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Résumé de la thèse

De nombreux problèmes réels se modélisent par un problème d’optimisation combinatoire.
Par exemple, trouver le plus court chemin entre deux lieux peut être modélisé par un problème de
cette classe. D’autre part, optimiser uniquement un objectif (par exemple la distance), ne suffit
généralement pas à représenter un problème réel. Par exemple, une entreprise voulant maximiser
son profit, peut aussi être intéressée par minimiser son impact environnemental. Plusieurs objectifs
doivent alors être considérés. Si le décideur ne donne pas de préférence avant la résolution du
problème, toutes les solutions présentant un compromis intéressant entre les différents objectifs
doivent lui être retournées, afin qu’il établisse son choix. Dans ce contexte, nous considérons
qu’une solution est un bon compromis entre les objectifs s’il n’est pas possible d’améliorer un
objectif sans en dégrader un autre. Une telle solution est alors dite efficace.

Contexte : optimisation combinatoire multi-objectif

Les travaux de recherche effectués pendant cette thèse, s’attachent à la résolution de problèmes
d’optimisation combinatoire multi-objectif (aussi appelé problèmes MOCO, de l’anglais Multi-
Objective Combinatorial Optimization). Les problèmes d’optimisation combinatoire sont le sujet
de recherche d’un grand nombre de travaux depuis plus d’un siècle, cependant l’intérêt accordé
au cas multi-objectif est relativement récent (principalement depuis les années 90). Les prob-
lèmes d’optimisation combinatoire sont connus pour être particulièrement difficiles, en théorie
comme en pratique. En effet, la plupart de ces problèmes sont NP-difficiles, c’est-à-dire qu’il
n’existe pas d’algorithme déterministe de complexité polynomiale pour leur résolution exacte
(selon l’hypothèse que P 6= NP). Parmi les solutions efficaces des problèmes MOCO, nous pou-
vons distinguer les solutions supportées, qui sont solutions optimales pour une somme pondérée
des fonctions objectif, et les solutions non-supportées. Ces dernières sont généralement plus diffi-
ciles à obtenir.

De nombreuses méthodes ont été développées pour résoudre, de manière exacte ou approchée,
les problèmes MOCO. Les méthodes d’énumérations implicites des solutions, telles que les méth-
odes de branch-and-bound (méthodes de séparation et d’évaluation) et les méthodes de program-
mation dynamique, sont couramment utilisées pour la résolution exacte de problèmes MOCO.
Dans ce manuscrit, nous nous intéressons plus particulièrement aux méthodes de branch-and-
bound et, sans perte de généralité, nous considérons exclusivement des problèmes de maximisa-
tion.

Les méthodes de branch-and-bound partitionnent le problème en sous-problèmes, générale-
ment en fixant une ou plusieurs variables. L’étape consistant à fixer une ou plusieurs variables est
appelée la procédure de séparation, et le choix des variables à fixer est la stratégie de branche-
ment. Ensuite, chacun des sous-problèmes créés est évalué. Une borne supérieure (un point dans
l’espace des objectifs) ou un ensemble bornant supérieur (un ensemble de points dans l’espace
des objectifs) est calculé, tel que les valeurs objectif des solutions admissibles du problème soient
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inférieures ou égales à au moins un des points de cet ensemble. S’il est possible de prouver
qu’aucune solution admissible pour le sous-problème ne peut être efficace, alors le sous-problème
est sondé et un autre sous-problème ouvert (non-sondé) est choisi pour continuer la recherche.
Dans le cas contraire, le sous-problème est de nouveau partitionné. Généralement, le calcul de
l’ensemble bornant supérieur permet de générer de nouvelles solutions admissibles, soit directe-
ment, soit par réparation des solutions. La méthode s’arrête lorsque tous les sous-problèmes sont
sondés.

Motivations

Le branch-and-bound est une méthodologie générique. Cependant, afin d’obtenir une méth-
ode efficace en pratique, ses différents composants sont généralement instanciés spécifiquement
pour un problème. Le calcul des bornes ou ensembles bornants supérieurs sont souvent basés sur
une relaxation du problème et la relaxation utilisée dépend du problème considéré. La relaxation
convexe, calculant seulement des solutions efficaces supportées, est généralement utilisée et of-
fre de bonnes performances, lorsque la version mono-objectif du problème peut être résolue en
complexité temporelle polynomiale ou pseudo-polynomiale en la taille de l’instance. La plupart
des problèmes MOCO pour lesquels il existe un algorithme efficace en pratique appartiennent à
cette catégorie de problèmes. La relaxation convexe est utilisée, par exemple, dans (Jorge, 2010).
L’ensemble bornant obtenu en utilisant cette relaxation est l’ensemble bornant convexe le plus
serré possible.

Cependant, lorsque la version mono-objective du problème ne peut être résolue en un temps
raisonnable, la relaxation convexe devient coûteuse à calculer. Nous pouvons alors nous tourner
vers des relaxations spécifiques au problème (comme la relaxation surrogate pour les problèmes
de sac-à-dos multi-dimensionnel (Gandibleux and Perederieieva, 2011)) ou vers des relaxations
génériques, telles que la relaxation continue par exemple. Cette dernière consiste à relâcher la
contrainte d’intégrité des variables. Elle aboutit à un ensemble bornant moins serré que la relax-
ation convexe, mais peut être calculée facilement, par exemple par l’algorithme du simplexe multi-
objectif. Afin de pallier la différence de qualité de l’ensemble bornant, nous pouvons introduire des
inégalités valides (contraintes n’affectant pas l’ensemble des solutions admissibles, mais pouvant
permettre de couper les solutions efficaces des relaxations), afin de resserrer l’ensemble bornant
supérieur et donc de sonder plus tôt les sous-problèmes. Les algorithmes de branch-and-cut fonc-
tionnent selon ce principe. S’ils ont beaucoup été étudiés pour des problèmes mono-objectifs, leur
généralisation au contexte multi-objectif est très récente. (Jozefowiez et al., 2012) présente l’une
des premières généralisations. Cependant la méthode présentée est une méthode ε-contrainte avec
pas adaptatif, dont les problèmes mono-objectif sont résolus par un algorithme de branch-and-cut
mono-objectif dédié.

