution
We consider an amplifier with a periodic signal which has to be amplified and we sketch how the
electronic engineers, through the Harmonic Balance Approach, approximate the amplified signal.
Our exposition of the method is a bit mathematical compared with standard electronic textbooks
(see for instance [SQ03] and [Sua09]), which is why we start with the formal assumptions below that
make our account meaningful :

i. the circuit contains one and only one ideal periodic generator with a period T ,

ii. the functions (1.2) and (1.5) associated to the nonlinear elements of the circuit (ie diodes and
transistors) are at least of class C4,

iii. the assumption of Theorem 1.2 is verified; hence,

df(t, x(t))
dt

= g(t, x(t)), t ≥ 0, (1.9)

where f and g are at least C4 and T -periodic in their first variable, while x ∈ Rn is a vector
composed of certain currents and voltages in the circuit.

iv. the system (1.9) has a T -periodic solution x, forced by the periodic generator, which does not
meet a singularity of (1.9), ie ∂2(t, x(t)) is invertible for all t real.

The periodic generator in assumption i. represents the signal which has to be amplified. Assumption
ii. is important because justifying the Harmonic Balance method mathematically requires some
smoothness. Assumption iii. allows us to express the equations of the amplifier. Among electronic
engineers, it is commonly accepted that for almost all active circuit of interest there exists a periodic
solution; i.e., that assumption iiii. holds. However, from a mathematical point of view, this is not
obvious and it would be interesting to prove theorems on the generic existence of periodic solutions
for such circuits. It has to be noted that under a kind of dissipativity assumption at high frequency
(see equation (1.10) below), one can prove the desired existence via the Brouwer fixed-point theorem
:

Theorem 1.4. Denote (, ) (resp. || · ||) the scalar product (resp. Euclidean norm) on Rn. Assuming
that f(t, x(t)) = x(t) in the system (1.9) and that :

(x, g(t, x)) < 0, (1.10)

for all t real and all x such that ||x|| ≥ k for some fixed k > 0, then the system (1.9) admits at least
one periodic solution of period T .

Proof. The equation (1.10) permits to prove that all the solutions of the system (1.9) are bounded
and then the Brouwer fixed-point theorem give the result (see [SC64] p.366).

The assumption (1.10) is always true for realistic circuits. In fact, the realistic diodes and
transistors have capacitive and inductive effects and so have just resistive effects at high frequency.
Hereafter we do not discuss further the existence of a periodic solution, and we take it for granted.
The Harmonic Balance method seeks an approximation of a T -periodic solution to the system
(1.9). However, surprisingly perhaps, there may exist periodic solutions to system (1.9) with a
period different from T (see [CGM16]). It is clear that under our regularity assumptions, a periodic
solution x is of class at least C3.

Let us quickly go through the method to compute an estimate of a truncated Fourier series of
the periodic solution, following loosely the exposition in [Sua09]. The idea of this method, called
harmonic balance, is simple and can be summed up as :



30 Chapter 1. Theory of the circuits modeled by ordinary differential equations

• using the Laplace transform, we convert the time domain into the frequency domain,

• we develop the periodic system in Fourier series and to truncate these series,

• we solve for the truncated Fourier coefficients using a numerical fixed point method.

More precisely :

i. We note

ω0 := 2π
T

(1.11)

the proper frequency of the system. We take the Laplace transform of the system (1.9)
evaluated in x for s ∈ C with strictly positive real part :

sL{f(t, x(t))}(s) = L{g(t, x(t))}(s), (1.12)

where

L{f(t, x(t))}(s) :=
∫+∞

0 e−stf(t, x(t))dt and L{g(t, x(t))}(s) :=
∫+∞

0 e−stg(t, x(t))dt.(1.13)

Note that the Lapace transforms are well-defined for <(s) > 0 since f(t, x(t)) and g(t, x(t))
are C3-smooth and periodic, and hence, are bounded.

ii. We develop the periodic solution x(t) in Fourier series :

x(t) =
∑
j∈Z

xje
ijω0t,where xj := 1

T

∫ T
0 x(t)e−ijω0tdt ∀j ∈ Z. (1.14)

From now on we identify the function x with its Fourier series and putting the Fourier
expression of x(t) in f(t, x(t)) and g(t, x(t)), we obtain :

f(t, x(t)) = f(t, ∑
j∈Z

xje
ijω0t) and g(t, x(t)) = g(t, ∑

j∈Z
xje

ijω0t). (1.15)

Setting X := (· · · , x−1, x0, x1, · · · ) and expanding f(t, x(t)) and g(t, x(t)) in Fourier series, we
obtain on using the equation (1.15):

f(t, x(t)) =
∑
j∈Z

f j(X)eijω0t,where f j(X) := 1
T

∫ T
0 f(t, ∑

k∈Z
xje

ikω0t)e−ijω0tdt, ∀j ∈ Z

g(t, x(t)) =
∑
j∈Z

gj(X)eijω0t,where gj(X) := 1
T

∫ T
0 g(t, ∑

k∈Z
xke

ikω0t)e−ijω0tdt, ∀j ∈ Z.(1.16)

Replacing (1.16) in (1.12), integrating termwise the Fourier series which is permitted because
of the regularity of the periodic solution, we can remark that the equation (1.12) has a
meromorphic continuation for <(s) < a where a is a strictly negative real where the only poles
are in s = ikω0 for all k ∈ Z. Evaluating the system (1.12) in each frequency s = ikω0 for all
k ∈ Z, we obtain the following infinite system :

(ikω0)fk(X) = gk(X), for all k ∈ Z. (1.17)

The equation (1.17) symbolizes the fact that the numerator of the partial fraction decomposition
of each side of the equation (1.12) are equal. The equation (1.17) can be interpreted like the
behavior of the system (1.9) on the multiple of the proper frequency.
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We truncate the system (1.17); i.e. we fixN ∈ N and noteXN = (x−N , · · · , x−1, x0, x1, · · · , xN )
and we consider the system :

(ikω0)f̌k(XN ) = ǧk(XN ), for all k ∈ [−N, · · · , N ], (1.18)

where

f̌k(XN ) := 1
T

∫ T

0
f(t,

N∑
j=−N

xje
ijω0t)e−ikω0tdt,

ǧk(XN ) := 1
T

∫ T

0
g(t,

N∑
j=−N

xje
−ijω0t)eikω0tdt. (1.19)

Noting f̃k = (ikω0)f̌k − ǧk for k ∈ [−N, · · · , N ] and f̂N = (f̃−N , · · · , f̃N )∗ where the ∗ denote
the transposition, we can rewrite the system (1.18) as :

f̂N (XN ) = 0. (1.20)

The truncation transforms the infinite equations with an infinite number of unknowns (1.17)
in 2N + 1 equations with 2N + 1 unknowns and we have just to determine a solution to a
nonlinear equation in finite dimension. In practice, the solution of the system (1.20) is obtain
via a numerical approximation.

iii. Determining an approximation of x can be done by performing a fixed point Newton method.
In fact, the Jacobian in (1.20) is easily computed: noting ∂2f (resp. ∂2g) the derivative with
respect to the second argument of f (resp. g), we have that the Jacobian of f̂N at the point
XN is equal to

Diag(−iNω0, · · · , iNω0)L∂2f,N − L∂2g,N , (1.21)

where for h equal to f or g, we have :

[
L∂2h,N (XN )

]
k,n∈[|−N,N |]

=

 1
T

∫ T

0
∂2h

t, N∑
j∈−N

xje
ijω0t

 ei(n−k)ω0tdt

 , (1.22)

and

Diag(−iNω0, · · · , iNω0) is the diagonal matrix with diagonal (−iNω0, · · · , iNω0). (1.23)

The knowledge of the Jacobian matrix allows one to numerically solve the system (1.18)
efficiently through a Newton method, and thus to obtain an approximation of the Fourier
coefficient of the periodic solution x.

To conclude, the harmonic balance method permits to approximate the periodic solution x via the
approximation of a finite number of its Fourier coefficient. From now, we assume that the harmonic
balance has been performed and thus we consider that the approximation of the periodic solution x
via its Fourier coefficients is the knowledge of the exact solution of the system.
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1.3 Stability and monodromy operator

Assuming that we have calculated the periodic solution x by Harmonic Balance, we want to know if
it is "physically observable". In fact, it is possible that after the physical construction of the circuit,
the periodic solution calculated by Harmonic Balance does not occur because of the variability
of the electrical components of the circuit. So to ensure that the periodic solution calculated by
Harmonic Balance appears in a real electrical circuit we need to ensure that the periodic solution is
stable under the variability of the electrical components of the circuit. In mathematical terms, to
be locally stable means that if we consider a solution of the circuit x which starts near the periodic
trajectory thus this solution convergence exponentially to x. The classical way to determine the
local stability is to linearize the system (1.9) around the periodic solution and to prove that the zero
of the linearized system is exponentially stable. For a linear periodic system the zero exponentially
stability is given by the eigenvalues of the monodromy operator, ie the operator which integrates
a solution during a period T . All the following theorems and definitions can be found in a lot of
classical books on ordinary differential equation (see [Hal69] for example).

Definition 1.5 (Exponential Local Stability). We say that the solution x of the system (1.9) is
exponentially locally stable if there exists δ > 0 such that there exists a K and γ strictly positive
such that :

||x(0)− x(0)||2 ≤ δ ⇒ ||x(t)− x(t)||2 ≤ Ke−γt, (1.24)

where x is a solution of the equation (1.9).

To study local stability, we linearise system (1.9) around the periodic solution calculated by
harmonic balance which does not pass through a singularity :

d

dt
y(t) = A(t)y(t), t ≥ 0 , (1.25)

where A(·) is a n× n periodic matrix at least C2.

Definition 1.6. The system (1.25) is said exponentially stable if there exists K > 0 and γ > 0
such that :

||y(t)||2 ≤ Ke−γt, t ≥ 0 . (1.26)

Proposition 1.7. If the system (1.25) is exponentially stable then the solution x of the system
(1.9) is locally stable.

We introduce the fundamental solution X(t, τ) which checks :

d

dt
X(t, τ) = A(t)X(t, τ), t ≥ τ (1.27)

X(τ, τ) = Id, for all τ ∈ R, (1.28)

where Id is the n× n identity matrix. The fundamental solution is central in the following of
this chapter. First of all, the fundamental solution contains all the solution of the system (1.25)
because of :

y(t) = X(t, 0)y(0). (1.29)
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Moreover the fundamental solution contains entirely the stability information of the system
through the monodromy operator and the theory of Floquet, and it permits to link the solution of
the system (1.25) that we disturb by a function h ∈ L1

loc([0,+∞[,Rn) :

d

dt
y(t) = A(t)y(t) + h(t), t ≥ 0 (1.30)

with the system (1.25).
These considerations are summed up in the following theorems and definitions :

Definition 1.8. The monodromy operator of the system (1.25) is the operator X(T, 0).

Proposition 1.9. The system (1.25) is exponentially stable if and only if the spectrum of the
monodromy operator is strictly included in the unit disk.

Theorem 1.10 (Floquet). The fundamental solution has the form :

X(t, τ) = P (t)eQ(t−τ)P (τ) (1.31)

where P (t), Q are n × n matrices with P invertible, P (t + T ) = P (t) for all t, and Q constant.
Moreover, putting z(t) = P (t)y(t) we have that z check the equation :

dz

dt
= Qz, (1.32)

and the zero of the system (1.25) is exponentially stable if and only if the eigenvalues of the matrix
Q are in the open left half plane.

Theorem 1.11 (Variation of constant formula). We have :

y(t) = X(t, 0)y(0) +
∫ t

0
X(t, τ ′)h(τ ′)dτ ′ (1.33)

1.4 Input-output system and Wereley’s Harmonic Transfer Func-
tion matrix

By Proposition 1.9, the local stability of system (1.25) depends on the eigenvalues of the monodromy
operator X(T, 0). From a numerical analysis point of view, we could perform time-domain analysis
in order to approximate the monodromy operator and its eigenvalues for the system (1.25). This
strategy is possible when looking at periodic differential systems but fails when looking at circuits
containing transmission lines. Indeed such circuits induces delays effects, and because of the large
number of components of the circuit and the periodicity of the system, the discretization time step
become to small to be able to provide computation in the time domain. Since the main subject
of this thesis is to deal with periodic differential systems coupled with transmission lines, we do
not detail such numerical methods. The harmonic balance method is entangled with frequency
analysis and we give quickly the numerical methods in the frequency domain through a fictitious
input-output system which permits to approximate the eigenvalues of the monodromy operator
(1.25). Obviously it requires a back and forth between the time-domain and the frequency-domain.

To introduce the frequency stability methods, we disturb the linearized circuit by a small source
of current u ∈ L2

loc([0,+∞[,R) at time zero, where L2
loc([0,+∞[,R) is the space of square integrable

function on each compact, and we obtain the voltage response to this current perturbation :
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{
d
dty(t) = A(t)y(t) +B(t)u(t)
z(t) = C(t)y(t) +D(t)u(t), t ≥ 0,

(1.34)

where A(·), B(·), C(·), D(·) are n×n, n× 1, 1×n and 1× 1 T -periodic matrices, at least C2. Thus
we have an input-output system, called a linear time periodic system, where the output is for the
instance considered to be zero for t strictly negative. When the system (1.34) is time-invariant we
can take Laplace transforms and express in a simple way via the transfer function the output in the
frequency domain in terms of the input in the frequency domain. For the periodic case, we can
proceed in the same way after developing the system (1.34) in Fourier series. This leads to the
Wereley harmonic transfer function matrix. Apparently, it initially occurred in the thesis of Norman
Wereley (see [Wer90]).

Another way to recover the harmonic transfer function is to write the output as a convolution
operator applied to the input. The kernel of the convolution is periodic and can be developed in
Fourier series. Performing a Laplace transformation, we obtain the harmonic transfer function
which is an infinite matrix linking frequency domain outputs to frequency domains inputs. One can
prove that the singularities of the harmonic transfer function has just poles. Moreover the poles
are among the logarithms of the Floquet exponents. Since we deal with an input output system,
we can “lose” poles because of a lack of controllability or observability. However, the link between
the observability or controllability and the missing poles in the harmonic transfer function, has
apparently not been studied much, even for linear periodic dynamical system in finite dimension.

1.4.1 The time-invariant constant case

To introduce Wereley’s Harmonic Transfer Function Matrix for periodic systems, we start by recalling
some results about linear time independent systems which can be found in classical books of control
theory (see for example [Son98] or [PW97]). We consider an autonomous system :

d

dt
y(t) = Ay(t), y(t) ∈ Rn, A ∈ Cn×n(R) , t ≥ 0. (1.35)

We know that the zero solution of the system (1.35) is exponentially stable if and only if the
spectrum of the matrix A is in the open strict complex left half plane. Consider now an input-output
system : {

d
dty(t) = Ay(t) +Bu(t)
z(t) = Cy(t) +Du(t) , t ≥ 0.

(1.36)

Taking the Laplace transform in the system (1.36), we obtain :

L{z}(s) = H(s)L{u}(s) (1.37)

with

H(s) := C(sIn −A)−1B +D (1.38)

and we call this matrix H(s) the transfer function. We already now by definition that the matrix
H(s) is a rational function. Unfortunately, in bad cases, we can lose some eigenvalues of the
matrix A in the function H(s). However if the system (1.35) is observable and controllable (see
Definition 1.12 below for a definition of the observability and controllability), then the singularities
of the matrix H are poles and are the eigenvalues of the spectrum of A. So the singularities of the
matrix H give the stability of System (1.35). Moreover we have the fact that it is a generic property
to be observable and controllable in the class of linear constant system (which is not entirely relevant
when the linear system comes from a linearization of a nonlinear system).
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Definition 1.12. The system (1.35) is said :
• observable, if knowing that the output and the input are zero, then we have y must be

identically zero,

• controllable, if there exists an input u from state y0 at time t0 to state y1 at time t1 > t0.
The definition of the controllability and observability is a little too stronger for us purposes, so

we give the following definition :
Definition 1.13. The system (1.35) is said :

• detectable, if knowing that the output z is zero and the input u is zero, then we have y which
tends to zero at the infinity,

• stabilizable, if any initial state can be asymptotically steered to the origin by choosing the
input u appropriately.

Theorem 1.14. Under the assumption that the system (1.35) is observable and controllable, we
have that the singularities of the transfer function (1.38) are exactly the eigenvalue of the matrix A.
Moreover the system (1.35) is exponentially stable if and only if the poles of the transfer function
are contained strictly in the left half plane.
Theorem 1.15. Under the assumption that the system (1.35) is detectable and stabilizable, we have
that the system (1.35) is exponentially stable if and only if the poles of the transfer function are
contained strictly in the left half plane.

1.4.2 Periodic case

We want to apply the same previous reasoning in the periodic case, ie for the system (1.34). We
would like to take the Laplace Transform in the system (1.34). Unfortunately, since the system is
time dependant, we cannot express directly L{z}(s) in function of L{u}(s). However, developing in
Fourier series the system (1.34), we obtain :

d
dty(t) =

∞∑
k=−∞

ake
iω0kty(t) +

∞∑
k=−∞

bke
iω0ktu(t)

z(t) =
∞∑

k=−∞
cke

iω0kty(t) +
∞∑

k=−∞
dke

iω0ktu(t)
(1.39)

Taking the Laplace transform in (1.39), and swapping Fourier series and the Laplace transform
(it is allowed because of the regularity of the system), we have :


sL{y}(s) =

∞∑
k=−∞

akL{y}(s− ikω0) +
∞∑

k=−∞
bkL{u}(s− ikω0)

L{z}(s) =
∞∑

k=−∞
ckL{y}(s− ikω0) +

∞∑
k=−∞

dkL{u}(s− ikω0)
(1.40)

In the equation (1.40), it is not possible to express directly L{y}(s) because it appears together
with the expressions L{y}(s+ ikω0), k ∈ Z. These have to be considered together in the following
way: first define the following infinite vectors:

Y (s) =



...
L{y}(s+ iω0)
L{y}(s)

L{y}(s− iω0)
...


, U(s) =



...
L{u}(s+ iω0)
L{u}(s)

L{u}(s− iω0)
...


and Z(s) =



...
L{z}(s+ iω0)
L{z}(s)

L{z}(s− iω0)
...


, (1.41)
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and then write a countable number of copies of (1.40) where s is replaced by s+ ikω0, k ∈ Z, to
obtain the following relation between infinite vectors:{

Dω0(s)Y (s) = LAY (s) + LBU(s) ,
Z(s) = LCY (s) + LDU(s) ,

(1.42)

where Dω0(s) := Diag(· · · , s+ iω0, s, s− iω0, · · · ) and
LA := (aj−i)i,j∈Z, LB := (bj−i)i,j∈Z, LC := (cj−i)i,j∈Z and LD := (dj−i)i,j∈Z.

Definition 1.16. The infinite matrix H(s) := LC [Dω0(s)− LA]−1LB + LD is called the Wereley
Harmonic Transfer Function matrix.

We have proved that that the Harmonic transfer function links the input at all the multiple of
the proper frequency of the system with the output at all the multiple of the proper frequency of
the system :

Proposition 1.17. The harmonic transfer function matrix verifies the following equality :

Z(s) = H(s)U(s) (1.43)

According to Equation (1.43), the harmonic transfer function H(s) relates the output at each
frequencies s+ 2iπk

T for a fixed k ∈ Z with the input at all frequencies s+ 2iπn
T for all n ∈ Z. In the

autonomous case, we have seen that the transfer function permits to recover the eigenvalues of the
matrix A under some assumption of controllability and observability. The questions that arise are :

• What is the sense of the matrix H(s)? More precisely on which space acts the function ?

• What is the link between the Wereley Harmonic Transfer function matrix in the Definition 1.16
and the monodromy operator X(T, 0)?

Concerning question 1, it seems relevant to consider that the matrix H(s) acts on the space
l2(Z) because of the Fourier development of the system. Concerning question 2, it has not been
studied extensively. In fact the only results we have is that the matrix H(s) has at most poles with
the form ln(Ψ)+iω0

T with for each Ψ complex which is an eigenvalue of the monodromy operator.

1.4.3 Link between the Wereley matrix and the monodromy operator

Using the variation of constants formula (see equation (1.33)), we can express in the system (1.34)
the output z as a convolution of the input u, where the kernel of the convolution is strongly linked
with the fundamental solution. We sum up these remarks in the following theorem :

Theorem 1.18. The solution z(·) of (1.34) with initial condition z(0) = y(0) = 0 is given by :

z(t) =
∫ t+

0
X̃(t, τ)u(τ)dτ, (1.44)

where,

X̃(t, τ) = C(t)X(t, τ)B(τ) +D(t)δ0(t− τ), t ≥ τ , (1.45)

and X is the fundamental solution defined in the equation (1.27) and δ0 is the Dirac distribution in
zero.

The kernel X̃ is called the impulse response of the system and satisfies :
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• the function t 7→ X̃(t, t− τ) is T -periodic for all fixed τ ∈ R.

• the function t 7→ X̃(t, t− τ) is at least C2 because of the assumption on the regularity of the
periodic function.

• X̃(t, t− τ) and its derivative in t are exponentially bounded, ie there exists K > 0 and γ > 0
such that : ∫ τ

0

∥∥∥∥∥ ∂j∂tj X̃(t, t− s)
∥∥∥∥∥ ds ≤ Keγτ , (1.46)

for j ∈ [0, 1, 2] and where || · || is the norm induced by the euclidean norm || · ||2 on Rn.

Definition 1.19 (ITF). The function :

G(t, s) =
∫ +∞

0
X̃(t, t− τ)e−sτdτ, (1.47)

for s ∈ C is called the instantaneous transfer function.

The properties of the ITF are similar to the classical transfer function. We list here the most
important (see [Lou14]) :

• The response to an exponential complex function eiωt is :

z(t) = G(t, iω)eiωt (1.48)

• If we consider zero as an initial data, we have :

z(t) = L−1{G(t, s)L{u}(s)}, (1.49)

where L−1 is the inverse of the Laplace transform.

Assuming that X̃(·, ·− τ) is at least C2 for all τ ∈ R and developing in Fourier series the ITF (which
is licit because of (1.46)) :

G(s, t) =
∑
n∈Z

Gn(s)eiω0nt, (1.50)

putting Hm,n(s) := Gm−n(s+ inω0), we have :

L{z}(s+ imω0) =
∑
n∈Z

Hn,m(s)L{u}(s+ inω0). (1.51)

And we have that if we evaluate the equation (1.51) for s→ s+ 2ikπ
T for all k integer :



...
L{z}(s+ iω0)
L{z}(s)

L{z}(s− iω0)
...


=



. . . ...
...

... ...
· · · G0(s+ iω0) G1(s) G2(s− iω0) · · ·
· · · G−1(s+ iω0) G0(s) G1(s− iω0) · · ·
· · · G−2(s+ iω0) G−1(s) G0(s− iω0) · · ·

... ...
...

... . . .





...
L{u}(s+ iω0)
L{u}(s)

L{u}(s− iω0)
...


Comparing the equations (1.51) and (1.43), we have that the infinite matrix (Hm,n(s))m,n∈Z is the
harmonic transfer function. We denote λ1, · · · , λr the eigenvalues of the monodromy operator and
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m1, · · · ,mr their multiplicities. Developing Q in its Jordan basis, ie Q = P̃ JP̃−1 where J denote
the Jordan form of Q. Thus inserting the Floquet representation (1.31) in the equation (1.45) and
using the block jordan form of Q we have :

X̃(t, τ) = C(t)P (t)P̃ eJ(t−τ)P̃−1P (τ)−1B(τ) +D(t)δ(t− τ). (1.52)

Developing C(t)P (t)P̃ , P̃−1P (τ)−1B(τ) and D(t), and inserting in (2.65), we obtain :

Gn(s) =

∑
k∈Z

r∑
j=1

mr∑
q=1

L̃k,n,j,q
(s− λj + kiω0)q

+Dn, (1.53)

where L̃k,m,j,q and Dn are complex numbers which depend of the Fourier development of C(·)P (·)P̃ ,
P̃−1P (·)−1B(·) and D(·). The equation (1.53) prove :

Theorem 1.20. Each elements of the Wereley matrix is a meromorphic function. And its poles
are included (possibly strictly) in the set of the complex numbers of the form ln(ζ)+2iπk

T for all k ∈ Z
and where ζ is an eigenvalue of the monodromy operator.

Theorem 1.21. Assuming that the system (1.39) is observable and controllable in sense of the
definition 1.12, then for all ζ an eigenvalue of the monodromy operator there exists n and k two
integers such that Gn(·) has a pole in ln(ζ)+2iπk

T .

Proof. Let λr be an eigenvalue of the monodromy operator. Thus the system (1.39) has a solution
which has the form y(t) = v(t)eλrt with v(t) T -periodic. Since we assumed that the system is
controllable, there exists a control uλ on a finite time tf which leads to this periodic solution. Thus
for t ≥ tf , we have that :

z(t) = C(t)v(t)eλrt. (1.54)

Since the system is observable, we have that C(t)v(t) is non zero and so the development in
Fourier series of C(t)v(t) admits one non zero element. Thus there exists n′ integer such that
L{z}(λr + n′iω0) is equal to the +∞ and so we have the result.

Remark 1.22. Since we can see the linear autonomous differential system (1.35) as a periodic one
with any arbitrary period T , we have that in this case the development of the instantaneous function is
reduced to the unique G0(s) which is the usual transfer function (see equation (1.38))and the wereley
harmonic transfer function matrix is the diagonal matrix (· · · , G0(s+ iω0), G0(s), G0(s− iω0), · · · ).
Considering a pole of A, λ, then G0(s) possesses λ as pole and it is analytical in λ+ 2iπk

T for all k
non null integer. Thus the controllability and the observability fail to assure that for all n and k two
integers Gn(·) has a pole in ln(ζ)+2iπk

T . This ascertainment was obvious with the equation (1.53).
In fact, ascertain that for all n and k two integers Gn(·) has a pole in ln(ζ)+2iπk

T is strongly related
with the Fourier development of the Floquet and the matrices B(t) and C(t). It would be interesting
to give some conditions to ensure that the previous property is verified.

1.4.4 Approximation of the first column Harmonic transfer function on the
imaginary axis

The harmonic balance method permits to approach the first column of the Wereley matrix or
equivalently to approach the Fourier coefficient of the instantaneous transfer function G(t, s) (see
equation (1.50)) on the imaginary axis. In fact we recall that if the input is of the form eiωt then the
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output is of the form G(t, iω)eiωt. Using the Fourier development of G(t, iω) (i.e put the equation
(1.50) in the equation (1.48)), we have that the output z is of the form :

z(t) =
∑
n∈Z

Gn(iω)ei(ω0n+ω)t. (1.55)

Taking the Laplace transform in the previous equation (1.55) and evaluating in each frequency
iω0n+ ω for all integer n ∈ Z, we obtain :

Z(iω) = H(iω)U(iω), (1.56)

where U(iω) = [· · · , 0, 1, 0, · · · ]∗.
On the other side, we have the system (1.42) evaluated in iω :{

Dω0(iω)Y (iω) = LAY (iω) + LBU(iω)
Z(iω) = LCY (iω) + LDU(iω)

(1.57)

Fix N a positive integer and consider the truncated system :{
Dω0,N (iω)YN (iω) = LA,NYN (iω) + LB,NUN (iω)
ZN (iω) = LC,NYN (iω) + LD,NU(iω)

(1.58)

Where UN (iω) = [0, · · · , 0, 1, 0, · · · , 0]∗ is a vector column of size 2N + 1. Making the assumption
that the matrix Dω0,N (iω)− LA,N is invertible, we have :

ZN (iω) = LC,N (Dω0,N (iω)− LA,N )−1 LD,NUN (iω), (1.59)

and we have that ZN (iω) is an approximation of the first column of the wereley matrix thanks to
the equation (1.56).

1.5 Rational approximation
In the previous Section 1.4.4 we saw how the harmonic balance method permits to compute the
first column of the harmonic transfer function on the imaginary axis. We assume here that we
know the Gk(s) on all the imaginary axis for k ∈ [| − N,N |], i.e. we have Gk(iω) for all ω real
and k ∈ [| −N,N |]. How to recover the unstable poles of the Wereley matrix with this data? The
Theorem 1.20 states that the Gk(·) are meromorphic functions. There exists a large literature to
recover a meromorphic (or rational) function on all the complex plane from the knowledge of the
function on the imaginary axis via rational approximations. We cite the following non-exhaustive list
of papers or thesis which deal with this kind of problem [PB04, PGZC88, MP99, Sua15, AAC+10,
BS02, SQ03, Sua09, JPA+01, Bar87, BCT16, PMP99, YL97, HM98, CC98].

Even so far, the more natural way to approximate the meromorphic function Gk(·) on the complex
plane would be to perform rational approximation techniques with a high order. Unfortunately,
this strategy is not entirely satisfactory because it might create spurious poles [Sta98] (see also
[GS92]) which could be misleading to determine the stability [AAC+10]. In order to overcome this
problem [AAC+10] proposed to divide the complex plane in small vertical band and to perform
a rational approximation on each one. This algorithm is commercially available in STAN tool
[STA, DGSP+12, MISPM13].

We present too succinctly a method due to Cooman and al (see [CSO+18]). The Hardy space
H2(C+) is defined as the set of all functions g defined on C+ such that :

• ∀z ∈ C+, g is holomorphic at z
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• supx>0
∫+∞
−∞ |g(x+ iω)|2dω < +∞.

We have the decomposition :

L2(iR) = H2(C+)
⊕

H2(C−), (1.60)

If we suppose that the system has not a pole on its imaginary axis, we have that each element Gk(·)
for k ∈ [| −N,N |] are in L2(iω). So to find the unstable poles, we project in a good basis the Gk(s)
for k ∈ [| −N,N |] and we perform a rational approximation algorithm to find the unstable poles.
Obviously, if we perform the result for N larger, thus the result is more accurate (see [CFR+16]).
Unfortunately this way to determine the stability is strongly correlated to the assumption that there
is a "small" k and n such that Gn(·) has a pole in ln(ζ)+2iπk

T for each ζ eigenvalue of the monodromy
operator and it is not obvious it is always the case (see Remark 1.22).

1.6 Conclusion
We gave the heuristic method of harmonic balance for the circuits modeled by ordinary nonlinear
differential equations and how the harmonic balance method coupled with the rational approximation
permits to determine the local stability of a forced periodic signal by a periodic signal entry. In
practice, only few (Gn) computed and a rational approximation is performed. We saw that the
classical concepts of controllability and observability lead to the fact that at least one Gk possesses
the pole zj,k and hardly more because the example of the equilibrium case. An interesting question
is then :

• For fixed j, which zj,k is a pole of which Gn?

To answer to this question, it seems necessary to introduce a stronger concept of observability and
controllability, maybe using the controllability and observability on the harmonics. In fact, with the
formula (1.53) it seems strongly correlated to the fact that Fourier development are always non-zero.
We do not give an answer to that question in this thesis.



Chapter 2
A simple circuit containing one
lossless transmission line

We resume the path followed in Chapter 1 for a simple circuit which possesses a lossless transmission
line modeled by a lossless Telegrapher’s equation and a periodic solution. Since the Telegrapher’s
equation is a linear differential equation in the frequency domain, we show how the harmonic balance
technique of Chapter 1 is applied on this simple circuit.

We have that the problem reduces to a neutral delay system and we prove some facts, on this
specific example, which are less obvious than for the ODEs system. In fact, these kind of equations
are infinite dimensional and we need to define functional spaces on which the system occurs. We
use the square integrable functions (L2), the continuous functions (C) and the absolute continuous
functions with a square integrable derivative (W 2

1 ); and we prove that the convergence is equivalente
for these spaces.

The monodromy operator of a neutral system is related, via a compact perturbation, to the
monodromy operator of a scalar difference delay system. On this simple example, we are able to
compute exactly the spectrum of this last system, thanks to the spectral semigroup theory. So we
are able to give the spectrum of the monodromy operator of the neutral system. More precisely the
spectrum is composed of a finite number of eigenvalues outside a disk of radius strictly less than
one and, when the delay is commensurable with the period, there is a disk of spectrum elements.

The discretization of the system permits to link the spectrum of the monodromy operator and the
harmonic transfer function (HTF). Since we are able to prove controllability and the detectability on
the W 2

1 functions, the harmonic transfer function is then a meromorphic operator in the closed right
half plane where the poles are the complex logarithm of eigenvalues of the monodromy operator, and
if the HTF is holomorphic in the closed right half plane then the periodic solution is locally stable.
Moreover, under observability assumption, the HTF has a vertical line of essential singularities
view as a Banach valued operator in the left half plane when the delay and the period are not
commensurable

2.1 A simple circuit

We consider the following simple circuit due to Brayton [Bra67].
It contains the following elements :

• A voltage generator, that delivers a tension p(t), assumed to be smooth, and periodic with
period T > 0, with respect to time. This represents the periodic signal to be amplified.

• An active nonlinear element, namely a diode with characteristic i = g(v), where v is indicated
on Figure 2.1 and i, is the current through the diode in the indicated direction. The map g is
assumed to be smooth.
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Figure 2.1 : Nonlinear circuit containing a lossless transmission line

• A resistor R and a capacitor C1.

• A lossless transmission line ("LIN" on Figure 2.1). Its model is described below by a "Telegra-
pher’s" PDE, whose boundary conditions are described by i, v, i0 and v0. It is a linear but
infinite dimensional element. It has two normalized characteristic numbers : L and C.

We introduced the following data :

R,C1, L, C are positive numbers (2.1)
p(·), g(·) are elements of Ck(R,R), k ∈ N, k ≥ 3. (2.2)

The lossless transmission line is modeled by the telegrapher’s equation :{
L∂i
∂t = − ∂v

∂x

C ∂v
∂t = − ∂i

∂x ,
(2.3)

where i and v are functions of (x, t) ∈]0, 1[×]0,+∞[ and the boundary conditions at x = 0 and
x = 1 are given by the Kirchhoff laws :{

p(t)− v(0, t)−Ri(0, t) = 0
C1

dv
dt (1, t) = i(1, t)− g(v(1, t)).

(2.4)

2.2 Harmonic balance approach
On this circuit, the harmonic balance technique of the Chapter 1 can be applied. We take the
Laplace transform with respect to time in the equations (2.3) and (2.4). Noting P (s) := L{p(·)}(s),
V (s, x) := L{v(x, ·)}(s), I(s, x) := L{i(x, ·)}(s), V0(s) := L{v(0, ·)}(s), V1(s) := L{v(1, ·)}(s),
I0(s) := L{i(0, ·)}(s) and I1(s) := L{i(1, ·)}(s), we obtain the following equations in the frequency
domain where we assumed that the derivatives and the Laplace transform can be permuted, and
L−1 denotes the inverse Laplace transform:{

∂xV (s, x) = −sLI(s, x)
∂xI(s, x) = −sCV (s, x),

(2.5)

and {
V0 = −I0R+ P

I1 = L{g(L−1{V1})}+ sV1C1.
(2.6)
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Figure 2.2 : Linearised circuit around the periodic solution disturbed by a current u

We define K :=
√
C/L the characteristic impedance of the line and τ :=

√
LC the constant of

propagation of the line. Resolving the linear system of constant differential equations (2.5), we
obtain that we can model in the frequency domain a lossless transmission line as a linear matrix :(

V0

V1

)
=
(
Z11 Z12

Z21 Z22

)(
I0

I1

)
, (2.7)

where Z11, Z12, Z21 and Z22 depends only on the characteristic impedance and the constant of
propagation of the transmission line, and of the complex variable s. Thus putting the equation (2.7)
in the equation (2.6), we have the equation :

V1
(
1 + sC1

( Z12Z21
R+ Z11

− Z22
))

= PZ21
R+ Z11

+ L{g(L−1{V1})}
(
Z22 −

Z12Z21
R+ Z11

)
. (2.8)

The equation (2.8) is almost like the equation (1.12) in Chapter 1 except it depends on Z11,
Z21,Z12 and Z22 which are known. Assuming that this circuit has a periodic solution v1(t) := v(1, t),
we could apply the same technique to approximate a periodic solution v1 as the Subsection 1.2
harmonic balance approach of Chapter 1. In the way to check the local stability, we linearise the
circuit around the periodic solution v(1, t) and we disturb the linearised circuit by a current at the
end of the line that we note u ∈ L2

loc([0,+∞[,R) and the state response is v(1, t) (see Figure 2.2
where A(t) = g′(v1(t))). We took u as notation for the input because it is the convention in the
control theory field even if it is a current.

The boundary condition (2.4) when the system is linearised becomes :{
p(t)− v(0, t)−Ri(0, t) = 0
C1

dv
dt (1, t) = i(1, t)− g′(v1(t))v(1, t)− u(t).

(2.9)

Taking the Laplace transform in the equation (2.9), noting U := L{u(·)} and repeating exactly
the same reasoning as before, we have that the solution V1 of the linearised circuit now depends on
the perturbation u, we obtain:

V1
(
1 + sC1

( Z12Z21
R+ Z11

− Z22
))

= L{g′(v1(t))L−1{V1}}
(
Z22 −

Z12Z21
R+ Z11

)
−U

(
Z22 −

Z12Z21
R+ Z11

)
.

Developing in Fourier series g′(v1(t)), taking u(t) = eiωt for ω ∈ R and performing the same
reasoning as in the Subsection 1.4.4 of the Chapter 1, we can approximate the first column of the
harmonic transfer function H on the imaginary axis, where H is the infinite matrix which verifies :



44 Chapter 2. A simple circuit containing one lossless transmission line



...
L{v1}(s+ iω0)
L{v1}(s)

L{v1}(s− iω0)
...


= H(s)



...
L{u}(s+ iω0)
L{u}(s)

L{u}(s− iω0)
...


,

It is well known for ODE’s systems (see theorem 1.7 of Chapter 1) that the local exponentially
stability of the periodic solution is equivalent to the exponentially stability of the origin of the
circuit linearised around the periodic solution. To obtain this last stability, we disturb the linearised
system by a small current signal u ∈ L2

loc([0,+∞[,R) which is the input and we observe the output
v1 which leads to the concept of the harmonic transfer function. The structure of this object is well
known and it is a meromorphic function (see Theorem 1.20), where the poles are the logarithm of a
finite family of complex numbers. Moreover with the assumptions of controllability and observability,
if the harmonic transfer function is analytic in the right half plane, then we have the local stability
of the system.

When we add a lossless transmission line, the following questions arise :

• Is the harmonic transfer function always a meromorphic operator?

• Does the analyticity in the right half plane of the harmonic transfer function imply the local
stability of the periodic solution?

2.3 Results
In the case of circuit that contains transmission line, the structure of the harmonic transfer is not
known. In this chapter, we legitimate all the previous reasoning that we made for the ODE system
in Chapter 1 and we give the structure of the HTF for the simple circuit proposed (2.1). We start
by giving few notations :

• a := 1−RK
1+RK

• Da :=
{
s ∈ C, Re(s) > ln|a|

T

}
, and ∂Da the boundary of Da.

Theorem 2.1 (Structure HTF). In Da,

• H is a meromorphic operator l2(Z)→ l2(Z) which possibly poles at{
zj,k = ln(ζj)+2ikπ

T , j ∈ {1...n}, k ∈ Z
}
where (ζj)j∈{1...n} is a finite family of complex numbers.

• For all j = 1, · · · , n there exists at least one k ∈ Z such that zj,k is a pole of a coefficient of
the matrix H.

• Under observability assumption, if T/r /∈ Q, all points of the vertical line ∂Da are essential
singularities of the HTF H, as an operator valued analytic map.

Theorem 2.2. We have :

• If the HTF H is holomorphic in the closed right half plane then the periodic solution is locally
stable. More precisely there exists δ > 0 such that there exists a K and γ strictly positive such
that :

|v1(0)− v1(0)| ≤ δ ⇒ |v1(t)− v1(t)| ≤ Ke−γt, (2.10)
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where v1 = v(1, t) is a continuous solution of the equations (2.3) and (2.4), where (2.3) is
understood in a distributional sense.

• If the HTF H has a pole in the open right half plane, then the periodic solution is locally
unstable i.e. there exists ε0 > 0 such that for all δ > 0 :

|v1(0)− v1(0)| ≤ δ ⇒ sup
0≤τ
|v1(τ)− v1(τ)| ≥ ε0 (2.11)

where v1 = v(1, t) is a continuous solution of the equations (2.3) and (2.4), where (2.3) is
understood in a distributional sense.

2.4 Equation in time domain : Scalar neutral differential equation
As is well known, the general solution of (2.3) in a distributional sense can be expressed from two
general functions of x− t/τ and x+ t/τ . After some transformations, and specializing to x = 1 and
x = 0, one obtains : 

i(0, t) = K[x0(t)− x1(t− τ)]
i(1, t) = K[x0(t− τ)− x1(t)]
v(0, t) = x0(t) + x1(t− τ)
v(1, t) = x0(t− τ) + x1(t),

(2.12)

where x0(·) and x1(·) are two functions of one variable that we retain to describe the state of the
system. We can then write Kirchhoff’s law as :{

p(t)− v(0, t)−Ri(0, t) = 0
C1

dv
dt (1, t) = i(1, t)− g(v(1, t)).

(2.13)

Substituting (2.12) and expressing x0 from the first equation yields :

x0(t) = Z0p(t)− ax1(t− τ) (2.14)

and the second equation then yields :

C1
d

dt
(x1(t)− ax1(t− 2τ)) = K[−ax1(t− 2τ) + Z0p(t− τ)− x1(t)]− C1Z0p

′(t− τ)

−g
(
−ax1(t− 2τ) + Z0p(t− τ) + x1(t)

)
. (2.15)

with Z0 = 1
1+RK and r = 2τ .

For simplicity, we rewrite the Equation (2.15) as :

d

dt
(x(t)− ax(t− r)) = f(t, x(t), x(t− r)) (2.16)

where the constant a and the map f satisfy :

|a| < 1, f ∈ C3(R× R× R,R), (2.17)

and f is periodic in its first variable with period T . With no loss of generality, we assume that T > r
(otherwise we would have just to consider the smallest integer p such that pT > r and take as a
period of the system pT ). Equations like equation (2.16) are called neutral differential equation and
all classical results about these equations can be found in the Hale’s book [HVL93]. We transformed
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the PDE telegraph equation into a delay differential system. We keep here ambiguous the link
between this two systems and keep focus our study on neutral differential equation. Nevertheless,
we will give the link between in a more accurate way in Chapter 5 for similar equations.

This equation defines a periodic time-varying flow on C := C0([−r, 0],R). More precisely, for all
φ ∈ C and s ∈ R, there exists a unique continuous x(·) of (2.16) (for all t ∈ R) such that xs = φ
where xs(θ) := x(s+ θ). All the flow ϕs,t maps φ to xt where x(·) is the only solution of (2.16) such
that xs = φ. We endow the space C with the uniform norm, ie :

for all φ ∈ C, we have ‖φ‖ := sup
−r≤θ≤0

|φ(θ)|. (2.18)

Assumption (periodic solution) : there exists a continuous T − periodic solution t → x(t) of
the equation (2.16). From the fact that f is C3, we deduce from [HVL93, ch. 9, lem 7.1] that the
continuous periodic solution x(·) is in fact C3. Existence of a periodic solution is an hypothesis, and
we are interested in characterizing its local stability. Conditions for existence and/or uniqueness of
such periodic solution for periodically forced systems like (2.16) are considered for instance in Yuan
[YG13], but this is not the purpose of the present thesis.

