Bi-objective branch-and-cut algorithms applied to the binary knapsack problem - Archive ouverte HAL
Thèse Année : 2015

Bi-objective branch-and-cut algorithms applied to the binary knapsack problem

Algorithmes de branch-and-cut bi-objectif appliqués au problème du sac-à-dos en variables binaires

Résumé

In this work, we are interested in solving multi-objective combinatorial optimization problems. These problems have received a large interest in the past decades. In order to solve exactly and efficiently these problems, which are particularly difficult, the designed algorithms are often specific to a given problem. In this thesis, we focus on the branch-and-bound method and propose an extension by a branch-and-cut method, in bi-objective context. Knapsack problems are the case study of this work. Three main axis are considered: the definition of new upper bound sets, the elaboration of a dynamic branching strategy and the generation of valid inequalities. The defined upper bound sets are based on the surrogate relaxation, using several multipliers. Based on the analysis of the different multipliers, algorithms are designed to compute efficiently these surrogate upper bound sets. The dynamic branching strategy arises from the comparison of different static branching strategies from the literature. It uses reinforcement learning methods. Finally, cover inequalities are generated and introduced, all along the solving process, in order to improve it. Those different contributions are experimentally validated and the obtained branch-and-cut algorithm presents encouraging results.
Dans ce travail, nous nous intéressons à la résolution de problèmes d'optimisation combinatoire multi-objectif. Ces problèmes ont suscité un intérêt important au cours des dernières décennies. Afin de résoudre ces problèmes, particulièrement difficiles, de manière exacte et efficace, les algorithmes sont le plus souvent spécifiques au problème traité. Dans cette thèse, nous revenons sur l'approche dite de branch-and-bound et nous en proposons une extension pour obtenir un branch-and-cut, dans un contexte bi-objectif. Les problèmes de sac-à-dos sont utilisés comme support pour ces travaux. Trois axes principaux sont considérés : la définition de nouveaux ensembles bornants, l'élaboration d'une stratégie de branchement dynamique et la génération d'inégalités valides. Les ensembles bornants définis sont basés sur la relaxation surrogate, utilisant un ensemble de multiplicateurs. Des algorithmes sont élaborés, à partir de l'étude des différents multiplicateurs, afin de calculer efficacement les ensembles bornants surrogate. La stratégie de branchement dynamique émerge de la comparaison de différentes stratégies de branchement statiques, issues de la littérature. Elle fait appel à une méthode d'apprentissage par renforcement. Enfin, des inégalités de couverture sont générées et introduites, tout au long de la résolution, dans le but de l'accélérer. Ces différents apports sont validés expérimentalement et l'algorithme de branch-and-cut obtenu présente des résultats encourageants.
Fichier principal
Vignette du fichier
AudreyCerqueus_PhD_Thesis.pdf (2.1 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01242210 , version 1 (11-12-2015)

Identifiants

  • HAL Id : tel-01242210 , version 1

Citer

Audrey Cerqueus. Bi-objective branch-and-cut algorithms applied to the binary knapsack problem. Computer Science [cs]. université de Nantes, 2015. English. ⟨NNT : ⟩. ⟨tel-01242210⟩
365 Consultations
5445 Téléchargements

Partager

More