Les composants des méthodes de branch-and-bound, autres que le calcul de l’ensemble bor-
nant supérieur, ont été moins étudiés. Par exemple, l’ordre dans lequel les variables sont con-
sidérées pour le partitionnement est souvent statique. Si plusieurs stratégies ont été élaborées
(Florios et al., 2010, Jorge, 2010), les comparaisons sont généralement effectuées sur une partie
des stratégies et aucune d’entre elle ne semble obtenir de meilleurs résultats que les autres, sur
l’ensemble des instances. Une stratégie, s’adaptant dynamiquement à l’instance, pourrait permet-
tre d’améliorer les performances de la méthode.
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Contributions

Les contributions de cette thèse s’appuient sur les observations présentées dans le paragraphe
précédent. Le problème du sac-à-dos en variables binaires est le problème support de ces travaux.
Le manuscrit s’articule de la manière suivante:

– Le Chapitre 1 présente l’état de l’art sur les problèmes MOCO. Les applications et les
méthodes de résolution dédiées sont décrites.

– Le Chapitre 2 présente le problème du sac-à-dos. Plusieurs versions sont distinguées, en
fonction du nombre de fonctions objectif et de contraintes prises en considération. Les
difficultés propres à chacune de ces versions sont mises en exergue et les méthodes de
résolutions dédiées sont développées.

– Le Chapitre 3 traite des stratégies de séparation pour les algorithmes de branch-and-bound
appliqués au problème du sac-à-dos bi-objectif uni-dimensionnel.

– Le Chapitre 4 définit deux ensembles bornants basés sur la relaxation surrogate, pour le
problème du sac-à-dos bi-objectif bi-dimensionnel. Des algorithmes permettant de calculer
ces ensembles bornants sont également proposés.

– Le Chapitre 5 a pour but l’élaboration d’un algorithme de branch-and-cut pour le problème
du sac-à-dos bi-objectif bi-dimensionnel.

– Enfin le dernier chapitre présente un résumé des contributions et présente des perspectives
de travail.

Les Chapitres 3, 4 et 5, qui présentent les contributions de cette thèse, sont détaillés dans les
prochaines sections.

Stratégies de branchement pour le sac-à-dos bi-objectif uni-dimensionnel

L’objectif du Chapitre 3 est d’analyser l’impact de l’ordre dans lequel les variables sont fixées
dans une méthode de branch-and-bound et d’élaborer une stratégie efficace en pratique, s’adaptant
à l’instance.

Dans un premier temps, nous présentons les stratégies de branchement que nous considérons
dans ce travail. Certaines de ces stratégies sont issues de la littérature. Nous comparons l’efficacité
de ces stratégies dans une méthode en deux phases pour laquelle la deuxième phase est une méth-
ode de branch-and-bound (détaillée à la Section 3.2). Nous analysons aussi l’impact des pré-
traitements adaptés de (Jorge, 2010) et (Delort, 2011) sur l’efficacité des stratégies. La Section 3.4
montre que la différence de performance entre les stratégies est davantage marquée lorsqu’aucun
pré-traitement n’est appliqué. De plus, aucune stratégie n’aboutit aux meilleures performances,
que les pré-traitements soient appliqués ou non.

Dans un second temps, nous nous attachons à réduire la taille des arbres de recherche en alter-
nant les stratégies lors d’une même résolution. D’abord nous avons élaboré une méthode oracle
évaluant chacune des stratégies, sur un pas de l’algorithme de branch-and-bound, et n’appliquant
que la meilleure. Même si la méthode oracle permet de réduire les arbres de recherche obtenus
de plus de 40%, le temps d’exécution de celle-ci est largement plus élevé que lorsqu’une unique
stratégie statique est appliquée. L’analyse des exécutions de cette méthode oracle permet de ré-
duire le nombre des stratégies statiques à considérer à 5 au lieu de 22. Malgré cette réduction, la
méthode oracle reste, par nature, plus coûteuse qu’une stratégie de branchement statique.

Enfin, nous élaborons une stratégie de branchement dynamique, permettant de réduire la taille
des arbres de recherche obtenus, tout en réduisant le temps de résolution du problème. À chaque
séparation un sous-ensemble de 5 stratégies de branchement est considéré et la stratégie à appli-
quer est choisie à l’aide d’une méthode d’apprentissage par renforcement. La Section 3.6 présente
et teste plusieurs méthodes d’apprentissage par renforcement. Celle donnant de meilleurs résultats
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(Upper Confidence bound) permet de réduire le temps de résolution pour plus de la moitié des
instances, par rapport à une stratégie statique.

Ensemble bornant supérieur basé sur la relaxation surrogate pour le problème du
sac-à-dos bi-objectif bi-dimensionnel

Dans le Chapitre 4, nous définissons deux ensembles bornants supérieurs, basés sur la relax-
ation surrogate, pour le problème du sac-à-dos bi-objectif bi-dimensionnel. L’OSUB (pour Opti-
mal Surrogate Upper Bound set) est l’ensemble bornant supérieur le plus serré qu’il est possible
d’obtenir en utilisant la relaxation surrogate. L’OCSUB (pour Optimal Convex Upper Bound set)
est l’ensemble bornant le plus serré possible basé sur la relaxation convexe de la relaxation surro-
gate (relaxation convexe surrogate) du problème. Pour obtenir ces ensembles bornants supérieurs,
il est nécessaire d’utiliser plusieurs multiplicateurs pour la relaxation surrogate.

Dans un premier temps, nous tentons d’adapter la méthode dichotomique classique pour cal-
culer l’OCSUB (Section 4.2), en calculant pour chaque itération le dual surrogate par l’algorithme
présenté dans (Fréville and Plateau, 1993). Cependant un contre-exemple met rapidement en lu-
mière que cette méthode ne permet pas d’obtenir l’OCSUB. Ensuite, un algorithme énumératif
est développé (Section 4.4). Les multiplicateurs permettant d’obtenir tous les ensembles bornants
issus de relaxation convexe surrogate sont énumérés. L’étude des relations de dominance entre
les relaxations convexes surrogates (Section 4.5) permet de caractériser les multiplicateurs sur-
rogates et d’élaborer un nouvel algorithme (0M-M1 interval algorithm), réduisant le nombre de
multiplicateurs à considérer.

La Section 4.6 présente un algorithme d’approximation de l’OCSUB, basé sur les mêmes rela-
tions de dominance. Dans la Section 4.7, nous montrons que les algorithmes élaborés précédem-
ment pour l’OCSUB peuvent être facilement adaptés à l’OSUB.