We are interested to study the local stability of this periodic solution x. For that we linearise
the equation (2.16) around the periodic trajectory. Thus we have the equation :

d

dt
(y(t)− ay(t− r)) = B(t)y(t) + C(t)y(t− r), (2.19)

where B(t) := ∂2f(t, x(t), x(t − r)) and C(t) := ∂3f(t, x(t), x(t − r)). We denote by U(t, s) the
linear operator :

U(t, s) : C → C, (2.20)

that maps any φ in C to yt, where y(·) is the unique solution of (2.19) such that ys = φ. Periodicity
of B(·) and C(·) in (2.19) give the following properties for the operator U :

• U(t+ T, s+ T ) = U(t, s),

• U(t, s)U(s, τ) = U(t, τ) for t ≥ s ≥ τ ,

• U(t+ T, s) = U(t, s)U(s+ T, s) for t ≥ s.

Moreover, U is a continuous bounded operator. The system (2.16) can be written as the system
(2.19) plus a function. More precisely :

d

dt
(x(t)− ax(t− r)) = B(t)x(t) + C(t)x(t− r) + h(t, xt), (2.21)

with :

h(t, xt) := f(t, x(t), x(t− r))−B(t)x(t)− C(t)x(t− r). (2.22)

Our motivation in this chapter is to deal with the stability for the continuous solution of (2.16).
However to prove some results, we will have to use bigger or smaller space that is why we introduce
also the following Banach spaces where I denotes an interval of R :

• Lp(I,R), with p ∈ [1,∞[, the space of the p-integrable function defined on I and with values
in R endowed with the following norm

for all φ ∈ Lp(I,R), we have ‖φ‖p =:
(∫

I
|φ|p

)1/p
. (2.23)
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• CABS(I,R) the space of the absolutely continuous functions defined on I and with values in R,
i.e. f ∈ CABS(I,R) if and only if its distributional derivative is an L1 function (see [EG92]).
Moreover if f ∈ CABS(I,R) then f admits a derivative almost everywhere f ′ and :

f(b)− f(a) =
∫ b

a
f ′(x)dx, ∀a, b ∈ [−r, 0]. (2.24)

We endow CABS(I,R) with the following norm :

for all φ ∈ CABS(I,R), we have ‖φ‖ABS :=
∫
I

(
|φ|+ |φ′|

)
. (2.25)

• W 1
2 (I,R) the Sobolev space of the absolute continuous functions on I with a square integrable

derivative. We endow W 1
2 (I,R) with the following norm :

for all φ ∈W 1
2 (I,R), we have ‖φ‖W 1

2
:=
(∫

I

(
|φ|2 + |φ′|2

))1/2
. (2.26)

We note L2 := L2([−r, 0],R), CABS := CABS([−r, 0],R) and W 1
2 := W 2

1 ([−r, 0],R). Until now the
operator U(t, s) was defined on C, but can also be defined on the space L2, CABS or W 1

2 and we
will note these operators U(t, s)|L2 , U(t, s)|CABS and U(t, s)|W 1

2
respectively.

Let U(T, 0) the monodromy operator. The spectrum of this operator give us the stability or
instability of the periodic solution of the system (2.16) (see Section 2.3). Moreover we can have
exactly the spectrum of U(T, 0) (see Section 2.5.3).

2.5 Stability and instability
It is well known that the spectrum of the operator U(T, 0) gives the stability or instability for the
origin to the system (2.19) (see Lemma 2.8 and Lemma 2.11 below). It is almost as well known that
this spectrum determines the local (in)stability of the periodic solution for the linear time-varying
system (2.16). In fact, according to the following two theorems (where the Section 2.5.1 and 2.5.2
are devoted to the proofs), this flow also determines the local stability or the instability of the
periodic solution x(·) for the nonlinear system (2.16) :

Theorem 2.3. Assuming that the spectral radius of U(T, 0) is strictly less than 1, there exists δ > 0
such as for all φ ∈ C verifying ||φ− φ|| ≤ δ, then there are K > 0 and α > 0 such that for all s ≥ 0
and t ≥ s :

|x(t)− x(t)| ≤ Ke−α(t−s),

for all t ≥ s, where x is the solution of (2.16) starting from φ at the initial time s.

Theorem 2.4. Assuming that the spectral radius of U(T, 0) is strictly superior than 1, then the
solution x(t) from time 0 is unstable. More precisely, there exists ε0 > 0 such that for all δ > 0,
there exists φ ∈ C such that ||φ− φ|| < δ and sup

t∈R+
||xt − xt|| ≥ ε0 where x is the solution of (2.16)

starting from φ.

Before to give the proofs of the Theorem 2.3 and Theorem 2.4, we give the variation of constant
formula in the case of the neutral differential system which is just a generalization of the Theorem 1.38
in the Chapter 1. To give this formula, we need to introduce the fundamental solution of the system
(2.19) which is just a particular solution of this system with discontinuous initial data.
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Proposition 2.5 (Fundamental solution). Be two real numbers s and t ≥ s. There exists an unique
solution measurable to the equation (2.19) with initial data X0(θ) = 0 for θ < s and X0(s) = 1.
We note this solution X(t, s). This solution is continuous on all the domains {(t, s) ∈ IR2, nr ≤
t− s < (n+ 1)r}, n ∈ IN , and the restriction to this domain extends into a continuous function on
{(t, s) ∈ IR2, nr ≤ t − s ≤ (n + 1)r}. Moreover it is also continuous on {(t, s) ∈ IR2, t − s < 0}
since identically zero.

Proof. We can remark that for t ≥ s :

X(t, s) = aX(t− r, s) + e
∫ t
s
B(u)du +

∫ t

s
e
∫ t
u
B(v)dv[C(u) +B(u)A(u)]X(u− r, s)du,

is solution to the equation (2.19) with initial data X0. The uniqueness and the continuous
properties come from directly from this formula.

We have that the fundamental solution is exponentially bounded [HVL93, ch. 9, formula 1.14] :

Lemma 2.6. There exists K, γ ∈ R such that:

|X(t, s)| ≤ Keγ(t−s).

Proof. After integration of the equation (2.19) we have just to apply Gronwall lemma.

We can find in [HVL93, ch. 9, formula 1.16] the following variation of constant formula :

Theorem 2.7 (Variation of constant formula). For all t ≥ 0, the solution of the equation (2.16)
with the initial time 0 satisfies:

x(t) = U(t, 0)φ(0) +
∫ t

0
X(t, s)h(s, xs)ds.

2.5.1 Stability

We start by proving that the spectrum of the monodromy operator U gives the exponential stability
of the origin of the system (2.19) :

Lemma 2.8 ([Bu]). Let µ = eλ an element of the spectrum of U(T, 0) such that |µ| is equal to the
spectral radius of this operator. Thus, for all ε > 0, there exists Cε > 1 such that for all s ≥ 0 and
t ≥ s, we have :

||U(t, s)|| ≤ Cεe
(<(λ)+ε)

T
(t−s).

Proof. By the Gelfand’s formula, we have :

lim
m→+∞

||Um(T, 0)||1/m = e<(λ)

Thus for ε > 0 there exists an integer m such that for all integer M ≥ m we have :

||UM (T, 0)|| ≤ e(Re(λ)+ε)M

Let t ≥ mT . There exists q integer greater than m and β ∈ [0, T [ such that t = qT + β, thus :
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||U(t, 0)|| = ||U(β, 0)U q(T, 0)||

≤ M1e
(<(λ)+ε)

T
t,

where M1 > 1 is a bound of ||U(r, 0)|| for all r ∈ [0, T ] (it exists because the Banach-Steinhaus
theorem and the continuity of the operator). In the same way there exists a constant M2 > 1 which
is an upper bound of ||U(t, 0)|| for t ∈ [0,mT ]. Then there exists a constant M3 > 1 such that for
all t ≥ 0 we have:

||U(t, 0)|| ≤ M3e
(<(λ)+ε)

T
t.

Let ζ ≥ 0 and t ≥ ζ + T . There exists β ∈ [0, T [ and q integer such that ζ = qT + β. We have :

||U(t, ζ)|| = ||U(t, (q + 1)T )U((q + 1)T, ζ)||
= ||U(t− (q + 1)T, 0)U(T, β)||

≤ M3e
(<(λ)+ε)

T
(t−ζ)M4,

where M4 > 1 a upper bound of ||U(T, β)|| for β ∈ [0, T ]. For ζ ≥ 0 and t < ζ + T , we have the
existence of β, β′ two real such that 0 ≤ β, β′ < T and :

||U(t, ζ)|| = ||U(β′ + β, β)||.

Then if we take an uniform upper bound of ||U(z, e)|| for 0 ≤ z ≤ 2T and 0 ≤ e ≤ T , we proved
that there exists Mε > 1 such that for all s ≥ 0 and t ≥ s, we have :

||U(t, s)|| ≤ Cεe
(<(λ)+ε)

T
)(t−s).

Lemma 2.9. Let η > 0. There exists δ1 > 0 such that if for S > 0 we have ||xt − xt|| ≤ δ1 for all
t ∈ [0, S] and for all function x continuous defined on [−r, S], then :

|h(t, xt)− h(t, xt)| ≤ 2η||xt − xt||.

Proof. For t ∈ R+, we let Ft(β) = f(t, x(t) + β(x(t) − x(t)), x(t − r)β(x(t − r) − x(t − r))) for
β ∈ [0, 1]. By the mean value theorem, there exists β ∈]0, 1[ (which depends of t) such that :

Ft(1)− Ft(0) = d

dβ
(F (β)). (2.27)

Then we deduce from the equation (2.27) :

|h(t, xt)− h(t, xt)| = |Ft(1)− Ft(0)−B(t)(x(t)− x(t))− C(t)(x(t− r)− x(t− r))|
≤ h̃1(t, xt, xt) + h̃2(t, xt, xt), (2.28)
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with :

h̃1(t, xt, xt) := sup
0<β<1

|∂2f(t, x(t) + β(x(t)− x(t)), x(t− r) + β(x(t− r)− x(t− r)))

−∂2f(t, x(t), x(t− r)))(x(t)− x(t))|,
h̃2(t, xt, xt) := sup

0<β<1
|∂3f(t, x(t) + β(x(t)− x(t)), x(t− r) + β(x(t− r)− x(t− r)))

−∂3f(t, x(t), x(t− r)))(x(t)− x(t))|.

By the continuity of the partial derivatives of f and the fact it is periodic in its first variable,
we deduce from the equation (2.28) that there exists, for η > 0, one δ1 > 0 such that if for S > 0,
we have ||xt − xt|| ≤ δ1 for all t ∈ [0, S], then :

|h(t, xt)− h(t, xt)| ≤ 2η||xt − xt||.

If the operator U(t, s) is exponentially bounded then we can prove that the fundamental solution
X(t, s) is exponentially bounded too with the same exponential bound. This result is classic when
the neutral differential system is time-invariant because the theory of the semigroup can be applied.
In the periodic case the result is still true and it is the subject of the following lemma :

Lemma 2.10. If there exists C ′ > 1 and α ∈ R such that for all s ≥ 0 and t ≥ s, we have :

||U(t, s)|| ≤ C ′eα(t−s).

then there exists K0 > 1 such that :

||U(t, s)|| ≤ K0e
α(t−s).

and

|X(t, s)| ≤ K0e
α(t−s).

Proof. By the equation (1.10) of [HVL93, ch. 9, thm 1.2], we have for s ∈ R+ and t ≥ s :

U(t, s)φ(0) = X(t, s)f(s) +
∫ t

s
X(t, α)df(α),

Where f is defined as :

f(t) =
{
φ(0)− aφ(−r) + aφ(t− s− r) +

∫ t
s C(u)φ(u− s− r)du for s ≤ t ≤ s+ r

φ(0)− aφ(−r) +
∫ s+r
s C(u)φ(u− s− r)du for t > s+ r .

Let φ a real continuously differentiable function defined on [−r, 0] such that there exists a
constant S > 0 verifying :

∣∣∣ 1
f(s)

∣∣∣ ≤ S for all s.
We have :

|X(t, s)| ≤ SC ′eα(t−s) + S

∫ s

t
|X(t, α)||df(α)|,

and applying the Gronwall lemma ([EK09, p. 498, lem 7.1]), we have the result.
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Proof Theorem 2.3. With no loss of generality we can take 0 as initial data. For a fixed t ∈ R+,
following the Lemma 2.8 and the Lemma 2.10, there exists K0 ≥ 1 and α0 > 0 such that :

||U(t, s)|| ≤ K0e
−α0(t−s),

|X(t, s)| ≤ K0e
−α0(t−s),

for 0 ≤ s ≤ t. Let ε > 0 and 0 < α < α0. We define :

η = ε(α0 − α)
2(1 + ε)K0

e−αr and K1 = (1 + ε)K0.

Let δ1 > 0 the δ1 from the Lemma 2.9. We define δ = δ1
K1

. Let φ(θ) := x(θ) where x is the
periodic solution of (2.16). Let φ ∈ C and ||φ − φ|| < δ and x the solution of (2.16) with initial
data φ. We assume that there exists a S > r such that for t ∈ [0, S[ on ait |x(t)− x(t)| < δ1 and
|x(S)− x(S)| = δ1. By the variation constant formula (Theorem 2.7), we have :

|x(t)− x(t)| ≤ |U(t, 0)||φ(0)− φ(0)|+
∫ t

0
|X(t, s)||h(s, xs)− h(s, xs)|ds.

And for all t ≤ S, we have :

|x(t)− x(t)| ≤ K0e
−α0t||φ− φ||+ 2ηK0

∫ t

0
e−α0(t−s)||xs − xs||ds.

Multiplying the last equation by eαt, we obtain :

eαt|x(t)− x(t)| ≤ K0||φ− φ||+ 2ηK0e
(α−α0)t

∫ t

0
eα0s||xs − xs||ds.

We let v(t) = max{eαt|x(s)− x(s)| : −r ≤ s ≤ t} and we have :

eαt|x(t)− x(t)| ≤ K0||φ− φ||+ 2ηK0v(t)e(α−α0)t+αr
∫ t

0
e(α0−α)sds.

Then :

eαt|x(t)− x(t)| ≤ K0||φ− φ||+
2ηK0v(t)eαr
α0 − α

.

Since the right-hand member of the equation is increasing in t, we have :

v(t) ≤ K0||φ− φ||+
2ηK0v(t)eαr
α0 − α

.

And thus :

v(t) ≤ K0||φ− φ||+
εv(t)
1 + ε

.

We deduce :

|x(t)− x(t)| ≤ K1e
−αt||φ− φ||.

Then δ1 = |x(S)− x(S)| < K1δ = δ1 which is impossible. We have S = +∞.
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2.5.2 Instability

The instability theorem 2.4 says that even if we can approach infinitely close the periodic solution
v1 we always end up by deviating from a fixed constant ε > 0. The instability theorem 2.4 is mainly
due to the ideas of [SS00] and [Str12] where they give a proof in the case of autonomous differential
equation on Banach spaces. The proof that we give here is exactly the same except that it is perform
in the case of scalar periodic neutral differential equation which generates very slight changes.

Lemma 2.11. Let µ = eλ in the spectrum of U(T, 0) and such that |µ| is equal to the spectral
radius of U(T, 0). Then for each γ > 0 and each integer m, there exists v ∈ C such that :

||(U(mT, 0)− eλm)v|| < γ||v|| (2.29)

and

||(U(t, 0))v|| ≤ 2Ket<(λ)/T ||v|| for all 0 ≤ t ≤ mT , (2.30)

where K = sup
r∈[0,T ]

||U(r, 0)||.

Proof. Since the boundary of the spectrum of U(T, 0) is included in the approximate spectrum,
there exists vn ∈ C such that (U(T, 0)− eλ)vn → 0 when n→ +∞. Let γ > 0 and m integer, we
have :

(U(mT, 0)− eλm)vn = (Um(T, 0)− eλm)vn

=
m−1∑
j=0

U j(T, 0)eλ(m−1−j)[U(T, 0)− eλ]vn

If we take n enough large, we obtain the equation (2.29). For γ > 0, we take n enough large to have
moreover :

||(U(jT, 0)− eλj)vn|| < 1 for j = 1, ...,m

We have for 0 ≤ t ≤ mT , t = jT + r, 0 ≤ r < T and j ∈ [0, 1, ..., n].

||U(t, 0)vn|| ≤ ||U(r, 0)||||U j(T, 0)||||vn||
≤ K(1 + ej<(λ))||vn||
≤ 2Ke

t
T
<(λ)||vn||,

for 0 ≤ t ≤ mT and where K ≥ 1 is a bound of ||U(r, 0)|| for r ∈ [0, T ].

Lemma 2.12. There exists a ρ0 > 0 and c > 0 such that if S > 0 with ||xt − xt|| < ρ0 then for all
t ∈ [0, S] we have:

|h(t, xt)− h(t, xt)| ≤ c||xt − xt||2.

Proof. The proof is similar to the proof of Lemma 2.9.
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Proof Theorem 2.4. Let µ = eλ an element of the spectrum U(T, 0) such that |µ| equal to the
spectral of this operator. For k integer and ρ0 to be defined later, that is 0 < δ < min{1/k, ρ0/2, 1}.
The δ is free for power parameter is arbitrarily small. Let us choose t1 positive integer from δ
defined by:

1
k
< δet1<(λ) ≤ |µ|

k
.

We can choose t1 in the interval ]b, b+ 1] where b = ln( 1
δk

)
ln|µ| > 0.

Moreover, let v given by the lemma 2.11 with m = t1 and γ = (4k)−1. We normalize ||v|| = δ.
We have :

||(U(t1T, 0)− eλt1)v|| < δ

4k .

Then by the lemma 2.11, we have :

||U(t1T, 0)v|| > ||eλt1v|| − δ

4k >
1
k
− δ

4k

and

||U(t, 0)v|| ≤ 2Kδe
t
T
<(λ)for all 0 ≤ t ≤ t1T .

Fix δ0 > δ and let φ ∈ C such that φ = φ+ v. We note x(t) the solution to the system (2.16)
associated to φ. We have ||v|| = δ < δ0. By the variation of constant formula (Theorem 2.7) :

|x(t)− x(t)− U(t, 0)v(0)| ≤
∫ t

0
|X(t, s)||h(s, xs)− h(s, xs)|ds

≤ c

∫ t

0
|X(t, s)||xs − xs||2ds.

for ||xs − xs|| < ρ0 on the interval [0, S] where S > 0 is a real in the lemma 2.12. We have two
possibilities : there exists a S > 0 such that ||xS − xS || = ρ0 or S = +∞. We assume that S = +∞.
Thanks to the lemma 2.8 and 2.10, we have :

|x(t)− x(t)− U(t, 0)v(0)| ≤ K0c

∫ t

0
e

3
2<(λ) t−s

T ||xs − xs||2ds.

We define:

t2 = sup{t : ||xs − xs − U(s, 0)v|| < 1
2|µ|δe

<(λ) s
T and ||U(s, 0)v|| < ρ0

2 pour 0 ≤ s ≤ Tt}.

We have t2 > 0. For t ≤ min{Tt2, T t1}, we have :



54 Chapter 2. A simple circuit containing one lossless transmission line

|x(t)− x(t)− U(t, 0)v(0)| ≤ K0c

∫ t

0
e

3
2<(λ) t−s

T (||U(s, 0)v||+ ||xs − xs − U(s, 0)v||)2ds

≤ K0c

∫ t

0
e

3
2<(λ) t−s

T (2δKe
s
T
<(λ) + 1

2|µ|δe
<(λ) s

T )2ds

< K0c(2K + 1
2|µ|)

2δ2e
3
2<(λ) t

T
2T
<(λ)e

<(λ) t
2T

= k

2|µ|2 (δe<(λ) t
T )2,

where k = 4|µ|2K0c(2K + 1
2|µ|)

2 T
Re(λ) . we deduce :

||xt − xt − U(t, 0)v|| < k

2|µ|2 (δeRe(λ) t
T )2.

We have Tt1 < Tt2 or ||xTt2 − xTt2 || = ρ0
2 . If we assume the contrary : Tt1 ≥ Tt2 and

||xTt2 − xTt2 || <
ρ0
2 . By definition of t2, we have that :

1
2|µ|δe

Re(λ)t2 = ||xTt2 − xTt2 − U(Tt2, 0)v|| < k

2|µ|2 (δeRe(λ)t2)2.

Then (δeRe(λ)t2) > |µ|
k ≥ (δeRe(λ)t1).We deduce t2 > t1, which is a contradiction. We assume

that||xTt2 − xTt2 || 6= ρ0
2 , then Tt1 < Tt2. Then :

||xt1T − xt1T − U(t1T, 0)v|| <
k

2|µ|2 (δeRe(λ)t1)2

<
k

2|µ|2
|µ|2

k2

= 1
2k

Then :

||xTt1 − xTt1 || > ||U(Tt1, 0)v|| − 1
2k

>
1
k
− δ

4k −
1
2k

= 1
2k −

δ

4k
>

1
4k car δ < 1.

We deduce that there exists a time t > 0( Tt2 or Tt1 or S) such that ||xt − xt|| ≥ min{ 1
4k ,

ρ0
2 },

which is the result.

If one access to the spectral radius of U(T, 0), Theorem 2.3 and Theorem 2.4 would determine
the local stability of the periodic solution x(·) and this was our goal. To estimate the spectral radius
it can be useful to know the nature of the spectrum. In fact, it is easier to approximate eigenvalue
than the other type of the element of the spectrum. These considerations lead to know more about
the spectrum of U(T, 0).
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2.5.3 Spectrum of monodromy operator

We are interested in knowing more precisely how is the spectrum of the monodromy operator
U(T, 0).

In finite dimension, the rank theorem says that it is equivalent to be injective, surjective and
bijective. Moreover the spectrum is composed of eigenvalues where the dimension of the kernel and
the codimension are equal. In infinite dimension, this result does not hold and there is three way to
fail to be bijective. Let A : E → E a continuous linear operator acting on E a Banach space and Id
the identity operator on E, we have the following decomposition of the spectrum :

i. if, for λ ∈ C, A−λId is not injective, then λ is an eigenvalue ofA and the kernel, ker(A−λId) :=
{φ ∈ E|Aφ− λφ = 0}, is not empty. The dimension of the kernel is called the multiplicity of
the eigenvalue and the set Pσ(A) := {λ ∈ C|ker(A− λ) 6= ∅} is called the point spectrum of
A.

ii. if, for λ ∈ C, A− λId is injective and its range is a dense subset different of E then λ is an
approximate eigenvalue. We note the set of all the approximate eigenvalues Appσ(A).

iii. if, for λ ∈ C, A−λId is injective and its range is not a dense subset of E, then λ is an element
of the residual spectrum A that we call Rσ(A).

We note σ(A) the spectrum of A, i.e. the union of the sets Pσ(A), Appσ(A) and Rσ(A). We call
the nullity of A, nul(A), the dimension of the kernel of A and the deficiency of A, def(A), the
dimension of the codimension of A, i.e. the dimension of E/R(A) where R(A) denotes the range of
A. We define the index of A, noted Ind(A), as the difference between nul(A) and def(A). A is
said to be semi-Fredholm if R(A) is closed and at least one of the quantity nul(A) or def(A) is
finite. The semi-Fredholmness property and the index are preserved under compact perturbation,
more precisely:

Theorem 2.13. [Kat95, ch. 4, thm 5.26] Let K a compact operator from E into E. If A is
semi-Fredholm then A+K is semi-Fredholm and Ind(A) = Ind(A+K).

Nullity and deficiency of a semi-Fredholm operator are constant in a neighborhood of this
operator, more precisely :

Theorem 2.14. [Kat95, ch. 4, thm 5.31] If A is semi-Fredholm and B is a bounded operator from
E into E then A+xB is semi-Fredholm and nul(A+xB), def(A+xB) are constant for sufficiently
small |x| > 0 real.

After these rapid recalls of spectral theory, we are able to characterize the spectrum of U(T, 0).
In a first time, we introduce the operator solution Ta associated to the solution of the system :

z(t) = az(t− r). (2.31)

We can see that for φ ∈ Ca := {φ ∈ C|φ(0) = aφ(−r)} this problem has a unique solution z,
defined on ]−∞,+∞[, with z(θ) = φ(θ) for θ ∈ [−r, 0]. We have the following result which says
the operator U(T, 0) is a compact perturbation of the operator Ta.

Lemma 2.15. Let ϕ ∈ C1 such that ϕ(0) = aϕ(−r) + 1 and we define the operator Ψ : C → Ca
with Ψ(f) = f − ϕ[f(0)− af(−r)] for f ∈ C. Thus we have :

U(T, 0) = Ta(T )Ψ +K(T, 0)
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with K(T, 0) compact operator. Moreover, the restriction of the operator K(T, 0) to CABS or W 1
2 is

also compact. We also have :

U(T, 0)|L2 = Ta(T )|L2 +K(T, 0)|L2 ,

where K(T, 0)|L2 is a compact operator.

Proof. When the space is C the proof is in [HVL93, ch. 3, thm 7.3]. The proof for the spaces L2,
CABS and W 1

2 are not really different. Since the lemma [HVL93, ch. 3, lem 7.2] can be generalized
for the L2 functions, we have the existence of a b, γ > 0 such that for t, τ real and φ ∈ L2 :

‖K(T + τ, 0)φ−K(T, 0)φ‖2 ≤ be
γT

(
‖K(τ, 0)φ‖2

+ sup
0≤u≤T

∫ u+τ

u
|f(s, U(s, 0)φ(0), U(s, 0)φ(−r))|ds

)
.

(2.32)

Taking φ in a bounded set B of L2, we can have the right hand side as small as we want by
taking τ enough small. Thus, we have that K(T, 0)|L2B is an equicontinuous family and uniformly
bounded family, and so relatively compact by the Kolmogorov-Riesz-Fréchet theorem ([Bre10, ch. 4,
thm 4.26]).

Taking φ in a bounded set B of CABS . By definition, we have that the operator d
dθK(t, s)φ(θ)

exists almost everywhere and d
dθK(t, s)φ(·) is integrable. Then the generalization of the lemma

[HVL93, ch. 3, lem 7.2] leads to :

∥∥∥∥ ddθK(T + τ, 0)φ− d

dθ
K(T, 0)φ

∥∥∥∥
1
≤beγT

(∥∥∥∥ ddθK(τ, 0)φ− d

dθ
K(0, 0)φ

∥∥∥∥
1

+ h1(T, τ)
)
, (2.33)

where :

h1(T, τ) := sup
0≤u≤T

|f(u, U(u+ τ, 0)φ(0), U(u+ τ, 0)φ(−r))− f(u, U(u, 0)φ(0), U(u, 0)φ(−r))| ,

for some γ and b positive real. We can have the right hand side of (2.33) as small as we want by
taking τ enough small. Thus, we have that d

dθK(T, 0)|CABSB is an equicontinuous and uniformly
bounded family on L1 and so relatively compact by the Kolmogorov-Riesz-Fréchet theorem ([Bre10,
ch. 4, thm 4.26]). We deduce that K(T, 0)|CABSB is also relatively compact for the norm ‖·‖ABS .

The proof of the compacity of K(T, 0)|W 1
2
is similar and is left to the reader.

Remark 2.16. We can see that the spectrum of Ta(T )Ψ is composed of the spectrum of Ta(T ) plus 0
where dim(ker(Ta(T )Ψ)) = 1 and codim(Im(Ta(T )Ψ)) = 1. Thus, with the nature of the spectrum
of Ta(T ) we will have the nature of the spectrum of U(T, 0) by theory of compact perturbation (see
[Kat95]). As |a| < 1, we have that the spectral radius of Ta(T ) is bounded by a. And we can conclude
immediately that U(T, 0) has a most a finite number of eigenvalue outside the disk of the radius a.
But we can be more precise to determine entirely the spectrum of U(T, 0) by studying more precisely
the spectrum of Ta(T ).

In the view to compute the spectrum Ta(T ) we use the classic theory of the semigroups where
all the useful properties can be found in the book [EN00]. In fact the system (2.31) is time-invariant
and then the family {Ta(t)}t∈R defines a semigroup. The interest of the semigroup is to transform
the system (2.31) in an abstract differential equation on a dense subset of the continuous functions
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where the spectrum can be computed. In particular, the link between the spectrum of the generator
of the semigroup and the semigroup is stated in [EN00, ch. 4, thm 3.6 and 3.7].

The reasoning that we can find in [HVL93] leads to the following proposition :

Proposition 2.17. The family {Ta(t)}t∈R is a strongly continuous group. Its generator A verifies :

Aφ = φ̇

and

D(A) = {φ ∈ C1|φ̇(0) = aφ̇(−r) and φ(0) = aφ(−r)}.

Moreover the spectrum of A is composed of point of spectrum with finite multiplicity :

σ(A) = {λ ∈ C|a = eλr}.

Theorem 2.18. We have two cases :

i. If T
r := p

q is rational, then σ(Ta(T )) = {ap/qei2kπ/q|k ∈ [0, ..., q − 1]} and furthermore all the
elements of the spectrum have infinite multiplicity.

ii. If T
r is irrational, then we have σ(Ta(T )) = {λ ∈ C, |λ| = |a|T/r} . Furthermore, all the

elements of the spectrum are not semi-Fredholm.

Proof. i. We can remark that σ(Ta(r)) = {a}, thus by semigroup property and spectral mapping
theorem, we have :

σ(Ta(T ))q = ap,

and thus :

σ(Ta(T )) ⊆ {ap/qei2kπ/q|k ∈ [0, ..., q − 1]}.

Moreover as Pσ(Ta(T ))\{0} = eTPσ(A), where Pσ is the point spectrum, and that 0 is not in
the spectrum of Ta(t), we have by the spectrum of A in Proposition 2.17 :

σ(Ta(T )) ⊇ {ap/qei2kπ/q|k ∈ [0, ..., q − 1]}.

By corollary 3.8 p278 of [EN00], we have for all λ complex :

ker(eλT − Ta(T )) = lin
n∈Z

ker(λ+ i
2πn
T
−A),

where lin is the closure of the subspace generated by the kernels. As T
r is rational, for

µ ∈ σ(Ta(T )) there exists a subset countable (infinite) J such that :

ker(µ− Ta(T )) = lin
j∈J

ker(µj −A),

with µj distinct eigenvalue of A. Thus we have that all the elements of σ(Ta(T )) have infinite
multiplicity.
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ii. By [Hen74], we have :

eTσ(A) ⊆ σ(Ta(T )) ⊆ |a|
T
r eiR ∪ {0}, (2.34)

and by the Proposition 2.17, the density of irrational rotation and the fact that Ta(T ) is
invertible, we have :

σ(Ta(T )) = {λ ∈ C, |λ| = |a|T/r}. (2.35)

Moreover we have by the spectral mapping theorem for residual and point spectrum, and
Proposition 2.17, that Rσ(Ta(T )) = {∅} and Pσ(Ta(T )) = {aT/re2iπkT/r|k ∈ Z}. As the
complementary of {aT/re2iπkT/r|k ∈ Z} is dense in the circle of radius |a|T/r, we have that all
element of this circle must not be semi-fredholm because Ta(T ) is bounded, and the nullity and
the defficiency of a semi-Fredholm operator are constant in a neighborhood (theorem 2.14).

Corollary 2.19. The spectrums of U(T, 0), U(T, 0)|L2, U(T, 0)|CABS and U(T, 0)|W 1
2
are equal to

the spectrum of Ta(T ) plus possibly the same finite number of eigenvalue. We note ζ1, · · · , ζN the
eigenvalues which are outside the disk with the spectral radius of Ta(T ).

Proof. We can remark that the family {Ta(t)}t∈R acting on L2, or {φ ∈ CABS |φ(0) = aφ(−r)} or
{φ ∈W 1

2 |φ(0) = aφ(−r)} defines also a strongly continuous group with the same domain than in
Proposition 2.17. Then Proposition 2.17 and Theorem 2.18 are also true for the family {Ta(t)}t∈R
acting on L2 , {φ ∈ CABS |φ(0) = aφ(−r)} and {φ ∈W 1

2 |φ(0) = aφ(−r)}.
The theorem 2.13, the lemma 2.15 and the theorem 2.18 imply that the spectrums of U(T, 0),

U(T, 0)|L2 , U(T, 0)|CABS and U(T, 0)|W 1
2
are equal to the spectrum of Ta(T ) plus possibly a finite

number of eigenvalues. Moreover we have W 1
2 ⊆ CABS ⊆ C ⊆ L2, with W 1

2 , CABS and C dense
in L2 and stable through the operator U(T, 0). We can deduce that the spectrum of U(T, 0)|L2

is included in the spectrum of U(T, 0) which is included in the spectrum of U(T, 0)|CABS which is
included in the spectrum of U(T, 0)|W 1

2
, and thus the operators U(T, 0), U(T, 0)|L2 , U(T, 0)|CABS

and U(T, 0)|W 1
2
have the same eigenvalues.

The corollary 2.19 is important because, through the theorem 2.3, it says that the stability of
the zero solution for the linear system (2.19) is equivalent for the spaces L2, CABS , W 1

2 and C.

2.5.4 HTF and link with the monodromy operator

We introduce the following (fictitious) input-output system. Linearising this system (2.15) around
the periodic solution calculated by harmonic balance and disturbing the zero signal at time zero of
the linearised circuit by small periodic current entries u ∈ L2

loc([0,+∞[,R), L2
loc([0,+∞[,R) denotes

the space of the square integrable function on each compact of [0,∞[ with values in R, like what we
did for the frequential case on the right of the line. The input-output system that harmonic balance
compute have the equations for t ≥ 0 :


d
dt(x1(t)− ax1(t− r)) = −1

C1
[K + g′

(
−ax(t− r) + Z0p(t− r/2) + x(t)

)
]x1(t)

+ a
C1

[−K + g′
(
−Zx(t− r) + Z0p(t− r/2) + x(t)

)
]x1(t− r)− u(t)

C1
,

v1(t) = x1 − Zx1(t− r).
(2.36)

We can rewrite the input-output system (2.36) as :{
d
dt(x(t)− ax(t− r)) = B(t)x(t) + C(t)x(t− r) + u(t),
y(t) = x(t)− ax(t− r), t ≥ 0,

(2.37)
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where y(t) and x(t) are equal to zero for t ≥ 0 and are two continuous function on R, and for t ≥ 0 u
is a square integrable on each compact function on [0,+∞[ and with values in R. Since f is at least
C3 then B,C are at least C2. We note ω0 := 2π

T . In the context of finite dimensional systems, the
definition of the transfer function and its relation to the monodromy operator is well known thanks
to Floquet’s theory (cf. [Möl00]). One can also connect the monodromy operator and the transfer
function without going through the theory of Floquet but considering a lifting of the system. The
following results generalize the results of [Möl00] in our framework of neutral equations, and give
moreover a mathematical justification of the computation that we can find in [Möl00]. Firstly we
give expression of the impulse response of the system :
Lemma 2.20. We have :

y(t) =
∫ t

0
[X(t, τ)− aX(t− r, τ)]u(τ)dτ (2.38)

:=
∫ t

0
X̃(t, τ)u(τ)dτ (2.39)

where X is the fundamental solution of system (2.19), ie the solution satisfying the initial condition
X(t, s) = 0 for t < s and X(s, s) = Id. Moreover there exists K, γ > 0 such that for all s ∈ R and
t ≥ s, we have :

|X(t, s)| ≤ Keγ(t−s). (2.40)

Proof. See Lemma 2.6 and Theorem 2.7.

To justify all the computations, we need estimation for the impulse response like for the ODE
system. More precisely, we have :
Theorem 2.21 (Regularity impulse response). Let X (τ, s) := X(s+ τ, s), we have :

i. The function X is continuous outside {(τ, s) ∈ IR2, τ/r ∈ IN}, everywhere continuous
compared to his second argument (s) and admits everywhere a limit to the left and right
compared to his first argument(τ).

ii. If B and C are Ck then X is k continuously differentiable from its second argument s (for τ
fixed) and for all j, 1 ≤ j ≤ k,

(τ, s) 7→ ∂jX
∂sj

(τ, s)

is continuous.

iii. There exists γ > 0 and K > 0 such that :∣∣∣∣∣∂X k∂ks
(τ, s)

∣∣∣∣∣ ≤ Keγτ .

Proof. i. The first item is a classical property of the fundamental solution (see proposition 2.5).

ii. Assume B and C are Ck. We put :

Y(τ, s) := X (τ, s)− aX (τ − r, s), (2.41)
Ĉ(t) := C(t) + aB(t). (2.42)

By definition of fundamental solution, we have :
d
dτ Y(τ, s) = B(s+ τ)Y(τ, s) + a Ĉ(s+ τ)X (τ − r, s)
Y(0, s) = 1, Y(τ, s) = 0 for τ < 0
X (τ, s) = Y(τ, s) + aX (τ − r, s)
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• We prove that if B and C are Ck then Y is k continuously differentiable from its second
argument s (for τ fixed) and for all j, 1 ≤ j ≤ k,

(τ, s) 7→ ∂jY
∂sj

(τ, s)

is continuous. For simplicity let us show the result for k = 1. By variation constant
formula, we have :

Y(t, s) = e
∫ t

0 B(s+u)du +
∫ t

0
e
∫ t
u
B(s+v)dvaĈ(s+ u)X (u− r, s)du for t ≥ 0,

Y(0, s) = 1
X (τ, s) = Y(τ, s) + aX (τ − r, s)

Thus we have for t ≥ 0 :

Y(t, s) = e
∫ t

0 B(s+u)du +
∫ t

0
e
∫ t
u
B(s+v)dvĈ(s+ u)

+∞∑
k=1

akY(u− (k + 1)r, s)du.

Let’s show by recurrence on n where t ∈ [nr, (n+ 1)r[ that Y(t, s) is differentiable in s and
that the differential is continuous. For n negative integer, it is true because Y(t, s) is equal to
zero eveyrwhere. If, that’s true for n, so that’s true for n+ 1 by hypothesis of recurrence and
the previous equation.

• We have :

X (t, s) =
+∞∑
k=1

akY(t− kr, s) for all t and s. (2.43)

According to the preceding point, we deduces the result of differentiation and continuity of X .

iii. Put Z(τ, s) := ∂X
∂s (τ, s). We have :

d

dt
(X (τ, s)− aX (τ − r, s)) = B(τ + s)X (τ, s) + C(τ + s)X (τ − r, s). (2.44)

Integrating this equality and differentiating with respect to s (which is legal by the point ii)
we have :

Z(τ, s) = aZ(τ − r, s)) +
∫ τ

s
[Ḃ(u+ s)X (u, s) + Ċ(u+ s)X (u− r, s)

+B(u+ s)Z(u, s) + C(u+ s)Z(u− r, s)]du. (2.45)

Thus, by differentiating with respect to τ , we have :

d

dt
(Z(τ, s)− aZ(τ − r, s)) = B(τ + s)Z(τ, s) + C(τ + s)Z(u− r, s) + Ḃ(τ + s)X (τ, s)

+Ċ(τ + s)X (τ − r, s).(2.46)

Remarking that Z(t, s) = 0 for t ≤ 0, by Corollary 1.1 p259 of Hale [HVL93] there exists K ′
and γ′ positive integer such that :

|Z(τ, s)| ≤ K ′eγ′τ
∫ τ

0
[Ḃ(u+ s)X (u, s) + Ċ(u+ s)X (u− r, s)]du. (2.47)
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As B and C are periodic regular and the fact that the fundamental solution is exponentially
bounded (see Corollary 1.1 p259 of Hale [HVL93]), thus there exists K, γ positive such that :∣∣∣∣∂X∂s (τ, s)

∣∣∣∣ ≤ Keγτ .

We can prove in a similar way by a recursive argument :∣∣∣∣∣∂X k∂ks
(τ, s)

∣∣∣∣∣ ≤ Keγτ .

In the view to bring out the monodromy operator, we discretize the continuous dynamical system
in a discrete dynamical one. For that we consider the input and the output on interval of length T .
Put :

ũk := u(kT + t) for t ∈ [0, T ] and k ∈ Z,
ỹk := y(kT + t) for t ∈ [0, T ] and k ∈ Z.

Thus we have the following discrete system :

Theorem 2.22. We have for all integer positive k :

{
x(k+1)T = ÃxkT + B̃ũk,

ỹk = C̃xkT + D̃ũk,
(2.48)

where :

• Ã : C([−r, 0],R) −→ C([−r, 0],R)
v 7−→ U(T, 0)v,

• B̃ : L2([0, T ],R) −→ C([−r, 0],R)
v 7−→

∫ T+·
0 d[K(T, α)]v(α),

with K(t, α)(θ) =
∫ α

0 X(t + θ, v)dv for θ ∈

[−r, 0],

• C̃ : C([−r, 0],R) −→ C([0, T ],R)
v 7−→ U(·, 0)v(0)− aU(·, 0)v(−r),

• D̃ : L2([0, T ],R) −→ C([0, T ],R)
v 7−→

∫ ·
0 X(·, τ)v(τ)dτ − a

∫ ·
0 X(· − r, τ)v(τ)dτ,

• x0 = 0,

• For all k ∈ N, x(k+1)T is a function of [−r, 0] in R continuous.

Proof. Recall the system (2.37) :
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{
d
dt(x(t)− ax(t− r)) = B(t)x(t) + C(t)x(t− r) + u(t),
y(t) = x(t)− ax(t− r).

(2.49)

Let k ∈ N. Recall the notation : x(k+1)T (θ) = x((k + 1)T + θ), with θ ∈ [−r, 0], and where x is the
only solution of the system with the initial data x0 = 0. Applying the variation of constant formula
(Theorem 2.7), we integrate during a period T for each k the system (2.49) with initial time kT .
We obtain for t ∈ [0, T ] :


x(k+1)T (θ) = U((k + 1)T, kT )xkT (θ) +

∫ (k+1)T+θ
kT d[K((k + 1)T, α)]u(α),

y(t+ kT ) = U(t+ kT, kT )xkT (0)− aU(t+ kT, kT )xkT (−r)
+
∫ t+kT
kT X(t+ kT, τ)u(τ)dτ − a

∫ t+kT−r
kT X(t+ kT − r, τ)u(τ)dτ,

where K(t, α)(θ) =
∫ α

0 X(t+ θ, α)dα for θ ∈ [−r, 0]. By periodicity we have the result.

For a sequence of operator a := (an)n∈N we define the z − transform as:

â :=
∑
n∈N

anz
−n, (2.50)

when for z ∈ C this series exists. Taking the z − transform in the equation (2.48) :

Ŷ = [C̃(zId− Ã)−1B̃ + D̃]Û , (2.51)

where Y := (yn)n∈N and U := (un)n∈N. On in the other side, we can compute the impulse response
of the discrete system and we have for n integer :

ỹn(t) =
n∑
k=0

H[k]ũn−k(t), (2.52)

where :

H[k]v(t) =
∫ T

0
X̃(kT + t, τ)v(τ)dτ (2.53)

is the discrete impulse response of the discretized dynamical system. Taking the z − transform in
the equation (2.52), we have for z ∈ C with real part enough large that :

Ŷ (z) = Ĥ(z)Û(z), (2.54)

where Ĥ(z) is the z − transform of
(
H[n]

)
n∈N

. We deduce from the equation (2.51) and the
equation (2.54) :

Ĥ(z) = C̃(zId− Ã)−1B̃ + D̃. (2.55)

Even so far the singularities of the discrete transfer function (2.55) would give the exponential
stability of the origin of the neutral differential system (2.19) if there is not an eigenvalue cancelled by
the input-output system (2.48). We saw in Chapter 1, i.e for the ordinary differential equations, that
it is not the case when the system is controllable and observable. In the case of neutral differential
equations, even when the system is time-invariant, it is not an easy task to give a necessary and
sufficient condition to ensure the controllability. We can cite the two following references which give
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such conditions [OT83] and [Yam89]. When the system is a linear scalar periodic neutral differential
equation, we did not find a literature available for the contrallability of such system that is why
we give the following proof of the controllability of the system (2.37). We prove, with the use of
the resolution of a Volterra first kind equation, that the discrete system (2.48), and so the neutral
system (2.37), is controllable in the sense that all the functions absolutely continuous wwith square
integrable derivative are reachable from a locally square integrable input.