Les deux ensembles bornants et leurs calculs sont comparés expérimentalement sur un jeux
d’instances dans la Section 4.8. Ils montrent que même si l’OSUB est considérablement plus serré
que l’OCSUB, son calcul est également beaucoup plus coûteux. L’algorithme d’approximation de
l’OCSUB et OSUB semble aboutir à un bon compromis entre le temps de calcul et la qualité de
l’ensemble bornant obtenu.

Élaboration d’un algorithme de branch-and-cut pour la résolution du sac-à-dos bi-
objectif bi-dimensionnel

Dans le Chapitre 5, nous nous attachons à élaborer un algorithme exact pour la résolution du
sac-à-dos bi-objectif bi-dimensionnel.

Dans un premier temps, nous considérons un algorithme de branch-and-bound (Section 5.2).
Nous comparons trois relaxations utilisées pour le calcul de l’ensemble bornant supérieur du
sous-problème : la relaxation convexe, la relaxation surrogate et la relaxation continue (Sec-
tion 5.2.2). La relaxation convexe donne l’ensemble bornant convexe le plus serré possible. Par
contre, puisqu’il n’existe pas d’algorithme résolvant la version mono-objectif du problème en un
temps raisonnable, la résolution de la relaxation convexe est coûteuse. Deux ensembles bornants
basés sur la relaxation surrogate sont considérés, tous deux semblent trop coûteux pour être utilisés
dans l’algorithme. La relaxation continue aboutit à un ensemble bornant largement moins serré
que les deux autres relaxations et donc à des arbres de recherche considérablement plus larges.
Cependant sa résolution est peu coûteuse et le temps de résolution du problème, en utilisant cette
relaxation, est plus faible que pour les deux autres relaxations. Cette relaxation est donc utilisée.
Afin de réduire la taille des arbres de recherche, et ainsi le temps de résolution, trois mécanismes
sont mis en place : une stratégie de branchement basée sur des solutions efficaces extrêmes de la
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relaxation (Section 5.2.3), une initialisation de l’ensemble bornant inférieur utilisant un opérateur
de path relinking (Section 5.2.4) et l’introduction d’inégalités valides tout au long du processus de
résolution. Nous nous attardons plus particulièrement sur ce dernier point.

Les inégalités valides que nous utilisons sont les inégalités de couverture (Crowder et al.,
1983). Elles consistent à identifier un sous-ensemble de variables ne pouvant être sélectionnées
ensemble, sans excéder une des contraintes de capacité du sac-à-dos. Dans le contexte mono-
objectif, (Crowder et al., 1983) définissent une méthode permettant de générer des inégalités de
couverture, violant la solution optimale de la relaxation continue, en se basant sur cette même so-
lution (présentée dans la Section 5.3). Nous généralisons cette méthode au contexte multi-objectif
(Section 5.4.2). Des inégalités de couverture sont alors générées à chaque nœud de l’arbre de
recherche. Puisque les sous-problèmes diffèrent peu d’un nœud parent à un nœud enfant, les iné-
galités de couverture générées à un nœud sont adaptées pour ses nœuds enfants. Les expérimenta-
tions montrent que lorsque le nombre d’inégalités de couverture augmente, la taille des arbres de
recherche diminue. Cependant, ce procédé étant coûteux, la résolution du problème est par con-
séquent plus coûteuse. Plusieurs variantes de la méthode sont proposées (Section 5.4.3), réduisant
le nombre d’inégalités de couverture utilisées. Pour ceci, plusieurs stratégies sont élaborées : re-
streindre les solutions analysées afin de générer des inégalités de couverture et restreindre le nom-
bre d’inégalités adaptées pour les nœuds enfants. Nous analysons également l’intérêt d’utiliser
des inégalités de couverture étendues, c’est-à-dire pour lesquels les objets ayant un poids plus
important sont également ajoutés à l’inégalité.

L’algorithme de branch-and-cut obtenu présente des résultats satisfaisants. En effet, il permet
de réduire le temps de résolution pour plus de la moitié des instances et pour 10 des 13 instances
comportant plus de 100 variables. Cependant, la méthode n’est pas compétitive avec la méthode
ε-contrainte. Ceci est très certainement lié à un choix d’implémentation pour la résolution de la
relaxation continue. En effet, afin d’éviter les instabilités numériques, nous avons choisi d’utiliser
la méthode dichotomique. Nous envisageons d’utiliser la méthode du simplexe paramétrique, afin
d’améliorerer les temps de résolution. La méthode de branch-and-cut devrait ainsi être compéti-
tive.

Perspectives

Tout au long de ce manuscrit, nous analysons différents composants des algorithmes de branch-
and-cut. Nous travaillons exclusivement sur deux problèmes supports : le sac-à-dos bi-objectif
uni-dimensionnel et le sac-à-dos bi-objectif bi-dimensionnel. Une perspective de ce travail est
d’appliquer les méthodes proposées dans cette thèse à d’autres problèmes MOCO. Nous pour-
rions, par exemple, généraliser aux problèmes comportant plus de deux fonctions objectif. Il
faudrait alors utiliser des méthodes appropriées pour le calcul des ensembles bornants supérieurs
(tel que(Przybylski et al., 2010b) pour la résolution de la relaxation convexe et de la relaxation
surrogate convexe, et l’algorithme du simplexe multi-objectif (Ehrgott, 2005) pour la résolution
de la relaxation continue).

Si le passage à plus de deux contraintes pour l’algorithme de branch-and-cut devrait être
relativement direct, il n’en est pas autant pour l’OCSUB et l’OSUB. En effet les relations de dom-
inance et la caractérisation des multiplicateurs pour la relaxation surrogate doivent être redéfinies
dans cette situation.





Introduction

Combinatorial optimization problems allow to model and solve a variety of real life situations.
For example, finding a route minimizing the distance can be modeled by a problem of this class.
Nevertheless, considering only one objective to optimize may not be sufficient to represent the
complexity of real life situations. Indeed, if a company is interested in maximizing its profit, it
may also be interested in minimizing its ecological impact. Then several objectives have to be
considered. If no preference is given a priori, all solutions such that it is not possible to improve
an objective without degrading another one should be returned to the decision maker. After the
solving process, the decision maker chooses among the returned solutions.