Theorem 2.23. The discrete system (2.48) is :

• detectable in the sense that if there exists a K integer such that for all k ≥ K we have yk = 0
and uk = 0, then xkT tends to zero when k tends to the infinity.

• controllable for the absolutely continuous function with square integrable derivative, i.e. for
all xf ∈W 1

2 , there exists φ ∈ L2([0, T ],R) such that xf = B̃φ.

Proof. • Let K integer such that for all k ≥ K we have yk = 0 and uk = 0. We have by the
system (2.37) that xkT tends to zero when k tends to the infinity because |a| < 1.

• The controllability for the discrete system is equivalent to a Volterra first kind equation. The
general theory of these kind of equations can be found in the textbooks [Bru17, GLS90]. We
have that t 7−→ dtX(t, s) = h(t, s) +

+∞∑
k=1

akδ0(t− α − kr) where h is a continuous piecewise

function on R2. Let :

κ(t, α) = −
∫ α

0
h(t, u)du−

+∞∑
k=1

akh(t− α+ kr), (2.56)

where h(τ) is the Heaviside function which is zero for τ < 0 and 1 for τ ≥ 0 (so that
its derivative is a Dirac delta at 0), we have that dακ(t, α) is equal to −dtX(t, α). Let
x ∈W 1

2 ([0, T ],R), we search φ ∈ L2([0, T ],R) such that for all t ∈ [0, T ] :

x(t) =
∫ t+

0
X(t, s)φ(s)ds. (2.57)

The equation (2.57) is a first kind Volterra equation which can be transformed into a second
kind Volterra equation using the derivative in the equation (2.57). We obtain for almost all
t ∈ [0, T ] :

d

dt
x(t) = φ(t) +

∫ t−

0
dtX(t, s)φ(s)ds, (2.58)

and with the equation (2.56)

φ(t) =
∫ t−

0
dsκ(t, s)φ(s) + d

dt
x(t). (2.59)

The Appendix, and more precisely Lemma A.2 and Lemma A.1 (see also [GLS90, ch. 10,
thm 2.5]), says that the kernel κ is a Stieltjes-Volterra kernel on [0, T ]× [0, T ] and admits a
resolvent ρ, which is a Stieltjes-Volterra kernel on [0, T ]× [0, T ]. Let n an integer, a solution
of the equation

φn(t) =
∫ t−

0
dsκ(t, s)φn(s) + fn(t), (2.60)
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where fn is a function of bounded variation, is given by :

φn(t) = fn(t)−
∫ t−

0
dρ(t, α)fn(α), (2.61)

for t ∈ [0, T ] and φn is a bounded function. By density we can find a sequence (fn)n∈N of
function of bounded variation which converges in L2([0, T ],R) toward d

dtx(·) and we define
the sequence of (φn)n∈N which verifies the equations (2.61) for all integer n. Since dρ has
just a finite number of Dirac, we have that (φn)n∈N is a Cauchy sequence in L2([0, T ],R) and
then is convergent toward a φ in L2([0, T ],R). There exists a subsequence of (φn)n∈N which
converge almost everywhere toward φ. Then we have for almost all t ∈ [0, T ] that φ satisfies
the equation (2.59) and

φ(t) = d

dt
x(t)−

∫ t−

0
dρ(t, α) d

dt
x(α). (2.62)

Moreover, if we assume that d
dtx(0) = 0, then the solution φ in the equation (2.62) is a solution

of the Volterra equation of first kind (2.57).
Let xf ∈W 1

2 and we search φ ∈ L2([0, T ],R) such that :

xf = B̃φ, (2.63)

and equivalently :

xf (θ) =
∫ T+

0
X(T + θ, α)φ(α)dα. (2.64)

We define x ∈ W 2
1 ([0, T ],R) such that x(t) = 0 for t ∈ [0, T − r] and x(t) = xf (t − T )

for t ∈ [T − r, T ] and then the equation (2.64) become the equation (2.57) which admits a
solution in L2([0, T ],R) by the previous reasonning. It has to be noted that this solution is
not necessarily unique.

Remark 2.24. We proved that the system (2.48) is detectable. The delay can induce a lack of
observability, however we can see that if aB(t) + C(t) is not equal to zero for all t real then the
system (2.37) is observable and so the system (2.48) is observable too.

Corollary 2.25. For all z complex with modulus greater than the spectral radius of Ta, we have
that Ĥ(z) is an analytic Banach valued function except in the ζj for j = 1, · · · , N where it has poles.

Proof. The two equations (2.51) and (2.54) leads to the equation (2.55) for z with a modulus enough
large. We have that Ã and the restriction of Ã to W 1

2 has exactly the same spectrum composed
of the eigenvalues ζ1, · · · , ζN (see Corollary 2.19). Then, the structure of the spectrum of Ã, the
controllability and detectability of the discrete system (Theorem 2.23) and the analytic continuation
principle permit to extend the equation (2.55) for z with modulus greater that the spectral radius
of Ta except when z is an eigenvalue of Ã in this domain where it is a pole.

We recall from the Definition 1.19 that the Instantaneous Transfer function (ITF) is defined by :

G(t, s) =
∫ +∞

0
X̃(t, t− τ)e−sτdτ. (2.65)

Let us now give the link between the monodromy operator and the ITF.
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Lemma 2.26. We have :

G(s, t) = e−st[Ĥ(esT )es·](t). (2.66)

Proof. We have by the definition of the z − transform:

Ĥ(z)v(t) =
+∞∑
k=0

H[k]v(t)z−k

=
+∞∑
k=0

z−k
∫ T

0
X̃(kT + t, τ)v(τ)dτ. (2.67)

We have by the equation (2.65) and integration by substitution :

G(s, t) =
∫ t

−∞
X̃(t, τ)es(τ−t)dτ

=
∫ +∞

−∞
X̃(t, τ)es(τ−t)dτ

=
+∞∑

k=−∞

∫ T

0
X̃(t, τ − kT )es(τ−t−kT )dτ

=
+∞∑
k=0

e−s(t+kT )
∫ T

0
X̃(t+ kT, τ)esτdτ. (2.68)

Since the equation (2.67) is equal to the equation (2.68) with z = esT , we have the result.

The link between the ITF and the monodromy operator permits to reach the link between the
monodromy operator and the Harmonic Transfer Function HTF. In fact, we recall from Chapter 1
that the HTF H is the infinite matrix with coefficient Hm,n(s) := Gm−n(s − 2iπn

T ) where the
(Gn(s))n∈Z are the Fourier coefficients of the ITF G(·, s)). Let us prove our two major theorems :

Proof of Theorem 2.1 and Theorem 2.2. Fix s ∈ C with real part enough large. Let

Λ(s) : L2([0, T ],R)→ L2([0, T ],R), (2.69)

where [Λ(s)φ](t) = e−st[Ĥ(esT )es·φ(·)](t) for all φ ∈ L2([0, T ],R). Theorem 2.21 gives the existence
of K(<(s)) real positive which depend only of the real part enough large of s complex :

|Gn(s)| ≤ K(<(s))
1 + n2 , (2.70)

where Gn is the n-th Fourrier coefficient of G(·, s). We have that the Fourier development of Λ(s)φ(t)
is :

Λ(s)φ(t) =
∑
n∈Z

∑
k∈Z

akGn−k(s+ 2iπk/T )

 e2iπn/T , (2.71)

with (ak)k∈Z the Fourier coefficients of φ. In fact, when φ ∈ C2, we deduce from Lemma 2.26, the
equation (2.70), the regularity of the Fourier coefficient of φ that the equation (6.68) holds. By a
density argument, the equation (6.68) holds as well for a function φ ∈ L2([0, T ],R).

By Parseval’s identity :

The HTF H(s) is a bounded operator on l2(Z) ⇔ Λ(s)
is a bounded operator on L2([0, T ],R) .
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Corollary 2.19 implies that the spectrum of U(t, s) restricted to L2, CABS , W 1
2 and C are equal

and are composed of a finite number of eigenvalues outside a disk of radius strictly than 1. Then
Λ(s) is a bounded operator on L2 if and only if esT is not in the spectrum of the monodromy
operator U(T, 0), we have that H(s) admits an analytic continuation on the domain Da except
on the lnζ+2iπk

T where ζ is an element of the spectrum of the monodromy operator of U(T, 0). In
particular, under observability assumption (see Remark (6.24)), if T/r /∈ Q, Corollary 2.19 implies
that all points of the vertical line ∂Da are essential singularities of the HTF H, as an operator
valued analytic map which proves Theorem 2.1.

Put ζi for some i in {1, · · · , n} an isolated eigenvalue of U(T, 0) and Ẽi its kernel. Since the
discrete system is controllable for the W 1

2 functions (Theorem 2.23), Ẽi is not empty. For all φ ∈ Ẽi
we have by the representation of the resolvent of Ã :

Ĥ(z)φ =
p∑

k=0

C̃NkB̃φ

(z − ζi)k+1 , (2.72)

where N a nilpotent operator, for all z complex in a neighborhood of ζi and p is an integer. Put s0
such that es0T = ζi, s is a complex in the neighborhood of s0 and Ψs(·) = e−s·φ(·). Thus :

lim
s→s0

(
esT − es0T

)p+1
[Λ(s)φ](t) = e−s0t

[
C̃B̃Ψs0(·)es0·

]
(t). (2.73)

Since the discrete system is detectable (Theorem 2.23) the right hand side of the equation (2.73) is not
identically equal to zero. We deduce that there exists n and k such that lim

s→s0

(
esT − es0T

)p+1
Gn−k(s+

2iπk/T ) is non-zero. We deduce the Theorem 2.2 from the Theorem 2.3 and Theorem 2.4.

2.6 Conclusion
The structure of the harmonic transfer function is more complicated than in the finite case. In
fact, there are other ways for the HTF H(s) to not be a bounded operator from l2(Z) to l2(Z) than
to be a pole. Theorem 2.1 remarks that all the information of the stability is not contains in the
coefficient of the matrix H(s) but is contained entirely in the matrix H(s) view as a Banach valued
operator. However we can see that the HTF is meromorphic in the closed right half plane where
the poles are the logarithm of a finite family of complex numbers. Since on this simple example, we
proved that the system is controllable and detectable, the analyticity of the HTF in the closed right
half plane implies the local stability of the periodic solution (Theorem 2.2). It would be interesting
to investigate further the structure of the harmonic transfer function in all the complex plane. We
rise some open interesting questions which are linked with this possibly investigation.

Open questions

• The actual knowledge of the spectral theory for autonomous constant difference delay equation
and neutral differential equation permits to know that the spectrum of the monodromy operator
for an autonomous difference delay system is composed of not semi-Fredholm elements. Since
the monodromy operator of the neutral differential system that we considered is a compact
perturbation of the monodromy operator of the autonomous delay system, we have that the
spectrum of the monodromy operator of the neutral differential equation is composed of
elements which are not semi-Fredholm plus a finite number of eigenvalues. Because of the
elements of the spectrum which are not semi-Fredholm are highly unstable after a compact
perturbation (see the article of Bouldin [Bou82] for the Hilbert case and the article of Gonzalez
et al [GO86] for the Banach case) it would be interesting to characterize entirely the nature of
the elements of the spectrum of the monodromy operator for the neutral differential delay
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system because the nature of this spectrum is strongly linked with the singularities of the
harmonic transfer function.

• Bound on the number of unstable poles?

• We saw under observability assumption and the commensurability of the delay and the
period that the harmonic transfer function has a vertical line of singularities in the left half
plane which is composed of essential singularities where the HTF is viewed as a Banach
valued operator from l2(Z) to l2(Z). This essential singularities come from the fact that the
monodromy operator of the neutral differential equation possesses an entire disk of elements
of the spectrum. For the infinite HTF to be an essential singularities could be caused by
different things. In fact let s0 an essential singularity of the harmonic transfer function, then
the following things could happen :

– H(s0) is not a continuous operator from l2(Z) to l2(Z)
∗ all the coefficient of H(s0) are analytic complex valued function
∗ some coefficients of H(s0) have poles
∗ some coefficients of H(s0) have essential singularities

– H(s0) define a continuous operator from l2(Z) to l2(Z) but fail to have an analytic
continuation in an open neighborhood of s0.

In the way to perform rational approximation on the coefficient Gn of the harmonic transfer
function via the harmonic balance method it must be important to answer to the following
question : May the (stable) singularities of the Gn’s be other than poles ?





Chapter 3
Equations of a circuit containing
lossless transmission lines

In this chapter we are interested to give the equations for general circuits containing several lossless
transmission lines coupled with multiport which are composed of capacitors, inductors, resistors,
diodes and transistors. More precisely :

i. Putting together the components of the Chapter 1, ie capacitors, diodes, inductors, resistors
and transistors we can form a multiport. Formally speaking, the multiport is a directed
graph with labeled vertices (called junction nodes), and edges (called branches). Branches
correspond to the components and nodes to terminals thereof.

To each junction node j is associated a potential vj , and to each edge k an electric current ik.
One of the junction nodes, say vn, is the ground (its potential is 0 by convention). We always
assume that the graph associated with a multiport is connected. The currents im := (ik1 , · · · , ikm)
are plugged in between the ground and the junction nodes (k1, · · · , km) of the circuit containing
the components (see figure 6.1 below), where m is an integer which denotes the number of
output of the multiport.

Figure 3.1 : A m multiport

To give the equations which govern the behavior of a such multiport, we assume that the
voltage of such multiport vm := (vk1 , · · · , vkm) can be expressed with the voltage of the
capacitors, the current of the inductors and im the current of the multiport thus by the
Brayton-Moser theorem (see [BM64]), we have that the equation of the multiport is :
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
Cm

dvcm
dt = hc(vcm , ilm , im)

Lm
dilm
dt = hl(vcm , ilm , im),

vm = hm(vcm , ilm , im),
(3.1)

where vcm (resp. ilm) denotes the voltage (resp. current) of the capacitors (resp. inductors)
contained in the multiport and the function hc, hl and hm have the maximum regularity of the
functions in the equation (1.2) and (1.5) that we assume at least C4. Like in the Chapter 1,
we add a smooth periodic generator and then the equations (6.71) become :

Cm
dvcm
dt = hc(t, vcm , ilm , im)

Lm
dilm
dt = hl(t, vcm , ilm , im),

vm = hm(t, vcm , ilm , im),
(3.2)

ii. We already introduced the modelization of a transmission line in the Chapter 2 without
explaining where comes from the lossless telegrapher’s equation. Since a transmission line
(see Figure 3.2) is commonly modeled as a concatenation of infinitesimal capacitors, resistors
and inductors with the same impedance [Poz11] (see Figure 3.2, in which G denotes the
conductance of the resistor and the hatched region is the ground).

Figure 3.2 : Model of a transmission line

This model leads to the so-called telegrapher’s equation [ML86, sec. 9.7.3]:
∂v

∂x
= −L∂i

∂t
−Ri

∂i

∂x
= −C∂v

∂t
−Gv

(3.3)

When R and G are non zero and L/R 6= G/C, the previous equation doesn’t have an analytic
solution on a bounded domain in space. To be able to manipulate an analytic solution to
telegrapher’s equation, we assume in the following that R = G = 0, ie :


∂v

∂x
= −L∂i

∂t

∂i

∂x
= −C∂v

∂t

(3.4)

To define the amplifier containing the lossless transmissions lines and the multiport, we have to
connect each others. Formally speaking, we consider a directed graph with N edges and N ′ nodes,
where N and N ′ are two positive integers. Nodes are numbered by integers from 1 to N ′ (that we
denote as p) and edges by integers from 1 to N (that we denote as k).
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Each edge figures a lossless transmission line. More precisely, we see edge number k as an
oriented unitary real segment [0, 1] (i.e. a transmission line of unit length) with two real function
vk(t, .) and ik(t, .) (the voltage and the current) defined on this segment at each time t, satisfying
the following lossless telegrapher’s equation ie R and G in the equation (3.4) are zero :

Ck
∂vk(t, x)

∂t
= −∂ik(t, x)

∂x
,

Lk
∂ik(t, x)

∂t
= −∂vk(t, x)

∂x
,

(t, x) ∈ Ω , (3.5)

where
Ω = {(t, x) ∈ IR2, 0 < x < 1 and 0 < t < +∞}, (3.6)

and, for each k, Lk and Ck are two strictly positive numbers (the inductance and the capacity of the
line k). In (5.3) we define numbers τk and Kk, often called the delay and characteristic impedance
of the line k, and we assume without loss of generality after possibly re-ordering the edges, that the
delays τk are increasing:

τk =
√
LkCk , Kk =

√
Ck/Lk , 0 < τ1 ≤ τ2 · · · ≤ τN . (3.7)

Each node consist in a multiport connected to the transmission line which touches this node.
More precisely, if

• j(p) is the out-degree of the graph at node p (i.e. the number of edges outgoing from node p)
and ̃(p) the in-degree of the graph at node p (i.e. the number of edges incoming at node p),
and

• k1 < · · · < kj(p) are the labels of the edges outgoing from node p and kj(p)+1 < · · · < kj(p)+̃(p)
the labels of the edges incoming at node p,

• cp (resp. lp) is the number of capacitors (resp. inductors) in the multiport at the node p

• vr (resp. ir) denotes the voltage (resp. current) of the capacitors (resp. inductors) at the
node p for r belonging to c1, · · · , cp (resp. l1, · · · , lp)

then node number p couples equations (3.5) together by imposing j(p) + ̃(p) + cp + lp relations
between the 2(j(p) + ̃(p)) + cp + lp entries of the following three vectors:

Vp(t) =



vk1(t, 0)
...

vkj(p)(t, 0)
vkj(p)+1(t, 1)

...
vkj(p)+̃(p)(t, 1)


, Ip(t) =



−ik1(t, 0)
...

−ikj(p)(t, 0)
ikj(p)+1(t, 1)

...
ikj(p)+̃(p)(t, 1)


, (3.8)

and

zp(t) =



vc1(t)
...

vcp(t)
il1(t)
...

ilp(t)


. (3.9)
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Thus applying the equation (3.2), we have that :

{
Vp(t) = hp1(t, Ip(t), zp(t)),
dzp(t)
dt = hp2(t, Ip(t), zp(t)) p ∈ [|1, N ′|] ,

(3.10)

where hp1 and hp2 are at least C4.
So far, we wrote a system of hyperbolic equations, namely (3.5), indexed by the edges of our

graph, with boundary conditions given by a collection of N ′ linear time dependent relations, namely
(3.10), indexed by the nodes of the graph. As a result, the boundary conditions at x = 0 and at
x = 1 for a given telegrapher’s equation of the form (3.5) are generally obtained from two different
relations of the form(3.10). To offset this, we shall write the collection of all boundary conditions in
lumped form, as a single linear relation between concatenated vectors V(t) and I(t) defined as

v(x, t) =


v1(x, t)

...
vN (x, t)

 , i(x, t) =


i1(x, t)

...
iN (x, t)

 , V(t) =


v(t, 0)

v(t, 1)

 , I(t) =


−i(t, 0)

i(t, 1)

 , (3.11)

that aggregate all boundary values of voltages and currents in the lines. We aggregate too all the
current and the voltage of the inductors and the capacitors respectively :

z(t) =


z1(t)
...

zN ′(t)

 . (3.12)

It follows that we can rewrite the sytem (3.10) :

{
V(t) = h̃1(t, I(t), z(t)),
dz(t)
dt = h̃2(t, I(t), z(t)),

(3.13)

where h̃1 (resp. h̃2) is a function at least C4 from R× R2N × R(c1+l1)···(cN′+lN′ ) (resp. R× R2N ×
R(c1+l1)···(cN′+lN′ )) into R2N (resp. R(c1+l1)···(cN′+lN′ )).

3.1 Nonlinear hybrid differential delay equations
Let us now construe the system of coupled telegrapher’s equations from (3.5) and (3.13) as a delay
equation. Let fk, gk, thus a resolved form of the telegrapher’s equation is : vk(t, x) = fk(x− t

τk
) + yk(x+ t

τk
) ,

ik(t, x) = Kk[fk(x− t
τk

)− yk(x+ t
τk

)] ,
(3.14)

and define:
xk(t) = fk(−

t

τk
) and yk(t) = gk(1 + t

τk
). (3.15)

Putting (3.15) in (3.14) we obtain :
vk(t, 0) = xk(t) + yk(t− τk) ,
ik(t, 0) = Kk[xk(t)− yk(t− τk)] ,
vk(t, 1) = xk(t− τk) + yk(t) ,
ik(t, 1) = Kk[xk(t− τk)− yk(t)] .

(3.16)
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Putting the equation (3.16) in the equation (3.13), we obtain :



0 = ȟ1


t,



x1(t)
...

xN (t)
y1(t)
...

yN (t)


,



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


, z(t)


.

dz(t)
dt = ȟ2


t,



x1(t)
...

xN (t)
y1(t)
...

yN (t)


,



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


, z(t)


,

(3.17)

where ȟ1 and ȟ2 are at least C4 and in the space necessary to give a meaning to the equation (3.17).
The equation (3.17) is called a nonlinear hybrid differential equation.

3.2 Linear hybrid differential delay equations

Assuming that the circuit contains a continuous periodic solution which is generated by the periodic
generator. We can linearize the system (3.10) around this periodic solution, we obtain the following
periodic system :

{
Vp(t) = Ap(t)Ip(t) +Ax(t)zp(t),
dzp(t)
dt = Bp(t)Ip(t) +Bx(t)zp(t) p ∈ [|1, N ′|] ,

(3.18)

where t 7→ Ap(t), Ax(t), Bp(t) and Bx(t) are maps from IR+ to the set of (j(p)+̃(p))×(j(p)+̃(p)),
(j(p) + ̃(p))× (cp + lp), (cp + lp)× (j(p) + ̃(p)) and (cp + lp)× (cp + lp) matrices which are assumed
to be two time continuously differentiable and T-periodic.

Since the vectors Vp(t) (resp. Ip(t)), defined in (3.8), altogether contain each component of V(t)
(resp. I(t)) exactly once as p ranges from 1 to N ′, there is a 2N×2N permutation matrix P1 such
that 

V1(t)
...

VN ′(t)

 = P1 V(t) ,


I1(t)
...

IN ′(t)

 = P1 I(t) . (3.19)

The set of equations (5.5), 1 ≤ p ≤ N ′, can now be written as

{
V(t) = A(t) I(t) + Az(t)z(t),
dz(t)
dt = B(t)I(t) + Bz(t)z(t)

(3.20)
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with

A(t) = P−1
1 diag(A1(t), . . . , AN ′(t))P1 (3.21)

Az(t) = diag(Az1(t), . . . , AzN′ (t)) (3.22)
B(t) = diag(B1(t), . . . , BN ′(t))P1 (3.23)

Bz(t) = diag(Bz1(t), . . . , BzN′ (t)), (3.24)

where diag(A1(t), . . . , AN ′(t)), diag(Ax1(t), . . . , AxN′ ), diag(B1(t), . . . , BN ′) and diag(Bx1(t), . . . , BxN′ )
are 2N ×2N , 2N × (c1 + l1) · · · (cN ′ + lN ′), (c1 + l1) · · · (cN ′ + lN ′)×2N and (c1 + l1) · · · (cN ′ + lN ′)×
(c1 + l1) · · · (cN ′ + lN ′) block-diagonal matrices respectively. Plugging (3.16) in the first equation of
(3.20) gives us





x1(t)
...

xN (t)
y1(t)
...

yN (t)


+



y1(t− τ1)
...

yN (t− τN )
x1(t− τ1)

...
xN (t− τN )


= A(t)





−K1 x1(t)
...

−KN xN (t)
−K1 y1(t)

...
−KN yN (t)


+



K1 y1(t− τ1)
...

KN yN (t− τN )
K1 x1(t− τ1)

...
KN xN (t− τN )




+ Az(t)z(t)

dz(t)
dt = B(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Bz(t)z(t)

(3.25)

and finally, defining

K = diag(K1, . . . ,KN ,K1, . . . ,KN ) and P2 =
(

0 Id

Id 0

)
(3.26)

where Id has size N ×N , we get as P2K = KP2 and





x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


+ Az(t)z(t).

dz(t)
dt = B(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Bz(t)z(t)

(3.27)
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Remark 3.1. We needed to intervert the matrix I+A(t)K in the equation (3.27). We just assumed
that it was possible but we will see in the Chapter 6 that under some reasonable physical assumption
(dissipativity of the circuit at high frequency), this matrix is always invertible.

Remark 3.2. The system (3.27) is slightly more complicated than the neutral one in the Chapter 2.
Assuming that Az(t) is invertible, then we can recover a linear differential neutral system but in
general there is no reason allowing to do this assumption.

3.3 Harmonic transfer function for a circuit containing lossless
transmission lines

To check the zero exponential stability stability , we disturb the linearized circuit by adding a source
of current iε at one node of the multiport which compose one node of the circuit containing the
lossless transmission line and we observe the voltage uε. Thus the equation (3.18) become an input
output system with the following equations :


Vp(t) = Ap(t)Ip(t) +Az(t)z(t) +Aε(t)iε(t),
dxp(t)
dt = Bp(t)Ip(t) +Bz(t)z(t) +Bε(t)iε(t) p ∈ [|1, N ′|] ,

uε(t) = Cp(t)Ip(t) + Cz(t)z(t) + Cε(t)iε(t).
(3.28)

In the aggregated way the equations (3.20) become :


V(t) = A(t) I(t) + Az(t)z(t) + Aε(t)iε(t)
dz(t)
dt = B(t)I(t) + Bz(t)z(t) + Bε(t)iε(t
uε = C(t) I(t) + Cz(t)z(t) + Cε(t)iε(t)

(3.29)

with

Aε(t) = diag(Aε1(t), . . . , AεN′ (t)), (3.30)
Bε(t) = diag(Bε1(t), . . . , BεN′ (t)) (3.31)
Cε(t) = diag(Cε1(t), . . . , CεN′ (t)) (3.32)
C(t) = P1diag(C1(t), . . . , CN ′(t)), (3.33)

Cz(t) = diag(Cz1(t), . . . , CzN′ (t)), (3.34)
Cε(t) = diag(Cε1(t), . . . , CεN′ (t)). (3.35)

Putting the equations (3.16) in (3.29), we obtain the following equations which are the input-output
version of the equations (3.27) :
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

dz(t)
dt = B(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Bz(t)z(t) + Bε(t)iε(t)



x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


+ Az(t)z(t) + Aε(t)iε(t)

uε(t) = C(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Cz(t)z(t) + Cε(t)iε(t)

(3.36)

Since the system is periodic and linear we can define the harmonic transfer function H(s) which
is the infinite matrix satisfying the following equation :

Uε(s) = H(s)Iε(s), (3.37)

where

Uε(s) =



...
L{uε}(s+ iω0)
L{uε}(s)

L{uε}(s− iω0)
...


and Iε(s) =



...
L{iε}(s+ iω0)
L{iε}(s)

L{iε}(s− iω0)
...


. (3.38)

Once again, using the frequency domain, we can express each transmission line (3.5) as a linear
matrix (see equation (2.7) in the Chapter 2). Putting this linear matrices in the boundary equations
(3.10) leads to a system like the system (1.12) and we can perform the Harmonic Balance analysis
to approximate a periodic solution and approximate the Harmonic Transfer Function H on the
imaginary axis.

The questions which arrive are :

i. Under suitable observability and controllability assumptions, does the holomorphy of the
harmonic transfer function in the right half-plane give the local stability of the periodic
solution?
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ii. Does the harmonic transfer function have possibly only poles in the right half-plane?

Because of the regularity of the system it seems natural to think that the answer to the question
i is yes but it is not a trivial thing because system like (3.27) hasn’t been really considered until
nowadays in the time-varying (here periodic) case. Concerning the question ii it seems to be more
complicated. However, we can follow the intuition of the electronic engineers who say that, since the
system at high frequency is exponentially stable, then the harmonic transfer function has possibly
only poles in the right half plane. From an electronic engineers’s point of view, the system at high
frequency is the system where the capacitors are replaced by a wire and the inductors are replaced
by an open switch. In mathematical terms, it means that x become zero in the equations (3.27) and
thus we obtain the following equations, which models the behavior of the system at high frequency :

x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


. (3.39)

The equation (3.39) is a periodic difference delay equations and are not really present in the
literature. That’s why before to address the issue of the questions i and ii in the Chapter 6, we study
stability conditions for system like (3.39) in the Chapter 4 and Chapter 5. The Chapter 4 studies
stability condition for general periodic difference delay system generalizing methods of Bellman,
Cooke, Hale and Henry whereas the Chapter 5 give stability conditions using the particular structure
of difference delay equations which come from a network of lossless telegrapher’s equations.

The Chapter 6 relies the equations (3.27) with the equation (3.39), in fact the behavior of
the system is just a compact perturbation of the system at high frequency. And since all the
multiport are assumed to be passive at high frequency, we can conclude through the Chapter 4 or
the Chapter 5 to the fact that the harmonic transfer function has just possible poles in the right
half plane. Moreover we give some local stability results for the equations of the forms (3.27).





Chapter 4
Stability criteria of linear periodic
difference delay systems

4.1 Introduction

Motivation

Physical models involving delays naturally arise in circuit theory, which has been an initial motivation
of the authors for the present work. Indeed, in electric networks operating at high frequency, one
cannot neglect delays induced by the transmission lines between the linear static (resistors), linear
dynamic (capacitors/inductors), and nonlinear (diodes/transistors) elements of the circuit. Lossless
transmission lines are typically modelled by telegrapher equations, which are the simplest transport
partial differential equations (PDE). Using the integrated form of the latter, one obtains at a generic
functioning rate a model for the circuit consisting of a system on nonlinear ordinary differential
equations (ODE), coupled with a nonlinear delay difference system:{

dx(t)
dt = f(x(t), y(t− τ1), · · · , y(t− τN ))
y(t) = g(x(t), y(t− τ1), · · · , y(t− τN )),

(4.1)

where the x variable collects voltages or currents at terminals of the devices while the y variable
consists of (combinations of) voltages and currents at the ends of the transmission lines [Bra67].

Periodic solutions of such dynamical systems arise spontaneously in the case of oscillators, or
by periodic forcing in the case of amplifiers (the forcing is the signal to be amplified, represented
for instance by a periodic voltage source). Assuming such a periodic solution (x(t), y(t)), one may
linearize the equations around the latter to investigate local stability of the system, based on the
exponential stability of the first order approximation [Sua09]. This linearized system consists of
periodic linear ODE coupled with a periodic linear difference delay system of the form:

dx(t)
dt = A(t)x(t) +

N∑
j=1

Bj(t)y(t− τj)

y(t) = C(t)x(t) +
N∑
j=1

Dj(t)y(t− τj).
(4.2)

As explained in [HVL93, Ch. 3, thm. 7.3] for the so-called neutral case (i.e. when C(t) is smoothly
invertible so that the x-variable can be eliminated) and more generally in [Fue20], the solution
operator of (4.2) is a compact perturbation (modulo a projection) of the solution operator of the
high frequency limit system which has no dynamics:

y(t) =
N∑
j=1

Dj(t)y(t− τj). (4.3)
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Hence, the high frequency limit system must be exponentially stable for the original system to be
exponentially stable, and when this is the case exponential stability of system (4.2) depends only
on the sign of the real part of finitely many eigenvalues, due to the compactness of the perturbation.
This motivates our study below of time-varying periodic difference delay systems of the form (4.3).

Recap of known results for time-invariant delay systems

Historically, the main efforts to study the stability of the system (4.2) have been made without
considering the linear autonomous difference in itself. This efforts can be classified in two principal
areas. The first consists to give a stability condition using the right complex half plane where the
proofs are based on the Laplace transform techniques, the theory of the complex almost periodic
function and the spectral semi-group theory (for this classical results, see the Bellman-Cooke book
[BC59] or the Hale book [HVL93]). The second way to analyse the stability of this systems is to
use the theory of the Lyapunov-Krasolneskii functional (see the chapter 5 of the book of [HVL93]).
Nowaday, the efforts focus on the building of such functional (see [GEM19], [RN02]).
Surprisingly, the first stability of autonomous linear difference system occur late in [CH70] for a
finite number of commensurable delay. This result has been improved by Henry who proved the
same theorem for an infinite number of discrete delay and non necessarily commensurable (see
[Hen74]), and later by Hale for distributed delays (see chapter 9 of [HVL93]). We consider the
following constant difference delays system :

y(t) =
N∑
j=1

Dj y(t− τj), for all t ≥ s, (4.4)

where s is a real time initial data, d and N are positive integer, and each Dj is a constant d× d
matrix and solutions t 7−→ y(t) are Cd valued functions of time t and the delays can be ordered as
τ1 < · · · < τN . For constant difference-delay equations like (4.4), the Henry-Hale theorem below
gives a necessary and sufficient condition for zero to be exponentially stable (see [Hen74, CH70]).
Hereafter, ‖.‖ indicates the Euclidean norm.

Theorem 4.1 (Henry-Hale). The following two properties are equivalent:

(a) There exists γ > 0 and K > 0 such that for all continuous function y, satisfying (4.4) and
verifying :

sup
s−τN≤θ≤s

||y(t+ θ)|| ≤ Ke−γ(t−s) sup
s−τN≤θ≤s

||y(θ)||, for all t ≥ s and all s real. (4.5)

where || · || is the euclidean norm on Cd.

(b) There exists α < 0 such that :

I −
N∑
j=1

Dj e
−pτj is invertible for all complex p with real part greater than α. (4.6)

The assumption of the Henry-Hale theorem is not always simple to check because it involves the
computation of an infinite number of determinants. However the condition (4.6) is often simplified
in the case of transport equation, because each delays τi acts only on the non zero columns of Di

for all i ∈ {1, · · · , N} and we have just to check that the spectral radius of
N∑
j=1

Dj is in the unit

disk. Theorem 5.17 is proved with a Laplace transformation technique for one implication and by
the spectral semigroup theory for the converse.
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Review of the existing results of the linear time-varying difference delay system
and outline of the chapter

When the linear difference delay equation becomes non-autonomous (ie time-varying), the case turns
out to be more difficult and has not been studied extensively. First, a straightforward generalization
of the Theorem 5.17 in the time-varying case become obviously false. In fact, considering the
following delay system :

y(t) = D1(t)y(t− 1), (4.7)

where D1(t) is a 2× 2 continuous 2− periodic matrix. We can construct a matrix D1(·) which has
the spectral radius strictly less than one and however has the spectral radius of D1(t)D1(t − 1)
greater than one which is an example which checks the condition 2. of the Theorem 5.17 but which
is not exponentially stable.
For the time-varying linear delay system, the first article referring to a sufficient stability condition
which is obtained through the Perron-Frobenius theorem can be found in [NH15]. Involving a kind
of a joint spectral radius, Chitour et al ([CMS16]) give a necessary and sufficient condition in the
general case of linear non-autonomous difference equation. But the condition leads to a complicated
combinatories and the criterion become difficult to check. When the linear time-varying system
come from a network lossless telegrapher’s equations we can find a stability result for a subclass
of difference delay system in [BFLP20]. To sum up, the stability of the constant linear difference
equation is entirely understood via the Henry-Hale theorem, and the general time varying seem
to lead to a too complicated combinatorics to have a general result like the Henry-Hale theorem.
Between this two cases, it seems interesting to investigate the periodic difference delay system who
provide, through the using of the Fourier developpment, an intermediate case in terms of difficulties.
In this article we give a generalization of the Henry-Hale theorem in the case of linear regular
periodic difference equation and show an application of this theorem to the 1-D hyperbolic equation
with linear periodic boundaries.

4.2 Notation

We let R and C be the real and complex fields, and Rd (resp. Cd) the Euclidean (resp. Hermitian)
space of real (resp. complex) dimension d. When x, y ∈ Rd (resp. Cd), we write 〈x, y〉 for their
scalar (resp. Hermitian) product and ‖x‖ for the norm of x. The notation is the same for the real
and complex case, but the context will keep the meaning clear.

For E ⊂ Rd or Cd, we let C0(E) be the space of continuous real or complex valued functions.
Likewise, for B a Banach space, we write C0(E,B) for continuous B-valued maps on E. When E is
compact, we endow C0(E) and C0(E,B) with sup norm. For α ∈ (0, 1), we designate by Cα(E) the
space of real or complex valued Hölder continuous functions with exponent α; i.e., f ∈ Cα(E) if
and only if |f(x)− f(y)| ≤ C‖x− y‖α for some constant C and all x, y ∈ E, the smallest C being
the Hölder constant of f . For f ∈ Cα(E), we note the partial derivative ∂α

∂tα the smallest C such
that |f(t)− f(y)| ≤ C‖t− y‖α for all y ∈ E. The space Cα(E,B) is defined analogously. When E
is open, we let C1(E) (resp. C1(E,B)) designate real or complex (resp. B-valued) functions on E
whose first derivatives lie in C0(E). The space C1,α(E) comprises functions whose first derivatives
belong to Cα(E), and C1(E) those functions which are restriction to E of an element of C1(E′),
where E′ is open and contains E. The spaces C1,α(E,B) and C1(E,B) are defined analogously. The
space of continuous periodic functions on R with period T > 0 identifies, for any a ∈ R, with the
subspace C̃0([a, a+ T ]) of C0([a, a+ T ]) consisting of f for which f(a) = f(a+ T ). Alternatively,
this space may be viewed as C0(T) where T is the unit circle, up to a rescaling of the variable by
2π/T . Similar definitions hold for B-valued periodic functions.
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For I a real interval, recall that a function f : I → R is said to have bounded variation if

WI(f) := sup
x0<x1<···<xN
xi∈I,N∈N

N∑
i=1
|f(xi)− f(xi−1)| <∞. (4.8)

In the degenerate cases where I is empty or reduces to a point, we set WI(f) = 0. The number
WI(f) is called the total variation of f on I, and we let BV (I) indicate the space of functions of
bounded variation on I endowed with the norm ‖f‖BV (I) = WI(f) + |f(o)|, where o is arbitrary
but fixed in I. Different o give rise to equivalent norms, for which BV (I) is a Banach space. When
I is bounded on the right and contains its endpoint b, we choose o = b for definiteness. Note that
functions in BV (I) are bounded and ‖.‖BV (I) is stronger than the uniform norm, because evidently
|f(x)| ≤ |f(o)| + WI(f). A function of bounded variation is the difference of two nondecreasing
functions, therefore it has a limit f(x−) (resp. f(x+)) from the left (resp. right) at each x ∈ I
where the limit applies [Łoj88, sec. 1.4]. If f, g ∈ BV (I), then clearly fg ∈ BV (I) with

WI(fg) ≤WI(f) sup
x∈I
|g(x)|+WI(g) sup

x∈I
|f(x)|. (4.9)

To f ∈ BV (I) one can associate a unique finite signed Borel measure νf on I such that, whenever
(a, b) ⊂ I, we have νf ((a, b)) = f(b−) − f(a+), while if I is bounded on the right (resp. left)
and contains its endpoint a, then νf ({a}) = f(a)− f(a−) (resp. f(a+)− f(a)) [Łoj88, ch. 7, pp.
185–189]. For g : I → R a measurable function which is summable against νf , the Lebesgue-Stieltjes
integral

∫
gdf is defined to be

∫
gdνf , whence the differential element df identifies with dνf [Łoj88,

ch. 7, pp. 190–191]. From (4.8) and the regularity of finite positive Borel measures on R [Rud82,
thm. 2.18], it follows that WI(f) = ‖νf‖ when f is monotonic on I, where ‖νf‖ indicates the
total variation of the measure νf , see [Rud82, sec. 6.1]. In general, it holds that ‖νf‖ ≤ 2WI(f):
this follows from the definition of νf [Łoj88, eqn. 7.5.13] and the decomposition of f into its
continuous and saltus part [Łoj88, thm. 1.4.4]. Note that different f may generate the same νf :
for example if f and f1 coincide except at finitely many interior points of I, then νf = νf1 . In any
case |

∫
gdf | ≤

∫
|g|d|νf | ≤ 2WI(f) supI |g|, where |νf | is the total variation measure of νf ; that is:

|νf | is the only positive measure on I with mass ‖νf‖ such that νf is absolutely continuous with
respect to |νf | and the Radon-Nykodim derivative dνf/d|νf | has modulus 1 at |νf |-almost every
point, see [Rud82, sec. 6.1]. We let BVr(I) ⊂ BV (I) denote the subpace of functions that are
right-continuous. Likewise, BVl(I) ⊂ BV (I) is the subpace of left-continuous functions. Because
‖.‖BV (I) is stronger than the uniform norm, BVr(I) and BVl(I) are Banach spaces in their own
right. We shall lean especially on the space BVl[a, b]). By what precedes, it consists of functions
of the form u(t) = ν[a, t) + c with ν a finite signed measure on [a, b] and c a real constant; clearly
then, νu = ν.

Given f ∈ BV (J), we often need to integrate a function g with respect to df over a subinterval
I ⊂ J . The subinterval I is typically encoded by assigning bounds to the integral sign: a lower
bound a− (resp. a+) means that I contains (resp. does not contain) its lower bound a, while an
upper bound b+ (resp. b−) means that I contains (resp. does not contain) its upper bound b. Care
must be used with this notion, for νf|I needs not coincide with the restriction of νf|J to I. More
precisely, if there is an endpoint a of I that belongs to I and lies interior to J , then the two measures
may differ by the weight they put on {a}: when a is the right (resp. left) endpoint of I, the two
measures agree if f is right (resp. left) continuous at a. For example, when splitting an integral of
the form

∫ b±
a± gdf as

∫ c±
a± gdf +

∫ b±
c± gdf where c ∈ (a, b), we must use c+ (resp. c−) if f is right (resp.

left) continuous at c.
We denote by BVloc(R) the space of functions whose restriction to any bounded interval I ⊂ R

lies in BV (I).
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We apply the above notation and definitions to complex, vector and matrix-valued functions,
replacing absolute values in (4.8) by moduli, Euclidean and operator norms, respectively. This of
course means that the real and imaginary parts, or components lie in the corresponding spaces of
real-valued functions.

4.3 Results

We consider the following periodic difference delay system:

y(t) =
N∑
j=1

Dj(t)y(t− τj), t ≥ s, (4.10)

where s ∈ R is the initial time, d and N are positive integers, Dj : R → Cd×d is a continuous
T-periodic matrix-valued function for 1 ≤ j ≤ N , and the solutions to (6.6) are Cd valued functions
t 7−→ y(t) of the time t. Without loss of generality, we order the delays so that 0 < τ1 < · · · < τN .
Note that all delays are assumed to be strictly positive. The case where τ1 = 0 and I −D1(t) is
invertible for all t quickly reduces to the present one, but when I − D1(t) is not invertible new
difficulties arise that we shall not take up here.