Multi-objective combinatorial optimization

The work presented in this manuscript deals with multi-objective combinatorial optimization
problems. While single-objective combinatorial optimization problems are studied since more
than a century, multi-objective combinatorial problems have gained interest since the 1990ies.
Multi-objective combinatorial optimization problems are generally NP-hard, meaning that there
does not exist deterministic polynomial algorithms to solve them (under the assumption that P 6=
NP). Various solution methods have been developed, both in exact approaches (guaranteeing the
optimality of the solutions) and approximate approaches. Many implicit enumeration methods
to exactly solve multi-objective combinatorial problems have been designed, such as branch-and-
bound and dynamic programming methods. Branch-and-bound methods proceed by partitioning
the problem into subproblems. Generally, the partitioning consists in fixing one variable; this
processes is called the separation procedure. The subproblems created are evaluated. A point or
set of points, called upper bound set, is computed such that the value on the objective function
of the solutions of the considered subproblem cannot be better than the values of these points. If
it is possible to prove, based on the upper bound set, that there cannot exist any solution in the
subproblem, whose values are better than the values of the known solutions, this subproblem is
pruned. Otherwise, the partitioning continues. It is easier to prune subproblems when feasible
solutions of good quality are known. The set of feasible solutions found during the algorithm is
the lower bound set and it can be initialized by a heuristic or metaheuristic method.

Even if the branch-and-bound method is a generic method, some of its components are of-
ten specialized to the considered problem. Indeed, this specialization allows to design methods
that are efficient in practice. However, adapting those mechanisms to a different problem can be
challenging. In this thesis, we will present new propositions for implicit enumeration methods to
solve multi-objective combinatorial optimization problems, using generic methodologies. We also
propose new strategies specifically for the knapsack problems.
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Thesis guide

Chapter 1 is an introduction to combinatorial optimization. First, we present single-objective
optimization problems and their multi-objective generalization. Definitions and notations related
to multi-objective optimization are also presented. Finally, solution methods dedicated to multi-
objective combinatorial optimization problems are described.

The knapsack problem will be used as a support problem. Several versions of this problem
exist, depending on the number of objectives and dimensions considered. While the simplest ver-
sions, with one constraint and/or one objective, have been widely studied, versions with simulta-
neously several objectives and several dimensions remain challenging for exact solution methods.
Chapter 2 describes those variants and their dedicated solution methods.

The method proposed, in this thesis (Chapter 3, 4, 5), to solve multi-objective combinatorial
problems is a branch-and-cut method. A branch-and-cut method originates from branch-and-
bound methods. However, in a branch-and-cut method, constraints (called valid inequalities) are
added along the execution, in order to prune subproblems in the solving process. Thus, those two
methods share many components such as the separation strategy and the upper bound set. In this
thesis, we focus on the following components of the branch-and-cut method:

Separation strategy The choice of the variable used to partition the problem impacts the practical
efficiency of the algorithm. Generally, the variables are considered in a static order in so-
lution methods. However, this approach is often problem-specific. Moreover, its efficiency
depends on the characteristics of the instance. In this thesis, we aim to define a dynamic
strategy, that may adapt itself to the characteristics of the instance. In Chapter 3, we present
a detailed comparison of the static branching strategies for the bi-objective knapsack prob-
lem and we introduce a new dynamic branching strategy, mixing different static strategies.
The strategy is validated experimentally.

Upper bound set The evaluation of the subproblems is a key component of the implicit enumera-
tion method. Indeed, when the quality of the evaluation increases, the probability of pruning
a subproblem increases, too. However, the computational time required to compute the up-
per bound sets directly impacts the computational cost of the solution method. Thus, a
tradeoff between these two aspects has to be found. In this thesis, we define two upper
bound sets based on the surrogate relaxation (Chapter 4). We also design exact and ap-
proximation algorithms computing these bound sets. We prove their correctness and we
assess their performance experimentally. Chapter 5 compares the performance obtained by
different upper bound sets in a branch-and-bound method.

Initialization of solution Initializing the set of feasible solutions makes it possible to prune sub-
problems earlier in the solving process. In Chapter 5, we elaborate an initialization method,
based on path relinking between supported efficient solutions of the problem.

Generation of valid inequalities Generating valid inequalities along the solving process allows
to tighten the evaluation of the subproblems and thus to prune subproblems earlier. In
Chapter 5, several implementations for the generation and exploitation of valid inequalities
are experimentally compared and the most efficient version of the branch-and-cut method is
compared to the branch-and-bound method and to the ε-constraint method.

A summary of these contributions is discussed in the last chapter, along with some perspectives
for future research.
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for the bi-objective bi-dimensional knapsack problem” in 23rd International Conference on
Multiple Criteria Decision Making, 2015, Hamburg, Germany
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Notations

The two following tables present respectively the notations and abbreviations used in this
manuscript.

Notation Signification

R,Z,N Set of real numbers, integers or positive integers
Rn,Zn,Nn Set of vectors of n real numbers, integers or positive integers
Rn+ Set of vectors of n positive real numbers
n,m, p Number of variables, constraints and objectives
vT Transposed of the vector v
x = (x1, . . . , xn)T Solution of a problem
y = (y1, . . . , yp)T Vector of objective values
z(x) = (z1(x), . . . , zp(x))T Vector of objective functions
y1 = y2 y1k ≥ y2k for k = 1, . . . , p, y1 weakly dominates y2

y1 ≥ y2 y1 = y2 and y1 6= y2, y1 dominates y2

y1 > y2 y1k > y2k for k = 1, . . . , p, y1 strongly dominates y2

Rp=,R
p
≥,R

p
> {y ∈ Rp : y = 0}, {y ∈ Rp : y ≥ 0}, {y ∈ Rp : y > 0}

X Set of feasible solutions
Y Image of X in objective space
XE , YN Set of efficient solutions, set of nondominated points

XSE , YSN
Set of supported efficient solutions, set of supported nondomi-
nated points

XSE1, YSN1
Set of extreme supported efficient solutions, set of extreme sup-
ported nondominated points

XSE2, YSN2
Set of non-extreme supported efficient solutions , set of non-
extreme supported nondominated points

XNE , YNN
Set of non-supported efficient solutions, set of non-supported
nondominated points

XEm
, XSEm

, XSE1m , XSE2m , XNEm

Minimal complete set of respectively XE , XSE , XSE1, XSE2,
XNE

XEM
, XSEM

, XSE1M , XSE2M , XNEM

Maximal complete set of respectively XE , XSE , XSE1, XSE2,
XNE

ȲN Set of nondominated point of a subproblem
convS Convex hull of S
4(yr, yl) Triangle defined by the points yr, yl and (yl1, y

r
2)
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Abbreviation Signification