Without loss of generality, we can assume that T > τN (otherwise just consider the smallest
integer p such that pT > τN and let T ′ := pT ). In order to have a unique continuous solution to
(6.6), we need continuous initial data on the interval [s− τN , s] that satisfy a compatibility condition
at the endpoints. So, we define the space :

Cs := {φ ∈ C0([−τN , 0],Cd)|φ(0) =
N∑
j=1

Dj(s)φ(−τj)}. (4.11)

Since the system is T -periodic, we have that Cs+T = Cs. We endow Cs with the supremum norm :

||φ||∞ := sup
−τN≤θ≤0

||φ(θ)||, (4.12)

where || · || is the euclidean norm on Cd. For φ ∈ Cs, a recursive argument shows that the system
(6.6) admits a unique continuous solution y with y(s+ θ) = φ(θ) for θ ∈ [−τN , 0]. Thus, we may
define the solution operator:

U(t, s) : Cs → Ct (4.13)
φ 7→ U(t, s)φ, (4.14)

where (U(t, s)φ) (θ) = {y(t+ θ), θ ∈ [−τN , 0]}.

Definition 4.2. The zero solution of the system (6.6) is called C0 asymptotically exponentially
stable if there exist γ > 0 and K > 0 such that :

||U(t, s)φ||∞ ≤ Ke−γ(t−s)||φ||∞, for all s ∈ R, all t ≥ s and all φ ∈ Cs. (4.15)

Before stating our main theorem, we introduce more notation. We consider the Fourier coefficient
(Ďj(k))k∈Z of Dj for j ∈ {1, · · · , n}, that is:

Ďj(k) := 1
T

∫ T

0
Dj(t)e−

i2πkt
T dt. (4.16)
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We let LDj be the (doubly infinite) block Laurent matrix associated with Dj(t), whose entries are(
LDj

)
k,n

:= Ďj(k − n), n, k ∈ Z. (4.17)

Since each Dj is bounded, these Laurent matrices act on the Hilbert space :

l2d(Z) := {z = (zj)j∈Z|zj ∈ Cd,
+∞∑
j=−∞

||zj ||2 < +∞}, (4.18)

equiped with the norm‖z‖2 given by

||z||22 :=
+∞∑
j=−∞

||zj ||2. (4.19)

Note that ‖LDjz‖2 = ‖DjZ‖L2(T) where T is the unit circle and L2(T) the familiar space of square
summable functions on T, while Z ∈ L2(T) is the function whose Fourier coefficients are the zk.

For A : l2d(Z)→ l2d(Z) a linear operator, we denote by |||A|||2 its operator norm:

|||A|||2 := sup
z 6=0

||Az||2
||z||2

. (4.20)

Irrespectively of k ∈ N, we put I∞ for the identity operator on l2k(Z) and, for 1 ≤ j ≤ N , we define
the (doubly infinite) block diagonal matrix D̃τj by

D̃τj := diag
{
· · · , e−4iπτj/T Id , e

−2iπτj/T Id , Id , e
+2iπτj/T Id , e

+4iπτj/T Id , · · ·
}
, (4.21)

where Id is the identity matrix of size d× d.

Theorem 4.3. Assume that the Dj : R → Cd×d are periodic and differentiable with Hölder
continuous derivative for 1 ≤ j ≤ N . We have the following equivalence :

• there exists a real number α < 0 such that :

i. I∞ −
N∑
j=1

e−pτjLDjD̃τj is invertible in l2d(Z) to l2d(Z) for all p ∈ {z ∈ C|<(z) ≥ α},

ii.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I∞ − N∑

j=1
e−pτjLDjD̃τj

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

is uniformly bounded for all p ∈ {z ∈ C|<(z) ≥ α},

• the System (6.6) is C0 exponentially stable.

The chapter is organised as follows. The section 4.4 deals with the proof of the sufficiency of the
theorem 4.3 while the section 4.5 is devoted to the proof of the necessity. The section 4.6 represents
a discussion about the assumptions and the immediate corollaries of the theorem 4.3, and gives an
application to the 1-D Hyperbolic Systems with linear periodic boundaries.

4.4 Sufficiency

We assume that the assumption i and ii of the theorem 4.3 are verified and we prove that the
System (6.6) is C0 exponentially stable. We proceed in four steps.
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Step 1: For s ∈ R and t ≥ s, we introduce below a function X : R2 → Rd×d, called the fundamental
solution of System (6.6), that satisfies the equation:

X(t, s) =


0 for t < s,

Id +
N∑
j=1

Dj(t)X(t− τj , s) for t ≥ s. (4.22)

Proceeding inductively, it is easy to check that X uniquely exists. Introducing the set :

F := {
N∑
j=1

njτj | nj ∈ N for j = 1, · · · , N}, (4.23)

we remark that X(t, s) is continuous when t − s /∈ F and has a bounded jump across each
line t− s = f as f ranges over F . In particular for fixed t ∈ R, X(t, ·) is locally a function
of bounded variation on R with respect to its second argument. The importance of the
fundamental solution stems from the following integral representation formula expressing the
solution y of the system (6.6) in terms of X and the initial data φ ∈ Cs:

y(t) = −
N∑
j=1

∫ (s+τj)−

s−
dαX(t, α)Dj(α)φ(α− τj − s), t ≥ s, (4.24)

where the right hand side of (4.24) is a sum of Lebesgue-Stieltjes integrals and the minus
or and plus superscripts in the bounds indicates they are taken in the lower and upper
limit, respectively; i.e., the j-th integral above is taken on [s, s+ τj(, and dαX(t, α) indicates
differentiation of [s, s+ τj(3 α 7→ X(t, α). We observe that the corresponding formulas for
autonomous linear difference-delay systems which appear in [Hen74] and [Hal77] seem to have
issues, which is why we give a proof of (4.24) in A.1. We have that the fundamental solution
is exponentially bounded. More precisely, we prove by induction on k integer the existence of
a K > 2 and a λ > 0 such that :

|||X(t, s)||| ≤ Keλ(t−s), for all t ≥ s, (4.25)

where |||X(t, s)||| denote the operator norm of X(t, s) induced by || · || on Cd. Let K ′ a positive
uniform bound of the periodic continuous family (Di(·))i=1,··· ,N and we take λ enough large
such that :

K ′Ne−λτ1 <
1
2 . (4.26)

For k = 0, it is obvious that the equation (4.25) holds for 0 ≤ t− s < τ1 for some λ and K
positive real. We assume that (4.25) hold for k integer and all t, s such that 0 ≤ t− s < kτ1.
For t, s real verifying kτ1 ≤ t− s < (k + 1)τ1, we have from the formula (4.22) :

|||X(t, s)||| ≤ 1 +K ′NKe−λτ1eλ(t−s) (4.27)
≤ Keλ(t−s), (4.28)

which concludes the induction. To prove that y(t) is exponentially stable, we will compute
the variation of X(t, s) in its second variable by using the Laplace transform.

Step 2: Since we assumed that the Dj has a Hölder continuous derivative, we have the following
regularity of the fourier coefficients ([Zyg02, Ch. 2, thm. 4.7]) :∣∣∣∣∣∣∣∣∣Ďj(k)

∣∣∣∣∣∣∣∣∣ ≤ C

1 + |k|1+δ , j ∈ {1, · · · , n}, (4.29)
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where C is a positive constant and δ ∈]0, 1[ the Hölder exponent of the derivative. Putting
the Fourier coefficient of Dj (see equation (4.16)) in the equation (4.22) we obtain :

X(t, s) = I +
∑
k∈Z

N∑
j=1

e
2iπkt
T Ďj(k)X(t− τj , s) if t ≥ s and 0 if t < s. (4.30)

The equation (4.30) has a sense because of the regularity of the fourier coefficient (4.29).
Performing the Laplace transform in the equation (4.30), and permuting the series and the
integral by the dominated convergence theorem (thanks to the equation (4.29) again), we
obtain for p complex with the real part of p equal to c ∈ R largest than the λ defined in the
equation (4.25) :

∫ +∞

−∞
e−ptX(t, s)dt =

∫ +∞

−∞
1[s,+∞[(t)e−ptIdt+

∑
k∈Z

N∑
j=1

∫ +∞

−∞
e(−p+ 2iπk

T
)tĎj(k)X(t− τj , s)dt,

(4.31)

where 1[s,+∞[ is the charateristic function equal to 1 on [s,+∞[ and 0 elsewhere. We note the
Laplace transform of X(t, s) in its firt variable :

X̂(p, s) :=
∫ +∞

−∞
e−ptX(t, s)dt. (4.32)

By N substitutions (t→ t− τj for all j = 1, · · · , N), we deduce from the equation (5.38) :

X̂(p, s) = e−ps

p
I +

∑
k∈Z

N∑
j=1

e(−p+ 2iπk
T

)τjĎj(k)X̂(p− 2iπk
T

, s). (4.33)

We define X̂(p, s) :=



...
X̂(p+ 2iπ

T , s)
X̂(p, s)

X̂(p− 2iπ
T , s)

...


, ê(p, s) :=



...
e
−(p+ 2iπ

T
)s

p+ 2iπ
T

I

e−ps

p I

e
−(p− 2iπ

T
)s

p− 2iπ
T

I

...


and

Ĥ(p) := I∞ −
N∑
j=1

e−pτjLDjD̃τj . (4.34)

Replacing p by p+ 2iπn
T for all n ∈ Z we can rewrite equation (5.25) as

Ĥ(p)X̂(p, s) = ê(p, s). (4.35)

Step 3: Thanks to Fourier’s series and Laplace transform, we transform the periodic delay system in
finite dimension (4.22) into the linear constant infinite dimensional system (4.35). In order
to express X(p, s) -and in particular X(t, s)- we have to inverse the operator Ĥ(p). Let an
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infinite matrix A := (ai,j)i,j∈Z where ai,j is a d × d matrix with its coefficients in C for all
i and j integer. We define B(l2d(Z), l2d(Z)) the space of the infinite matrix A which define a
continuous operator from l2d(Z) to l2d(Z) with a finite Wiener’s norm |||·|||W where :

|||A|||W :=
∑
k∈Z

sup
|i−j|=k

|||ai,j |||. (4.36)

The Wiener’s norm is the sum of the supremum of the diagonals. The space B(l2d(Z), l2d(Z)) is
a Banach space. Since the periodic functions Dj are differentiable with a Hölder continuous
derivative for j = 1, · · · , N we have the equation (4.29) and thus Ĥ(p) has a finite Wiener norm.
Since an operator with an infinite Wiener norm define an operator from l2d(Z) in l2d(Z), we have
that Ĥ(p) ∈ B(l2d(Z), l2d(Z)). Moreover we have that Ĥ : {z ∈ C|<(z) ≥ α} −→ B(l2d(Z), l2d(Z))
is a Banach valued holomorphic function. By the assumption i., we have Ĥ(p) is invertible
on l2d(Z) to l2d(Z) for all fixed p ∈ {z ∈ C|<(z) ≥ α}. By the assumption ii, we have that the
inverse operator of Ĥ(p) is uniformly bounded in the complex plane {z ∈ C|<(z) ≥ α} with
the norm |||·|||2. By the theorem 1.2 in [GK14], we deduce that the inverse Ĥ−1(p) is uniformly
bounded in the Wiener norm for all p ∈ {z ∈ C|<(z) ≥ α}, thanks to the equation (4.29) :

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I∞ − N∑

i=j
e−pτjLDjD̃τj

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
W

is uniformly bounded for all p ∈ {z ∈ C|<(z) ≥ α}.

Applying the theorem 2.6 in [Kri11] (or [BK10]), which is a generalization of the Wiener’s
lemma, we have that Ĥ−1(p) admits a Fourier developpment on the vertical line p = α+ iR
which is absolutaly summable and of the form :

Ĥ−1(α+ iω) =
∑
k∈Z

H̃keβkωi, for all ω ∈ R , (4.37)

where βk real for k ∈ Z, H̃k ∈ B(l2d(Z), l2d(Z)), and :∑
k∈Z

∣∣∣∣∣∣∣∣∣H̃k
∣∣∣∣∣∣∣∣∣
W
< +∞. (4.38)

Following the proof of the theorem in the paragraph 3 of Dirichlet’s series p147 of [Bes54]
which is allow because the Cauchy’s theorem is true for holomorphic banach valued function,
we deduce that H̃k is equal to Hkeαβk where Hk ∈ B(l2d(Z), l2d(Z)) for all k ∈ Z and we can
rewrite the equation (4.37) and (4.38) as :

Ĥ−1(α+ iω) =
∑
k∈Z

Hkeαβkeβkωi, for all ω ∈ R , (4.39)

and ∑
k∈Z

∣∣∣∣∣∣∣∣∣Hk
∣∣∣∣∣∣∣∣∣
W
eαβk < +∞. (4.40)

Using the fact that for p with real part enough large we have by the Von Neumann series :

Ĥ−1(p) =
+∞∑
n=1

 N∑
j=1

LDjD̃τje
−pτj

n , (4.41)
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and always using the proof of the theorem in the paragraph 3 of Dirichlet’s series p147 of
[Bes54], we deduce :

{βk|k ∈ Z} = {
N∑
j=1

njτj | nj non positive integer for j = 1, · · · , N}. (4.42)

1

Step 4: We search now to compute X(t, s). For that, we apply the Laplace inversion formula (see
lemma 5.2 in chapter 1 of [HVL93] for example). We have :

X(t, s) = lim
ω→+∞

1
2πi

∫ c+iω

c−iω
Ĥ−1(p)ê(p, s)eptdp. (4.43)

In the view to keep the proof straightforward and meaningful we cite the two following lemmas
that we delay the proofs after this proof because it is technical with the using of several time
of residue theorem and dominated convergence theorem :

Lemma 4.4. Let ωm := 2πm
T + π

T for all positive integer m, we have :

X(t, s) = lim
m→+∞

1
2πi

∫ α+iωm

α−iωm
Ĥ−1(p)ê(p, s)eptdp+Q(t), (4.44)

where :

Q(t) := · · ·+ Ĥ−1
−1 (−2iπ

T
)e−

2iπt
T + Ĥ−1

0 (0) + Ĥ−1
1 (2iπ

T
)e

2iπt
T + · · ·

with Ĥ−1
k the k th column of Ĥ−1.

Since X(t, s) is the 0th element of the vector column X(t, s) and if for each k ∈ Z, we call
(Hk

0,n)n∈Z the first line of the the matrix Hk defined in the equation (4.39), we obtain from
the equation (4.44):

X(t, s) = 1
2πi lim

m→+∞

∫ α+iωm

α−iωm

∑
k,n∈Z

Hk
0,n
e−(p− 2iπn

T
)s

p− 2iπn
T

ep(t+βk)dp+Q(t)0, (4.45)

with Q(t)0 the 0ieme element of the column vector Q(t).

Lemma 4.5. We have for all t and s such that t+ βk − s 6= 0 for all k ∈ Z :

X(t, s) =
∑

α(t+βk−s)>0,n∈Z
Hk

0,ne
2iπn
T

(t+βk) +Q(t)0. (4.46)

We want to evaluate the variation of X in its second argument when it is in [s, s+ τN ]. We
deduce from the equation (4.46) :

V arτ
s≤τ≤s+τN

X(t, τ) ≤
∑

0≤t+βk−s≤τN ,n∈Z

∣∣∣∣∣∣∣∣∣Hk
0,n

∣∣∣∣∣∣∣∣∣ (4.47)

≤

 ∑
k,n∈Z

∣∣∣∣∣∣∣∣∣Hk
0,n

∣∣∣∣∣∣∣∣∣eαβke|α|τN
 eα(t−s). (4.48)

1The equations (4.39), (4.40) and (4.42) are a reminiscence of the equations (12.15.12) and (12.15.13) p 429 of
[BC59] in the case of complex functions.
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From the equation (4.24) and (4.47), we deduce :

||y(t)|| ≤ N

(
V arτ

s≤τ≤s+τN
X(t, τ)

)
||φ||∞ (4.49)

≤ N

 ∑
k,n∈Z

∣∣∣∣∣∣∣∣∣Hk
0,n

∣∣∣∣∣∣∣∣∣eαβke|α|τN
 eα(t−s)||φ||∞, (4.50)

which is the result of the sufficiency of the theorem 4.3.

�

Proof of Lemma 6.4. Considering the subsequence ωm = 2πm
T + π

T , we deduce from the equation
(4.43) that :

X(t, s) = lim
m→+∞

1
2πi

∫ c+iωm

c−iωm
Ĥ−1(p)ê(p, s)eptdp. (4.51)

We can remark that each component of the vector Ĥ−1(·)ê(·, s) is a meromorphic function in the
complex plane {p ∈ C|<(p) ≥ α} and has poles in the set {p ∈ C|p = ikπ

T , k ∈ Z}. Then, from the
equation (4.51), we have by the analytic continuation and the residue theorem :

X(t, s) = lim
m→+∞

1
2πi

(∫ α+iωm

α−iωm
+
∫ c+iωm

α+iωm
+
∫ c−iωm

α−iωm

)
Ĥ−1(p)ê(p, s)eptdp+Q(t) (4.52)

where we recall that :

Q(t) := · · ·+ Ĥ−1
−1 (−2iπ

T
)e−

2iπt
T + Ĥ−1

0 (0) + Ĥ−1
1 (2iπ

T
)e

2iπt
T + · · ·

with Ĥ−1
k the k th column of Ĥ−1. We have that :

||Q(t)||2 ≤
∣∣∣∣∣∣∣∣∣Ĥ−1(0)

∣∣∣∣∣∣∣∣∣
W
< +∞, (4.53)

and then the equality (4.52) has a sense. We want to prove that :

lim
m→+∞

∫ c+iωm

α+iωm
Ĥ−1(p)ê(p, s)eptdp = lim

m→+∞

∫ c−iωm

α−iωm
Ĥ−1(p)ê(p, s)eptdp = 0. (4.54)

We have that the j − th line of the vector lim
m→+∞

∫ c+iωm
α+iωm Ĥ

−1(p)ê(p, s)eptdp for j ∈ Z is equal to :

lim
m→+∞

∫ c+iωm

α+iωm

∑
n∈Z

Hj,n(p)e
−(p−2inπ/T )s

p− 2inπ/T eptdp. (4.55)

We have : ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫ c+iωm

α+iωm

∑
n∈Z

Hj,n(p)e
−(p−2inπ/T )s

p− 2inπ/T eptdp

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

≤
∑
n∈Z

sup
α≤p1≤c

|||Hj,n(p1 + iωm)||| sup
(
e−α(t−s), ec(t−s)

) ∫ c+iωm

α+iωm

1
|p− 2inπ/T |dp. (4.56)
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Since we have :

|ωm − 2πn
T | ≥

π
T for all n and m, (4.57)

the right member of the equation (4.56) tends uniformly in j to zero by the dominated convergence
theorem and the uniform bound for the Wiener’s norm when m tends to +∞. Then we proved that
:

lim
m→+∞

∫ c+iωm

α+iωm
Ĥ−1(p)ê(p, s)eptdp = 0. (4.58)

In the same way we would prove too :

lim
m→+∞

∫ c−iωm

α−iωm
Ĥ−1(p)ê(p, s)eptdp = 0. (4.59)

So we deduce from the equations (4.52) and (4.54) the result of the Lemma 6.4.

�

Proof of Lemma 6.5. Let t and s such that t+βk− s 6= 0. We have by a substitution (p→ p− 2iπn
T ,

for all n ∈ Z) :

lim
m→+∞

∫ α+iωm

α−iωm

∑
k,n∈Z

Hk
0,n
e−(p− 2iπn

T
)s

p− 2iπn
T

ep(t+βk)dp

= lim
m→+∞

∑
n∈Z

∫ α− 2iπn
T

+iωm

α− 2iπn
T
−iωm

∑
k∈Z

Hk
0,ne

2iπn
T

(t+βk) e
p(t+βk−s)

p
dp. (4.60)

Since we have :

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k,n∈Z

Hk
0,ne

2iπn
T

(t+βk)
∫ α− 2iπn

T
+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2ωm

|α|
∑
k,n∈Z

∣∣∣∣∣∣∣∣∣Hk
0,n

∣∣∣∣∣∣∣∣∣eα(t+βk−s), (4.61)

and the right hand side of the equation (4.61) is finite because the Wiener’s norm is finite, we can
swap series and integral in the equation (4.60) and we obtain :

lim
m→+∞

∫ α+iωm

α−iωm

∑
k,n∈Z

Hk
0,n
e−(p− 2iπn

T
)s

p− 2iπn
T

ep(t+βk)dp

= lim
m→+∞

∑
k,n∈Z

Hk
0,ne

2iπn
T

(t+βk)
∫ α− 2iπn

T
+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp. (4.62)

We have by an integration by parts that :

∫ α− 2iπn
T

+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp =

[
ep(t+βk−s)

p(t+ βk − s)

]α− 2iπn
T

+iωm

α− 2iπn
T
−iωm

+
∫ α− 2iπn

T
+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

(t+ βk − s)p2dp, (4.63)

We have from the equation (4.42) that there exists a δ > 0 such that |t + βk − s| ≥ δ for all
k ∈ Z. Using the inequalities (4.57), we deduce from the equation (4.63) :
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∣∣∣∣∣∣
[

ep(t+βk−s)

p(t+ βk − s)

]α− 2iπn
T

+iωm

α− 2iπn
T
−iωm

∣∣∣∣∣∣ ≤ 1
|t+ βk − s|

 eα(t+βk−s)√
α2 +

(
ωm − 2πn

T

)2
+ eα(t+βk−s)√

α2 +
(
ωm + 2πn

T

)2


≤ 2eα(t+βk−s)

δ
√
α2 +

(
π
T

)2 (4.64)

and ∣∣∣∣∣
∫ α− 2iπn

T
+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

(t+ βk − s)p2dp

∣∣∣∣∣ ≤ eα(t+βk−s)

|t+ βk − s|

∫ ωm− 2πn
T

−ωm− 2πn
T

1
α2 + p2

2
dp2

≤ eα(t+βk−s)

|t+ βk − s|

[ 1
α
arctan

(
p2
α

)]ωm− 2iπn
T

−ωm− 2iπn
T

≤ π

|α|δ
eα(t+βk−s). (4.65)

We deduce from the equations (4.64) and (4.65) that there exists a constant K > 0 independent
of k, n and ωm such that :∣∣∣∣∣

∫ α− 2iπn
T

+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp

∣∣∣∣∣ ≤ Keα(t+βk−s). (4.66)

And we have from the equation (4.66):∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k,n∈Z

Hk
0,ne

2iπn
T

(t+βk)
∫ α− 2iπn

T
+iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Keα(t−s) ∑

k,n∈Z

∣∣∣∣∣∣∣∣∣Hk
0,n

∣∣∣∣∣∣∣∣∣eαβkdp. (4.67)

Since the right hand side of the equation (4.67) exists because the Wiener’s norm is finite (equa-
tion(4.40)), the dominated convergence theorem permits to swap limit and series in the right hand
side of the equation (4.62) :

lim
m→+∞

1
2iπ

∫ α+iωm

α−iωm

∑
k,n∈Z

Hk
0,n
e−(p− 2iπn

T
)s

p− 2iπn
T

ep(t+βk)dp

=
∑
k,n∈Z

1
2iπH

k
0,ne

2iπn
T

(t+βk) lim
m→+∞

∫ α− 2iπn
T
−iωm

α− 2iπn
T
−iωm

ep(t+βk−s)

p
dp. (4.68)

A classical computation give :

∑
k,n∈Z

1
2iπH

k
0,ne

2iπn
T

(t+βk) lim
m→+∞

∫ α+iωm

α−iωm

ep(t+βk−s)

p
dp =

∑
α(t+βk−s)>0,n∈Z

Hk
0,ne

2iπn
T

(t+βk). (4.69)

Putting together the equations (4.45), (4.62) and (4.69), we obtain the result of the Lemma 6.5.

�
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4.5 Necessity
The Henry-Hale Theorem 5.17 deals with a necessary and sufficient condition to ensure the stability
of the linear delay system (4.4). The sufficiency is proved in the same manner as proceded in the
section 4.4. The necessity is proved through the spectral theory of semigroup. We cannot follow
this path to show the necessity when the system becomes periodic because we have not a semigroup.
The goal of this section is to prove the necessity of the assumptions of the theorem 4.3. To tackle
the problem, we will consider an input-output system. More precisely, we want to prove under the
C0 exponential stability of the System (6.6) that the assumptions i and ii are verified. Before the
proof of this fact in the section 4.5.2, we start by the statement of some stability results for the
periodic system (6.6) and we establish a variation of constant formula for the system (6.6) which is
disturbed by a square integrable function on each compact in the section 4.5.1.

4.5.1 Stability, monodromy operator and variation of constant formula

Until now, we dealt we the C0 stability. Here we need square integrable initial data on the interval
[s− τN , s] to have a square integrable solution to (6.6). We define the space :

L2 := {φ ∈ L2([−τN , 0],Cd)}. (4.70)

We endow L2 with the following norm :

||φ||2 :=
(∫ 0

−τN
||φ(θ)||2

)1/2
. (4.71)

For φ ∈ L2, a recursive argument shows that the system (6.6) admits a unique square integrable
solution on each compact y with y(s+ θ) = φ(θ) for almost all θ ∈ [−τN , 0]. Thus, we may define
the solution operator:

U2(t, s) : L2 → L2 (4.72)
φ 7→ U2(t, s)φ, (4.73)

where (U2(t, s)φ) (θ) = {y(t+ θ), for almost all θ ∈ [−τN , 0]}.

Definition 4.6. The zero solution of the system (6.6) is called L2 asymptotically exponentially
stable if there exist γ > 0 and K > 0 such that :

||U(t, s)φ||2 ≤ Ke−γ(t−s)||φ||2, for all s ∈ R, all t ≥ s and all φ ∈ L2. (4.74)

It is a classical fact that the spectrum of the monodromy operators give the exponential stability
of the system (see for example [BP01, lem. 4.2]) :

Proposition 4.7. The system (6.6) is L2 (resp. C0) exponentially stable if and only if the spectral
radius of the monodromy operator U2(T, 0) (resp. U(T, 0)) is strictly less than one.

A nice result that we can find in [CMS16, Corollary 3.29] or [BFLP20, Theorem 3.4] is that the
L2 stability is equivalent to the C0 stability :

Proposition 4.8. The system (6.6) is L2 exponentially stable if and only it is C0 exponentially
stable.

We consider the system (6.6) disturbed by a function u :

y(t) =
N∑
j=1

Dj(t)y(t− τj) + u(t), t ≥ s. (4.75)

We note for t ≥ s, yt(θ) = y(t+ θ) for θ ∈ [−τN , 0].
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Proposition 4.9. For all s ∈ R, if y(·) and u(·) belong to L2
loc([s−τN ,+∞[,Cd) and L2

loc([s,+∞[,Cd)
respectively and which verify the equation (6.19) for almost all t ≥ s, we have for all t ≥ s :

yt = U2(t, s)ys +
∫ t+

s−
dαK(t, α)u(α), (4.76)

where the previous integral is understood in Bochner sense and

K(t, α)(θ) =
∫ α+

s
dvX(t+ θ, v), (4.77)

with X(·, ·) the fundamental solution defined in (4.22).

Proof. With no loss of generality, we can assume s = 0. For t = 0, we have by the definition of the
fundamental solution that :

U2(0, 0)y0 +
∫ 0+

0−
dαK(t, α)u(α) = y0. (4.78)

Let θ ∈ [−τN , 0] and t > 0 such that t+θ > 0, We prove that the formula (6.25) verifies the equation
(6.19) in t+ θ for almost θ. We note ỹt = U2(t, s)ys. We have :

yt(θ) = y(t+ θ) = ỹ(t+ θ) +
∫ t+

0−
dαX(t+ θ, α)u(α)

=
N∑
i=1

Di(t+ θ)y(t+ θ − τi) + u(t+ θ).

�

Proposition 4.10. Assume that the Dj : R → Cd×d are periodic and differentiable with Hölder
continuous derivative for 1 ≤ j ≤ N , .i.e Dj(·) ∈ C1,δ with δ ∈]0, 1[. For all s real, the distribution
t 7−→ dsX(t, t− s) is T -periodic and belongs to the space C1,δ. Moreover for all t, τ real there exists
K, γ > 0 such that : ∫ τ

0

∥∥∥∥∥ ∂j∂tj dsX(t, t− s)
∥∥∥∥∥ ≤ Keγτ , for j = {0, 1, 1 + δ}. (4.79)

Proof. With the definition of the fundamental solution X(·, ·) in the equation (4.22), we can see
that the distribution t 7−→ dsX(t, t− τ) is composed of a sum of Dirac on the set F defined in the
equation (4.23), more precisely we have :

dsX(t, t− s) =
∑
n∈F

En(t)δn(s), (4.80)

where En(t) represents a finite product of some elements (possibly delayed) of the family (Dj(·))1≤j≤N
and δn denotes the Dirac in n ∈ F . By the assumption we deduce that the distribution t 7−→
dsX(t, t− s) is T -periodic and belongs to the space C1,δ. Let τ, t real and :

Y (t, τ) :=
∫ τ

0
dsX(t, t− s), (4.81)

Z(t, τ) :=
∫ τ

0
‖dsX(t, t− s)‖ . (4.82)
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We have by the formula (4.22) that :

Y (t, τ) =
N∑
j=1

Dj(t)Y (t− τj , τ − τj). (4.83)

Since Y (·, ·) is periodic in its first variable we deduce from the equation (4.83) that there exists a
K > 0 such that for all real t, τ :

Z(t, τ) ≤ K

 N∑
j=1

Z(t, τ − τj) + 1

 . (4.84)

Performe an induction like we did to prove the exponential growth of the fundamental solution
X(·, ·) (see equation (4.25)), we conclude that

Z(t, τ) ≤ K ′eγτ , (4.85)

for some γ and K ′ positive real, and we proved the equation (4.79) for j = 0. The use of the same
reasonning would prove the majoration (4.79) for j = 1 or 1 + δ as well.

�

4.5.2 Proof necessity theorem 4.3

From now, we assume that the hypothesis of the theorem 4.3, ie the system (6.6) is C0 exponentially
stable. We give in this subsection the link between the spectrum of the monodromy operator
associated to the periodic linear difference delay system (6.6) and the operator Ĥ−1. The ideas
follow the ideas in [Möl00]. We consider the input-output system (6.19) with initial data 0 and at
the time 0, ie let u ∈ L2

loc([0,+∞),Cd) the input and let the y(t) ∈ Cd the output at the time t ≥ 0,
more precisely :

y(t) =
N∑
j=1

Dj(t)y(t− τj) + u(t), for allmost all t ≥ 0, (4.86)

with y(t) = 0 for t ≤ 0. We note the Laplace transform of y(t) and u(t) :

Ŷ (p) :=
∫ +∞

0
e−pty(t)dt, (4.87)

Û(p) :=
∫ +∞

0
e−ptu(t)dt. (4.88)

It has to be noted that developping the system (6.43) in Fourier series, taking the Laplace transform
and swapping the series and the Laplace transform like we did for the fundamental solution X(·, ·)
in the proof of the theorem 4.3, we obtain for p complex with a real part enough large :

Ŷ(p) = Ĥ−1(p)Û(p), (4.89)

Ŷ(p) :=



...
Ŷ (p+ 2iπ

T )
Ŷ (p)

Ŷ (p− 2iπ
T )

...


, Û(p) :=



...
Û(p+ 2iπ

T )
Û(p)

Û(p− 2iπ
T )

...


and Ĥ(p) := I∞ −

N∑
j=1

e−pτjLDjD̃τj .
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For the electronic engineers the operator Ĥ−1(·) is called the harmonic transfer function and it
links the input of the system with the output [Wer90, Lou14]. Put the variation constant formula
(6.25) in the equation (6.43) leads to :

y(t) =
∫ t+

0
dαX(t, α)u(α), t ≥ 0, (4.90)

where X(t, α) is the fundamental solution defined in the equation (4.22). We define the instantaneous
transfer function :

G(s, t) =
∫ +∞

0
dτX(t, t− τ)e−sτ , (4.91)

for s ∈ C. We can deduce from the proposition 6.13 that the function t 7→ G(t, s) is C1+δ and T
periodic. We developp in Fourier series the instantaneous transfer function :

G(s, t) =
∑
n∈Z

Gn(s)eiω0nt, (4.92)

with ω0 := 2π/T . Where there exists K(<(s)) real positive which depend only of the real part
enough large of s complex such that ([Zyg02, Ch. 2, thm. 4.7]) :

|Gn(s)| ≤ K(<(s))
1 + |n|1+δ . (4.93)

We deduce from the equations (4.90), (4.92) and (6.22) :

Y (s+ inω0) =
∑
m

Gn−m(s+ 2iπm
T

)U(s+ imω0). (4.94)

Combining the equations (4.89) and (4.94), we see that the Ĥ−1
m,n(p) = Gn−m(p + 2iπm

T ). In the
view to bring out the monodromy operator and the link with the operator Ĥ−1(p), we discretise
the continuous dynamical system in a discrete dynamical one. For that we consider the input and
the output on interval of length T . Put :

ũk := u(kT + t) for t ∈ [0, T ] and k ∈ N,
ỹk := y(kT + t) for t ∈ [0, T ] and k ∈ N,
z̃kT := y(kT + θ) for θ ∈ [−τN , 0] and k ∈ N,

Thus we have the following discrete system :

Theorem 4.11. We have for all integer positive k :

{
z̃(k+1)T = Ãz̃kT + B̃ũk

ỹk = C̃z̃kT + D̃ũk
(4.95)

where :

• Ã : L2([−τN , 0],Cd) −→ L2([−τN , 0],Cd)
v 7−→ U2(T, 0)v.
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• B̃ : L2([0, T ],Rd) −→ L2([−τN , 0],Cd)
v 7−→

∫ T+·
0 d[K(T, α)]v(α),

• C̃ : L2([−τN , 0],Cd) −→ L2([0, T ],Cd)
v 7−→ U2(·, 0)v(0)

• D̃ : L2([0, T ],Cd) −→ L2([0, T ],Cd)
v 7−→

∫ ·
0 dαX(·, α)v(α),

• z̃0 = 0

Proof. Using the variation constant formula (6.25) in the system (6.43), we obtain for t ∈ [0, T ] :

{
z̃(k+1)T = U2((k + 1)T, kT )z̃kT +

∫ (k+1)T
kT dαK((k + 1)T, α)u(α),

y(t+ kT ) = U2(t, 0)z̃kT (0) +
∫ t+

0 dαX(t, α)uk(α).

By the periodicity, we have the result.

�
For a sequence of elements a := (an)n∈N we define the p-transform as:

L{a}(p) :=
∑
n∈N

anp
−n, (4.96)

when for p ∈ C this series exists. Take the p-transform with a great modulus in the equations (6.53),
we have :

L{y}(p) = [C̃(pId− Ã)−1B̃ + D̃]L{u}(p), (4.97)

where y := (yn)n∈N and u := (un)n∈N. On in the other side, we can compute the impulsional
response of the discrete system and we have :

ỹn(t) =
n∑
k=0

H[k]ũn−k(t), (4.98)

where :

H[k]v(t) =
∫ T

0
dτX(kT + t, τ)v(τ) (4.99)

is the discrete impulsional response of the discretised dynamical system. Take the p-transform in
the equation (6.56) for p with great modulus (which is licit because of proposition 6.13), we have:

L{y}(p) = L{H}(p)L{u}(p), (4.100)

where H := (H[n])n∈N. Since we assumed that the system (6.6) is C0 exponentially stable, we have
through the propositions 6.3 and 4.8 that Ã = U2(T, 0) has its spectrum strictly inside the unit disk.
We note a, a positive real strictly less than one, the spectral radius of the operator U2(T, 0). We
introduce the set Pa := {z ∈ C||z| > a} and for p complex with a real part enough large, we deduce
from the equations (6.55) and (6.58) that :

L{H}(p) = C̃(pId− Ã)−1B̃ + D̃, (4.101)

and by analytic continuation, the equation (6.59) holds on Pa.
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Lemma 4.12. For t ∈ [0, T ], we have :

G(s, t) = e−st
[
L{H}(esT )es·

]
(t) (4.102)

Proof. We have, by the definition of the p-transform and the equation (6.57), for v ∈ L2([0, T ],R)
and t ∈ [0, T ] that:

L{H}(p)v(t) =
+∞∑
k=0

H[k]v(t)p−k (4.103)

=
+∞∑

k=−∞
p−k

∫ T

0
dτX(kT + t, τ)v(τ). (4.104)

and on the other side the equation (6.48) where we performed an integration by substition (t→ t−τ)
and using the periodicity of the system leads to :

G(s, t) =
∫ t

−∞
dτX(t, τ)es(τ−t) (4.105)

=
∫ +∞

−∞
dτX(t, τ)es(τ−t) (4.106)

=
+∞∑

k=−∞

∫ T

0
dτX(t, τ − kT )es(τ−t−kT ) (4.107)

=
+∞∑

k=−∞
e−s(t+kT )

∫ T

0
dτX(t+ kT, τ)esτ (4.108)

and thus we have the result with p = esT .

�
Fix s ∈ C with real part enough large. Let

Λ(s) : L2([0, T ],Cd)→ L2([0, T ],Cd), (4.109)

where [Λ(s)φ](t) = e−st[L{H}(esT )es·φ(·)](t) for all φ ∈ L2([0, T ],Cd). Because the equation (6.22)
justifies the swapping between the series, we deduce from the lemma 6.25 and the equation (4.92)
that the Fourier development of Λ(s)φ(t) is :

Λ(s)φ(t) =
∑
n∈Z

∑
k∈Z

Gn−k(s+ 2iπk/T )ak

 e2iπn/T , (4.110)

with (ak)k∈Z the Fourier coefficient of φ. We have that the operator [pId− U2(T, 0)]−1 is uniformly
bounded for p ∈ Pa, then we deduce that there exists a constant C > 0 independ of s ∈ {z ∈
C|<(z) > ln(a)

T } such that :

||Λ(s)φ||2 ≤ C||φ||2 (4.111)

By Parseval’s identity, we deduce from the equations (4.110) and (4.111) that there exists C ′ > 0
such that for all s ∈ {z ∈ C|<(z) > ln(a)

T } :∣∣∣∣∣∣∣∣∣Ĥ−1(s)
∣∣∣∣∣∣∣∣∣

2
≤ C ′,

which conclude the proof of necessity of the theorem 4.3.
�
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4.6 Discussion, Corollaries and Stability of 1-D Hyperbolic Sys-
tems with linear periodic boundaries

In the Henry-Hale Theorem 5.17 for the constant difference delay system the assumption (b) consists

to invert the matrix operator I −
N∑
j=1

Dj e
−pτj for all complex p with real part greater than a some

strictly negative α. Thanks to the determinant and the theory of complex analytic almost periodic
function (see [Bes54]), we have that the assumption (b) implies :

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I − N∑

j=1
Dj e

−pτj

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ is uniformly bounded in euclidean norm for all p ∈ {z ∈ C|<(z) ≥ α}.(4.112)

In our Theorem 4.3 for the periodic delay system, the condition (b) is replaced by the inversion

of the infinite matrix operator I∞ −
N∑
j=1

e−pτjLDjD̃τj on the bigger space l2d(Z). More precisily

the assumption (b) become the assumption i in the periodic case. We previously saw that in the
constant case the condition (b) implies the condition (4.112). In the case of periodic difference
delay system the question of knowing if the condition i. imply the condition ii. is still open. The
difficulties are that there exixts few results about inverse of analytic almost periodic Banach valued
function probably because the Rouché theorem fails to apply for general operator. However if we
assume that the delays are commensurable, ie for each i ∈ {1, · · · , N} and j ∈ {1, · · · , N} there

exists p and q two integers such that τi/τj = p/q, thus the operator I∞ −
N∑
i=1

e−pτiLDiD̃i is periodic
in the variable p and we can deduce that the assumption i implies the assumption ii which leads to
the following corollary :

Corollary 4.13. If the delays are commensurable then the Theorem 4.3 is true without the condition
ii.

Remark 4.14. We have assumed that the periodic matrices Di(·) were in the space of the differ-
entiable operator with Hölder derivative. Actually, the Theorem 4.3 would be true if we omit to
impose regularity assumption on Di and we replace the assumption ii by the following which is more
difficult to check :∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I∞ − N∑

i=j
e−pτjLDjD̃j

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
W

is uniformly bounded for all p in {z ∈ C|<(z) ≥ α}. (4.113)

Hitherto we give a condition stability for the periodic delay system (6.6) in terms of the Laurent
matrices associated to the fourier development of Dj(·) for j = 1, · · · , N . In some special cases, we
can deduce a stability condition directly from the Dj(·) for j = 1, · · · , N . It is the subject of the
following corollary :

Corollary 4.15. If the column of the periodic delay system (6.6) are disjoint, ie if for some k, n ∈ Z
we have (Di)k,n 6= 0 thus for all j 6= i and for all k̃ ∈ Z we have (Dj)k̃,n = 0. If there exists an
invertible diagonal matrix D such that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣D

N∑
i=1

Di(t)D−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < 1, (4.114)

for all t real, then the system is exponentially asymptotically stable.
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Proof. If we note LD the Laurent matrix of D, we have, because of the column are disjoint and by
properties of Laurent’s matrices (see [BS99]), that :∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣LD

N∑
i=1

e−pτiLDiD̃iL
−1
D

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
≤ sup

t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣D

N∑
i=1

e−pτiDi(t)D−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣, (4.115)

< 1. (4.116)

for some γ < 0 and p ∈ {p̃ ∈ C|Re(p̃) ≥ γ}. Thus I∞ −
N∑
j=1

e−pτjLDjD̃τj is invertible in l2k(Z) to

l2k(Z) and uniformly bounded in the space of{p̃ ∈ C|Re(p̃) ≥ γ}. Thus we have the result by the
theorem 4.3.

�
We give now an application to the 1-D hyperbolic PDE and more precisely to the systems

of linear periodic conservation laws. We will prove that these kinds of equations are equivalent
to a periodic difference delay system with the disjoint column property which permits to use the
stability results of the corollary 4.15. More precisely, we consider the hyperbolic system following
the notation of the chapter 3 of [BC16] :

∂tR(t, x) + Λ∂xR(t, x) = 0, (t, x) ∈ Ω (4.117)

where the diagonal matrix Λ is defined as

Λ :=
(

Λ+ 0
0 −Λ−

)
, with

{
Λ+ = diag{λ1, · · · , λm}
Λ− = diag{λm+1, · · · , λn}

λi > 0, i = 1, · · · , n, (4.118)

with
Ω = {(t, x) ∈ IR2, 0 < x < 1 and 0 < t < +∞}. (4.119)

We note R :=
(
R+

R−

)
, where :

R+ =


R1
...
Rm

 and R− =


Rm+1

...
Rn

 . (4.120)

And the boundary conditions :

(
R+(t, 0)
R−(t, 1)

)
= K(t)

(
R+(t, 1)
R−(t, 0)

)
. (4.121)

First of all, let us give a precise meaning to (4.117) when R(t, x) is assumed continuous. Indeed,
(4.117) a priori requires differentiability and (4.121), as well as definition of the initial conditions
R+(0, .) and R−(0, .), require that R+ and R− prolong to some functions on the boundary of Ω (this
boundary is {0}×[0, 1] ∪ [0,+∞)×{0} ∪ [0,+∞)×{1}). We note Ω the set of Ω plus its boundary.

Concerning (4.117), it must simply be taken in the sense of distribution, i.e. R(t, x) belonging
to C0(Ω, IR), are said to be a solution of (4.117) if one has∫∫

Ω

(
∂tϕ
∗ + ∂xϕ

∗Λ
)
Rdtdx = 0 (4.122)
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for any smooth functions ϕ : Ω→ Rn with compact support contained in Ω.