MP Mathematical programming
LP Linear programming
ILP Integer linear programming
MILP Mixed integer linear programming
CO Combinatorial optimization
MOP Multi-objective optimization problem
MOLP Multi-objective linear programming
MOILP Multi-objective integer linear programming
MOMILP Multi-objective mixed integer linear programming
MOCO Multi-objective combinatorial optimization
KP Single-objective uni-dimensional knapsack problem
mDKP Single-objective multi-dimensional knapsack problem, with m dimensions
pOKP Multi-objective uni-dimensional knapsack problem, with p objectives
pOmDKP Multi-objective multi-dimensional knapsack problem, with p objectives and m dimensions
SR Surrogate relaxation
SD Surrogate dual
OSUB Optimal surrogate upper bound set
OCSUB Optimal convex surrogate upper bound set



1
Multi-objective combinatorial
optimization

This chapter deals with mathematical programming problems and in particular those whose
objective functions and constraints are linear and whose variables can only take discrete value. The
formalism of single objective problems is described. Definitions and notations are then presented
for multi-objective problems. The notions of bound and relaxation, which constitute the core of
this thesis, are presented in this multi-objective context. The different classes of solutions are
also defined. Finally, the main solution methods for multi-objective combinatorial optimization
problems are presented.

1.1 Single-objective optimization

1.1.1 Mathematical programming

Mathematical programming aims to formalize and solve optimization problems, often encoun-
tered in real life, such as scheduling of a production line, selection of investments, etc. The deci-
sions are modeled by variables and the constraints by equalities or inequalities over these variables.
The decision maker aims to find, if it exists, an optimal solution according to an objective function
of the variables. A mathematical programming problem can be formulated as follows:

opt z(x)
s.t. ai(x)∆bi i = 1, . . . ,m

∆i ∈ {≤,=,≥} i = 1, . . . ,m
x ∈ D ⊆ Rn

(MP)

In this manuscript, the i-th component of a vector v will be denoted vi and the vectors will be
numbered using superscripts.

n is the number of decision variables of the problem. Dj is the domain of the variable xj , i.e.
the set of possible values for xj , j ∈ {1, . . . , n}. The problem is composed of m constraints; each
constraint is defined by a function ai : Rn → R on the variables, a constant bi ∈ R and a binary
operator ∆i ∈ {≤,=,≥}, i = 1, . . . ,m.
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An assignment of a value for every xj ∈ R, j = 1, . . . , n, is called a solution. A solution x
is feasible if xj ∈ Dj for all j ∈ {1, . . . , n} and x satisfies the set of constraints. The set of the
feasible solutions of a problem is the set X .

z : Rn → R is the objective function to optimize. The term “opt” stands for the maximization
or minimization of the objective function. Since the maximization and the minimization cases are
symmetrical, without lost of generality, we will only consider in this manuscript maximization
problems.

Among the feasible solutions, we are particularly interested in those optimizing the objective
function, i.e. solutions x∗ ∈ X such that for all x′ ∈ X we have z(x∗) ≥ z(x′). Such a solution
is called an optimal solution. Generally z is not injective, thus there might exist several optimal
solutions for a same problem. For some problems, there does not exist any optimal solution, in
particular if the problem is infeasible (X = ∅) or if z is not bounded on X .

1.1.2 Linear programming

Linear programming (LP) is a particular case of mathematical programming. In LP problems,
the objective function and the constraints are linear. In its standard form, a linear programming
problem considers only non-negative values for the variables. In this manuscript, all LP problems
are stated according to the standard form.

The objective function can then be written z(x) =
n∑
i=1

cj xj where cj is the cost (or profit)

associated to the variable xj , j ∈ {1, . . . , n}. Alternatively, the objective function can be defined
as the product cT x (where cT is the transpose of c and cT = (c1, . . . , cn)).

Thanks to the linearity of the constraints, the coefficients of the variables on the constraints
can be represented by a matrix A ∈ Rm×n, called the constraint matrix and the right hand sides
of the constraints by b ∈ Rm. The variables can be bounded.

A linear programming problem is thus formulated, in its canonical form, as:

max cT x
s.t. Ax ≤ b

x ∈ D ⊆ Rn+
(LP)

The feasible set X is either:
– a polytope,
– an unbounded polyhedron,
– the empty set.
In all cases, the feasible set X is convex. Since z is linear, this geometric characterization

allows to locate an optimal solution on one of the vertices of X .

Chvátal (1983), Schrijver (1986) and Teghem (2003) present solution methods for LP, such as
the simplex method and the interior point method. The simplex method is based on the character-
ization of the optimal solution.

1.1.3 Integer linear programming

Integer linear programming problems (ILP) are linear optimization problems for which the
variables are restricted to integer values. For example, the variables can represent the number of
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persons to affect to a job, the selection of a path in a graph, etc. An ILP problem can be defined as
follows:

max cT x
s.t. Ax ≤ b

x ∈ D ⊆ Nn
(ILP)

The coefficients of the variables in matrix A and in the vector c have generally integer values.
In this manuscript, we consider integer coefficients for ILP problems.

The integrality of the variables implies that the feasible set X is no longer convex and there is
no straightforward characterization of the optimal solutions. Thus the solving of an ILP is more
difficult than for a LP. The solution methods used for ILP problems are different from LP problems.
Implicit enumeration such as dynamic programming methods or branch-and-bound methods; and
cutting plane algorithms are commonly used (Wolsey, 1998).

Constraint programming solvers and SAT-solver consider ILP problems. However, these
solvers focus more on finding a solution satisfying the constraints than on the optimization part.

Note that a problem can also involve integer and continuous variables. It is then called a mixed
integer linear programming (MILP) problem. The solution methods for this class of problems are
similar as the one for ILP problems.

1.1.4 Combinatorial optimization

Combinatorial optimization problems (CO) constitute a subclass of ILP with the particularity
that the constraint matrix has a combinatorial structure. Classically the variables are binary.

max cT x
s.t. Ax ≤ b

x ∈ {0, 1}n
(CO)

where A ∈ Zm×n, b ∈ Zm and c ∈ Zn.

Knapsack problems, assignment problems, shortest path problems and vehicle routing prob-
lems are few of the reference CO problems.

Because of the combinatorial structure, CO problems are often NP-hard (Garey and John-
son, 1979). Solution methods are generally dedicated to a particular CO problem and exploit the
structure of the problem (Wolsey and Nemhauser, 1999).

1.2 Multi-objective optimization

When solving a single-objective optimization problem, the decision maker aims to optimize
one unique objective (for example maximizing the incoming). However, the complexity of real life
situations may not be represented only by one objective. For example, the decision maker could
be interested in maximizing the profit of its production line while minimizing the environmental
impact. Therefore, several objective functions have to be considered in order to formalize more
accurately the expectation of the decision-maker; this is the scope of multi-objective optimization.
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1.2.1 Definition

Multi-objective optimization problems (MOP) are defined to optimize p objective functions:

“ max ” z(x) = (z1(x), . . . , zp(x))
s.t. x ∈ X

Even if the constraints and domains are not expressed explicitly in this formulation, they are
implicitly given by x ∈ X . z : Rn → Rp is the function associating to a solution x the vector of
objective values (z1(x), . . . , zp(x)). z(x) is called a point. Y = z(X) is the image of the feasible
set X by z.

The different classes of multi-objective problems correspond to the classes of single-objective
problems: multi-objective linear programming (MOLP), multi-objective integer linear program-
ming problem (MOILP), multi-objective mixed integer linear programming problem (MOMILP)
and multi-objective combinatorial optimization (MOCO). Note that the characterizations of the
feasible sets presented for single-objective problems still hold for their multi-objective version.

The objective functions can be considered sequentially or simultaneously. In the following
we will consider them simultaneously. The objective functions considered in a multi-objective
optimization problem are generally conflicting. Thus there generally does not exist a single fea-
sible solution optimizing simultaneously all the objective functions. The notion of optimality,
as previously defined for single-objective optimization problems, does not handle multi-objective
optimization problems. Next section defines the meaning of the maximization operator for multi-
objective problems.

1.2.2 Solutions of multi-objective optimization problems

From now on, we distinguish the decision space Rn (domain of the decision variables) and the
objective space Rp (image of the solutions).

Dominance and efficiency

While solutions of a single-objective problem can easily be compared (the value according
to the objective function is a scalar), this comparison has to be refined for two or more objective
functions. Definition 1 presents the notion of dominance (also called Pareto dominance (Pareto,
1896)) , which is a componentwise order stipulating if a solution is “better” than another with
respect to the p ≥ 2 objective functions.

Definition 1 (Dominance). Let us consider two points y1, y2 ∈ Rp.
– y1 weakly dominates y2, denoted by y1 = y2, if

y1
k ≥ y2

k for k = 1, . . . , p.

– y1 dominates y2, denoted by y1 ≥ y2, if

y1 = y2 and y1 6= y2

– y1 strictly dominates y2, denoted by y1 > y2, if

y1
k > y2

k for k = 1, . . . , p.
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Two points are incomparable according to this componentwise order if there does not exist any
dominance relation between them (i.e. if none of them weakly dominates the other). Example 1
illustrates the Definition 1.

Example 1. Let us consider the three points (3, 7), (5, 6) and (6, 7). (6, 7) dominates, and thus
also weakly dominates, (3, 7). (6, 7) strictly dominates (5, 6) (and also dominates and weakly
dominates it). (3, 7) and (5, 6) are incomparable.

Definition 1 allows us to define the dominance cones: Rp= = {y ∈ Rp : y = 0}, Rp≥ and Rp>
are defined analogically. y + Rp= stands for the vector addition of y ∈ Rp and any vector of Rp=, it
thus defines the area whose points weakly dominate y. This notation is also extended to S + Rp=
with S ⊂ Rp, the other dominance cones (Rp≥ and Rp>) and to the vector subtraction.

When solving a multi-objective problem we aim to obtain solutions such that it is not possible
to improve one of the objective functions without degrading another. Such a solution is called an
efficient solution (see Definition 2).

Definition 2 (Efficient solution and nondominated points). Let us consider x̂ ∈ X .
– x̂ is efficient if there does not exist x ∈ X such that z(x) ≥ z(x̂). z(x̂) is said to be

nondominated.
– x̂ is weakly efficient if there does not exist x ∈ X such that z(x) > z(x̂). z(x̂) is said to be

weakly nondominated.

Definition 3 (Efficient set and nondominated set). The set of efficient solutions XE ⊂ X , also
called efficient set, is the set {x ∈ X : there does not exist x′ ∈ X, z(x′) ≥ z(x)}. Its image in
objective space, i.e. z(XE), is called the nondominated set YN .

An alternative definition of YN can be given using the dominance cones: YN = {y ∈ Y : ((y+
Rp=)∩Y ) = {y}}. We extend this notation to any S ⊂ Rp, SN = {s ∈ S : (s+Rp=)∩S = {s}}.

Definition 4 (Equivalent solutions and complete set (Hansen, 1980)). Two feasible solutions x1

and x2 are equivalent if z(x1) = z(x2).
– A complete set of efficient solutions is any subset X ′ ⊆ X such that z(X ′) = YN .
– A minimal complete set is a complete set without any equivalent solutions. Any minimal

complete set of efficient solutions is denoted by XEm .
– The maximal complete set is the complete set with all equivalent solutions, it is denoted by
XEM

Remark 1. When considering two objective functions, the nondominated points can easily be
ordered with decreasing values on the first objective function, while the values on the second
objective function increase. This order is called the natural order. We will say that two points
y1 and y2 are adjacent in the natural order of YN if there does not exist y ∈ YN such that
y1

1 > y1 > y2
1 and y1

2 < y2 < y2
2 .

Example 2 illustrates Definition 2 and Remark 1.

Example 2. Figure 1.1 presents the dominated and nondominated points of a bi-objective com-
binatorial optimization problem. The points yl, with l ∈ {1, . . . , 6} are ordered according to the
natural order. yl and yl+1 are adjacent in the natural order of YN , for l ∈ {1, . . . , 5}.
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Figure 1.1: Illustration of the nondominated points in Y and the natural order in YN

Classification of efficient solutions

The classification of the efficient solutions is based on the weighted sum problem, defined by
Geoffrion (1968). The weighted sum problem considers a scalarization of the objective function,
aggregating them using a multiplier λ ∈ Rp≥.

Theorem 1 ((Geoffrion, 1968)). For a given multi-objective optimization problem P with p ob-
jective functions, Pλ is the weighted sum problem using weight vector λ:

max{λ1 z1(x) + · · ·+ λp zp(x) : x ∈ X} (Pλ)

Supposing x∗ is the optimal solution of Pλ, then the following statements hold.
– If λ ∈ Rp≥ then x∗ is weakly efficient.

– If λ ∈ Rp> then x∗ is efficient.