By the characteristic method, it is well known that if R is continuous function checking the
equation (5.14) then there exist n functions such that

R+(t, x) =


x1(x− λ1t)

...
xm(x− λmt)

 and R−(t, x) =


x1(x+ λm+1t)

...
xm(x+ λnt)

 , (4.123)

where xk is continuous in ] − ∞, 1[ for k = 1, · · · ,m and xk is continuous in ]0,+∞[ for
k = m + 1, · · · , n. Considering the continuously continuation in 1 and 0 respectively, noting
yk(t) = xk(−λkt) for k = 1, · · · ,m, yk(t) = xk(1 + λkt) for k = m + 1, · · · , n and τi = 1

λi
for all

i = 1, · · · , n, the equation (4.121) become :


y1(t)
...

yn(t)

 = K(t)


y1(t− τ1)

...
yn(t− τn)

 , (4.124)

which is a periodic delay system and has the nice property to have the column disjoint.

Theorem 4.16. There is a unique map (t, x) 7→ R(t, x), continuous Ω→ Rn which is a solution of
(4.121)-(5.14).

Proof. The system (4.121)-(5.14) leads to the delay difference system (4.124). Since a delay difference
system admit a unique continuous solution, we have the result via the equation (4.123).

�

Theorem 4.17. If there exists an invertible diagonal matrix D such that ||DK(t)D−1||2 < 1 and
K(t) is a differentiable function with continuous Hölder derivative then there exists γ,K > 0 such
that, for all solutions given by Theorem 5.7 one has:

‖R(t, ·))‖C0([0,1],IRn) ≤ Ke
−γt ‖R(0, ·)‖C0([0,1],IRn) for all t ≥ 0). (4.125)

Proof. Since the system (4.124) has its columns disjoints we can apply the corollary 4.15 which
gives the exponential stability of the system (4.124). Then we obtain the equation (4.125) via the
equation (4.123).

�
The theorem 4.17 is the generalization of the theorem 3.7 in the book of Bastin and Coron

[BC16] in the case of smooth linear periodic boundaries for hyperbolic systems.

4.7 Conjectures for more general linear periodic delay systems

It might be possible to generalize the results obtained for the difference delay system for more
general delay equations. In this section we give conjectures about periodic linear difference delay
with a countable number of delay and periodic linear neutral differential equation. We indicate
where we need more ideas than we had for the theorem 4.3 to conclude the proofs of the conjectures.
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4.7.1 Infinite countable delays

y(t) =
∞∑
j=1

Dj(t)y(t− τj), t ≥ s, (4.126)

where s ∈ R is the initial time, d and N are positive integers, Dj : R → Cd×d is a continuous
T-periodic matrix-valued function for 1 ≤ j < ∞, and the solutions to (4.126) are Cd valued
functions t 7−→ y(t) of the time t. We assume that 0 < τj ≤ r for some real r > 0, ∑ ||Dj || < ∞
and ∑τj≤ε ||Dj(t)|| tends uniformly in t to 0 when ε tends to 0+. We define the space :

Cs := {φ ∈ C0([−τN , 0],Cd)|φ(0) =
∞∑
j=1

Dj(s)φ(−τj)}. (4.127)

Since the reasonning did in the appendix can be applied for this system, we have for φ ∈ Cs than
the system (4.126) admits a unique continuous solution y with y(s + θ) = φ(θ) for θ ∈ [−τN , 0].
Thus, we may define the solution operator:

U(t, s) : Cs → Ct (4.128)
φ 7→ U(t, s)φ, (4.129)

where
(
U(t, s)φ

)
(θ) = {y(t+ θ), θ ∈ [−τN , 0]}.

Definition 4.18. The zero solution of the system (4.126) is called C0 asymptotically exponentially
stable if there exist γ > 0 and K > 0 such that :

||U(t, s)φ||∞ ≤ Ke−γ(t−s)||φ||∞, for all s ∈ R, all t ≥ s and all φ ∈ Cs. (4.130)

Conjecture 1. Assume that the Dj : R → Rd×d are periodic and differentiable with Hölder
continuous derivative for 1 ≤ j <∞. We have the following equivalence :

• there exists a real number α < 0 such that :

i. I∞ −
∞∑
j=1

e−pτjLDjD̃τj is invertible in l2d(Z) to l2d(Z) for all p ∈ {z ∈ C|<(z) ≥ α},

ii.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I∞ − ∞∑

j=1
e−pτjLDjD̃τj

−1
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

is uniformly bounded for all p ∈ {z ∈ C|<(z) ≥ α},

• the System (4.126) is C0 exponentially stable.

For the sufficiency the proofs of the lemmas 6.4 and 6.5 do not hold anymore because it is
possible to have an accumalation point of delay. For the necessity, it must be possible to prove the
conjecture 1 as we did for theorem 4.3 with no other difficulties than technical details.

4.7.2 Periodic linear neutral differential equation

We consider the periodic linear neutral differential system :

d

dt

y(t)−
N∑
j=1

Dj(t)y(t− τj)

 =
N∑
k=0

Bk(t)y(t− τk), t ≥ s, (4.131)
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where the notations follow the notations given in the section 4.3, and τ0 = 0 and Bk : R→ Cd×d
is a continuous T-periodic matrix-valued function for 0 ≤ k ≤ N . We may define the solution
operator :

Ũ(t, s) : C0([−τN , 0],Cd) → C0([−τN , 0],Cd) (4.132)
φ 7→ Ũ(t, s)φ, (4.133)

where
(
Ũ(t, s)φ

)
(θ) = {y(t+ θ), θ ∈ [−τN , 0]}.

Definition 4.19. The zero solution of the system (4.131) is called C0 asymptotically exponentially
stable if there exist γ > 0 and K > 0 such that :

||Ũ(t, s)φ||∞ ≤ Ke−γ(t−s)||φ||∞, for all s ∈ R, all t ≥ s and all φ ∈ C0([−τN , 0],Cd). (4.134)

We define the following diagonal matrix for p complex :

Dω0(p) := Diag(· · · , (p+ iω0)Id, pId, (p− iω0)Id, · · · ), (4.135)

with ω0 := 2π/T . We define too :

H(p) := Dω0(p)

I∞ − N∑
j=1

e−pτjLDjD̃τj

− N∑
k=0

e−pτkLBkD̃τk (4.136)

Conjecture 2. Assume that the Dj(·) and Bk(·) are periodic and differentiable with Hölder contin-
uous derivative for 1 ≤ j ≤ N and 0 ≤ k ≤ N . We have the following equivalence :

• there exists a real number α < 0 such that :

i. H(p) is invertible in l2d(Z) to l2d(Z) for all p ∈ {z ∈ C|<(z) ≥ α},

ii.
∣∣∣∣∣∣∣∣∣H(p)−1

∣∣∣∣∣∣∣∣∣
2
is uniformly bounded for all p ∈ {z ∈ C|<(z) ≥ α},

• the System (4.131) is C0 exponentially stable.

The difficulty of the sufficiency comes from the matrix Dω0(p) which do not permit to prove
again the lemmas 6.4 and 6.5 as we did for the theorem 4.3. The necessity can be done in a same
way than for the theorem 4.3.



Chapter 5
Sufficient Stability Conditions for
Time-varying Networks of
Telegrapher’s Equations or Difference
Delay Equations

The present Chapter 5 is based entirely on the preprint [BFLP20], conditionally accepted
for publication.
The chapter deals with the stability assumptions ensuring that a time-varying network
of Telegrapher’s equation is exponentially stable with the norm. There is also a stability
result for a subclass of linear time-varying delay equations. Only the conclusion of
this chapter differs from [BFLP20], it consists in the comparison of the stability results
obtained in Chapter 4 for a general periodic difference delay system and the stability
results established the present chapter.

5.1 Introduction
The stability of electrical circuits operating at high frequency, that is, when delays induced by wires
cannot be neglected, has received a lot of attention in the last decades, see for example references
[Bra68, RN02]. At such an operating regime, wires should be considered as transmission lines, and
it is customary to model each of them by a lossless telegrapher’s equation (a 1-D hyperbolic partial
differential equation, in short: PDE) where voltage and current are functions of abscissa and time.
The other elements in the circuit, some of which may be active and nonlinear (transistors, diodes),
induce couplings between the boundary conditions of these PDE consisting of a system of both
differential and non-differential equations with finite-dimensional state, obtained by applying the
classical laws of electricity, at each node, to the boundaries that “touch” this node.

Periodic solutions for such infinite dimensional dynamical systems occur naturally in several
contexts; for instance, they arise spontaneously in the case of oscillators, or through periodic forcing
in the case of amplifiers (the forcing is the signal to be amplified, represented for instance by a
periodic voltage source). Assuming a periodic solution, one may linearize the equations around the
latter to investigate its local exponential stability, based on the exponential stability of the first order
approximation. The linearized system consists of the original collection of telegrapher’s equations
(which are linear already), coupled at their nodes (i.e. the endpoints of a line) by a set of linear
differential and non-differential equations with periodic coefficients, obtained by linearizing the initial
couplings, see [Sua09]. To this linear system, one associates a high frequency limit system (in short:
HFLS), where the linear differential equation at each node degenerates into a linear, time-varying
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but non-differential relation (i.e. there is no dynamics in the couplings at infinite frequencies), so
that the state of the HFLS reduces to currents and voltages in the lines. The behavior of the HFLS
is crucial to the stability of the linearized system, because the solution operator of the latter is, in
natural functional spaces, a compact perturbation of the solution operator to the HFLS, see [HVL93,
ch. 3, thm. 7.3] and [Fue20]. In particular, the stability of the HFLS is essentially necessary to the
stability of the linearized system.

The HFLS is a system of lossless 1-D telegrapher’s equations, with linear couplings that depend
on time in a periodic manner. With this application in mind, the present paper is devoted, more
generally, to the stability of lossless 1-D telegrapher’s equations with linear time varying couplings
whose coefficients are measurable and uniformly essentially bounded with respect to time, but not
necessarily periodic. As is well known, integrating the telegrapher’s equation yields an expression
of the general solution in terms of two (essentially arbitrary) functions of one variable, and this
allows one to recast the original system as a time-varying linear difference delay system; the two
frameworks are equivalent to study issues of stability.

Stability of networks of hyperbolic PDEs has been addressed extensively, including more
general systems of conservation laws than telegrapher’s equations (possibly nonlinear), but almost1

only when the boundary conditions (i.e. the couplings) consist of time-independent relations, see
[BC16, CN15] and the bibliography therein. Another possible, different application of these criteria
is to stabilization of such equations with control, like in [CVKB13, HVL02] for instance. As far as
methods are concerned, Lyapunov functions are a classical tool to obtain sufficient stability conditions,
see [BC16] where they are applied to certain systems of hyperbolic PDEs with conservation laws, or
for instance [FT09], where Lyapunov functions are constructed through linear matrix inequalities, to
retarded delay systems. We are not aware of attempts in this direction for difference delay systems.

In another connection, a typical way of obtaining necessary and sufficient stability conditions for a
time-invariant network of telegrapher’s equations is to apply the Henry-Hale theorem [Hen74, HVL93]
or variants thereof (cf. Section 5.3) to the equivalent difference delay system with constant coefficients.
However, no analog for the time-dependent case seems to be known.

The main contribution of this paper is to establish sufficient conditions for exponential stability
of networks of telegrapher’s equations, in the form of a dissipativity assumption on the couplings
at each node of the network, which is fairly natural in a circuit-theoretic context. We also derive
sufficient conditions for exponential stability of time-varying difference delay systems, that are a
consequence of the former and of independent interest. To our knowledge, this is the first result of
this kind in the time-varying case. The proof, which involves going back and forth between the
PDE formulation and the difference delay system formulation, has interesting features that should
be useful in other contexts as well. Roughly speaking, we rely on classical energy estimates to first
obtain a Lyapunov function in the L2 sense for each telegrapher’s equation, using the dissipativity
condition at each node; this allows us to show L2 exponential stability of the system of PDE,
therefore also of the associated delay system. In a second step, we deduce from the L2 exponential
stability of the difference delay system its exponential stability in the L∞ sense (and in fact in the
Lp sense for all p ∈ [1,∞]). This second step is actually subsumed under the work in [CMS16],
but we feel our derivation is simpler and worthy in its own. Note that applications to the local
stability of a periodic trajectory in an electrical network indeed require L∞ stability (or C0 stability)
and not just L2 stability, for the state along a perturbed trajectory of the linearized system must
remain uniformly close to the state along the periodic trajectory of the original system, in order that
linearization remains meaningful. This paper makes no attempt at handling more general PDEs or

1 As an anonymous reviewer pointed out to us, although the paper [CN15] deals with local stability of an equilibrium
point for nonlinear time-invariant hyperbolic systems, it contains a statement (Lemma 3.2) about stability of smoothly
time-varying linear systems of hyperbolic PDEs for some Sobolev norm. We discuss this further in Section 5.3.2 and
sketch in Section 5.4.4 how the proof of that lemma may be adapted here.
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coupling conditions. We rather tried to remain as elementary as possible in treating the problem at
hand. In particular, our arguments for well posedness may fail for general hyperbolic 1-D equations,
for which notions like broad solutions were introduced in [Bre00] and used e.g. in [CN19], see also
[BC16] for other approaches.

The paper is organised as follows. Section 5.2 introduces networks of telegrapher’s equations
coupled by time-varying boundary conditions, gives well-posedness results that we could not find
in the literature, discusses the construction of equivalent difference delay systems and defines the
notions of stability under examination here. Section 5.3 contains our main result, both in terms of
networks of telegrapher’s equations and in terms of difference delay equations, while Section 5.4 is
devoted to the proofs.

5.2 Problem statement

5.2.1 A time-varying network of hyperbolic equations

Consider a directed graph with N edges and N ′ nodes, where N and N ′ are two positive integers.
Nodes are numbered by integers p ∈ {1, · · · , N ′}, and edges by integers k ∈ {1, · · · , N}.

Figure 5.2.1 represents a graph with 3 nodes and 4 edges whose only purpose is to illustrate the
definitions.

1 2 31
2

3
4

Figure 5.1 : A graph that induces coupling boundary conditions for (5.1) with N = 4.

Each edge figures a telegrapher equation. More precisely, we see edge number k as a copy of
the real segment [0, 1] (i.e. a transmission line of unit length) on which two real function vk(t, .) and
ik(t, .) are defined for each time t>0 (the voltage and the current) in such a way that the lossless
telegrapher’s equation is satisfied:

Ck
∂vk(t, x)

∂t
= −∂ik(t, x)

∂x
,

Lk
∂ik(t, x)

∂t
= −∂vk(t, x)

∂x
,

(t, x) ∈ Ω , (5.1)

where
Ω = {(t, x) ∈ R2, 0 < x < 1 and 0 < t < +∞}, (5.2)

and, for each k, Lk and Ck are two strictly positive numbers (the inductance and the capacity of
the line k). In (5.3) we define the numbers τk and Kk, often called the delay and characteristic
impedance of the line k, and we assume without loss of generality, possibly after a re-ordering of the
edges, that the delays τk are increasing:

τk =
√
LkCk , Kk =

√
Ck/Lk , 0 < τ1 ≤ τ2 · · · ≤ τN . (5.3)

Each node couples the edges adjacent to it through boundary conditions involving, for each
such edge, the endpoint of [0, 1] that touches the node. More precisely, if

• j(p) is the out-degree of the graph at node p (i.e. the number of edges outgoing from node p)
and ̃(p) the in-degree of the graph at node p (i.e. the number of edges incoming at node p),
and
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• k1 < · · · < kj(p) are the labels of the edges outgoing from node p and kj(p)+1 < · · · < kj(p)+̃(p)
the labels of the edges incoming at node p,

then node p couples the equations (5.1) together by imposing j(p) + ̃(p) relations between the
2(j(p) + ̃(p)) entries of the following two vectors:

Vp(t) =



vk1(t, 0)
...

vkj(p)(t, 0)
vkj(p)+1(t, 1)

...
vkj(p)+̃(p)(t, 1)


, Ip(t) =



−ik1(t, 0)
...

−ikj(p)(t, 0)
ikj(p)+1(t, 1)

...
ikj(p)+̃(p)(t, 1)


. (5.4)

These relations read

Vp(t) = Ap(t)Ip(t), (5.5)

where t 7→ Ap(t) is a map from R+ (the nonnegative real numbers) to the set of square (j(p) +
̃(p))× (j(p) + ̃(p)) matrices which is assumed to be measurable and bounded. In many cases of
interest (e.g. when modeling an electrical circuit), it is moreover continuous. Our results rest on
the following condition characterizing dissipativity at (each) node p:

Ap(t) +A∗p(t) ≥ αp Id, αp > 0 , p ∈ {1, · · · , N ′}, (5.6)

where superscript ∗ denotes the transpose of a matrix and αp is independent of t. Inequality (5.6) is
meant to hold between symmetric matrices, for a.e. t. We shall have an occasion to deal also with
complex matrices, in which case superscript ∗ denotes the transpose conjugate. Here and below,
the symbol Id stands for the identity operator or the identity matrix of appropriate size, while the
context will keep the meaning clear.

Example 1. For the graph in Figure 5.2.1 it holds that N = 4, i.e. we have four telegrapher’s
equations of the form (5.1), numbered with k ∈ {1, 2, 3, 4}, and we have that N ′ = 3, hence we get
three sets of boundary conditions. Let us detail the latter.
- For p = 1, we have j(1) = 1, ̃(1) = 0, and we see from the graph that k1 = 1,
- for p = 2, we have j(2) = 2, ̃(2) = 1, and we see from the graph that k1 = 2, k2 = 4, k3 = 3,
- for p = 3, we have j(3) = 1, ̃(3) = 2, and we see from the graph that k1 = 3, k2 = 2 and k3 = 4.
This yields three equations of the form (5.5) as follows, with A1(t) a scalar, A2(t) is a 4× 4 matrix
and A3(t) a 3× 3 matrix:

v1(t, 0) = −A1(t) i1(t, 0),


v2(t, 0)
v4(t, 0)
v1(t, 1)
v3(t, 1)

 = A2(t)


−i2(t, 0)
−i4(t, 0)
i1(t, 1)
i3(t, 1)

 ,
v3(t, 0)
v2(t, 1)
v4(t, 1)

 = A3(t)

−i3(t, 0)
i2(t, 1)
i4(t, 1)

 .
(5.7)

Remark 5.1 (On the minus signs in the vector Ip in (5.4)). We shall see later why (5.6) amounts
to energy dissipation in some sense. This is one justification for the minus signs in the first entries
of the vector Ip(t) defined by (5.4): removing the minus signs, one may still express the (same)
boundary conditions by an equation like (5.5) with a different Ap(t), but then condition (5.6) will
assume an intricate form. Alternatively, from a circuit-theoretic viewpoint, the minus signs are
justified by Kirchhoff’s law of currents.
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Remark 5.2 (On the normalization of line lengths). We have assumed that the space variable x
belongs to the interval [0, 1] for every k in equation (5.1) rather than [0, `k] for some positive `k.
This is no loss of generality, for such a normalization can always be achieved by a linear change of
variable on x. With this normalization, τk given by equation (5.3) has the meaning of a time delay.

Remark 5.3 (On the possibility of loops). In the above framework, nothing prevents an edge from
being both outgoing from, and incoming to a given node p. In this case, the index k of this edge
appears twice in equation (5.4), once as a kj with j ≤ j(p) and once as a kj(p)+l with l ≤ ̃.

So far, we endowed a system consisting of N PDE, indexed by the edges of our graph (namely:
(5.1)), with boundary conditions given by a collection of N ′ linear time-dependent relations, indexed
by the nodes of the graph (namely: (5.5)). As a result, the boundary conditions at x = 0 and at
x = 1 for a given telegrapher’s equation of the form (5.1) are generally obtained from two different
relations of the form(5.5). To compactify the notation, we shall rewrite the boundary conditions in
lumped form, as a single linear relation between concatenated vectors V(t) and I(t) defined by:

v(x, t) =


v1(x, t)

...
vN (x, t)

 , i(x, t) =


i1(x, t)

...
iN (x, t)

 , V(t) =


v(t, 0)

v(t, 1)

 , I(t) =


−i(t, 0)

i(t, 1)

 , (5.8)

that aggregate all boundary values of voltages and currents in the lines. Since the concatenation of
all vectors Vp(t) (resp. Ip(t)) defined in (5.4) contains each component of V(t) (resp. I(t)) exactly
once, as p ranges from 1 to N ′, there is a 2N×2N permutation matrix P1 such that

V1(t)
...

VN ′(t)

 = P1 V(t) ,


I1(t)
...

IN ′(t)

 = P1 I(t) . (5.9)

The set of equations (5.5), 1 ≤ p ≤ N ′, can now be written as

V(t) = A(t) I(t) (5.10)

with
A(t) = P−1

1 diag(A1(t), . . . , AN ′)P1 (5.11)

where diag(A1(t), . . . , AN ′(t)) is a block-diagonal 2N × 2N matrix. Note that this “aggregated”
notation may be understood as collapsing all the nodes into a single one; all edges are then “loops”
as described in Remark 5.3. Clearly, the hypotheses on Ap made in (5.6) translate into the following
assumption on the matrix A(t) that will be used throughout the paper :

Assumption 5.4. The map t 7→ A(t) is measurable and essentially bounded [0,+∞)→ R2N×2N ,
moreover there exists a positive number α, independent of t, such that

A(t) + A∗(t) ≥ α Id, α > 0 t ∈ R. (5.12)

5.2.2 Well posedness of evolution problem in the Lp and C0 cases

Equations (5.1) (1 ≤ k ≤ N) and (5.10)-(5.8) define a linear time-varying dynamical system, whose
state at time t consists of a collection of 2N real functions on [0, 1], namely x 7→ vk(t, x) and
x 7→ ik(t, x) for 1 ≤ k ≤ N . Before we can study the stability of this dynamical system, we need
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to address the issue of well posedness, i.e. of existence and uniqueness of solutions given initial
conditions vk(0, .) and ik(0, .) (the Cauchy problem). When the matrices Ap(t) (or equivalently the
matrix A(t)) do not actually depend on t, well-posedness results are classical, see for instance the
textbooks [BC16, Daf10].

In the time-varying case, which is our concern here, a very definition of well-posedness seems hard
to find in the literature, perhaps because the introduction of time dependent boundary conditions
leads to a failure of classical semigroup theory. We shall consider two cases according to whether
the state at time t consists of continuous functions or merely Lp-summable functions on [0, 1],
1 ≤ p ≤ ∞.

To fix notation, we denote respectively by N and R the sets of nonnegative integers and real
numbers. We also recall the notation R+ for nonnegative real numbers. We write the Euclidean
norm of x ∈ Rl as ‖x‖, and the Euclidean scalar product of x, y ∈ Rl as 〈x, y〉, irrespectively of
l. We put C0(E) for the space of real continuous functions on any (topological) space E. When
E is compact we endow C0(E) with the sup norm. Also, whenever E ⊂ Rl is measurable and
1 ≤ p <∞, we put Lp(E) for the familiar Lebesgue space of (equivalent classes of a.e. coinciding)
real-valued measurable functions on E whose absolute value to the pth power is integrable, endowed
with the norm ‖f‖Lp(E) = (

∫
E |f(x)|pdx)1/p where dx indicates the differential of Lebesgue measure

(restricted to E). The space L∞(E) corresponds to real, essentially bounded Lebesgue measurable
functions, normed with the essential supremum of their absolute value on E. More generally, for F
a Banach space with norm ‖.‖F , we let C0(E,F ) be the space of F -valued continuous functions on
E, and if E is compact we set ‖f‖C0(E,F ) = supE ‖f‖F . In a similar way, Lp(E,F ) is the space of
F -valued measurable functions f on E such that ‖f‖F ∈ Lp(E). We also define locally integrable
functions: Lploc(E) designates the space of functions whose restriction f|K to any compact set K ⊂ E
belongs to Lp(K). Likewise, we let Lploc(E,F ) be the space of F -valued measurable functions f on E
such that ‖f‖F ∈ Lploc(E). Since Rl is σ-compact, the topology of Lp-convergence on every compact
set is metrizable on Lploc(Rl, F ). The spectral norm of a linear operator B : F1 → F2 between two
Banach spaces is |||B||| = supx∈F1 ‖Bx‖F2/‖x‖F1 , keeping the notation independent of F1, F2 for
simplicity.

Next, let us make precise the meaning of (5.1) and (5.10) when vk and ik lie in L1
loc(Ω), where Ω

is defined by (5.2) and Ω indicates the closure of Ω in R2. Later, we shall see this space is big enough
to accomodate cases we have in mind. Note that Ω = [0,∞)× [0, 1], and that L1

loc(Ω) identifies with
a subspace of L1

loc(Ω), since [0,∞)× [0, 1] \Ω has 2-D Lebesgue measure zero. Indeed, the latter set
is just the boundary ∂Ω of Ω in R2:

∂Ω = ({0}×(0, 1)) ∪ ([0,+∞)×{0}) ∪ ([0,+∞)×{1}) . (5.13)

Equation (5.1) is understood in the distributional sense as soon as (vk, ik) ∈ L1
loc(Ω)× L1

loc(Ω).
That is, (vk, ik) is a solution to (5.1) if, for all C∞-smooth functions ϕ : Ω → R with compact
support, it holds that ∫∫

Ω

(
Lk ik(t, x)∂ϕ

∂t
(t, x) + vk(t, x)∂ϕ

∂x
(t, x)

)
dtdx = 0 ,∫∫

Ω

(
Ck vk(t, x)∂ϕ

∂t
(t, x) + ik(t, x)∂ϕ

∂x
(t, x)

)
dtdx = 0 .

(5.14)

As to (5.10), the definition (5.8) of V and I, as well as the choice of initial conditions vk(0, .) and
ik(0, .), require that vk and ik extend in some way to ∂Ω described in (5.13), and this is where their
membership to L1

loc(Ω) (not just to L1
loc(Ω)) is useful. In fact, when h ∈ L1

loc(Ω) = L1
loc([0,∞)×[0, 1]),

we get from Fubini’s theorem that τ 7→ h(τ, x) belongs to L1
loc([0,∞)) for a.e. x ∈ [0, 1] and that
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s 7→ h(t, s) lies in L1([0, 1]) for a.e. t ∈ [0,∞). For such x and t, we set

ĥ(0, x) = lim
ε→0

1
ε

∫ ε

0
h(s, x)ds , ĥ(t, 0) = lim

ε→0

1
ε

∫ ε

0
h(t, s)ds , ĥ(t, 1) = lim

ε→0

1
ε

∫ 1

1−ε
h(t, s)ds ,

(5.15)
whenever the limits exist.

Definition 5.5. We say that h ∈ L1
loc(Ω) has a strict extension to ∂Ω if and only if the limits in

(5.15) exist for almost all x ∈ (0, 1) and almost all t ∈ (0,∞), and then the functions x 7→ ĥ(0, x),
t 7→ ĥ(t, 0) and t 7→ ĥ(t, 1) define the strict extension of h to ∂Ω, almost everywhere with respect to
H1-Hausdorff measure2, see e.g. [EG92, ch. 2] for the definition of Hausdorff measures.

Remark 5.6. Definition 5.5 may look strange at first glance, since when h ∈ L1
loc(Ω) it seems to be

defined already on ∂Ω ⊂ Ω; but of course it is not so, because ∂Ω has 2-D Lebesgue measure zero,
hence the values assumed by h there are immaterial. When the limits in (5.15) exist for a.e. x
and t, they produce a specific definition of h on ∂Ω, a.e. with respect to H1, that we call the strict
extension. If h : Ω→ R is continuous and extends continuously Ω→ R, clearly the strict extension
exists and it is the natural one. Even then, we sometimes use the notation ĥ(0, x), ĥ(t, 0) and ĥ(t, 1)
for reasons of consistency, although writing h(0, x), h(t, 0) and h(t, 1) is more appropriate in this
case.

If all vk and ik have a strict extension to ∂Ω, then we interpret the boundary conditions (5.10) to
mean the following set of equalities between (a.e. defined) measurable functions of a single variable
t: 

v̂1(t, 0)
...

v̂N (t, 0)
v̂1(t, 1)

...
v̂N (t, 1)


= A(t)



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)


, a.e. t ∈ (0,∞). (5.16)

We can now state a well-posedness result for the system (5.1)-(5.10). Part I deals with solutions
belonging to L1

loc([0,∞), Lp([0, 1])), and part II is about continuous solutions. They do not run
completely parallel to each other, because continuity requires a compatibility relation on the initial
conditions, see (5.18). The theorem is standard in nature but, as mentioned already, we could
not find a reference in the literature for the case of time-varying boundary conditions (5.16).
To connect the statement with the previous discussion, we observe that L1

loc([0,∞), Lp([0, 1])) ⊂
L1
loc([0,∞)× [0, 1]) = L1

loc(Ω) for 1 ≤ p ≤ ∞, by Hölder’s inequality and the Fubini theorem.

Theorem 5.7 (Well-posedness). Let A : [0,∞)→ R2N×2N meet Assumption 5.4 and 1 ≤ p ≤ ∞.
I) If i0k, v0

k ∈ Lp([0, 1]), 1 ≤ k ≤ N , there is a unique map (t, x) 7→ (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x))
from Ω into R2N×2N such that:

• t 7→ (v1(t, .), . . . , vN (t, .), i1(t, .), . . . , iN (t, .)) belongs to L1
loc([0,∞), (Lp([0, 1]))2N ) and vk, ik

have a strict extension to ∂Ω satisfying the initial conditions

v̂k(0, x) = v0
k(x), ı̂k(0, x) = i0k(x) k = 0, . . . , N , (5.17)

• (t, x) 7→ (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) is a solution of (5.1)-(5.10), 1 ≤ k ≤ N ,
in the sense of (5.14) and (5.16).

2H1 restricted to ∂Ω ⊂ R2 is simply the measure whose restriction to each curve {0}×(0, 1), [0,+∞)×{0} and
[0,+∞)×{1} coincides with arc length.
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II) If, in addition, t 7→ A(t) is continuous and v0
1, . . . , v

0
N , i

0
1, . . . , i

0
N are elements of C0([0, 1])

satisfying 

v0
1(0)
...

v0
N (0)
v0

1(1)
...

v0
N (1)


= A(0)



−i01(0)
...

−i0N (0)
i01(1)
...

i0N (1)


, (5.18)

then the map (t, x) 7→ (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) from part I is continuous Ω→ R2N

(equivalently: t 7→ (v1(t, .), . . . , vN (t, .), i1(t, .), . . . , iN (t, .)) is continuous [0,∞)→ C0([0, 1])2N×2N )
and satisfies the initial conditions in the strong sense:

vk(0, x) = v0
k(x), ik(0, x) = i0k(x) , x ∈ [0, 1], k = 0, . . . , N . (5.19)

Remark 5.8. Assumption 5.4 is stronger than needed for the previous result to hold. In fact, it is
enough for part I that the maps t 7→ A(t) and t 7→ (I + A(t) K)−1 be well defined, measurable and
bounded (K is defined in (5.28)), and for part II that they be continuous and bounded. We do not
dwell on such generalizations.

The proof of Theorem 5.7 is given at the end of Section 5.2.3, after establishing the equivalence
of (5.1)-(5.10) with a suitable difference delay system. As a first step in this direction, we stress
below the special form of solutions to (5.1) in Lploc(Ω), and show they have a strict extension to ∂Ω
if, moreover, they lie in Lploc(Ω).

Proposition 5.9. Let ik and vk belong to Lploc(Ω) (resp. C0(Ω)) for some p ∈ [1,∞], and satisfy
(5.1) on Ω in the sense of (5.14). Then, the following properties hold.

i. There exists two functions fk and gk in Lploc((−∞, 1)) and Lploc((0,∞)) (resp. in C0((−∞, 1))
and C0((0,∞))) such that

vk(t, x) = fk(x−
t

τk
) + gk(x+ t

τk
) , ik(t, x) = Kk

(
fk(x−

t

τk
)− gk(x+ t

τk
)
)
, (5.20)

for almost every (resp. every) (x, t) in Ω, where τk,Kk are defined by (5.3).

ii. If, in addition, vk and ik lie in Lploc(Ω) (resp. extend continuously Ω → R), then fk and gk
lie in Lploc((−∞, 1]) and Lploc([0,∞)) (resp. in C0((−∞, 1]) and C0([0,∞))), moreover vk, ik
have a strict extension to ∂ Ω according to Definition 5.5. More precisely, we have that

v̂k(t, 0) = fk(−
t

τk
) + gk(

t

τk
) , ı̂k(t, 0) = Kk

(
fk(−

t

τk
)− gk(

t

τk
)
)
,

v̂k(t, 1) = fk(1−
t

τk
) + gk(1 + t

τk
) , ı̂k(t, 1) = Kk

(
fk(1−

t

τk
)− gk(1 + t

τk
)
)
, (5.21)

ı̂k(0, x) = Kk (fk(x)− gk(x)) , v̂k(0, x) = fk(x) + gk(x) ,

where the first four relations hold for almost all (resp. all) t in (0,+∞) and the last two for
almost all (resp. all) x in (0, 1).

iii. Conversely, if fk and gk lie in Lploc((−∞, 1)) and Lploc((0,∞)) (resp. in C0((−∞, 1)) and
C0((0,∞))), then vk and ik given by (5.20) belong to Lploc(Ω) (resp. C0(Ω)) and satisfy
(5.1). If, moreover, fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞)) (resp. in C0((−∞, 1]) and
C0([0,∞))), then vk and ik belong to Lploc(Ω) (resp. C0(Ω)) and (5.21) holds.
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Proof. Point (i) is classical: if we introduce new variables r = x − t/τk, s = x + t/τk and define
two functions fk, gk on Ω1 := {(r, s) ∈ R2, 0 < r + s < 2 and −∞ < r − s < 0}, in one-to-one
correspondence with vk, ik via

fk(r, s)
gk(r, s)

 =


1
2

1
2Kk

1
2 −

1
2Kk


vk

( −r + s

2 τk ,
r + s

2

)
ik

( −r + s

2 τk ,
r + s

2

)
 ,

(
vk(t, x)
ik(t, x)

)
=
(

1 1
Kk−Kk

)(
fk
(
x− t/τk, x+ t/τk

)
gk
(
x− t/τk, x+ t/τk

)) ,
then fk, gk ∈ Lploc(Ω1) by the change of variables formula, moreover they are continuous Ω1 → R
when ik and vk are continuous on Ω, and System (5.1) gets transformed into the distributional
identity

∂fk
∂s

= ∂gk
∂r

= 0 . (5.22)

Equation (5.22) means that fk does not depend on the second argument nor gk on the first one,
hence the form (5.20) for vk and ik. We turn to Point (ii). First, we observe that if vk and ik lie
in Lploc(Ω) (resp. extend continuously Ω→ R), then fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞))
(resp. in C0((−∞, 1]) and C0([0,∞))), by the change of variable formula (resp. by inspection).
The case where vk and ik extend continuously Ω→ R is now obvious. To handle the case where
vk, ik ∈ Lploc(Ω), recall that a (non-centered) Lebesgue point of a function ` ∈ L1

loc(R) is a point
x ∈ R such that lim|I|→0,I3x

1
|I|
∫
I |`(y)−`(x)|dy = 0, where the limit is taken over all closed intervals

I containing x and |I| indicates the length of I. Let f̃k and g̃k be the extensions by 0 of fk and gk
to the whole real line. Using (5.20) in (5.15), we see that the first two relations in (5.21) certainly
hold for t ∈ (0,∞) such that −t/τk is a Lebesgue point of f̃k and t/τk is a Lebesgue point of g̃k,
the third and fourth relations if 1− t/τk is a Lebesgue point of f̃k and 1 + t/τk is a Lebesgue point
of g̃k, and the last two if x ∈ (0, 1) is a Lebesgue point of both f̃k and g̃k. Since almost all points
are Lebesgue points of a given function in L1

loc(R) [EG92, thm. 1.34], while Lploc(R) ⊂ L1
loc(R) by

Hölder’s inequality, this proves Point (ii). Point (iii) is obvious, reverting computations.

Remark 5.10. The weak formulation (5.14) defines solutions vk, ik to (5.1) as locally integrable
functions Ω → R, while Theorem 5.7 stresses their representation as functions R+ → Lp([0, 1]).
The two points of view are essentially equivalent by Fubini’s theorem, but suggestive of different
moods. In this connection, it is worth mentioning that if p < ∞, then the solution set forth in
Part I of Theorem 5.7 not only belongs to L1

loc([0,∞), (Lp([0, 1]))2N ), but in fact is continuous
[0,∞)→ (Lp([0, 1]))2N×2N . Indeed, granted that fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞)) by
Proposition 5.9, this follows from the very proof of the theorem (cf. (5.31) and (5.26) below) and
the fact that τ 7→ f(.− τ) is continuous R→ Lp(R), whenever f ∈ Lp(R), p <∞.

5.2.3 Difference delay equations and their relation with networks of telegra-
pher’s equations

A general linear time-varying difference delay equation in the variable z is of the form

z(t) =
M∑
i=1

Di(t) z(t− ηi) for all (or almost all) t ≥ 0 , (5.23)

where the delays 0 < η1 ≤ · · · ≤ ηM are arranged in nondecreasing order, each t 7→ Di(t) is a d× d
matrix-valued function, and solutions t 7→ z(t) are Rd-valued functions. Hereafter, we make the
following assumption.

Assumption 5.11. The maps t 7→ Di(t) belong to L∞(R+,Rd×d) for 1 ≤ i ≤M .
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Given initial conditions on [−ηM , 0], we recap existence and uniqueness of solutions to (5.23)
in the following theorem. The existence of continuous solutions requires an additional continuity
assumption on the Di, as well as compatibility relations on the initial conditions; this is why we
introduce the following space:

C := {φ ∈ C0([−ηM , 0],Rd) |φ(0) =
M∑
i=1

Di(0)φ(−ηi)} . (5.24)

Theorem 5.12. Let Assumption 5.11 hold and φ be an element of Lp([−ηM , 0],Rd) with 1 ≤ p ≤ ∞.

(i) There is a unique solution z to (5.23) in Lploc([−ηM ,+∞),Rd) meeting the initial condition
z|[−ηM ,0] = φ.

(ii) If, moreover, the maps Di : R+ → Rd×d are continuous and φ ∈ C, then z ∈ C0([−ηM ,+∞),Rd)).

Proof. This is a classical, elementary inductive argument, see e.g. [HVL93]: for any T ≥ 0, if a
solution has been found on [−ηM , T ], it clearly can be extended to [−ηM , T +η1] in a unique manner
using (5.23). When the Di(.) are continuous, φ ∈ C is clearly necessary and sufficient for the unique
solution to be continuous.

Remark 5.13 (merging repeated delays). In (5.23), we allow for repeated delays, i.e. it may be
that ηi = ηi+1 for some i. This to comply with (5.1)-(5.3), where it would be too restrictive to
require that the numbers τk are distinct, and because we are about to convert (5.1)-(5.3) into (5.23)
in such a way that ηi = τi. However, when dealing with (5.23), it is better to avoid repetition by
merging terms with the same delay. Since it will be needed in the statement of Theorem 5.22, let
us formalize this: first, define an enumeration without repetition of the original list of delays, say,
0 < η̂1 < η̂2 < · · · < η̂

M̂
with M̂ ≤M , then define for each j

D̂j(t) =
∑

{i, ηi = η̂j}
Di(t) . (5.25)

It is clear that (5.23) can be re-written as z(t) = ∑M̂
j=1 D̂j(t) z(t− η̂j), and if the ηi were distinct

already, then the system is left unchanged.

We now construe the system of coupled telegrapher’s equations from Sections 5.2.1 and 5.2.2
as a difference delay system of the form (5.23). For this, let (vk, ik) ∈ L1

loc(Ω) × L1
loc(Ω) (resp.

C0(Ω) × C0(Ω)) be, for 1 ≤ k ≤ N , solutions of (5.1)-(5.10), observing from Proposition 5.9 (ii)
that the boundary conditions (5.10) indeed make sense. Let fk, gk be as in Proposition 5.9, and
define:

xk(t) = fk(−
t

τk
) and yk(t) = gk(1 + t

τk
). (5.26)

The functions fk and gk lie in L1
loc((−∞, 1]) and L1

loc([0,∞)) (resp. in C0((−∞, 1]) and C0([0,∞)))
by Proposition 5.9, therefore xk and yk lie in L1

loc([−τk,+∞)) (resp. C0([−τk,+∞))). Moreover,
the boundary values of vk and ik are related to xk and yk as follows (substitute (5.26) in (5.21)):

v̂k(t, 0) = xk(t) + yk(t− τk) ,
ı̂k(t, 0) = Kk[xk(t)− yk(t− τk)] ,
v̂k(t, 1) = xk(t− τk) + yk(t) ,
ı̂k(t, 1) = Kk[xk(t− τk)− yk(t)] .

(5.27)
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Plugging (5.27) in (5.16) gives us

x1(t)
...

xN (t)
y1(t)
...

yN (t)


+



y1(t− τ1)
...

yN (t− τN )
x1(t− τ1)

...
xN (t− τN )


= A(t)





−K1 x1(t)
...

−KN xN (t)
−K1 y1(t)

...
−KN yN (t)


+



K1 y1(t− τ1)
...

KN yN (t− τN )
K1 x1(t− τ1)

...
KN xN (t− τN )




.

Thus, if we define

K = diag(K1, . . . ,KN ,K1, . . . ,KN ), P2 =
(

0 Id

Id 0

)
(5.28)

where Id has size N ×N , and observe that P2K = KP2 while noting that relation K = K∗ > 0
together with the dissipativity condition (5.12) entail that I + A(t) K is invertible, we obtain:

x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


. (5.29)

Setting d = 2N and letting z(t) be the vector [x1(t), · · · , xN (t), y1(t), · · · , yN (t)]∗ and, for each
i ∈ {1, · · · , , N}, the d × d matrix Di(t) have the same ith and (i + N)th columns as the matrix
− (I + A(t) K)−1 (I −A(t) K)P2, the other columns being zero, it is obvious that system (5.29)
can be rewritten in the form (5.23) with M = N and ηi = τi, 1 ≤ i ≤ N . As for initial conditions,
we obtain from (5.26) and the last line of (5.21) that

xk(t) = 1
2Kk

(
Kk v

0
k(−

t

τk
) + i0k(−

t

τk
)
)
, yk(t) = 1

2Kk

(
Kk v

0
k(1 + t

τk
)− i0k(1 + t

τk
)
)
, t ∈ [−τk, 0] ,

(5.30)
where we note that both −t/τk and 1 + t/τk range over [0, 1] when t ranges over [−τk, 0]. The only
difference with the situation in Theorem 5.12 is that initial values for xk, yk are only provided
over [−τk, 0] through (5.26) and (5.21), not over [−τN , 0]. However, with the previous definitions of
z(t) and Di(t), 1 ≤ i ≤ N , the values of xk and yk on [−τN ,−τk) when τk < τN are unimportant
to the dynamics of (5.23) for t ≥ 0, because the columns of Di(t) other than ith and (i + N)th

are identically zero. Thus, we may pick initial conditions for xk and yk on [−τN ,−τk) arbitrarily,
provided that we comply with summability or continuity requirements. For instance, we can extend
xk and yk to [−τN , 0] using the operators J [−τN ,0]

[−τk,0] defined as follows. For a < b < c three real
numbers, J [a,c]

[a,b] be an extension operator mapping functions on [a, b] to functions on [a, c] so that
Lp([a, b]) gets mapped into Lp([a, c]) and C0([a, b]) into C0([a, c]), in a continuous manner. Such an
operator is easily constructed by choosing a smooth function ϕ : R→ R which is 1 on (−∞, b] and 0
on [min{2b− a, c},+∞); then, for f : [a, b]→ R, define J [a,c]

[a,b]f to be f on [a, b] and ϕ(t)f(2b− t) for
t ∈ (b, c], where the product is interpreted as zero if 2b− t < a. Similarly we define J [a,c]

[b,c] mapping
functions on [b, c] to functions on [a, c].
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We have now reduced the Cauchy problem for (5.1)-(5.10), 1 ≤ k ≤ N , to the Cauchy problem
for a particular equation of the form (5.23). Moreover, it is obvious from what precedes that
initial conditions in Lp([0, 1],R) (resp. C0([0, 1]) meeting (5.18)) for vk, ik correspond to initial
conditions in Lp([−τN , 0],R2N ) (resp. C) for z, and that solutions vk, ik in Lploc([0,∞), Lp([0, 1]))
(resp. C0([0,∞), C0([0, 1]))) correspond to solutions z ∈ Lploc([0,∞),R2N ) (resp. C0([0,∞),R2N )).