– If λ ∈ Rp≥ and x∗ is the unique optimal solution of Pλ then x∗ is efficient.

In this manuscript, the weight vector λ will be called a direction in the objective space.

An efficient solution x is called supported if there exists λ ∈ Rp> such that x is optimal for Pλ.
We denote XSE the set of supported efficient solutions and YSN = z(XSE) the set of supported
nondominated points. The image of a supported efficient solution is located on the boundary of
convex hull of Y . Let S ⊂ Rp, convS denotes the convex hull of S.

A non-supported efficient solution is an efficient solution x for which there does not exist
λ ∈ Rp> with x optimal for Pλ. Its image in objective space is called a non-supported nondom-
inated point. XNE and YNN are respectively the set of non-supported efficient solutions and
non-supported nondominated points.

The set of supported efficient solutions can be split in two parts: the set of extreme supported
solutions XSE1 and the set of non-extreme supported efficient solutions XSE2. A supported effi-
cient solution is extreme if its image in objective space corresponds to an extreme point of conv Y .
The set of extreme supported nondominated points is denoted YSN1. It can be obtained by a di-
chotomic method which is presented in Section 1.4.1. YSN2 is the set of non-extreme supported
nondominated points.

Definition 4 can be extended to the sets XSE , XSE1, XSE2 and XNE defining the sets XSEm ,
XSEM , XSE1m , XSE1M , XSE2m , XSE2M , XNEm and XNEM . The notion of adjacency defined
for YN can be extended to YSN , YSN1, YSN2 and YNN .
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Figure 1.2 illustrates the definitions above.
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Figure 1.2: Illustration of the classification of points

Lexicographic order and lexicographic optimal

The dominance relation is a partial order on the points (and thus on the solutions), i.e. there
exist incomparable points according to the dominance relation. On the contrary, the lexicographic
order is a total order on the points.

Definition 5 (Lexicographic order). Let y1, y2 ∈ Rp, then y1 >lex y
2 if there exists l ∈ {1, . . . , p}

such that for all k < l, y1
k = y2

k and y1
l > y2

l .
y1 >lex y

2 or y1 = y2 is denoted by y1 =lex y
2.

Definition 6 (Lexicographic optimal). Let π be a permutation on the objective functions {1, . . . , p}.
A feasible solution x is called lexicographic optimal according to π if for all x′ ∈ X, zπ(x) =lex

zπ(x′), where zπ(x) = (zπ1(x), . . . , zπp(x)).
A solution x is said to be lexicographic optimal if there exists a permutation π such that x is

lexicographic optimal according to π.

1.2.3 Solving a multi-objective combinatorial problem

Let us consider two efficient solutions x1 and x2, by definition there does not exist any domi-
nance relation between z(x1) and z(x2). But the decision maker could have a preference between
x1 and x2. Indeed he might have preferences on the objectives or on the composition of the
solutions. Based on this observation, there exist three contexts to solve a MOP (Evans, 1984):

– The a priori context, in which the decision maker specifies his preferences before solving.
– The a posteriori context, in which the decision maker chooses the preferred solution among

the complete set of efficient solutions returned by the solution method.
– The interactive context, in which the solution method is adjusted according to the prefer-

ences given by the decision maker all along the solving process.
In this manuscript, we consider the a posteriori context.

We already mentioned in Section 1.1 that the difference in the nature of the variables changes
the characterization of the feasible set and thus the characterization of the optimal solution. This
observation is also valid in the case of multi-objective optimization.
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The feasible set X of a MOLP problem is convex and continuous, by linearity of the objective
functions so is Y . The vertices of Y correspond to vertices in X . Generally YN contains an
infinite number of points, located on nondominated faces (of dimension 1 to p − 1) defined by
the extreme supported nondominated points (vertices of Y ). The multi-criteria simplex algorithm
(Ehrgott, 2005), the outcome-based exploration methods (Benson (1998), Ehrgott et al. (2012)) or
dichotomic methods (Section 1.4.1) can be used to solve a MOLP.

The feasible set of a MOILP or a MOCO problem is a discrete and non convex set of points.
Moreover, the set of nondominated points generally contains non-supported nondominated points,
which are particularly difficult to obtain in a methodological point of view (since they are not
optimal solutions of a weighted sum problem). Even if some CO problems are in P , MOCO
problems are generally NP-hard, #P-complete and intractable (there might be an exponential
number of efficient solutions) (Ehrgott, 2000). Methods to solve those problems are presented in
Section 1.4.

1.2.4 Bounds and bound sets

Single-objective optimization

Solution methods for single-objective combinatorial optimization generally bracket the objec-
tive value of the optimal solutions using bounds (see Section 1.4).

Definition 7 (Upper and lower bound in single-objective optimization). Let x∗ be an optimal
solution of a problem P .

– An upper bound on z(x∗) is a value u ∈ R such that z(x∗) ≤ u.
– A lower bound on z(x∗) is a value l ∈ R such that l ≤ z(x∗).

The upper bound is often obtained by solving a relaxed version of the problem (see Section
1.3) and the lower bound is generally the objective value of the best known feasible solution.

We can note that the characterization of the upper and lower bounds are interchanged in the
case of minimization problems.

Multi-objective optimization

In the multi-objective context, we aim to bound the set of nondominated points YN . Contrary
to the single-objective case, there is no longer only one value to bound, but a set of points (i.e.
vectors of p objective values). The direct transposition of the notion of bound in a multi-objective
context consists in finding two points (a lower bound l ∈ Rp and an upper bound u ∈ Rp), such
that, for each objective function, the inequalities presented in Definition 7 are satisfied for each
nondominated point of the problem.

Definition 8 (Upper and lower bound in multi-objective optimization).
– An upper bound on YN is a point u = (u1, . . . , up) ∈ Rp such that for all y ∈ YN , for all
k ∈ {1, . . . , p}, yk ≤ uk.

– A lower bound on YN is a point l = (l1, . . . , lp) ∈ Rp such that for all y ∈ YN , for all
k ∈ {1, . . . , p}, lk ≤ yk.

Definition 9 (Ideal and nadir points).
– The ideal point is yI such that yIk = max{yk : y ∈ Y }, k = 1, . . . , p.
– The nadir point is yN such that yNk = min{yk : y ∈ YN}, k = 1, . . . , p.
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The ideal point yI and nadir point yN (Definition 9) are commonly used as upper and lower
bounds for YN .