Proof of Theorem 5.7. The above discussion (starting after Theorem 5.12) shows that the function
(t, x) 7→ (v1(t, x), . . ., vN (t, x), i1(t, x), . . . , iN (t, x)) is a solution of (5.1)-(5.10)-(5.17) for Part I or
(5.1)-(5.10)-(5.19) for part II if and only if

vk(t, x) = xk(t−xτk) + yk((x− 1)τk + t) , ik(t, x) = Kk (xk(t− xτk)− yk((x− 1)τk + t)) , (5.31)

where t 7→ (x1(t), . . . , xN (t), yi(t), . . . , yN (t)) is a solution of the difference delay system (5.29) in
Lploc([0,∞),R2N ) or in C0([0,∞),R2N ), with initial conditions given by (5.30) and extended if
necessary to [−τN , 0] using the operator J [−τN ,0]

[−τk,0] constructed just before this proof. The result now
follows from Theorem 5.12.

5.2.4 Exponential stability: definitions

Definition 5.14. Let A : [0,∞)→ R2N×2N meet Assumption 5.4 (resp. meet Assumption 5.4 and
be continuous). For 1 ≤ p ≤ ∞, System (5.1)-(5.10) is said to be Lp (resp. C0) exponentially stable
if and only if there exist γ,K > 0 such that, for all solutions given by Theorem 5.7 part I (resp.
part II), one has:∥∥(̂ı(t, ·), v̂(t, ·)

)∥∥
Lp([0,1],R2) ≤ Ke

−γt ∥∥(̂ı(0, ·), v̂(0, ·)
)∥∥
Lp([0,1],R2) , for all t ≥ 0

( resp.
∥∥(i(t, ·), v(t, ·)

)∥∥
C0([0,1],R2) ≤ Ke

−γt ∥∥(i(0, ·), v(0, ·)
)∥∥
C0([0,1],R2) for all t ≥ 0).

(5.32)

Definition 5.15. Let the maps t 7→ Di(t) meet assumption (5.11) (resp. meet assumption (5.11)
and be continuous). System (5.23) is said to be Lp (resp. C0) exponentially stable, p ∈ [1,∞], if
and only if there exist γ,K > 0 such that, for all solutions given by Theorem 5.12 part (i) (resp.part
(ii)), one has:

(∫ 0

−τN
‖z(t+ θ)‖pdθ

)1/p
≤ Ke−γt

(∫ 0

−τN
‖z(θ)‖pdθ

)1/p
, t ≥ 0 , if 1 ≤ p <∞, (5.33)

ess sup
θ∈[−τN ,0]

‖z(t+ θ)‖ ≤ Ke−γt ess sup
θ∈[−τN ,0]

‖z(θ)‖, t ≥ 0 , if p =∞, (5.34)

(resp. sup
θ∈[−τN ,0]

‖z(t+ θ)‖ ≤ Ke−γt sup
θ∈[−τN ,0]

‖z(θ)‖, t ≥ 0 ). (5.35)

Our main concern in this paper is the exponential stability of system (5.1)-(5.10), but we shall
need the equivalent formulation as a difference delay system of the form (5.29), which is a particular
case of (5.23). In fact, exponential stability of the two systems are equivalent properties, as asserted
by the following proposition.

Proposition 5.16. System (5.1)-(5.10) is Lp exponentially stable (resp. C0 exponentially stable)
if and only if System (5.29) is Lp exponentially stable (resp. C0 exponentially stable), 1 ≤ p ≤ ∞.

Proof. This follows at once from (5.31) expressing solutions of (5.1)-(5.10) from solutions of (5.29)
and vice-versa.
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5.3 Results

5.3.1 Known results in the time-invariant case

The exponential stability of difference delay systems like (5.23) when the Di are constant matrices
is well understood. Indeed, the following necessary and sufficient condition is classical.

Theorem 5.17 (Henry-Hale Theorem, [Hen74, HVL93]). If the matrices Di in system (5.23) do
not depend on t, the following properties are equivalent.

i. System (5.23) is Lp exponentially stable for all p ∈ [1,+∞].

ii. System (5.23) is C0 exponentially stable.

iii. There exists β < 0 for which

Id−
N∑
i=1

Di e
−λτi is invertible for all λ ∈ C such that <(λ) > β. (5.36)

Theorem 5.17 is usually stated for C0 exponential stability only. However, the proof yields Lp
exponential stability as well for 1 ≤ p ≤ ∞, see the discussion after [CN15, eq. (1.11)]. To study the
stability of time-invariant networks of 1-dimensional hyperbolic systems, it is standard to convert
them into a delay system, much like we did in the previous section, and to apply Theorem 5.17.
There is a sizeable literature on this topic, dealing with more general equations with conservation
laws than telegrapher’s ones, see for instance the textbook [BC16] and references therein.

For systems of the form (5.29), if we assume on top of the dissipativity condition (5.12) that the
coupling matrix A(t) in fact does not depend on t, then Theorem 5.17 applies to yield exponential
stability. This is the content of the following proposition, whose (elementary) proof is given in
section 5.4.2 for completeness:

Proposition 5.18. If the matrix A(t) is constant and condition (5.12) holds, then the constant
matrices Di obtained when putting (5.29) into the form (5.23) satisfy (5.36) for some β < 0.

5.3.2 Sufficient stability condition in the time-varying case

Unfortunately, there is no generalization of the Henry-Hale theorem to time-varying difference delay
systems of the form (5.23), even if we assume that the Di(t) are periodic with the same period,
as is the case in the application to electrical networks outlined in the introduction. To the best
of our knowledge, there are very few results on the stability of such systems; let us mention two.
One is [CN15, Lemma 3.2]. It gives exponential stability results in Sobolev norms for the class of
time-varying delay systems (5.23) which come from 1-D hyperbolic equations, where the matrices
Di(·) are continuously differentiable and the delays may be time-dependent. Another, extensive
reference is [CMS16], which gives a necessary and sufficient condition for Lp exponential stability
when 1 ≤ p ≤ +∞ that obviously remains valid for C0 exponential stability as well. It is stated in
terms of the boundedness of sums of products of the Di(tj) at delayed time intants tj , where the
number of terms in the sums and products can be arbitrary large. This is akin to an expression
of the solution to (5.23) in terms of the matrices Di(.) and the initial conditions (see (5.61) and
(5.62) further below), which looks difficult to bound efficiently in practice because of the tremendous
combinatorics and the many cancellations that can occur. In contrast, we only deal here with
telegrapher’s equations, or with difference delay systems that can be recast as such, but Assumption
5.4 is a much more manageable sufficient condition for exponential stability.
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The main result of the paper —see Theorems 5.21 and 5.22 below— asserts Lp exponential
stability for all p ∈ [1,∞], as well as C0 exponential stability, for networks of telegrapher’s equations
with time-varying coupling conditions of the form or (5.1)-(5.10) (or (5.1)-(5.5)) under Assumption
5.4 (dissipativity at the nodes), and for difference delay systems (5.23) under conditions that imply
that they can be put in the form (5.29) with the same dissipativity conditions.

It may be interesting to note that the sufficient condition for stability that we give here is
independent of the delays when speaking of a difference delay system (Theorem 5.22) or independent
of the caracteristics of the lines (constants Ck and Lk) when speaking of networks of telegrapher’s
equations (Theorem 5.21). Also, these sufficient conditions are not claimed to be necessary.

Let us state these results, preceded by some auxiliary results of independent interest. The proofs
not given right after the theorems can be found in Sections 5.4.3 through 5.4.6.

The first step is to establish L2 exponential stability of System (5.1)-(5.10) asserted in the
following theorem. We give in Section 5.4.3 a proof using a natural energy functional as Lyapunov
function for the telegrapher equations (5.1). Condition (5.12) in Assumption 5.4, which has been
termed dissipativity without much explanation so far, expresses dissipativity in the sense of this
energy functional. We also sketch, in Section 5.4.4, a second proof, ellaborating on [CN15, Lemma
3.2], which is exclusively based on the time-varying delay system (5.29); see the remark at the end
of Section 5.4.4 for a comparison of the two proofs.

Theorem 5.19. Under Assumption 5.4, the time-varying network of telegrapher’s equations (5.1)-
(5.10)-(5.8) is L2 exponentially stable.

In view of Proposition 5.16, we get as a corollary that L2 exponential stability holds for difference
delay systems of the form (5.29).

To deduce from Theorem 5.19 Lp exponential stability for all p, we rely on the following result.

Theorem 5.20. Under Assumption 5.11, System (5.23) is Lp exponentially stable for some p ∈
[1,∞] if and only if it is Lp exponentially stable for all such p. Moreover, if the maps t 7→ Di(t) are
continuous, then this is also if and only if System (5.23) is C0 exponentially stable.

The only original bit here is that C0 exponential stability implies Lp exponential stability for all
p, because the first assertion of Theorem 5.20 is essentially contained in [CMS16, Corollary 3.29].
We do consider C0 stability, because it is the natural one in the application to electronic circuits
mentioned in the introduction. Although, again, the first assertion is a consequence of [CMS16,
Cor. 3.29], we nevertheless give an independent proof in Section 5.4.5. Indeed, we feel our argument
is simpler than in [CMS16] (the latter paper contains of course other results), and of independent
interest. Moreover, our proof shows (for better readability it is not stated in the theorem) that if
System (5.23) is Lp (resp. C0) polynomially stable of degree m > N for some p ∈ [1,∞] (i.e. if
(5.33) or (5.34) (resp. (5.35)) holds with e−γt replaced by (1 + t)−m), then it is Lp polynomially
stable of degree 1 for all such p (and also C0 polynomially stable of degree 1).

An obvious corollary of Theorem 5.20, based on Proposition 5.16, is that System (5.1)-(5.10)
(network of telegrapher’s equations) is Lp exponentially stable for some p ∈ [1,∞] if and only if it is
C0 exponentially stable and also Lq exponentially stable for all q ∈ [1,∞]. This leads to our main
result regarding network of telegrapher’s equations:

Theorem 5.21. Under Assumption 5.4, the time-varying network of telegrapher’s equations (5.1)-
(5.10)-(5.8) is Lp exponentially stable for 1 ≤ p ≤ ∞, and also C0 exponentially stable if the maps
t 7→ A(t) are continuous.

Proof. This is a straightforward consequence of Theorem 5.19 and the “obvious corollary” to
Theorem 5.20 mentioned just before Theorem 5.21.
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A direct consequence of Theorem 5.21 and Proposition 5.16 is that the same stability properties
hold for difference delay systems of the special form (5.29). It is interesting to restate this in terms
of general delay systems of the form (5.23), making additional assumptions to fall under the scope of
the previous result. This is the purpose of Theorem 5.22 below, whose proof is given in Section 5.4.6.
Recall that the matrices D̂j(t) were defined from the matrices Di(t) in Remark 5.13 (cf. (5.25)),
and that they differ from the Di only when some of the delays ηi appear with repetition in (5.23)).

Theorem 5.22. Under Assumption 5.11, if Conditions (i) and (ii) below are satisfied, then the
time-varying difference delay system (5.23) is Lp exponentially stable for all p ∈ [1,∞]. Moreover,
if the maps t 7→ Di(t) are continuous, then it is also C0 exponentially stable.

i. The columns of the matrices D̂j(t) are disjoint, i.e. there is a partition {1, . . . , d} = I1∪· · ·∪IM̂
(with i 6=j ⇒ Ii ∩ Ij =∅) such that the kth column of D̂j(t) is identically zero if k /∈ Ij.

ii. The sum of the matrices Di(t) is uniformly contractive:

there is a number ν < 1 such that
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

Di(t)
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ ν for almost all positive t .

Here, |||·||| is the spectral norm for matrices associated to the Euclidean norm on Rd, like in
section 5.2.2.

To recap, Theorem 5.21 offers a sufficient condition for exponential stability of networks of
coupled telegrapher’s equations, relevant to the study of oscillations in circuits with transmission
lines as explained in Section 5.1, while Theorem 5.22 deals with difference delay systems and applies
to an admittedly narrow class thereof (the disjoint columns assumption is clearly restrictive), but
is still worth stating for it points at a class of time-varying systems for which relatively simple
sufficient conditions for exponential stability can be given. These results are apparently first to give
fairly manageable sufficient conditions for exponential stability in the time-varying case. Another
contribution is the somewhat simpler approach, provided by Theorem 5.20 and its proof, to the
fact that all types of Lp exponential stability, 1 ≤ p ≤ ∞, are equivalent for general time-varying
difference delay systems.

5.4 Proofs

5.4.1 A technical lemma

Here, the superscript ∗ denotes the transpose of a real matrix, and the spectral norm |||·||| defined at
the beginning of section 5.2.2 is with respect to the canonical Euclidean norm ‖x‖ = (x∗x)1/2.

Lemma 5.23. If Q is a square matrix satisfying Q+Q∗ > κ > 0, there is a unique square matrix
R solution of

(Id+Q)R = Id−Q , (5.37)

and it satisfies |||R||| < (1− κ)/(1 + κ) < 1. Conversely, if R is a square matrix satisfying |||R||| < 1,
there is a unique square matrix Q solution of (5.37) and it satisfies Q+Q∗ ≥ 1−|||R|||

1+|||R||| Id .

Proof. It is clear that −1 cannot be an eigenvalue of Q if Q + Q∗ > 0 or an eigenvalue of R if
|||R||| < 1. This allows to solve for R or Q using the inverse of Id+Q or Id+R.

Now suppose that R and Q satisfy (5.37). Then (Id+Q)(Id+R) = 2 Id, hence both Id+Q
and Id+R are invertible and R commutes with Q, (5.37) can be re-written R(Id+Q) = Id−Q
that readily implies

‖R (Id+Q)y‖2
‖(Id+Q)y‖2 = 1− 2 y∗(Q+Q∗)y

‖(Id+Q)y‖2
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for any nonzero y. Since on the one hand, using invertibility of Id+Q, |||R||| < 1 if and only if the
left-hand side is less than 1 for any nonzero y and on the other hand the right-hand side is less
than one if and only if y∗(Q + Q∗)y is positive, one deduces that Q + Q∗ > 0 and |||R||| < 1 are
equivalent.

5.4.2 Proof of Proposition 5.18

From the very definition of Di in terms of A, K and P2 —see discussion after (5.29)— we get that

N∑
i=1

Di e
−λτi = [Id+ AK]−1[Id−AK]P2 diag(e−λτ1 , . . . , e−λτN , e−λτ1 , . . . , e−λτN ) . (5.38)

In view of (5.12), (5.28) and the strict positivity of the Kj , it holds if we set Q = K1/2AK1/2 that
Q+Q∗ ≥ α̃Id with α̃ = αmin1≤j≤N Kj > 0, hence Lemma 6.4 gives us:∣∣∣∣∣∣∣∣∣(Id+ K1/2AK1/2)−1(Id−K1/2AK1/2)

∣∣∣∣∣∣∣∣∣ < 1. (5.39)

Consider now the K-norm on R2N , defined for x ∈ R2N by ‖x‖K = ‖K 1
2x‖. Clearly, for any

2N × 2N complex matrix B, the corresponding operator norm is |||B|||K =
∣∣∣∣∣∣∣∣∣K 1

2BK−
1
2

∣∣∣∣∣∣∣∣∣; it is
obviously multiplicative.

Since [Id + AK]−1[Id − AK] = K−
1
2 (Id + K

1
2 AK

1
2 )−1(Id − K

1
2 AK

1
2 )K 1

2 , equation (5.39)
implies that ∣∣∣∣∣∣∣∣∣[Id+ AK]−1[Id−AK]

∣∣∣∣∣∣∣∣∣
K
< 1, (5.40)

consequently there is β < 0 such that∣∣∣∣∣∣∣∣∣[Id+ AK]−1[Id−AK]
∣∣∣∣∣∣∣∣∣

K
e−β τN < 1 . (5.41)

To see that (5.36) holds for this β, pick λ ∈ C with <(λ) > β and observe that∣∣∣∣∣∣∣∣∣P2 diag(e−λτ1 , . . . , e−λτN , e−λτ1 , . . . , e−λτN )
∣∣∣∣∣∣∣∣∣

K
≤ e−βτN

by (5.3), the multiplicativity of the K-norm and the fact that P2 commute with K1/2. Hence, using

(5.38) and (5.41) together with the multiplicativity of the K-norm, we see that
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ N∑i=1

Di e
−λτi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
K
< 1

which implies (5.36). �

5.4.3 Proof of Theorem 5.19 via a Lyapunov functional approach

Let (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) ∈ L1
loc([0,∞), (L2([0, 1]))2N ) be the solution to (5.1)-

(5.10)-(5.8) set forth in Part I of Theorem 5.7, with initial condition i0k, v0
k ∈ L2([0, 1]) for 1 ≤ k ≤ N .

We define the energy functional Ek in the line k and the global energy E by

Ek(t) = 1
2

∫ 1

0

[
Ckv

2
k(t, x) + Lki

2
k(t, x)

]
dx , E(t) =

N∑
k=1

Ek(t) . (5.42)

Fact. Each function Ek is locally absolutely continuous and its derivative is given by:

d

dt
Ek(t) = −ı̂k(t, 1)v̂k(t, 1) + ı̂k(t, 0)v̂k(t, 0), a.e. t. (5.43)
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Proof of the Fact. This would be easy if the solution were smooth (differentiating under the integral
sign and using (5.1) would readily yield (5.43)), but we have only proved so far, according to Remark
5.10, that Ek is continuous [0,+∞)→ R for each k. In particular it defines a distribution on (0,+∞);
let us compute the derivative of this distribution by approximation. By Proposition 5.9, points
(i)-(ii), the functions vk, ik are of the form (5.20) with fk ∈ L2

loc((−∞, 1]) and gk ∈ L2
loc([0,∞)). Let

f̌k and ǧk extend fk and gk by zero to the whole of R, and pick φ : R→ R a positive, C∞-smooth
function, supported on [−1, 1] and such that

∫
R φ = 1. For each ε > 0, we set φε(x) := φ(x/ε)/ε

(hence,
∫
R φε = 1) and define

f̃k,ε(s) :=
∫
R
f̌(y)φε(s− y) dy, g̃k,ε(s) :=

∫
R
ǧ(y)φε(s− y) dy, y ∈ R. (5.44)

Thus, f̃k,ε is a C∞ smooth functions in L2
loc(R) satisfying ‖f̃k,ε‖L2(K) ≤ ‖fk‖L2(K+[−ε,ε]) for any

compact K ⊂ R, and similarly for g̃k,ε. Moreover, f̃k,ε and g̃k,ε converge, both pointwise a.e. and in
L2
loc(R), respectively to f̌k and ǧk, when ε→ 0. Indeed, it is enough to check this on an arbitrary

compact set K ⊂ R, and since φε is supported on [−ε, ε] we may redefine f̌k and ǧk as being zero
outside the compact set K + [−ε, ε] without changing the values of f̃k,ε nor g̃k,ε on K. Thus, it is
enough to prove the desired pointwise and L2

loc convergence when f̌k and ǧk lie in L2(R), in which
case the result is standard [Ste70, ch. III, thm. 2]. Next, let us put

ṽk,ε(t, x) := f̃k,ε(x−
t

τk
) + g̃k,ε(x+ t

τk
) , ı̃k,ε(t, x) = Kk

(
f̃k,ε(x−

t

τk
)− g̃k,ε(x+ t

τk
)
)
, (5.45)

so that ṽk,ε and ı̃k,ε lie in L2
loc(R2) and are C∞ smooth solutions to (5.1) on R2, by Proposition 5.9

point (iii). Because (t, x) 7→ (x− t/τk, x+ t/τk) is a bi-Lipschitz homeomorphism of R2, it preserves
compact sets and sets of measure zero. Thus, since f̌k and ǧk coincide respectively with fk and
gk on [0,+∞) × [0, 1], the properties of f̃k,ε and g̃k,ε indicated after (5.44) imply that ṽk,ε, ı̃k,ε
respectively converge pointwise a.e. to vk, ik on [0,+∞)× [0, 1], in such a way that ‖ṽk,ε(t, .)‖L2([0,1])
and ‖ı̃k,ε(t, .)‖L2([0,1]) remain essentially bounded with t. Therefore, by dominated convergence, we
get for every C∞ smooth compactly supported function ψ : (0,+∞)→ R that

lim
ε→0

∫ +∞

0

∫ 1

0
[Ckṽ2

k,ε(t, x) + Lk ı̃
2
k,ε(t, x)]ψ(t) dtdx =

∫ +∞

0

∫ 1

0
[Ckv2

k(t, x) + Lki
2
k(t, x)]ψ(t) dt dx.

In other words: when ε→ 0, then Ẽk,ε(t) :=
∫ 1
0 [Ckṽ2

k,ε(t, x) + Lk ı̃
2
k,ε(t, x)]dx converges to Ek(t), as

a distribution on (0,+∞). Now, since ı̃k,ε and ṽk,ε are smooth, the derivative of t 7→ Ẽk,ε(t) can
be computed in the strong sense by differentiating under the integral sign; since ı̃k,ε and ṽk,ε are
solutions of the telegrapher’s equation (5.1), an elementary integration yields:

d

dt
Ẽk,ε(t) = −ı̃k,ε(t, 1)ṽk,ε(t, 1) + ı̃k,ε(t, 0)ṽk,ε(t, 0). (5.46)

By (5.45) and the Schwarz inequality, the properties of f̃k,ε and g̃k,ε indicated after (5.44) imply
that the right hand side of (5.46) converges pointwise a.e. and in L1

loc(R) to the function

F (t) := Kk

(
f2
k (− t

τk
)− g2

k(
t

τk
)− f2

k (1− t

τk
) + g2

k(1 + t

τk
)
)
,

and since we know that d
dtẼk,ε converges to d

dtEk as a distribution we conclude that d
dtEk = F .

In particular, since Ek is a distribution in dimension 1 whose derivative is a locally integrable
function, [DD07, thm. 6.74] implies local absolute continuity and we get from what precedes that
d
dtEk(t) = F (t) for a.e. t, which can be rewritten as (5.43) in view of (5.21). This ends the proof of
the above fact.
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Proof of Theorem 5.19. Adding equalities (5.43) for 1 ≤ k ≤ N and considering (5.42) together
with the boundary conditions (5.16) yields the following equation, where one may indifferently use
1
2 (A(t) + A(t)∗) or A(t):

d

dt
E(t) = −



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)



∗

A(t) + A(t)∗
2



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)


, a.e. t, (5.47)

Using the dissipativity condition (5.12) in (5.47) readily implies:

d

dt
E(t) ≤ −α2

N∑
k=1

[
ı̂2k(t, 0) + ı̂2k(t, 1)

]
, a.e. t. (5.48)

This entails that the global energy E is decreasing. In order to show that it tends to zero exponentially,
let us express E in terms of the functions fk, gk as follows. Substituting (5.20) in (5.42), we get
since LkK2

k = Ck that

Ek(t) = Ck

(∫ 1

0
g2
k(x+ t

τk
)dx+

∫ 1

0
f2
k (x− t

τk
)dx

)
. (5.49)

Changing variables to τ = xτk + t in the first integral and to τ = (1− x)τk + t in the second, we
obtain:

Ek(t) = Ck

∫ t+τk

t

(
g2
k(
τ

τk
) + f2

k (1− τ

τk
)
)
dτ. (5.50)

Thus, if we define G : (0,+∞)→ R by G(τ) := ∑N
k=1Ck

(
g2
k(τ/τk) + f2

k (1− τ/τk)
)
, we deduce from

(5.50) that

E(t) ≤
∫ t+τN

t
G(τ) dτ. (5.51)

In another connection, we get from (5.20) that G(τ) can be expressed as a non-negative quadratic
form in the 4N variables v̂k(τ, 0), v̂k(τ, 1), ı̂k(τ, 0), ı̂k(τ, 1), for 1 ≤ k ≤ N , with constant coefficients.
Hence, using (5.16) to substitute the v̂k’s for the ı̂k’s, the same G(τ) can be expressed as a non-
negative quadratic form in the 2N variables ı̂k(τ, 0), ı̂k(τ, 1), for 1 ≤ k ≤ N , with time-varying
essentially bounded coefficients (Assumption 5.4) depending on the matrix A(τ) and the constants
Kk. This implies:

G(τ) ≤ ã
N∑
k=1

(
ı̂2k(τ, 0) + ı̂2k(τ, 1)

)
, a.e. τ > 0. (5.52)

with a positive constant ã that depends only on the coefficients Kk and the bounds on the coefficients
of A(.). Using this inequality in (5.48) yields

d

dτ
E(τ) ≤ − α

2 ã G(τ), a.e. τ > 0. (5.53)

Integrating (5.53) between t and t+ τN we gather, in view of (5.51), that

0 ≤ E(t+ τN ) ≤ (1− α

2 ã)E(t), t > 0. (5.54)

Comparing the expression of E(t) in (5.42), this last inequality readily implies that system (5.1)-
(5.10) is L2 exponentially stable.
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5.4.4 Sketch of an alternative proof of Theorem 5.19 via time-delay systems
exclusively

First note that, from a straightforward generalization of Equation (5.40) using the fact that P2 and
K commute, there is a γ ∈ (0, 1) independent of t ∈ R such that :∣∣∣∣∣∣∣∣∣[Id+ A(t)K]−1[Id−A(t)K]P2

∣∣∣∣∣∣∣∣∣
K
≤ γ < 1. (5.55)

By applying ‖ · ‖ 2
K to each side of Equation (5.29), using (5.55) above and integrating the resulting

inequality between t and t2 (−τN < t < t2), one gets after simple algebraic manipulation the
following inequality, valid for any t > 0 and t2 > t:∫ t2

t
‖z(s)‖2Kds ≤ 1

1− γ2

∫ t+τN

t
‖z(s)‖2Kds , (5.56)

in which one may then take t2 = +∞. This implies L2 exponential stability of system (5.29) (one
first proves that, for T large enough,

∫ t+T
t ‖z(s)‖2Kds converges exponentially to zero) and thus L2

exponential stability of system (5.1)-(5.10) via the equivalence between stability of the difference
delay system and of the PDE network, see Proposition 5.16.

Remark 5.24. The above proof expounds that of [CN15, Lemma 3.2], but in essence is not so
different from the previous one. Indeed, the quantity

∫ t+T
t ‖z(s)‖2Kds acts as a Lyapunov function

for (5.29), although it is not proved be non-increasing with respect to continuous time, while E, that
has a similar expression in terms of the delay system (see (5.49)), is a Lyapunov function in the
usual sense for the network of telegrapher’s equations, see (5.48).

5.4.5 Proof of Theorem 5.20

Before proceeding with the proof, we take a closer look at the structure of solutions to System
(5.23).

Given the ordered collection of delays 0 < τ1 ≤ τ2 ≤ . . . ≤ τN , we define the following subsets of
R:

Σ = {
N∑
i=1

qiτi , (q1, . . . , qN ) ∈ NN} and Σt = [0, t] ∩ Σ for t in [0,+∞). (5.57)

Call Q(t) ∈ N the cardinality of Σt. Clearly, Q(t) is no larger than the number of N -tuples
(q1, . . . , qN ) ∈ NN satisfying ∑N

i=1 qi ≤ t/τ1, and the latter is bounded from above by (1 + [[t/τ1]])N ,
where [[r]] indicates the integer part of the real number r. Hence, we have that

Q(t) ≤
(

1 + t

τ1

)N
, t ∈ [0,+∞). (5.58)

We enumerate the elements of Σ as a sequence 0 = σ1 < σ2 < σ3 · · · , so that Σt is described as:

Σt = {σ1, σ2, . . . , σQ(t)} , t ∈ [0,+∞) . (5.59)

Our proof of Theorem 5.20 will dwell on the following observation.
Fact. There is a collection of maps (Mq)q∈N from R into Rd×d enjoying properties (i), (ii), (iii)
below.

i. The map Mq lies in L∞loc(R,Rd×d),

ii. Mq satisfies
t /∈ (σq − τN , σq] ⇒ Mq(t) = 0 , (5.60)
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iii. the solution t 7→ z(t) of (5.23) with initial condition z(t′) = φ(t′), t′ ∈ [−τN , 0], is given by

z(t) =
Q(t+τN )∑
q=1

Mq(t)φ(t− σq) =
+∞∑
q=1

Mq(t)φ(t− σq), t ≥ 0. (5.61)

Formula (5.61) applies equally well to continuous solutions and to solutions in Lploc([0,∞),Rd), but
in the latter case the equality is understood for almost every t. Note that (5.60) ensures that the
two sums in (5.61) are equal, and also that they do not depend on the values φ(y) for y /∈ [−τN , 0]
(which are not defined).
Proof of the Fact. For 0 ≤ t < τ1, Equation (5.23) is of the form (5.61), with Mq(t) = Di(t) if
σq = τi and Mq(t) = 0 otherwise. If we assume inductively such a formula for 0 ≤ t < σq0 and
substitute it in the right hand side of (5.23) when σq0 ≤ t < σq0+1 to express z(t) as a linear
combination of the φ(t− σq) for −τN ≤ t− σq < 0, a moment’s thinking will convince the reader
that we get a formula of the same type over the interval σq0 ≤ t < σq0+1 by defining Mq(t) as the
sum of the coefficients corresponding, after the above substitution, to one and the same φ(t− σq)
(the latter may arise as many times as there are decompositions σq = τi + σq′ with i ∈ {1, · · · , N}
and σq′ ∈ Σσq0+τN . Such coefficients are of the form Di(t)Mq′(t), and therefore properties (i), (ii)
and (iii) are obviously met.

Although we will not need this, it is instructive to derive an explicit expression for Mq that
should be compared with [CMS16, thm. 3.14] or, in the continuous case, with [HVL93, ch. 9, eqns.
(1.4)-(1.5)]. Namely, we can take Mq(t) to be the sum of all terms

1(ρs−1,ρs](t)Dk1(t)Dk2(t− ρ1)Dk3(t− ρ2) · · ·Dks

(
t− ρs−1

)
(5.62)

for all s in N \ {0} and all s-tuples (k1, . . . , ks) ∈ {1, · · · , N}s such that ∑s
j=1 τkj = σq, where the

numbers ρj are defined by ρ0 = 0 and ρj = ∑j
i=1 τki for j ≥ 1 (in particular ρs = σq), and 1(ρs−1,ρs]

is the characteristic function of the interval (ρs−1, ρs]. These maps Mq satisfies (5.60) because
(ρs−1, ρs] = (σq− τks , σq] is a subset of (σq− τN , σq], and formula (5.61) is easily checked from (5.23),
by induction on j such that t ∈ (σj−1, σj ].

Proof of Theorem 5.20. Assume first that 1 ≤ p <∞. If System (5.23) is Lp exponentially stable,
there is by definition γ > 0 and C0 > 0 such that, for all φ ∈ Lp([−τN , 0],Rd) and all t > 0, one has

(∫ t

t−τN
‖z(u)‖pdu

)1/p
≤ C0 e

−γt‖φ‖Lp([−τN ,0],Rd) (5.63)

for z(.) the unique solution of (5.23) with initial condition φ given by Theorem 5.12. Pick t? ∈
(−τN , 0), v ∈ Rd, ε > 0, and define a function φt?,v,ε ∈ Lp([−τN , 0],Rd) by

φt?,v,ε(θ) = 1
ε1/p1(t?−ε,t?)(θ) v , θ ∈ [−τN , 0]. (5.64)

Let zt?,v,ε(.) be the solution to (5.23) with initial condition φt?,v,ε on [−τN , 0]. By (5.63), it holds
that (∫ t

t−τN
‖zt?,v,ε(u)‖pdu

)1/p
≤ C0 e

−γt‖v‖ , t > 0, (5.65)

and from (5.61) we get for all u > 0 that

zt?,v,ε(u) = 1
ε1/p

+∞∑
q=1

1(t?−ε,t?)(u− σq) Mq(u)

 v. (5.66)
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Let us fix t > 0 for a while. By (5.60), the only terms in the sum on the right of (5.66) which may not
be zero for a.e. u ∈ (t−τN , t) are such that E(q, t?, ε) := (σq+t?−ε, σq+t?)∩(σq−τN , σq]∩(t−τN , t)
has strictly positive measure. The set of integers q for which this holds for some t? ∈ (−τN , 0) and
some ε > 0 consists exactly of those q such that t−τN < σq < t+τN . If we pick one of them and, say,
σq ≥ t, it is easy to check that for ε small enough E(q, t?, ε) = (t? +σq − ε, t? +σq) when t? ≤ t−σq
and E(q, t?, ε) = ∅ when t? > t−σq. If on the contrary σq < t, then E(q, t?, ε) = (t?+σq−ε, t?+σq)
when t? > t−σq − τN and E(q, t?, ε) = ∅ when t? ≤ t−σq − τN . Altogether, since there are finitely
many q under examination (i.e. at most Q(t+ τN )), we can take ε > 0 so small that all intervals
E(q, t?, ε) are disjoint, and then we deduce from (5.66) and the previous discussion that∫ t

t−τN
‖zt?,v,ε(u)‖pdu =

∑
{q: t−τN−t?<σq≤t−t?}

1
ε

∫ 0

−ε
‖Mq(t? + σq + θ) v‖pdθ. (5.67)

Observe next that a.e. t? ∈ (−τN , 0) is a Lebesgue point of (each entry of) s 7→Mq(s+ σq) for all
q ∈ N, and let E denote the set of such points. By the triangle inequality, E a fortiori consists of
Lebesgue points of s 7→ ‖Mq(s+ σq)v‖, and since Mq ∈ L∞loc(R,Rd×d) it also consists of Lebesgue
points of s 7→ ‖Mq(s + σq)v‖p, by the smoothness of x → xp for x > 0. Thus, from (5.65) and
(5.67), we deduce on letting ε→ 0 that

t− τN − t? < σq ≤ t− t? ⇒ ‖Mq(t? + σq)v‖ ≤ C0e
−γt‖v‖, t? ∈ E. (5.68)

Now, choose σq ∈ Σ and t? ∈ E. We can find t > 0 such that t − τN < σq + t? < t and then,
applying what precedes with this t and this t?, we obtain in view of (5.68) that

‖Mq(t? + σq)v‖ ≤ C0e
−γt‖v‖ ≤ C0e

−γ(t?+σq)‖v‖. (5.69)

As E has full measure in (−τN , 0] and v ∈ Rd is arbitrary, we conclude from (5.69) and (5.60) that

|||Mq(s)||| ≤ C0 e
−γs, a.e. s > 0, (5.70)

where |||·||| is the spectral norm for matrices on Euclidean space. Because the number of summands
in the middle term of (5.61) is Q(t+ τN ) which is bounded above by CtN for some constant C, as
asserted in (5.58), the inequality (5.70) implies that to any γ′ ∈ (0, γ) there is a constant C1 > 0 for
which

‖z‖Lλ((t−τN ,t),Rd) ≤ C1 e
−γ′t‖φ‖Lλ((−τN ,0),Rd), t ≥ 0, 1 ≤ λ <∞, (5.71)

and also ‖z‖L∞((t−τN ,t),Rd) ≤ C1e
−γ′t‖φ‖L∞((−τN ,0),Rd), t ≥ 0. (5.72)

Since (5.72) readily implies C0 exponential stability when the maps Di(.) are continuous, this
achieves the proof when 1 ≤ p <∞.

Assume now that p =∞, so that (5.63) gets replaced by ‖z‖L∞((t−τN ,t),Rd) ≤ C0e
−γt‖φ‖L∞((−τN ,0),Rd)

for all t > 0. The goal is again to prove (5.70) from which the result follows, as we just saw. For
this, we argue much like we did before, defining φt?,v,ε as in (5.64) except that we do not divide by
ε1/p. Then, (5.65) becomes

ess. sup
α∈(t−τN ,t)

‖zt?,v,ε(α)‖ ≤ C0e
−γt‖v‖, (5.73)

and the discussion that led us to (5.67) now yields for ε > 0 small enough:

ess. sup
α∈(t−τN ,t)

‖zt?,v,ε(α)‖ = max
{q: t−τN−t?<σq≤t−t?}

ess. sup
θ∈(−ε,0)

‖Mq(t? + σq + θ) v‖. (5.74)
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We need now to replace Lebesgue points by points of approximate continuity. Recall that a function
f : R→ Rm is approximately continuous at x if, for every ε > 0,

lim
r→0+

1
2 r H

1
(
(x− r, x+ r) ∩ {y : ‖f(y)− f(x)‖ > ε}

)
= 0

where H1 is the Lebesgue measure on R, and that a measurable f is approximately continuous at
almost every point [EG92, thm. 1.37]. Thus, if we define E ⊂ (−τN , 0) to be the set of approximate
continuity points of all maps s 7→Mq(s+σq) (say, extended by zero off (−τN , 0)) as q ranges over N,
then E has full measure in (−τN , 0) and letting ε→ 0 in (5.74) we find that (5.68) holds. From the
latter we obtain (5.70) by the same reasoning as before, thereby completing the proof when p =∞.

It remains to handle the case where theDi(t) are continuous and System (5.23) is C0 exponentially
stable. Then, the previous argument needs adjustment because φt?,v,ε /∈ C. However, it is easy to
construct a sequence of continuous functions ϕk : [−τN , 0]→ [0, 1], with ϕk(0) = ϕk(−τj) = 0 for
1 ≤ j ≤ N , such that ϕk converges pointwise a.e. to 1(t?−ε,t?) when k → +∞ (for instance, we
may take piecewise linear ϕk). Then, the φk(θ) := ϕk(θ)v lie in C, and if zk denotes the solution to
System (5.23) with initial condition φk, we get by assumption that sup

α∈(t−τN ,t)
‖zk(α)‖ ≤ C0e

−γt‖v‖.

As φk converges pointwise a.e. to φt?,v,ε on [−τN , 0], we see from (5.61) that zk converges to zt?,v,ε
pointwise a.e. on R. Thus, letting k → +∞, we deduce that (5.73) holds and we conclude as
before.

5.4.6 Proof of Theorem 5.22

First assume that each set Ij has even cardinality 2nj , and put N = ∑M̂
j=1 nj so that d = 2N . Let P3

be the permutation matrix sending I1 to {1, . . . , n1}∪{N+1, . . . , N+n1} and, more generally, Ij to
{1 +∑j−1

`=1 n`, . . . ,
∑j
`=1 n`}∪{N + 1 +∑j−1

`=1 n`, . . . , N +∑j
`=1 n`} for each j. Set τk = ηj for each k

in {1 +∑j−1
`=1 n`, . . . ,

∑j
`=1 n`}. Using P3 as change of basis and denoting by (x1, . . . , xN , y1, . . . , yN )

the new coordinates, one can (by gathering the matrices with disjoint nonzero columns into a
single one) re-write (5.75) as (5.29) where − (I + A(t) K)−1 (I −A(t) K)P2 has been replaced
with ∑M̂

j=1 P3
−1 D̂j(t)P3. We want now to find A(t) and K so that these two matrices coincide.

For this, we fix K = Id and solve (I + A(t))−1 (I −A(t)) = R(t) with respect to A(t), where
R(t) = −P3

−1
(∑M̂

j=1 D̂j(t)
)
P3P2

−1 = −P3
−1
(∑M

i=1Di(t)
)
P3P2

−1 (the last equality is clear from

the definition of D̂i(t) in (5.25)). Assumption (ii) implies |||R(t)||| ≤ ν < 1 because P2 and P3 are
orthogonal matrices, hence, according to Lemma 6.4, setting A(t) = (Id−R(t))(Id+R(t))−1 solves
the above and satisfies Assumption 5.4 with α = (1− ν)/(1 + ν); (5.28) is satisfied too with K = Id,
setting all the numbers Kk to 1. By virtue of Proposition 5.16 and Theorem 5.21, the difference
delay equation (5.29) with these A(.) and τk is Lp exponentially stable for all p ∈ [1,∞], as well as
C0 exponentially stable if the maps Di(.) (hence A(.)) are continuous. This proves the result if all
the sets Ij has even cardinality.

If some of the sets Ij have odd cardinality, define d′ > d so that d′ − d is the number of such
sets Ij . By adjoining to each such Ij one element of {d + 1, . . . , d′}, one constructs a partition
Ĩ1, . . . , ĨM̂ of {1, . . . , d′} such that, for each j, Ĩj has even cardinality and contains Ij . Constructing
some d′ × d′ matrices D̃j(t) by adding d′ − d zero last lines and d′ − d zero last columns to D̂j(t),
the following difference delay system (with state z̃ in Rd′):

z̃(t) =
M̂∑
j=1

D̃j(t)z̃(t− ηj) (5.75)
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satisfies the assumptions of the theorem: (i) with the sets Ĩj instead of the original sets Ij and
(ii) because adding zero lines and columns to a matrix does not increase its norm, hence the first
part of the proof gives exponential stability, that yields exponential stability of the original system
because, since the last d′ − d columns are zero, the evolution of the d first entries of z does not
depend on the last ones. �

5.5 Conclusion
In this chapter, we have studied time-varying network of Telegrapher’s equations satisfying a
dissipativity hypothesis. More precisely, we have shown that this type of system is equivalent to a
system of a linear time-varying difference delay equations. By going back and forth between the
results on PDE’s systems and delay systems, we proved non-trivial results for PDE’s systems or
difference delay equations.

The existence and uniqueness of integrable or continuous solutions, a well-known result of delay
systems, allowed us to prove the existence and uniqueness of integrable or continue solutions (modulo
Lebesgue points) for PDE’s systems. Moreover we have been able to give stability results for such
PDE’s systems (Theorem 5.21) or a subclass of difference delay systems (Theorem 5.22) under a
dissipativity assumption.

5.5.1 Comparison with the results of the Chapter 4

The result of Chapter 5 has to be compared with the results of Chapter 4. The results of Chapter 4
give a sufficient and necessary stability condition about the periodic difference delay systems, and
give a sufficient stability condition when the periodic difference delay system is enough regular
(Hölder continuous derivative) with the column disjoint property (see Corollary 4.15). Chapter 5
permits to give a stronger result for these kind of systems. In fact, a trivial change of variable leads
to the generalization of Theorem 5.22 :

Theorem 5.25. Assuming that the Di(·) are continuous and bounded, if Conditions (i) and (ii)
below are satisfied, then the time-varying difference delay system (5.23) is Lp exponentially stable
for all p ∈ [1,∞]. Moreover, if the maps t 7→ Di(t) are continuous, then it is also C0 exponentially
stable.

i. The columns of the matrices D̂j(t) are disjoint, i.e. there is a partition {1, . . . , d} = I1∪· · ·∪IM̂
(with i 6=j ⇒ Ii ∩ Ij =∅) such that the kth column of D̂j(t) is identically zero if k /∈ Ij.

ii. The exists a diagonal invertible matrix D and a number ν < 1 such that :∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣D

M∑
i=1

Di(t)D−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ ν for all positive t .

In particular, Theorem 5.25 can be reinterpreted in the case of the network of the Telegrapher’s
equations (equations (5.1) (1 ≤ k ≤ N) and (5.10)-(5.8)). Defining the following Assumption 5.26
(which is weaker than the assumption 5.4) :

Assumption 5.26. The map t 7→ A(t) is continuous and bounded [0,+∞)→ R2N×2N , moreover :

i. Id+ A(t)K is invertible for all t real,

ii. there exists D a diagonal invertible matrix and ν positive strictly less than one such that :∣∣∣∣∣∣∣∣∣D[Id+ A(t)K]−1[Id−A(t)K]P2]D−1
∣∣∣∣∣∣∣∣∣ ≤ ν (5.76)
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An application of Theorem 5.25 proves the following theorem :

Theorem 5.27. Under Assumption 5.26, the time-varying network of telegrapher’s equations
(5.1)-(5.10)-(5.8) is C0 exponentially stable.



Chapter 6
General circuit containing lossless
transmission lines

Let us sum up quickly the path that we have been following until now in this thesis. Chapter 1
introduced a heuristic of the Harmonic Balance (HB) and the harmonic transfer function (HTF)
methods for the electrical circuit modeled by ordinary differential equations. Chapter 2 was devoted
to a simple circuit containing a transmission line. Chapter 3 established the equations for a general
electrical circuit containing a several number of lossless Telegrapher’s equations, while Chapter 4
and Chapter 5 dealt with stability of time-varying linear difference delay equations. At this point,
the link between Chapters 4/5 and Chapter 3 might seem vague. The present chapter makes it more
evident by proving that the operator solution associated to the equations the stability of which we
want to prove is a compact perturbation of the operator associated to some time-varying linear
difference delay equations, and so ensuring the stability of the difference delay equations through
Chapters 4 and 5 is crucial. The goal of this Chapter 6 is to give a mathematical justification of
the Harmonic Balance method which searches poles in the right half plane. This chapter is divided
into two differents part. The first part states results for a specific class of delay equations and the
second part is oriented towards electrical circuits.

The first part of this chapter (Section 6.1) deals with general facts concerning nonlinear hybrid
delay equations, i.e. difference delay equations coupled with difference differential equations, see
(6.1) (or (1) page 18). There is few literature about this kind of systems even when they are
time-invariant; that is why the results are worthy in themselves. The difficulties come from the
fact that the functional spaces become harder to handle and the fact that the spectral semigroup
theory does not apply anymore. The results of this section are non-trivial generalization of results
for neutral differential equations [HVL93].

A first result is that the linearised hybrid system around a periodic trajectory is a compact
perturbation of the difference delay system, result which permits to have just eigenvalues outside
the unit circle for the monodromy operator when the difference delay system is exponentially stable;
it also permits to prove that the exponential stability for the continuous function is equivalent to
the stability for the square integrable function.

A second result is that the exponential stability of the linearised system around a periodic
trajectory implies the local stability of the periodic solution. Even if it not surprising, this result
is important for the electronic applications because we want to ensure that if we start near the
periodic solution then we converge towards it. The proof relies on two facts. The first fact is
the existence of a variation of constant formula, involving a fundamental solution, which is not a
straightforward generalization of the variation of constant formula in the neutral case because the
state space needs boundary conditions to ensure the continuity of the solution. The second fact is
that the fundamental solution is exponentially stable when the linearised system is exponentially
stable. In the time-invariant case it was obviously true from the theory of semigroups, but here we
need to find an other argument to ensure that this result is always true.
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A third result says, considering a linear periodic hybrid delay system whose associated difference
delay system is exponentially stable, that the harmonic transfer function (HTF) of the input-output
system obtained when disturbing the hybrid delay system by an input and observing an output
has no other singularities than poles in the closed right half plane, moreover these poles are the
complex logarithm of a finite family of complex numbers, complex numbers which are eigenvalues of
the monodromy operator.

The second part of this chapter (Section 6.2) applies these results on hybrid delay equation to
“general” nonlinear circuits with lossless transmission lines under periodic forcing. We consider such
a circuit with its periodic forcing and assume that this dynamical system admits a periodic solution
with the same period and are interested in determining its local stability. Introducing the concept
of dissipativity at high frequency for the electronic components of the circuit and assuming this
property, we can prove with the help of the first part and of Chapter 5, that the harmonic transfer
function has just poles in the closed right half plane and, under controllability and observability
assumptions, that the periodic solution is locally stable if and only if the harmonic transfer function
is analytic in the closed right half plane.

These results give a justification of the Harmonic Balance (HB) method. In fact, we introduced
quickly the HB techniques in Chapter 1 for ordinary differential equations. Theses techniques
operate in the frequency domain and permit to approximate a periodic solution for a nonlinear
circuit (the periodic solution we assumed). Disturbing by a source of current the linearised circuit
around the periodic trajectory and observing the output voltage response at some node, HB gives
an approximation of the harmonic transfer function linking the frequencies of the input with the
frequencies of the output on the imaginary axis. Searching poles through rational approximation,
we can rely on the HB techniques to determine the local stability of the periodic solution. As
seen in Chapter 2, we can perform the same HB techniques for the nonlinear containing lossless
transmission line. As also explained in Chapter 2, the structure of the harmonic transfer function
becomes more complex than in the absence of transmission lines: it is no longer meromorphic
in all the complex plane. However, on this simple example we can see that the HTF remains
meromorphic in the closed right half plane, where the poles are just the logarithms of a finite
family of eigenvalues of the mononodromy operator. This permits to use the rational approximation
techniques showed in Chapter 1. The present Chapter 6 justifies, like Chapter 2 did on a simple
example, the determination of stability through searching for poles of the HTF in the closed right
half plane for general circuits, under the rather natural assumption of the dissipativity at high
frequency of the circuit. In fact, all well modeled circuit satisfy this property because the capacitive
and inductive effects “kill” the nonlinearies at high frequency and thus the circuit is resistive at
high frequency.

6.1 Nonlinear hybrid delay systems

6.1.1 Equations and stability results

We saw that Chapter 3 leads to the hybrid delay systems, i.e. we consider the following nonlinear
system : {

dx(t)
dt = f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN ))

0 = g(t, y(t), y(t− τ1), · · · , y(t− τN ), x(t)), t ≥ s,
(6.1)

where the delays are ordered as τ1 < · · · < τN , s, t ∈ R and s ∈ R denotes the initial time of the
system, k, N and n are three integers, f ∈ C3(R× Rk × (Rn)N+1 ,Rk) and g ∈ C4(R× (Rn)N+1 ×
Rk,Rn), moreover f and g are T periodic in their first variable. With no loss of generality, we
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assume that T > τN (otherwise we would have just to consider the smallest integer p such that
pT > τN and take as a period of the system pT ). The assumption on the regularity of the functions
f and g might seem strong but it permits to simplify some proofs and it will be noted when we
can weaken these hypothesis. We admit that the system (6.1) has a C3 periodic solution (x(·), y(·))
with a period T (in fact through some assumptions, it is just sufficient to have a continuous periodic
solution to ensure that it is C3, see Corollary 6.16 below). It should be interesting to investigate an
equivalent existence theorem like Theorem 1.4 in Chapter 1 in the case of the hybrid delay systems.
We note :

• A1(t) = ∂2f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN )),

• B1
i (t) = ∂i+3f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN )) for i = 0, · · · , N ,

• B̃2
i (t) = ∂i+2g(t, y(t), y(t− τ1), · · · , y(t− τN ), x(t)) for i = 0, · · · , N ,

• Ã2 = ∂N+3g(t, y(t), y(t− τ1), · · · , y(t− τN ), x(t)),

• τ0 = 0 by convention.

Then the linearisation of the system (6.1) around the periodic trajectory leads to the system :


dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1
i (t)y(t− τi)

0 =
N∑
i=0

B̃2
i (t)y(t− τi) + Ã2(t)x(t), t ≥ s.

(6.2)

We assume that B̃2
0(t) is invertible and noting :

• B2
i (t) = −B̃2

0(t)−1B̃2
i (t) for i = 1, · · · , N ,

• A2(t) = −B̃2
0(t)−1Ã2(t),

we can rewrite the system (6.2) as follows :


dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1
i (t)y(t− τi)

y(t) =
N∑
i=1

B2
i (t)y(t− τi) +A2(t)x(t), t ≥ s.

(6.3)

The system (6.3) is a periodic linear hybrid delay system with a real positive period T . The
system is composed of two states noted (x(t), y(t)) where the notation denote a column vector. The
state x(t) represent the derivative state and it has its values in Rk with k natural integer. The state
y(t) represents the delayed state and it has its values in Rn with n natural integer. The delayed
state occurs in the system with a finite number of delays. Due to the dimension of x(t) and y(t),
and the regularity of the functions f , g and the periodic solution, we have that A1(·) (resp. A2(·))
is a k × k (resp. n× k) T -periodic C3 matrix. The (B1

i (t))i∈[|0,N |] (resp. (B2
i (t))i∈[|1,N |]) represent

a family of size k × n (resp. n× n) T -periodic C3 matrices.
Since the delayed state y(t) occurs in the system with delayed values, it is simpler to rewrite the

system (6.3) in more compact way. Putting yt(θ) = y(t+ θ) for θ ∈ [−τN , 0] and introducing the
two operators :
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B1(s)φ :=
N∑
i=0

B1
i (s)φ(−τi), (6.4)

B2(s)φ := φ(0)−
N∑
i=1

B2
i (s)φ(−τi), (6.5)

for φ a measurable function defined on [−τN , 0] and admitting a value in τi for all i = 0, · · · , N .
Moreover the values of φ are in Rn. We can rewrite the system (6.3) with the state space (x(t), yt)
as :

{
dx(t)
dt = A1(t)x(t) + B1(t)yt

B2(t)yt = A2(t)x(t), t ≥ s.
(6.6)

We consider too the linear T periodic difference delay system associated to the system (6.3) :

z(t) =
N∑
i=1

B2
i (t)z(t− τi), t ≥ s, (6.7)

where z(·) is a function defined on [−τN , 0] and with values in Rn. Noting zt(θ) = z(t + θ) for
θ ∈ [−τN , 0], the system (6.7) can be written in the following functional form :

B2(t)zt = 0, t ≥ s. (6.8)

The systems (6.6) and (6.8) need initial data defined on an interval of length τN to define a
solution for t ≥ s. To ensure that there exists an unique p-integrable solution on each compact to
the system (6.6) and (6.8) the initial data must be p-integrable for p ∈ [1,+∞]. Moreover, if we
want a continuous solution, the initial data must be continuous and satisfy a boundary condition.
More formally we introduce the following spaces for s ∈ R and p ∈ [1,∞]:

• Cs := {(x, φ) ∈ Rk × C0([−τN , 0],Rn)|B2(s)φ = A2(s)x},

• Lps := {(x, φ) ∈ Rk × Lp([−τN , 0],Rn)},

• C̃s := {(0, φ) ∈ {0k} × C0([−τN , 0],Rn)|B2(s)φ = 0},

• L̃ps := {(0, φ) ∈ {0k} × Lp([−τN , 0],Rn)},

where C0([−τN , 0],Rn) (resp. Lp([−τN , 0],Rn)) denotes the space of the continuous (resp. p-
integrable) function defined on the interval [−τN , 0] and with values in Rn. For i and j integers,
we note 0i,j (resp. Ii,j) the zeros (resp. identity) matrix with i lines and j columns. By abuse of
notation, we will write 0i or 0 (resp. Ii or I) for 0i,1 (resp. Ii,i). We have Cs+T = Cs, Lps+T = Lps,
C̃s+T = C̃s and L̃ps+T = L̃ps because the periodicity of the system. We define the solution operator
U(t, s) (resp. Up(t, s)) which acts from Cs (resp. Lps) to Ct (resp. L

p
t ) such that for (x0, φ) ∈ Cs

(resp. Lps) we have U(t, s)(x0, φ) = (x(t), yt) (resp. Up(t, s)(x0, φ) = (x(t), yt)) with x(t) and yt
the unique solution of the system (6.6) which starts from (x0, φ) ∈ Cs (resp. Lps) at the time
s. Moreover, because of the periodicity of the system we have U(t + T, s + T ) = U(t, s) (resp.
Up(t+ T, s+ T ) = Up(t, s)). We define too the solution operator TD(t, s) (resp. TD,p(t, s)) which
acts from C̃s (resp. L̃ps) to C̃t (resp. L̃

p
t ) the solution operator of the system (6.8) which starts from

a initial data φ ∈ C̃s (resp. L̃ps) at the time s. By a recursive argument it is immediate to prove
that the operator U(t, s), Up(t, s), TD(s, t) and TD,p(s, t) are well defined.
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Definition 6.1. We define for s ∈ R, the monodromy operators :

Vp(s) : = Up(s+ T, s), for p ∈ [1,∞], (6.9)
Ṽp(s) : = TD,p(s+ T, s), for p ∈ [1,∞], (6.10)
V (s) : = U(s+ T, s), (6.11)
Ṽ (s) : = TD(s+ T, s). (6.12)

We endow the space Rk × Rn with the euclidean norm noted || · || and we give the definition of
the zero exponential stability for all the spaces that we introduced.

Definition 6.2. The system (6.6) and (6.8) are respectively said Lp for p ∈ [1,+∞[, L∞ and C0

exponentially stable if there exists a γ > 0 and a K > 0 such that :

(∫ 0

−τN
‖U(t, s)(x0, φ)(θ)‖pdθ

)1/p
≤ Ke−γt

(∫ 0

−τN
||(x0, φ(θ))||pdθ

)1/p
, t ≥ 0 and (x0, φ) ∈ Lps,(∫ 0

−τN
||TD(t, s)(0, φ)(θ)||pdθ

)1/p
≤ Ke−γt

(∫ 0

−τN
||(0, φ(θ))||pdθ

)1/p
, t ≥ 0 and (0, φ) ∈ L̃2

s,

ess. sup
θ∈[−τN ,0]

||U∞(t, s)(x0, φ)(θ)|| ≤ Ke−γtess. sup
θ∈[−τN ,0]

||(x0, φ(θ))||, t ≥ 0 and (x0, φ) ∈ L∞s ,

ess. sup
θ∈[−τN ,0]

||TD,∞(t, s)(0, φ)(θ)|| ≤ Ke−γtess. sup
θ∈[−τN ,0]

||(0, φ(θ))||, t ≥ 0 and (x0, φ) ∈ L̃∞s ,

sup
θ∈[−τN ,0]

||U(t, s)(x0, φ)(θ)|| ≤ Ke−γt sup
θ∈[−τN ,0]

||(x0, φ(θ))||, t ≥ 0 and (x0, φ) ∈ C0
s ,

sup
θ∈[−τN ,0]

||TD(t, s)(0, φ)(θ)|| ≤ Ke−γt sup
θ∈[−τN ,0]

||(0, φ(θ))||, t ≥ 0 and (x0, φ) ∈ C̃0
s .

The exponential stability of the system (6.6) and (6.8) is known to be entirely determined by
the spectrum of the monodromy operators. We cite the following classical result :

Proposition 6.3. We have :

i. The system (6.8) is Lp for p ∈ [1,∞] (resp. C0) exponentially stable if and only if the spectral
radius of the monodromy operators Ṽp(s) (resp. Ṽ (s)) is strictly less than one.

ii. The system (6.6) is Lp for p ∈ [1,∞] (resp. C0) exponentially stable if and only if the spectral
radius of the monodromy operators Vp(s) (resp. V (s)) is strictly less than one.

Proof. The proof is identical to the proofs of the Lemma 2.8 and Lemma 2.11 in Chapter 2.

The link between the monodromy operators of a neutral differential system and the monodromy
operators of the difference delay system associated is well known (see [Hen74] and [HVL93]). In the
same spirit we have that the monodromy operator of the sytem (6.6) is a compact perturbation of
the monodromy operator of the system (6.8). We state the following two lemmas :

Lemma 6.4. We consider U(t, s) : Cs → Ct. Let B̃2(s) : (x1, φ) 7→ (x1,B2(s)φ). There exists an
independent family of functions Φ̃(s) at least C1 such that B̃2(s)Φ̃(s) = Ik+n. So we have that
TD(t, s)(Ik+n − Φ̃(s)B̃2(s)) has the spectrum of TD(t, s) plus possibly 0 and :

U(t, s) = TD(t, s)(Ik+n − Φ̃(s)B̃2(s)) +K(t, s), (6.13)

with K(t, s) compact operator from Cs to Ct for all t, s real such that t ≥ s.
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Proof. The existence of an independent family of functions such that Φ(s) is a matrix of size n× n
at least C1 and B2(s)Φ(s) = In is obvious. So we define the matrix Φ̃(s) as :

Φ̃(s) :=
[
Ik 0k,n

0n,k Φ(s)

]
(6.14)

and we have B̃2(s)Φ̃(s) = Ik+n. To see that the spectrum of TD(t, s)(Ik+n − Φ̃(s)B̃2(s)) has the
spectrum of TD(t, s) plus possibly 0 we have just to remark that we have the following decomposition
:

Cs = C̃s ⊕W (s), (6.15)

where W (s) := {(x,Φ(s)A2(s)x)|x ∈ Rk} because of C̃s is the kernel of the operator B̃2(s). As
TD(t, s)(Ik+n − Φ̃(s)B̃2(s)) is zero on W (s) and is equal to TD(t, s) on C̃s, we have the result. Let
(x0, ϕ0) ∈ Cs. We have that :

K(t, s)(x0, ϕ0) = (x(t), wt), (6.16)

where w satisfies the equation :
ws = Φ(s)A2(s)x0

w(t) =
N∑
i=1

B2
i (t)w(t− τi) +A2(t)x(t), for t > s,

(6.17)

and x(t) is the solution of the equation (6.6) with initial data (x0, ϕ0). We have that x(·) is a
continuously differentiable function, and since we assumed that A2(t), B2

i (t) for all i = 1, · · · , N and
Φ(s) are at least C1, we have that w(·) is a lipschitzian function on each compact. So by compact
imbedding, we have that K(t, s) is a compact operator on Cs to Ct.

Lemma 6.5. We have for all p ∈ [1,∞] :

Up(t, s) = TD,p(t, s)Pp(t, s) +Kp(t, s), t ≥ s (6.18)

with Pp the canonical projection from Lps in L̃pt and Kp(t, s) compact operator from Lps to Lpt for all
t and s real with t ≥ s.

Proof. It is the same than the proof of Lemma 6.4.

Remark 6.6. To prove Lemma 6.4 and Lemma 6.5, we used the smoothness of the matrices in
the system (6.6). But the result would be true with just continuous regularity assumption on the
matrices in this system but the proof would be more technical, involving Gronwall Lemma, recursive
arguments and Arzela-Ascoli (or Kolmogorov-Riesz-Fréchet) theorem as for the neutral differential
case (Chapter 2).

Until now we dealt with a tremendous number of spaces, ie the spaces of continuous and Lp
functions for the systems (6.6) and (6.8). However in term of the exponential stability of the origin
of these systems, all these spaces are equivalent. Reciting the result of the Chapter 5, we have
that the Lp exponential stability for one p ∈ [|1,∞|] for the system (6.8) is equivalent to the Lq
exponential stability for all q ∈ [|1,∞|] and also the C0 stability.

Proposition 6.7. We have the following equivalence :
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i. The system (6.8) is Lp exponentially stable for one p ∈ [1,+∞].

ii. The system (6.8) is Lp exponentially stable for all p ∈ [1,+∞].

iii. The system (6.8) is C0 exponentially stable.

Assuming that the system (6.8) is Lp, for one p ∈ [1,∞], or C0 exponentially stable, then
Lemma 6.4, Lemma 6.5 and Proposition 6.7 leads to the the fact that it is equivalent for the system
(6.6) to be Lp for one p ∈ [1,+∞] or C0 exponentially stable.

Theorem 6.8. Assuming the system (6.8) is Lp for one p ∈ [1,+∞] or C0 exponentially stable.
Then the monodromy operators Vp(s) for all p ∈ [1,∞] and V (s) have the same finite number of
eigenvalues outside a disk with radius strictly less than one. We note ζ1, · · · , ζN the eigenvalues.
Moreover we have the following equivalence :

i. The system (6.6) is Lp exponentially stable for one p ∈ [1,∞].

ii. The system (6.6) is Lp exponentially stable for all p ∈ [1,∞].

iii. The system (6.6) is C0 exponentially stable.

Proof. Since the system (6.8) is exponentially stable, we have by Lemma 6.4, Lemma 6.5, and the
theory of compact perturbation ([Kat95]), that Vp(s) for p ∈ [1,∞] and V (s) have a finite number
of eigenvalues outside a disk with a radius stricly less than one.

We have by definition that i implies ii. Let p ∈ [1,∞] and q ∈ [1,∞]. If q ≤ p we have that Lq
is dense in Lp , and then since the restriction of Vp(s) to Lq is stable and equal to Vq(s), we have
that the spectrum of Vp(s) is included in the spectrum of Vq(s). Since Vq(s) and Vp(s) have a finite
number of eigenvalues outside a disk with a radius stricly less than one then Vq(s) and Vp(s) have
exactly the same spectrum outside a disk with a radius strictly then one. The same reasonning
would prove that the result holds for q ≥ p. If we assume that the system (6.6) is Lp exponentially
stable, we deduce from Proposition 6.3 that the monodromy operator Vp(s) has not an eigenvalue
outside the open unit disk and so the spectrum of Vq(s) satisfies the same property and we have that
the system (6.6) is Lq exponentially stable. We proved that ii implies i. We omit the proof of the
fact that iii is equivalent to i because the proof is similar to the fact that i is equivalent to ii.

Remark 6.9. In Theorem 6.8, we assumed that the system (6.8) is exponentially stable. It should
be possible to remove this assumption and to have the same result even when the system (6.6) is
time-varying (and not just time periodic). However, the arguments would be of the same type that
for the proof of Proposition 6.7 that we proved in Chapter 5.

Theorem 6.8 is useful because it permits to work on the spaces of square integrable function to
conclude with the C0 stability. From now, we always assume :

Assumption 6.10. The periodic difference delay system (6.8) is C0 exponentially stable.

6.1.2 Variation of constant formulas

We consider the following system :{
dx(t)
dt = A1(t)x(t) + B1(t)yt + u1(t)

B2(t)yt = A2(t)x(t) + u2(t), for t ≥ s.
(6.19)

Until the statement of the theorem, we keep ambiguous the spaces where belong the functions
x, y, u1 and u2, but we have to keep in mind that the functions are continuous or square integrable.
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We want to express the function x and y in function of the solution operators U2 or U∞. The
formula that we search is called the variation of the constant formula and it is well known for
delay system and neutral system (see [Hen74] and [HVL93]), and for the time constant hybrid delay
system (see [HH95]). Here we give a variation of constant formula for hybrid periodic delay system.
For all s ∈ R and t ≥ s, we introduce the fundamental solution X(t, s) which is a block matrix :

X(t, s) :=
[
X(t, s)1,1 X(t, s)1,2

X(t, s)2,1 X(t, s)2,2

]
, (6.20)

where X(t, s)1,1, X(t, s)1,2, X(t, s)2,1 and X(t, s)2,2 are k × k, k × n, n × k and n × n matrix
respectively which satisfy the following equations :


dX(t,s)1,2

dt = A1(t)X(t, s)1,2 +
N∑
i=0

B1
i (t)X(t− τi, s)2,2

X(t, s)2,2 = In +
N∑
i=1

B2
i (t)X(t− τi, s)2,2 +A2(t)X(t, s)1,2

(6.21)

with initial data X(t, s)1,2 = 0k,n, X(t, s)2,2 = 0n,n for t < s and X(s, s)1,2 = 0k,n, X(s, s)2,2 = In,
and : 

dX(t,s)1,1
dt = A1(t)X(t, s)1,1 +

N∑
i=0

B1
i (t)X(t− τi, s)2,1

X(t, s)2,1 =
N∑
i=1

B2
i (t)X(t− τi, s)2,1 +A2(t)X(t, s)1,1,

(6.22)

with initial data X(t, s)1,1 = 0k,k, X(t, s)2,1 = 0n,k for t < s and X(s, s)1,1 = Ik, X(s, s)2,1 =
A2(s)Ik.

Define :

[ ∫ t+
s− X(t, α)1,1u1(α)dα+

∫ t+
s− dαX(t, α)1,2u2(α)∫ t+θ+

s− X(t+ θ, α)2,1u1(α)dα+
∫ t+θ+

s− dαX(t+ θ, α)2,2u2(α)

]
:=
∫ t+θ+

s−
dαX̃(t+ θ, α)u(α),

where the notation + (resp. −) denotes the integral taken with its upper (resp. lower) value,
u = (u1, u2) is a column vector and θ ∈ [−τN , 0].

Theorem 6.11 (Variation of constant formulas). For all s ∈ R,

• if x(·), y(·), u1(·) and u2(·) belong to C0([s,+∞[,Rk), C0([s− τN ,+∞[,Rn), C0([s,+∞[,Rk)
and C0([s,+∞[,Rn) respectively and which verify the equation (6.19) for all t ≥ s, we have
for all t ≥ s :

(x(t), yt) = U∞(t, s)(x(s), φ̃) +
∫ t+

s−
dαK(t, α)u(α), (6.23)

where the previous integral is understood in Bochner sense, φ̃(θ) = ys(θ) for θ ∈ [−τN , 0[ and

φ̃(0) =
N∑
i=1

B2
i (s)y(s− τi) +A2(s)x(s), and

K(t, α)(θ) =
∫ α+

s
dvX̃(t+ θ, v). (6.24)
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• if x(·), y(·), u1(·) and u2(·) belong to L2
loc([s,+∞[,Rk), L2

loc([s−τN ,+∞[,Rn), L2
loc([s,+∞[,Rk)

and L2
loc([s,+∞[,Rn) respectively and which verify the equation (6.19) for almost all t ≥ s,

we have for all t ≥ s :

(x(t), yt) = U2(t, s)(x(s), ys) +
∫ t+

s−
dαK(t, α)u(α), (6.25)

where the previous integral is understood in Bochner sense and K(·, ·) is the operator defined
in (6.24).

Proof. The proof deals with the continuous case. The proof for the L2 case is similar and is omitted.
With no loss of generality, we can assume s = 0. For t = 0, we have by the definition of the
fundamental solution that :

U∞(0, 0)(x(0), φ̃) +
∫ 0+

0−
dαK(t, α)u(α) = (x(0), y0). (6.26)

Let θ ∈ [−τN , 0] and t > 0 such that t+θ > 0, We prove that the formula (6.23) verifies the equation
(6.19) in t+ θ. We note (x̃(t), ỹt) = U∞(t, s)(x(s), φ̃).

• We have :

yt(θ) = y(t+ θ) = ỹ(t+ θ) +
∫ t+θ+

0−
X(t+ θ, α)2,1u1(α)dα+

∫ t+θ+

0−
dαX(t+ θ, α)2,2u2(α)

=
N∑
i=1

B2
i (t+ θ)y(t+ θ − τi) +A2(t+ θ)x(t+ θ) + u2(t+ θ).

• We have :

dx(t)
dt

= dx̃(t)
dt

+ u1(t) +
∫ t

0

d

dt
X(t, α)1,1u1(α)dα+

∫ t

0
dα

[
d

dt
X(t, α)1,2

]
u2(α)

= A1(t)x(t) +
N∑
i=0

B1
i (t)y(t− τi) + u1(t).

Proposition 6.12 (Fundamental solution). Let s and t ≥ s two real. Introducing the set :

Σr := {k ∈ R, k = k1τ1 + · · ·+ knτn for (k1, · · · , kn) ∈ Nn }, (6.27)

we have that the distribution dsX̃(t, s) can be written as :

dsX̃(t, s) = h(t, s) +
∑
k∈Σr

ak(s)δk(t− s). (6.28)

The ak(s) := X̃(s+ k+, s)− X̃(s+ k−, s) are the jump when X̃(·, s) pass through the discontinuities
s + k and are C2. The function h(t, s) is C2 on the domains {(t, s) ∈ IR2, t − s /∈ Σr}. The set
s+ Σr represents the localization where the distribution dsX̃(·, s) has its jumps.
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Proposition 6.13. For all τ real, the distribution-valued map t 7−→ dsX̃(·, · − τ) is T -periodic and
two times continuously differentiable. Moreover for all t real there exists K, γ > 0 such that :∫ τ

0

∥∥∥∥∥ ∂j∂tj dsX̃(t, t− s)
∥∥∥∥∥ ≤ Keγτ , for j = {0, 1, 2}. (6.29)

Proof. • We prove by induction that there exists K, γ > 0 such that :

‖[X(t, s)1,1, X(t, s)2,1]‖ ≤ Keγ(t−s), (6.30)

and by abuse of notation we note || · || the norm induced by the euclidean norm on Rk, Rn
and Rk × Rn. In fact if 0 ≤ t < τ1, we can find a K and a γ which verify the equation (6.30).
Assume that the majoration (6.30) holds for (k − 1)τ1 ≤ t < kτ1 for an integer k. Putting the
second equation in the first in the equation (6.22), we have for kτ1 ≤ t < (k + 1)τ1 :

dX(t, s)1,1
dt

= A1(t)X(t, s)1,1 +B1
0(t)

(
N∑
i=1

B2
i (t)X(t− τi, s)2,1 +A2(t)X(t, s)1,1

)
(6.31)

+
N∑
i=1

B1
i (t)X(t− τi, s)2,1.

Since the system is periodic and continuous, we deduce from the equations (6.31) and (6.22),
the variation of constant formula for the ordinary differential equations (Theorem 1.38,
Chapter 1) and the recurrence assumption that there exists K ′ real positive and 0 < γ1 < γ
such that :

||X(t, s)1,1|| ≤ K ′eγ1(t−s) + K ′K

γ − γ1
eγ(t−τ1−s) (6.32)

and

||X(t, s)2,1|| ≤ K ′Keγ(t−s)e−γτ1 +K ′[K ′eγ1(t−s) + K ′K

γ − γ1
eγ(t−τ1−s)]. (6.33)

Take γ enough large in the equations (6.32) and (6.33) achieves the recurrence.

• For j = 1, 2 and t and s real, we define for t ≥ s :

Y (t, s)j,2 =
∫ t

s
duX(t, u)j,2. (6.34)

We have that Y (t, s) = [Y (t, s)1,2, Y (t, s)2,2] is a L∞ function on each compact of R2 and
verifies the equation (6.22). Then we can apply the same reasonning that we did for
[X(t, s)1,1, X(t, s)2,1] and we conclude that there exists K4, γ4 such that:

||Y (t, s)|| ≤ K4e
γ4(t−s). (6.35)

.

• To sum up, we proved : ∫ τ

0

∥∥∥dsX̃(t, t− s)
∥∥∥ ≤ Keγτ . (6.36)
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Proposition 6.12 stated that the distribution t 7−→ dsX̃(t, t− τ) is C2 when τ does not belong
to Σr. When τ is in Σr we can see that, since h(t, t− τ) has an analytic expression which depends
in t and τ then it is also C2. Then the distribution t 7−→ dsX̃(·, · − τ) is C2 everywhere. The same
kind of Gronwall reasoning would prove that there exists K, γ > 0 such that:∫ τ

0

∥∥∥∥∥ ∂j∂tj dsX̃(t, t− s)
∥∥∥∥∥ ≤ Keγτ , for j = {1, 2}. (6.37)

6.1.3 Local stability result

We search now to prove the same local stability results that we have for the ordinary differential
equation (Proposition 1.7 of Chapter 1) or the scalar neutral differential equations (Theorem 2.3
of Chapter 2) in the case of the nonlinear hybrid delay system (6.1) endowed with the C0 norm.
The idea is always the same. We exploit the fact that the linearised system arround the periodic
trajectory approximate locally the nonlinear system because of the regularity of the nonlinearities.
We apply then the variation of constant formula (6.23) that we obtained and the fact that the
fundamental solution is exponentially stable when the linearised system (6.8) is C0 exponentially
stable. Putting togethers, these arguments lead to the following theorem :
Theorem 6.14. Assuming that sup

θ∈[−τN ,0]
||U(t, s)(θ)|| ≤ Ke−α(t−s) for K and γ positive, then there

exists δ > 0 such that :
sup

θ∈[−τN ,0]
||(x(0), y0(θ))− (x(0), y0(θ))|| ≤ δ ⇒ sup

θ∈[−τN ,0]
||(x(t), yt(θ))− (x(t), yt(θ))|| ≤ Ke−α(t−s),

for all t ≥ s, where (x(t), yt) is the solution of (6.1) starting from (x(0), y0).
Proof. We have that [X(t, s)1,1, X(t, s)2,1] is a L∞ function of R2 on each bounded compact set. So
we deduce from the fact that ||U(t, s)|| ≤ Ke−α(t−s) and Theorem 6.8 :

||[X(t, s)1,1, X(t, s)2,1]|| ≤ Ke−α(t−s). (6.38)
Let Y (t, s) = [Y (t, s)1,2Y (t, s)2,2] where the functions Y (t, s)1,2 and Y (t, s)2,2 are defined in the
equation (6.34), we have that Y (t, s) is a L∞ function of R2 on each compact which verifies the
equation (6.6) and always the use of Theorem 6.8, we have :

||Y (t, s)|| ≤ Ke−α(t−s). (6.39)
The use of a straightforward generalization of Lemma 2.9, based on the mean value theorem

in Chapter 2, we have that for η > 0, there exists δ1 > 0 such that if for S > 0 we have
||(x(t) − x(t), yt − yt)|| ≤ δ1 for all t ∈ [s, S + s] and for all functions y, y (resp. x, x) continuous
function defined on [−r + s, S + s] (resp. [s, S + s]), then :

||f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN ))− f(t, x(t), y(t), y(t− τ1), · · · , y(t− τN ))||
≤ (N + 2)η sup

θ∈[−τN ,0]
||(x(t), yt(θ))− (x(t), yt(θ))||

and
||g(t, y(t), y(t− τ1), · · · , y(t− τN ), x(t))− g(t, y(t), y(t− τ1), · · · , y(t− τN ), x(t))||

≤ (N + 2)η sup
θ∈[−τN ,0]

||(x(t), yt(θ))− (x(t), yt(θ))||.

The use of the variation of constant formula (6.11), Theorem 6.8 to have the exponential
decreasing of the operator U∞ and following exactly the same proof than Theorem 2.3 in the
Chapter 2, we obtain the result.
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6.1.4 Regularity periodic solution

We assumed that the periodic solution of the system (6.1) was C3. However, with the Assumption 6.10
and the regularity assumption of g and f then all continuous periodic solution to the system (6.1)
is C3. In practice, this result is a generalization in the case of nonlinear hybrid system admitting a
periodic solution of the Lemma 7.1 p291 Hale [HVL93] stated for the time-invariant neutral system.
Lemma 6.15. Let x(t) a continuous periodic solution of the system :

x(t)−H(t, x(t− τ1), x(t− τ2), · · · , x(t− τN )) = h(t), (6.40)
where H is C2 and h is C1. Assume that the system

x(t)−D1(t)x(t− τ1)− · · · −DN (t)x(t− τN ) = 0 (6.41)
is C0 exponentially stable, then the periodic solution x is C1.
Proof. With no loss of generality, we can consider the system (6.40) with one single delay :

x(t)−H(t, x(t− τ1)) = h(t), (6.42)
We can rewrite the system (6.42) :

x(t)−D1(t)x(t− τ1) := h(t) + H̃(t),
where H̃(t) = −D1(t)x(t− τ1) +H(t, x(t− τ1)). Since the majoration in [HVL93, ch. 9, thm

3.5] holds for the periodic difference delay system which are exponentially stable, we have for all
t > σ and for all τ and s real the existence of K > 0 and a < 0 such that :

∣∣∣∣xt+τ − xtτ

∣∣∣∣ ≤ Kea(t−σ)
[∣∣∣∣xσ+τ − xσ

τ

∣∣∣∣]+K sup
σ≤u≤t

∣∣∣∣h(u+ τ)− h(u)
τ

∣∣∣∣+K sup
σ≤u≤t

∣∣∣∣∣H̃(u+ τ)− H̃(u)
τ

∣∣∣∣∣
When σ tends to −∞., we obtain :

∣∣∣∣xt+τ − xtτ

∣∣∣∣ ≤ K sup
−∞≤u≤t

∣∣∣∣h(u+ τ)− h(u)
τ

∣∣∣∣+K sup
−∞≤u≤t

∣∣∣∣∣H̃(u+ τ)− H̃(u)
τ

∣∣∣∣∣
Applying two times the mean value theorem, there exists ε > 0 enough small and δ > 0 such

that for all u real and all |s, τ | < δ we have :

∣∣∣∣xt+τ − xtτ

∣∣∣∣ ≤ K sup
−∞≤u≤t

∣∣∣∣h(u+ τ)− h(u)
τ

∣∣∣∣+K sup
−∞≤u≤t

∣∣∣∣H(u+ τ, x(u− τ1)−H(u, x(u− τ1)
τ

∣∣∣∣
+εK sup

−∞≤u≤t

∣∣∣∣xu+τ − xu
τ

∣∣∣∣
Since the right member of the previous equation is increasing in t, we obtain :

(1− εK) sup
−∞≤u≤t

∣∣∣∣xu+τ − xu
τ

∣∣∣∣ ≤ K sup
−∞≤u≤t

∣∣∣∣∫ 1

0
ḣ(u+ vτ)dv

∣∣∣∣+K sup
−∞≤u≤t

∣∣∣∣∫ 1

0
[∂1H(u+ vτ, x(u− τ1)]dv

∣∣∣∣
Since the right member tends uniformly to 0, we obtain that x is derivable and then C1.

Corollary 6.16. Under Assumption 6.10 and the assumption the regularity assumption of g and f
then all the continuous periodic solutions of the system (6.1) are C3.
Proof. The proof is a direct consequence of Lemma 6.15.



6.1 Nonlinear hybrid delay systems 139

6.1.5 Harmonic Transfer Function

This subsection gives the link between the spectrum of the monodromy operator associated to the
periodic linear hybrid delay system (6.3) and the singularities of the harmonic transfer function.
The proof is similar to the one given for the neutral differential equation in Chapter 2 and the
slight changes come from the fact that we have to handle different functional spaces and to apply
the variation of constant formula (6.25). Contrary to the example given in Chapter 2, we need to
assume that we verify some detectability and stabilizability assumptions to ensure that we do not
lose some poles in the harmonic transfer function.

We consider an input-output system for the hybrid delay system (6.3). Let u ∈ L2
loc([0,+∞),R)

the input and let the z(t) ∈ R the output at the time t ≥ 0, more precisely :
dx(t)
dt = A1(t)x(t) + B1(t)yt + C1(t)u(t)

B2(t)yt = A2(t)x(t) + C2(t)u(t)
z(t) = F(t)(x(t), yt) + C3(t)u(t), t ≥ 0,

(6.43)

where C3(·) is a scalar T -periodic function and two times continuously differentiable and :

F(t)(x(t), yt) =
N∑
i=0

B3
i (t)y(t− τi) +A3(t)x(t), (6.44)

with A3(·) a 1× k T -periodic matrix and two times continuously differentiable. The (B3
i )i∈[|0,N |](t)

represent a family of matrices of size 1×n T -periodic matrix and two times continuously differentiable.
We assume that the system is zero before the time zero, ie x(t), y(t) and z(t) are zero for t < 0. For
an input-output system we have that the output z(t) is a convolution of the input u(t). The kernel
of this operator is called the impulsional response to the system. In the case of periodic ordinary
differential equation, the structure of the the kernel is well known through the variation of constant
formula that’s why we generalize this idea in the case of hybrid periodic system in the following
theorem :

Theorem 6.17. We have :

z(t) =
∫ t+

0
dαK̃(t, α)u(α), t ≥ 0, (6.45)

where :

dαK̃(t, α) = F(t)dαK(t, α)(C1(α), C2(α)) + C3(t)δ0(t− α), (6.46)

where K(t, α) is defined in the equation (6.24) and (C1(α), C2(α)) is understood as a column vector.

Proof. Putting the variation constant formula (6.25) in the equation (6.43) leads to the result.

Theorem 6.18. For all τ real, the distribution t 7−→ dsK̃(·, · − τ) is T -periodic and two times
continuously differentiable. Moreover for all t real there exists K, γ > 0 such that :∫ τ

0

∥∥∥∥∥ ∂j∂tj dsK̃(t, t− s)
∥∥∥∥∥ ≤ Keγτ , for j = {0, 1, 2}. (6.47)

Proof. The result is obtained by combination of Proposition 6.13 and Theorem 6.17.

Definition 6.19 (ITF). The function :

G(s, t) =
∫ +∞

0
dτ K̃(t, t− τ)e−sτ , (6.48)

for s ∈ C is called the instantaneous transfer function.
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Proposition 6.20. The function t 7→ G(t, s) is C2 and T periodic.

Proof. It is just a corollary of Theorem 6.18.

The properties of the ITF are similar to the classical transfer function. We list here the most
important (see [Lou14]) :

• The response to an exponential complex function eiωt is :

y(t) = G(t, iω)eiωt (6.49)

• If we consider zero as an initial data, we have :

y(t) = L−1{G(s, t)U(s)}, (6.50)

where L−1 is the inverse of the Laplace transform.

Developing in Fourier series the ITF :

G(s, t) =
∑

Gn(s)eiω0nt, (6.51)

it leads to the concept of the harmonic transfer function. The harmonic transfer function is an
infinite matrix which relate the output at each frequency s+ 2iπk

T for a fixed k ∈ Z with the input
at all frequency s+ 2iπn

T for all n ∈ Z. More precisely :

Definition 6.21 (HTF). The infinite matrix H(s) defined by Hm,n(s) := Gm−n(s− 2iπn
T ) for s ∈ C

is called the harmonic transfer function.

Proposition 6.22. There exists K(<(s)) real positive which depend only of the real part enough
large of s complex such that :

|Gn(s)| ≤ K(<(s))
1 + n2 . (6.52)

Moreover, letting U = L{u} and Z = L{z}, we have :

Z(s+ inω0) =
∑
n∈Z

Hm,n(s)U(s+ inω0).

Proof. The first part of the proposition is implied by Proposition 6.20 and the second part come
from the first part of the proposition.

In the view to bring out the monodromy operator, we discretise the continuous dynamical system
in a discrete dynamical one. For that we consider the input and the output on interval of length T .
Put :

ũk := u(kT + t) for t ∈ [0, T ] and k ∈ Z
z̃k := z(kT + t) for t ∈ [0, T ] and k ∈ Z,

Thus we have the following discrete system :

Theorem 6.23. We have for all integer positive k :

{
(x̃, ỹ)(k+1)T = Ã(x̃, ỹ)kT + B̃ũk

z̃k = C̃(x̃, ỹ)(k+1)T + D̃ũk
(6.53)
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where :

• Ã : Rk × L2([−τN , 0],Rn) −→ Rk × L2([−τN , 0],Rn)
v 7−→ U2(T, 0)v.

• B̃ : L2([0, T ],R) −→ Rk × L2([−τN , 0],Rn)
v 7−→

∫ T+·
0 d[K̃(T, α)]v(α),

• C̃ : Rk × L2([−τN , 0],Rn) −→ L2([0, T ],R)
v 7−→ F(·)U2(·, 0)v

• D̃ : L2([0, T ],R) −→ L2([0, T ],R)
v 7−→

∫ ·
0 dαK̃(·, τ)v(τ)dτ,

• (x̃, ỹ)0 = 0

Proof. The use of the variation of constant formula (6.25) in the system (6.43), we obtain for t ∈ R :

 (x̃, ỹt)(k+1)T = U2((k + 1)T, kT )(x̃, ỹt)kT +
∫ (k+1)T
kT dαK̃((k + 1)T, α)u(α),

z(t+ kT ) = F(t+ kT )
[
U2(t, 0)(x̃, ỹt)kT +

∫ t+
0 dαK̃(t, α)u(α)

]
+
∫ t+

0 δ0(t− τ)C3(τ)uk(τ)dτ.

By periodicity we have the result.

For a sequence of operator a := (an)n∈N we define the p− transform as:

â :=
∑
n∈N

anp
−n, (6.54)

when for p ∈ C this series exists. Taking the p− transform in the equations (6.53), we have :

Ẑ = [C̃(pId− Ã)−1B̃ + D̃]Û . (6.55)

On in the other side, we can compute the impulsional response of the discrete system and we have :

z̃n(t) =
n∑
k=0

H[k]ũn−k(t), (6.56)

where :

H[k]v(t) =
∫ T

0
dτ K̃(kT + t, τ)v(τ) (6.57)

is the discrete impulsional response of the discretised dynamical system. Taking the p− transform
in the equation (6.56) for p with great modulus (which is licit because of Proposition 6.18), we have
:

Ẑ(p) = Ĥ(p)Û(p). (6.58)

We have that Ã = U2(T, 0) is a compact perturbation of the operator TD,2(T, 0). We note a the
spectral radius of the operator TD(T, 0) and (ζ1, · · · , ζn) the eigenvalues of U2(T, 0) outside the disk
we radius a and centrum 0. We introduce the set Pa := {z ∈ C||z| > a}
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Theorem 6.24. For all p ∈ Pa/{ζ1, · · · , ζn}, we have :

Ĥ(p) = C̃(pId− Ã)−1B̃ + D̃, (6.59)

and ζi is possibly a pole of Ĥ(p) for all i ∈ {1, · · · , n}.

Proof. The equation (6.59) hold for p with a huge modulus and by the analytic continuation, we
have the result.

Lemma 6.25. We have :

G(s, t) = e−stĤ(esT )est (6.60)

Proof. We have, by the definition of the p− transform and the equation (6.57), for v ∈ L2([0, T ],R)
and t ∈ [0, T ] that:

Ĥ(z)v(t) =
+∞∑
k=0

H[k]v(t)p−k (6.61)

=
+∞∑

k=−∞
p−k

∫ T

0
dτ K̃(kT + t, τ)v(τ). (6.62)

and on the other side the equation (6.48) where we performed an integration by substition (t→ t−τ)
and using the periodicity of the system leads to :

G(s, t) =
∫ t

−∞
dτ K̃(t, τ)es(τ−t) (6.63)

=
∫ +∞

−∞
dτ K̃(t, τ)es(τ−t) (6.64)

=
+∞∑

k=−∞

∫ T

0
dτ K̃(t, τ − kT )es(τ−t−kT ) (6.65)

=
+∞∑
k=0

e−s(t+kT )
∫ T

0
dτ K̃(t+ kT, τ)esτ (6.66)

and thus we have the result with p = esT .

We introduce the sets P̃a := {z ∈ C|<(z) ≥ ln(|a|)/T}, Ei := ker(ζiid − Ã) and Ẽi := {φ ∈
L2([0, T ],R)|B̃φ ∈ Ei} for i = 1, · · · , n. We make the assumption :

Assumption 6.26. • The set Ẽi is non empty for all i = 1, · · · , n.

• C̃B̃Ẽi is a non-zero operator for all i = 1, · · · , n.
.

The first and the second items of the assumption translate stabizability and detectability of the
discrete system (6.53) respectively.

Theorem 6.27. We have that the harmonic transfer function H(p) verifies the following properties:

• the singularities in Pa are possibly poles of the form ln(ζj)+2ikπ
T for k ∈ Z and j ∈ {1, · · · , n}

for a certain integer n and define a continuous operator on l2 to l2 elsewhere.
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• under the assumption (6.53), for all j ∈ {1, · · · , n}, there exists a k ∈ Z such that ln(ζj)+2ikπ
T

is a pole of the harmonic transfer function and there exists an element of the infinite matrices
which possesses the pole too. Moreover if the harmonic transfer function is analytic in the
right half plane then the periodic solution (x(·), y(·)) of the system (6.1) is locally exponentially
stable with the C0 norm; i.e. all solution which starts relatively close to the periodic solution
of the system (6.1) tends exponentially to this periodic solution.

proof. Fix s ∈ C with real part enough large. Let

Λ(s) : L2([0, T ],R)→ L2([0, T ],R), (6.67)

where [Λ(s)φ](t) = e−st[Ĥ(esT )es·φ(·)](t) for all φ ∈ L2([0, T ],R). We have that the Fourier
development of Λ(s)φ(t) is :

Λ(s)φ(t) =
∑
n∈Z

∑
k∈Z

akGn−k(s+ 2iπk/T )

 e2iπn/T , (6.68)

with (ak)k∈Z the Fourier coefficients of φ. In fact, when φ ∈ C2, we deduce from Lemma 6.25,
Proposition 6.22, the regularity of the Fourier coefficient of φ that the equation (6.68) holds. By a
density argument, the equation (6.68) holds as well for a function φ ∈ L2([0, T ],R).

By Parseval’s identity :

The HTF H(s) is
a bounded operator on l2(Z)

}
⇔ Λ(s) is a bounded operator on L2([0, T ],R).

Λ(s) is a bounded operator on L2 if and only if esT is not in the spectrum of the monodromy
operator U2(T, 0), we have that H(s) admits an analytic continuation on the domain Pa except
on the lnζ+2iπk

T where ζ is an element of the spectrum of the monodromy operator of U2(T, 0).
Put ζi for some i in {1, · · · , n} an isolated eigenvalue of U2(T, 0) and Ẽi its kernel. Under the
Assumption 6.26, Ẽi is not empty. For all φ ∈ Ẽi we have by the representation of the resolvent of
Ã :

Ĥ(z)φ =
p∑

k=0

C̃NkB̃φ

(z − ζi)k+1 , (6.69)

where N a nilpotent operator, for all z complex in a neighborhood of ζi and p is an integer. Put s0
such that es0T = ζi, s is a complex in the neighborhood of s0 and Ψs(·) = e−s·φ(·). Thus :

lim
s→s0

(
esT − es0T

)p+1
[Λ(s)φ](t) = e−s0t

[
C̃B̃Ψs0(·)es0·

]
(t). (6.70)

Since the discrete system is detectable via the Assumption 6.26, the right hand side of the equa-
tion (6.70) is not identically equal to zero. We deduce that there exists n′ and k′ such that
lim
s→s0

(
esT − es0T

)p+1
Gn−k(s + 2iπk/T ) is non-zero. We deduce the result from the Theorem 6.8

and Theorem 6.14.

6.2 Circuit containing lossless transmission lines
In this section we apply the results of Section 6.1 in the case of the circuit containing lossless
transmission line. We consider a circuit made of :
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• resistors, diodes, periodic generator, transistors, capacitors and inductors with the nonlineari-
ties at least C4,

• lossless transmissions lines.

This kind of circuit leads to a hybrid differential nonlinear delay equation (equation (3.17) in
Chapter 3) which is an equation like the equation (6.1). We assume that there exists a continuous
periodic solution to this system.

The main result (Theorem 6.36) of the section is the fact that the harmonic transfer function
associated to a linearised circuit containing transmission lines around a periodic solution, and made
of dissipative multiport at high frequency, have just isolated poles in the closed right half plan;
moreover if the harmonic transfer function is holomorphic in the closed right half plan then the
periodic solution is locally exponentially stable for the uniform norm (under some controllability
and observability assumptions). Before the statement of our main result in Section 6.2.3, we start
by defining properly the concept of the dissipativity at high frequency and the concept of realistic
electrical components in the view to apply the results of Chapter 5. The results of the sections 6.2.1
and 6.2.2 can be found in [BCC+18] in the frequency domain for the time-invariant systems, however
we adapt freely the definitions and propositions in the time domain (periodic system) for our
purposes.

6.2.1 Dissipativity at high frequency for linearised components

We consider the components of Chapter 1, i.e. capacitors, diodes, periodic generator, inductors,
resistors and transistors which are linearised around a periodic trajectory. Putting together these
components, we can form a multiport like we did in the chapter 3. We consider in this section
the multiport linearised around a periodic trajectory. As we already saw in Chapter 3, formally
speaking, a multiport is a directed graph with labeled vertices (called junction nodes), and edges
(called branches). Branches correspond to the components and nodes to terminals thereof.

To each junction node j is associated a potential vj , and to each edge k an electric current ik.
One of the junction nodes, say vn, is the ground (its potential is 0 by convention). We always
assume that the graph associated with a multiport is connected. The currents im := (ik1 , · · · , ikm)
are plugged in between the ground and the junction nodes (k1, · · · , km) of the circuit containing
the components (see figure 6.1 below), where m is an integer which denotes the number of output
of the multiport.

Figure 6.1 : A m multiport



6.2 Circuit containing lossless transmission lines 145

To give the equations which govern the behavior of a such multiport, we assume that the voltage
of such multiport vm := (vk1 , · · · , vkm) can be expressed with the voltage of the capacitors, the
current of the inductors and im the a current of the multiport thus by the Brayton-Moser theorem
(see [BM64]), we have that the equation of the multiport is :


Cm

dvcm
dt = Acm(t)vcm(t) +Bcm(t)ilm(t) + Ccm(t)im

Lm
dilm
dt = Alm(t)vcm(t) +Blm(t)imp(t) + Clm(t)im,

vm = Am(t)vcm(t) +Bm(t)ilm(t) + Cm(t)im,
(6.71)

where vcm (resp. ilm) denotes the voltage (resp. current) of the capacitors (resp. inductors)
contained in the multiport and the matrices involved in the equation (6.71) are T -periodic, two
times continuously differentiable and with the size required to give a meaning to the equation. It
has to be noted that the equation (6.71) is just the equation (3.2) linearised around a periodic
trajectory.

We now introduce the concept of the dissipativity at high frequency. In fact, all electrical
components physically built dissipate energy when it operates at high frequency. For us, the
behavior at high frequency of a multiport is the behavior of the multiport where the capacitors
becom wires and the inductors become open switches, and thus there is just the resistive effects at
high frequency. The multiport linearised around a periodic trajectory has negative resistors which
come from the linearisation of the nonlinearies. The idea of the dissipativity at high frequency
means that the negative resistors do not play any role at high frequency because their effects are
reduced by the capacitive and inductive effects.

From a mathematical viewpoint, the behavior at high frequency of the multiport is obtained
when we replace the voltage vcm and the current ilm by zero in the equation (6.71). Then the
equation of the multiport at high frequency is :

vm = Cm(t)im, (6.72)

and the concept of the dissipativity at high frequency is introduced in Definition 6.28 below.

Definition 6.28. We say that a multiport is dissipative at high frequency if there exists α > 0
independent of the time t ∈ R such that :

Cm(t) + Cm(t)∗ ≥ αIm. (6.73)

We introduce the following classic lemma 6.29 which simply means that a real matrix with
positive definite real part is invertible and the inverse has a positive definite symmetric part.

Lemma 6.29. If a multiport is dissipative at high frequency then Cm is invertible and there exists
α̃ independent of the time t ∈ R such that :

C−1
m (t) + (C−1

m (t))∗ ≥ α̃Im. (6.74)

Proof. Let t a real. We can find in [Joh70] that the symmetric matrix Cm(t) + Cm(t)∗ is definite
positive if and only if x∗Cm(t)x > 0 for all real non-zero vector x. We deduce that Cm(t) is invertible.
Since for all real non-zero vector x there exists a real vector non-zero vector y such that y = C−1

m (t)x,
we have :

x∗C−1
m (t)x = y∗Cm(t)y > 0, (6.75)

and then we have that C−1
m (t) + (C−1

m (t))∗ is a definite positive matrix, and by periodicity and
continuity we deduce the equation (6.74).
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We have the following nice property which says that the composition of multiport dissipative at
high frequency is dissipative at high frequency. This result is well known by the electrical engineers
but it is difficult to find a proper proof of this fact that is why we follow the proof in [BCC+18]
(thank you Sylvain Chevillard for writing this clear proof) :

Proposition 6.30. A multiport which is composed of dissipative multiports at high frequency is
dissipative at high frequency.

Proof. We consider the behavior of the multiport at high frequency. To express the effect of
(ik1 , · · · , ikm) on the potential (vk1 , · · · , vkm), we use nodal analysis which is a classical method to
derive voltages at the nodes of a circuit in terms of the branch currents [CC98, sect.2.9]. Specifically,
we denote by V = (v1, . . . , vn−1)∗ the vector of all node voltages (except vn, the reference ground
voltage) and by I = (i1, . . . , ip)∗ the vector of all currents in the branches. The (node-branch)
incidence matrix of the circuit, say A = (Aij), has n− 1 rows corresponding to the nodes (except
the ground) and p columns corresponding the branches. It is defined by the rule:

Aij = 1 if edge ej is incident away from node i,
Aij = −1 if edge ej is incident towards node i,
Aij = 0 otherwise.

Since the graph is connected, A has full row rank (n− 1) [Che91, Th. 2.1]. Now, because we plug
in (i1, · · · , im) at nodes (k1, · · · , km), Kirchhoff’s law gives us

AI =
(

0 · · · ik1 0 . . . 0 ikm 0 . . . 0
)∗
. (6.76)

Next, we substitute currents with voltages using the relations given by the equations of the multiport
at high frequency. For this, we form the branch admittance matrix, a block diagonal matrix
Yb(t) = diag(C−1

m1(t), C−1
m2(t), . . . , C−1

mp(t)) where the C−1
mj (t) is the inverse matrix of the multiport j

and thanks to Lemma 6.29 satisfies :

C−1
mj (t) + (C−1

mj (t))
∗ ≥ αjImj , (6.77)

for αj > 0 and for all j = 1, · · · , p. With a convenient ordering of nodes and edges, it holds that
I = YbA

∗ V , and (6.76) yields

YV =
(

0 · · · ik1 0 . . . 0 ikm 0 . . . 0
)∗
. (6.78)

where Y(s) is a (n− 1)× (n− 1) matrix, called nodal admittance matrix, which is related to the
branch admittance matrix through ([CC98] eq. (2.9.8))

Y = AYbA
∗. (6.79)

Because of the equation (6.77), we have that Yb + Y∗b ≥ αIm for one α > 0 and since the incident
matrix A has full rank, by the assumed connectivity of the graph of the multiport, we have that there
exists α̃ > 0 such that Y + Y∗ ≥ α̃Im. Thus Y−1 + (Y−1)∗ ≥ α̃Im is a symmetric definite positive
matrix by Lemma 6.29. Thus the symmetric real part of the matrix which links (vk1 , · · · , vkm) and
(ik1 , · · · , ikm) is a principal submatrix of a definite positive matrix and so is definite positive. Then
we have that the multiport is dissipative at high frequency.
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6.2.2 Realistic models of linearised active components

The only elementary electronic elements which fail to be dissipative at high frequency are obviously
the linearised diode (equation (1.3) Chapter 1) and the linearised transistor (equation (1.6) Chap-
ter 1). In fact these models represent the behaviour of an ideal diode and transistor and do not
take account the dissipativity and the stability of a diode or a transistor when the circuit occurs
at high frequency. An equivalent way to say the same thing is that the models of the diodes and
transistors do not take account the capacitive or inductive effects. We propose below models which
are more realistic than those in Chapter 1 because they verify the dissipative at high frequency
property. The models proposed below can be found in [BCC+18] .

• Concerning the diodes, a realistic models would be those in Figure 6.2. The model (a) in
Figure 6.2 represents a resistor (r � 1) in parallel of an inductor (L�) and the linearised
ideal diode (R(t)). The model (b) in the Figure 6.2 represents a small resistor (r � 1) coupled
with a capacitor (C � 1) and the linearised diode (R(t)) in parallel.

(a) With inductive effect and high resistance (e.g., of the
air around the diode)

(b) With capacitive effect and small resistance (e.g., of the
wire)

Figure 6.2 : Two realistic models of a linearised diode

Proposition 6.31. The models of the diodes in Figure 6.2 are dissipative at high frequency.
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Proof. It is obvious that the behavior at high frequency of the model (a) and (b) are vm = rim
and then we have the result.

• Transistors can also be modeled in a realistic way to account for the fact that actual devices
have no gain anymore at very high frequencies. It has to be noted that the model the Figure 6.3,
we have that gm(t) and gd(t) are strictly positive.

Figure 6.3 : Intrinsic model of a linearised transistor

Proposition 6.32. The model presented in Figure 6.3 is dissipative at high frequency.

Proof. The Kirchhoff laws give that the matrix which at high frequency link (IG, ID) and
(VGS , VGD) is :

Y =

 1
rg

− 1
rg

− 1
rg

gd(t) + gm(t) + 1
rg

 . (6.80)

We see that this matrix has a definite positive real part and then the inverse of this matrix
has a positive definite real part.

6.2.3 Structure of the Harmonic Transfer Function for dissipative circuit at
high frequency

We consider a circuit C made of resistors, diodes, transistors, periodic generator, capacitors, inductors
and lossless transmission lines where the nonlinearities are at least C4. Since Chapter 3 is far away
we resume this chapter without the technical details and we rewrite the key equations which have
been obtained. We interpreted a such circuit as a graph where the nodes were multiports (resistors,
diodes, periodic generator, transistors, capacitors and inductors) interconnected with the edges
representating the lossless transmission lines. Under the Brayton-Moser assumption, we arrived to
a nonlinear hybrid delay equation :
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

0 = ȟ1


t,



x1(t)
...

xN (t)
y1(t)
...

yN (t)


,



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


, z(t)


,

dz(t)
dt = ȟ2


t,



x1(t)
...

xN (t)
y1(t)
...

yN (t)


,



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


, z(t)


.

(6.81)

We assume that the system (6.81) admits a periodic solution which is forced by the presence
of a periodic generator. We are then able to linearise the components of the circuit around the
periodic trajectory. From now we do the following dissipativity assumption :

Assumption 6.33. The circuit is made of dissipative at high frequency linearised components.

We can remark that Assumption 6.33 is verified in the particular case where we take the linearised
models of the diode and transistor that we can find in Section 6.2.2 (Figure 6.2 and 6.3). Obviously,
we could take another diode or transistor modelization as long as it satisfies the Definition 6.28.
Since a multiport which is composed of dissipative multiports at high frequency is dissipative at high
frequency through Proposition 6.30, we have that each node of the circuit is a multiport dissipative
at high frequency. It means that at high frequency, the circuit dissipates the energy in each nodes.
After the linearisation of the equation (6.81) around the periodic solution, we obtain the equation :



x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


+ Az(t)z(t),

dz(t)
dt = B(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Bz(t)z(t).

(6.82)

Assumption 6.33 implies that the there exists a positive number α, independent of t, such that :

A(t) + A∗(t) ≥ α Id, α > 0 t ∈ R. (6.83)
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The invertibility of the matrix I + A(t) K is induced by the equation (6.83) and then the
equation (6.82) has always a sense. Putting z = 0 we have that the behavior of the circuit at high
frequency (equation (6.82)) is a periodic delay system of the form :



x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


. (6.84)

The dissipativity at high frequency of the linearised components leads to the exponential stability
of the high frequency system (6.84) associated to the circuit and that all continuous periodic solution
are at least C4 because the regularity assumption on the nonlinear components of the circuit.

Theorem 6.34. The periodic delay system (6.84) is exponentially stable with the C0 norm.

Proof. The dissipativity at high frequency Assumption 6.33 implies that the equation (6.83) is
verified and then we can apply Theorem 5.21 of Chapter 5 to have the result.

Theorem 6.35. The continuous periodic solution to the system (6.1) is at least C4.

Proof. It is a direct application of Corollary 6.16.

Disturbing the linearised system (6.82) by a current iε and observing the voltage uε we obtain
the following input-output system :



dz(t)
dt = B(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Bz(t)z(t) + Bε(t)iε(t),



x1(t)
...

xN (t)
y1(t)
...

yN (t)


= − (I + A(t) K)−1 (I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


+ Az(t)z(t) + Aε(t)iε(t),

uε(t) = C(t)K





x1(t)
...

xN (t)
x1(t− τ1)

...
xN (t− τN )


+



y1(t)
...

yN (t)
y1(t− τ1)

...
yN (t− τN )




+ Cz(t)z(t) + Cε(t)iε(t).

(6.85)
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We are now able to state the structure of the harmonic transfer function associated to the
system (6.85) and the link with the local stability of the periodic solution, thanks to Section 6.1. In
fact, to sum up, the equations (6.81), (6.82), (6.84) and (6.85) are like the equations (6.1), (6.3),
(6.8) and (6.43) under Assumption 6.33. Moreover, we proved under Assumption 6.33 that the
system (6.84) is exponentially stable. So the equivalent system (6.8) is C0 exponentially stable and
Assumption 6.10 is fulfilled. The theory developed in Section 6.1 is applicable, and the application
of Theorem 6.27 leads to the following theorem :

Theorem 6.36 (Structure HTF and local stability). Consider a circuit C made of resistors, diodes,
periodic generator, transistors, capacitors, inductors and lossless transmission lines where the
nonlinearities are at least C4. Assume the existence of a continuous periodic solution and the
dissipativity at high frequency of the linearised components of the circuit. The linearised circuit
around the periodic trajectory which is disturbed by a source current iε, and which has the output
response voltage associated vε, has a harmonic transfer function H(s) verifying the following
properties :

• there exists an a < 0 such that H is a meromorphic operator l2(Z) → l2(Z) in the complex
domain {z ∈ C|<(z) ≥ a} which possibly poles at

{
zj,k = ln(ζj)+2ikπ

T , j ∈ {1...n}, k ∈ Z
}
where

(ζj)j∈{1...n} is a finite family of complex numbers.

Moreover, under the stabilizability and detectability Assumption 6.26,

• for all j = 1, · · · , n there exists at least one k ∈ Z such that zj,k is a pole of a coefficient of
the matrix H.

• if the harmonic transfer function is analytic in the closed right half plane, then the periodic
solution is locally stable; i.e. all solution which starts relatively close to the periodic solution
of the system (6.81) tends exponentially to this periodic solution.
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A.1 Proof of formula (4.24)

A.1.1 reduction to a Volterra equation

Observe from (4.22) that for s+ τN ≤ t, α 7→ X(t, α) has bounded variation on [s, s+ τj ] for each j
and satisfies

dαX(t, α) =
N∑
j=1

Dj(t) dαX(t− τj , α) on [s, s+ τj ]. (A.1)

Substituting (A.1) in (4.24) yields (6.6), provided that t ≥ s + τN . Hence, by uniqueness of a
solution y to (6.6) satisfying y(s + θ) = φ(θ) for θ ∈ [−τN , 0], it is enough to check (4.24) for
s ≤ t < s + τN . For this, we adopt the point of view of reference [HVL93], which is to construe
delay systems as Stieltjes-Volterra equations upon representing delays by measures. More precisely,
we can rewrite (6.6) as a Lebesgue-Stieltjes integral:

y(t) =
∫ 0−

−τ−N
dµ(t, θ)y(t+ θ), t ≥ s, (A.2)

with

µ(t, θ) =
N∑
j=1

Dj(t)H(θ + τj), (A.3)

where y(τ) is understood to be φ(τ − s) when s− τN ≤ τ ≤ s and H(τ) is the Heaviside function
which is zero for τ ≤ 0 and 1 for τ > 0, so that the associated measure on an interval of the form
[0, a] or [0, a) is a Dirac delta at 0. Note that H(0) = 0, which is not the usual convention, but if
we defined H so that H(0) = 1 then expanding (A.2) using (A.3) would not give us back (6.6) for
the term DN (t)y(t − τN ) would be missing. Observe also, since τj > 0 for all j, that the minus
sign in the upper bound of the integral in (A.2) is immaterial and could be traded for a plus. For
s ≤ t ≤ s+ τN , singling out the initial data in (A.2) yields

y(t) =
∫ 0−

(s−t)−
dµ(t, θ)y(t+ θ) + f(t) with f(t) :=

∫ (s−t)−

−τ−N
dµ(t, θ)φ(t+ θ − s), (A.4)

where we took into account, when separating the integrals, that θ 7→ µ(t, θ) is left continuous, while
the integral over the empty interval is understood to be zero. It will be convenient to study (A.4)
for t ∈ [s, s + τN ], even though in the end the values of y(t) only matter to us for t ∈ [s, t + τN ).
Define

k(t, τ) :=
{
µ(t, τ − t)−∑N

j=1Dj(t) for τ ∈ [s, t],
0 for τ > t,

t, τ ∈ [s, s+ τN ]. (A.5)
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Note that k(t, τ) = 0 when t − τ < τ1, and dτk(t, τ) = dτµ(t, τ − t) on [s, s + τN ] for fixed t.
Hence, (A.4) becomes

y(t) =
∫ t−

s−
dk(t, τ)y(τ) + f(t), s ≤ t ≤ s+ τN . (A.6)

Now, (A.6) is the Stieltjes-Volterra equation we shall work with.
It suffices to prove (4.24) for t ∈ [s, s+ τN ) under the additional assumption that φ and the Dj ,

which are continuous by hypothesis, also have bounded and locally bounded variation, on [−τN , 0]
and R respectively. Indeed, functions of bounded variation are dense in Cs (resp. C0(T,Rd×d)), for
instance because C1-functions are, and if φk converges uniformly to φ in Cs while Dj,k converges
uniformly to Dj in [s, s+ τN ] as k →∞, then the solution to (6.6) with initial condition φk and
coefficients Dj,k converges uniformly on [s, s + τN ] to the solution with initial condition φ and
coefficients Dj , as is obvious by inspection. Hence, we shall assume without loss of generality that
φ has bounded variation and the Dj have locally bounded variation. Then, since it follows from
(A.3) and (A.4) that

f(t) =
∑

τ`∈(t−s,τN ]
D`(t)φ(t− s− τ`), (A.7)

it is clear from (A.7) and (4.9) that f ∈ BVl[s, s+ τN ] ∩BVr[s, s+ τN ], since it is continuous.

A.1.2 Volterra kernels of type B∞

Volterra equations for functions of a single variable have studied extensively, see e.g. [Bru17, GLS90].
However, the specific assumption that the kernel has bounded variation seems to be treated somewhat
tangentially. On the one hand, it is subsumed in the measure-valued case presented in [GLS90, Ch.
10], but no convenient criterion is given there for the existence of a resolvent kernel. On the other
hand, [HVL93, Ch. 9, Sec. 1] sketches the main arguments needed to handle kernels of bounded
variation, but the exposition has issues1, which is why we provide a proof in this section.

We define a Stieltjes-Volterra kernel of type B∞ on [a, b] × [a, b] as a measurable function
κ : [a, b]× [a, b]→ Rd×d, with κ(t, τ) = 0 for τ ≥ t, such that the partial maps κ(t, .) lie in BVl[a, b]
and ‖κ(t, .)‖BV ([a,b]) is uniformly bounded with respect to t ∈ [a, b]. In addition, we require that
limτ→t−W[τ,t)(κ(t, .)) = 0 uniformly with respect to t; i.e., to every ε > 0, there exists η > 0 such
that W[τ,t)(κ(t, .)) < ε as soon as 0 < t− τ < η. Note that W[τ,t)(κ(t, .))→ 0 for fixed t as τ → t−

whenever κ(t, .) has bounded variation on [a, b], by the very definition (4.8); so, the assumption
really is that the convergence is uniform with respect to t. Hereafter, we drop the qualifier “of
type B∞” and simply speak of Stieltjes-Volterra kernels on [a, b]. We endow the space K[a,b] of such
kernels with the norm ‖κ‖[a,b] := supt∈[a,b] ‖κ(t, .)‖BV [a,b]. If κk is a Cauchy sequence in K[a,b], then
κk converges uniformly on [a, b]× [a, b] to a Rd×d-valued function κ because

|||κk(t, τ)− κl(t, τ)||| = |||(κk(t, τ)− κl(t, τ))− (κk(t, t)− κl(t, t))||| ≤ ‖κk(t, .)− κl(t, .)‖BV [a,b].

Clearly, κ is measurable and left continuous for fixed t with κ(t, τ) = 0 for τ ≥ t. Also, ifm is so large
that ‖κk−κl‖[a,b] < ε for k, l ≥ m and η > 0 so small thatW[τ,t)(κm) < ε when t−τ < η, we get that
W[τ,t)(κl) ≤W[τ,t)(κm) +W[τ,t)(κm − κl) < 2ε, and letting l→∞ we get from [Łoj88, thm. 1.3.5]
that W[τ,t)(κ) ≤ 2ε. Furthermore, the same reference implies that ‖κ‖[a,b] ≤ supk ‖κk‖[a,b] so that
κ ∈ K[a,b]. Finally, writing that W[a,b](κk(t, .)− κl(t, .)) < ε and passing to the limit as l→∞, we
see that limk ‖κk − κ‖[a,b] = 0, whence K[a,b] is a Banach space. Note that a Stieltjes-Volterra kernel
κ is necessarily bounded with sup[a,b]×[a,b] |||κ(t, τ)||| ≤ ‖κ‖[a,b]. As H is left continuous and the Dj

1For example, the equation satisfied by ρ̃(t, s) at top of page 258 is not right.
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are bounded, on [s, s+ τN ], it is easy to check that k(t, τ) defined in (A.5) is a Stieltjes-Volterra
kernel on [s, s+ τN ]× [s, s+ τN ].

A resolvent for the Stieltjes-Volterra kernel κ on [a, b]× [a, b] is a Stieltjes-Volterra kernel ρ on
[a, b]× [a, b] satisfying

ρ(t, β) = −κ(t, β) +
∫ t−

β−
dκ(t, τ)ρ(τ, β), a ≤ t, β ≤ b. (A.8)

Lemma A.1. If κ is a Stieltjes-Volterra kernel on [a, b]× [a, b], a resolvent for κ uniquely exists.

Proof. Pick r > 0 to be adjusted later, and for Ψ ∈ K[a,b] let us define

Fr(Ψ)(t, β) :=
∫ t−

β−
e−r(t−τ)dκ(t, τ)Ψ(τ, β), a ≤ β, t ≤ b.

Then, Fr(Ψ)(t, β) = 0 for β ≥ t, and for a ≤ β1 < β2 < t we have that

Fr(Ψ)(t, β2)−Fr(Ψ)(t, β1) =
∫ t−

β−2

e−r(t−τ)dκ(t, τ) (Ψ(τ, β2)−Ψ(τ, β1))−
∫ β−2

β−1

e−r(t−τ)dκ(t, τ)Ψ(τ, β1),

where we used that κ(t, .) is left continuous to assign the lower (resp. upper) bound β−2 to the first
(resp. second) integral in the above right hand side. Now, the first integral goes to 0 as β1 → β2 by
dominated convergence, since Ψ(t, .) is left-continuous; the second integral also goes to 0, because
|νκ(t,.)|([β1, β2))→ 0 when β1 → β2, by standard properties of finite measures. Altogether, we see
that Fr(Ψ)(t, .) is left-continuous. Moreover, for [c, d] ⊂ [a, t) and c = β0 < β1 < · · · < βN = d,

N∑
i=1
|||Fr(Ψ)(t, βi)− Fr(Ψ)(t, βi−1)||| ≤

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ t−

β−i

e−r(t−τ)dκ(t, τ)(Ψ(τ, βi)−Ψ(τ, βi−1))
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

+
N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β−i

β−i−1

e−r(t−τ)dκ(t, τ)Ψ(τ, βi−1)
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
N∑
i=1

∫ t−

β−i

e−r(t−τ)d|νκ(t,.)| |||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+
N∑
i=1

∫ β−i

β−i−1

e−r(t−τ)d|νκ(t,.)| |||Ψ(τ, βi−1)|||

≤
∫ t−

d−
d|νκ(t,.)|

N∑
i=1
|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+ e−r(t−d)

∫ d−

c−
d|νκ(t,.)|

N∑
i=1
|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||

+ sup
[a,t]×[a,t]

|||Ψ|||
∫ d−

c−
e−r(t−τ)d|νκ(t,.)|

≤ 2W[d,t)(κ(t, .)) sup
τ∈[d,t)

W[c,d](Ψ(τ, .)) + 2e−r(t−d)W[c,d)(κ(t, .)) sup
τ∈[c,d)

W[c,d](Ψ(τ, .))

+2e−r(t−d) sup
[a,t]×[a,t]

|||Ψ||| W[c,d)(κ(t, .)).

When d = t, the same inequality holds but then W[d,t)(κ(t, .)) is zero. Setting c = a and d = t, we
get from the above majorization that W[a,t](Fr(Ψ)(t, .)) ≤ 4‖κ‖[a,b]‖Ψ‖[a,b], and since Fr(Ψ)(t, τ) = 0
for τ ≥ t we deduce that W[a,b](Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) is bounded, uniformly with respect
to t. Next, if we fix ε > 0 and pick η > 0 so small that W[τ,t)(κ(t, .)) ≤ ε as soon as t− τ ≤ η (this
is possible because κ ∈ K[a,b]), the same estimate yields

W[c,t)(Fr(Ψ)(t, .)) ≤ 4W[c,t)(κ(t, .))‖Ψ‖[a,b] ≤ 4ε‖Ψ‖[a,b], t− c ≤ η. (A.9)
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Altogether, we just showed that Fr(Ψ) ∈ K[a,b]. Moreover, if we take r so large that e−rη < ε, then
either t− a ≤ η and then (A.9) with c = a gives us W[a,t)(Fr(Ψ)(t, .) ≤ 4ε‖Ψ‖[a,b], or else t− η > a
in which case (A.9) with c = t − η, together with our initial estimate when c = a and d = t − η,
team up to produce:

W[a,t)](Fr(Ψ))(t, .) = W[a,t−η](Fr(Ψ)(t, .)) +W[t−η,t)](Fr(Ψ)(t, .)) ≤ 2ε sup
τ∈[t−η,t)

W[a,t−η](Ψ(τ, .))

+2εW[a,t−η)(κ(t, .)) sup
τ∈[a,t−τ)

W[a,t−η](Ψ(τ, .)) + 2ε sup
[a,t]×[a,t]

|||Ψ|||W[a,t−η)(κ(t, .)) + 4ε‖Ψ‖[a,b]

≤ 2ε‖Ψ‖[a,b]
(
3 + 2‖κ‖[a,b]

)
.

Consequently, as W[a,t)](Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) by the left continuity of Fr(Ψ)(t, .), we can
ensure upon choosing r sufficiently large that the operator Fr : K[a,b] → K[a,b] has arbitrary small
norm. Hereafter, we fix r so that |||Fr||| < λ < 1.

Now, let ρ̃0 = 0 and define inductively:

ρ̃k+1(t, β) = −e−rtκ(t, β) + Fr(ρ̃k)(t, β).

Clearly (t, β) 7→ e−rtκ(t, β) lies in K[a,b], so that ρ̃k ∈ K[a,b] for all k. Moreover, we get from what
precedes that ‖ρ̃k+1 − ρ̃k‖[a,b] ≤ λ‖ρ̃k − ρ̃k−1‖[a,b]. Thus, by the shrinking lemma, ρ̃k converges in
K[a,b] to the unique ρ̃ ∈ K[a,b] such that

ρ̃(t, β) = −e−rtκ(t, β) + Fr(ρ̃)(t, β) = −e−rtκ(t, β) +
∫ t−

β−
e−r(t−τ)dκ(t, τ)ρ̃(τ, β), a ≤ t, β ≤ b.

(A.10)
Putting ρ(t, β) := ertρ̃(t, β), one can see that ρ lies in K[a,b] if and only if ρ̃ does, and that (A.10) is
equivalent to (A.8). This achieves the proof.

�

Lemma A.2. Let κ be a Stieltjes-Volterra kernel on [a, b] × [a, b] and ρ its resolvent. For each
Rd-valued function g ∈ BVr([a, b]), the unique bounded measurable solution to the equation

y(t) =
∫ t−

a−
dκ(t, τ)y(τ) + g(t), a ≤ t ≤ b, (A.11)

is given by

y(t) = g(t)−
∫ t−

a−
dρ(t, α)g(α), a ≤ t ≤ b. (A.12)

Proof. Define y through (A.12) so that y(a) = g(a), by inspection. Since g ∈ BVr[a, b] and ρ(t, ·),
k(t, .) lie in BVl[a, b], integrating by parts [Łoj88, thm. 7.5.9]2 while using (A.8) along with Fubini’s

2This reference deals with open intervals only, and we stick to this case at the cost of a slightly lengthier computation
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theorem and the relations κ(t, α) = ρ(t, α) = 0 for α ≥ t, we get that∫ t−
a− dκ(t, α)y(α) = (κ(t, a+)− κ(t, a))y(a) +

∫ t−
a+ dκ(t, α)y(α)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+ dκ(t, α)g(α)−

∫ t−
a+ dκ(t, α)

∫ α−
a− dρ(α, β)g(β)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+ dκ(t, α)g(α)−

∫ t−
a+ dκ(t, α)

∫ α−
a+ dρ(α, β)g(β)

−
∫ t−
a+ dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+ dκ(t, α)g(α) +

∫ t−
a+ dκ(t, α)

∫ α−
a+ ρ(α, β)dg(β)−

∫ t−
a+ dκ(t, α) [ρ(α, β)g(β)]β=α−

β=a+

−
∫ t−
a+ dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+ dκ(t, α)g(α) +

∫ t−
a+

(∫ t−
β− dκ(t, α)ρ(α, β)

)
dg(β) +

∫ t−
a+ dκ(t, α)ρ(α, a+)g(a)

−
∫ t−
a+ dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+ dκ(t, α)g(α) +

∫ t−
a+
(
ρ(t, β) + κ(t, β)

)
dg(β) +

∫ t−
a+ dκ(t, α)ρ(α, a)g(a)

= (κ(t, a+)− κ(t, a))g(a) + [κ(t, α)g(α)]α=t−
α=a+ +

∫ t−
a+ ρ(t, β)dg(β) +

∫ t−
a+ dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a) + [ρ(t, β)g(β)]β=t−
β=a+ −

∫ t−
a+ dρ(t, β)g(β) +

∫ t−
a− dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a)− ρ(t, a+)g(a)−
∫ t−
a+ dρ(t, β)g(β) +

(
κ(t, a) + ρ(t, a)

)
g(a) = −

∫ t−
a− dρ(t, β)g(β) = y(t)− g(t).

Thus, y is a solution to (A.11). Clearly, it is measurable, and it is also bounded since ‖ρ(t, .)‖BV ([a,b])
is bounded independently of t and g is bounded. If ỹ is another solution to (A.11) then ỹ(a) =
y(a) = g(a) by inspection, so that z := y − ỹ is a bounded measurable solution to the homogeneous
equation:

z(t) =
∫ t−

a+
dκ(t, τ)z(τ), a ≤ t ≤ b.

Pick r > 0 to be adjusted momentarily, and set z̃(t) := e−rtz(t) so that

z̃(t) =
∫ t−

a+
e−r(t−τ)dκ(t, τ)z̃(τ). (A.13)

Let η > 0 be so small that W[τ,t)(κ(t, .)) ≤ 1/4 as soon as t − τ ≤ η; this is possible because
κ ∈ K[a,b]. Then, it follows from (A.13) that for t− η > a:

|z̃(t)| ≤
∣∣∣∣∣
∫ (t−η)+

a+
e−r(t−τ)+

dκ(t, τ)z̃(τ)
∣∣∣∣∣+

∣∣∣∣∣
∫ t−

(t−η)+
e−r(t−τ)−dκ(t, τ)z̃(τ)

∣∣∣∣∣
≤ 2e−rηW(a,t−η](κ(t, ·)) sup

(a,t−η]
|z̃|+ 1

2 sup
(t−η,t)

|z̃| ≤ sup
(a,t)
|z̃|
(
2e−rη‖κ‖[a,b] + 1

2
)
,

while for t − η ≤ a we simply get |z̃(t)| ≤ sup(a,t) |z̃|/2. Hence, choosing r large enough, we may
assume that |z̃(t)| ≤ λ sup(a,t) |z̃| for some λ < 1 and all t ∈ [a, b]. Thus, if we choose λ′ ∈ (λ, 1) and
t0 ∈ (a, b], we can find t1 ∈ (a, t0) such that |z̃(t1)| ≥ (1/λ′)|z̃(t0)|, and proceeding inductively we
construct a sequence (tn) in (a, t0] with |z̃(tn)| ≥ (1/λ′)n|z̃(t0)|. If we had |z̃(t0)| > 0, this would
contradict the boundedness of z̃, therefore z̃ ≡ 0 on (a, b], whence z ≡ 0 so that y = ỹ.

�

A.1.3 proof of formula (4.24).

Let ρ denote the resolvent of the Stieltjes-Volterra kernel k on [s, s+ τN ]× [s, s+ τN ] defined in
(A.5). As f defined in (A.4) lies in BVr[s, s+ τN ] (it is even continuous), the solution y to (A.6) is
given, in view of Lemma A.2, by

y(t) = f(t)−
∫ t−

s−
dρ(t, α)f(α), s ≤ t ≤ s+ τN . (A.14)
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Since ρ(t, α) = 0 when α ≥ t, the integral
∫ t−
s− can be replaced by

∫ (s+τN )+

s− in (A.14), and setting
X̃(t, α) := IdH(t−α) + ρ(t, α) where H(τ) is the “standard” Heaviside function which is 0 for τ < 0
and 1 for τ ≥ 0, we deduce from (A.7), since dαH(t− α) = −δt on [s, s+ τN ] for s ≤ t < s+ τN ,
that

y(t) =−
∫ (s+τN )+

s−
dX̃(t, α)f(α) =−

∫ (s+τN )+

s−
dX̃(t, α)

 ∑
τ`∈(α−s,τN ]

D`(α)φ(α− s− τ`)

, s ≤ t < s+ τN .

Rearranging, we get that

y(t) = −
N∑
j=1

∫ (s+τj)−

s−
dX̃(t, α)Dj(α)φ(α− s− τj), s ≤ t < s+ τN ,

which is what we want (namely: formula (4.24) for s ≤ t < s+ τN ) if only we can show that X̃(t, α)
coincides with X(t, α) when α ∈ [s, s + τj) for each j and every t ∈ [s, s + τN ); here, X(t, α) is
defined by (4.22) where we set s = α.

For this, we first observe that X(t, α) = X̃(t, α) = 0 when α > t and that X(t, t) = X̃(t, t) = Id.
Hence, we need only consider the case where α ∈ [s, t) with s < t < s+ τN . For s ≤ α < t, we get
that

−k(t, α) = k(t, t−)− k(t, α) =
∫ t−

α−
dk(t, τ).

Thus, (A.8) (where κ = k) in concert with the definition of X̃(t, α) imply that

X̃(t, α) = IdH(t− α)− k(t, α) +
∫ t−

α−
dk(t, τ)ρ(τ, α)

= Id +
∫ t−

α−
dk(t, τ)

(
Id + ρ(τ, α)

)
= Id +

∫ t−

α−
dk(t, τ)X̃(τ, α).

Now, on [α, t), we compute from (A.3) and (A.5) that dτk(t, τ) = ∑
t−τj≥αDj(t)δt−τj and hence,

since X̃(t− τj , α) = 0 when α > t− τj , the previous equation becomes:

X̃(t, α) = Id +
N∑
j=1

Dj(t)X̃(t− τj , α) for s ≤ α < t and s ≤ t < s+ τN . (A.15)

Comparing (A.15) and (4.22), we see that X̃(t, α) and X(t, α) coincide on [s, s+ τN )× [s, s+ τN ),
thereby achieving the proof.
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