Based on Definition 9, it is obvious that yI dominates every nondominated points and yN is
dominated by every nondominated points. yI and yN are respectively the tightest upper and lower
bound for YN . However, Ehrgott and Gandibleux (2001) remarks three main drawbacks to the use
of yI and yN as bounds for a MOCO problem:

– yI can be difficult to find if the single-objective version of the problem isNP-hard, since it
involves to solve p NP-hard problems.

– yN is difficult to obtain when p > 2; Ehrgott and Tenfelde-Podehl (2003) and Kirlik and
Sayın (2014) remark this even if the single-objective version of the problem is in P .

– yI and yN are generally located far away from the nondominated points.
In order to obtain a finer estimation of the nondominated points, the notion of bound has been

extended to bound sets, considering a set of points for bounding YN .

Several definitions of bound sets have been proposed, cf (Villarreal and Karwan, 1981), (Ehrgott
and Gandibleux, 2001), (Ehrgott and Gandibleux, 2007).

Villarreal and Karwan (1981) were the first to attempt to give a general formal definition of
bound sets for YN , which they call sets of bounds. The definition of those sets of bounds (see
Definition 10) is based on a pairwise comparison of the nondominated points with the points of
the set of bounds.

Definition 10 (Bound sets (Villarreal and Karwan, 1981)). A set of upper boundsU for the solution
of a MOILP problem P is a set of points that satisfies the following conditions:

– Each point of U is either a nondominated point or dominates at least one of the nondomi-
nated point of P .

– Each nondominated point of P is dominated by at least one member of U or is a member of
U .

A set of lower bounds L for the set of nondominated points for a MOILP problem P is a set of
points that satisfies the following condition:

– Each element of L is either a nondominated point or is dominated by at least one nondomi-
nated point of P .

In (Ehrgott and Gandibleux, 2001) the authors give a different definition of bound sets.

Definition 11 (Bound sets (Ehrgott and Gandibleux, 2001)). Let X̄ be a subset of XE and Ȳ =
z(X̄).

An upper bound set for YN is a subset U ⊂ Rp≥ such that:
– For each y ∈ Ȳ there is some u = (u1, . . . , up) ∈ U such that uk ≥ yk, k = 1, . . . , p.
– There is no pair y ∈ Ȳ , u ∈ U such that y dominates u.
A lower bound set for Ȳ is a subset L ⊂ Rp≥ such that:
– For each y ∈ Ȳ there is some l = (l1, . . . , lp) ∈ L such that yk ≥ lk, k = 1, . . . , n.
– There is no pair y ∈ Ȳ , l ∈ L such that l dominates y.

Concerning the upper bound set, Definition 11 is more general than Definition 10:
– In (Ehrgott and Gandibleux, 2001), an upper bound set is defined for any subset of YN

whereas it was only defined for YN in (Villarreal and Karwan, 1981). This remark also
holds for the definitions of lower bound sets.

– Definition 10 stipulates that every point in the upper bound set U must dominate at least one
point of YN . This restriction does not exist in Definition 11 (we consider that Ȳ = YN ), thus
the upper bound set may contain points that do not dominate any y ∈ YN as long as they
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are not dominated by any point of y ∈ YN and every y ∈ YN is dominated by at least one
point of U . As a consequence, [conv(YN − Rp=)]N is an upper bound set for YN according
to Definition 11, whereas it may not satisfy Definition 10 (see Figure 1.3).

The definition of lower bound set also differ in Definitions 10 and 11. Indeed the later requires
that for every y ∈ YN , there exists l ∈ L such that l is weakly dominated by y (with Ȳ = YN );
while the former only requires that every l ∈ L is weakly dominated by a y ∈ YN . Thus YSN is
lower bound set according to Definition 10 but not necessarily according to Definition 11. For the
latter, the local nadir points of YSN define a lower bound set.

In this work we use the definition proposed in (Ehrgott and Gandibleux, 2007), in which the
definitions of upper and lower bound sets are not symmetrical. Before introducing their definition,
we need some additional terminology. We consider S ⊂ Rp:

– S is Rp=-closed if the set S − Rp= is closed.

– S is Rp=-bounded if there exists s0 ∈ Rp such that S ⊂ s0 − Rp=.
– clS is the closure of S.
– Sc is the complement of S.

Definition 12 (Bound sets (Ehrgott and Gandibleux, 2007)). Let Ȳ ⊂ YN .
An upper bound set U for Ȳ is an Rp=-closed and Rp=-bounded set U ⊂ Rp such that Ȳ ⊂

U − Rp= and U ⊂ (U − Rp=)N .

A lower bound set L for Ȳ is an Rp=-closed and Rp=-bounded set L ⊂ Rp= such that Ȳ ∈
cl[(L− Rp=)c] and L ⊂ (L− Rp=)N .

In the definition, L ⊂ (L− Rp=)N (respectively U ⊂ (U − Rp=)N ) specifies that the points of
L (respectively U ) cannot dominate each other.

Ȳ ∈ cl[(L− Rp=)c] stipulates that there cannot exist a point in Ȳ dominated by a point in L.

Ȳ ⊂ U −Rp= imposes that no point of Ȳ can dominate a point of U , i.e. that the upper bound
set U is “above” Ȳ .

Definitions 11 and 12 differ for the lower bound sets. Indeed in the later, it is not necessary
that every y ∈ Ȳ is dominated by at least one point of L. Hence, Definition 12 accepts as lower
bound set any subset of feasible solutions, filtered by dominance, as in Definition 10, whereas
Definition 11 does not.

We can remark that yI and yN are bound sets according to the three definitions 10, 11 and 12.
In this manuscript, when the set of points to bound Ȳ is not specified we will consider that the

bounds or bound sets are defined for YN . By abuse of language, we call a convex upper bound set
U for Ȳ an upper bound set for Ȳ such that U − Rp= is convex.

Figure 1.3 illustrates Definitions 10, 11 and 12 and yI and yN from Definition 9.

In single-objective optimization, two upper bounds for YN are always comparable, since they
are scalars. This is not the case in the multi-objective context. In (Ehrgott and Gandibleux, 2007),
the definition of dominance between upper bound sets is formulated as follows:

Definition 13 (Dominance of upper bound sets (Ehrgott and Gandibleux, 2007)). Given two upper
bound sets U1 and U2 for a same set Ȳ , U1 dominates U2 if U1 ⊂ U2 − Rp= and U1 − Rp= 6=
U2 − Rp=.
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Figure 1.3: yI and yN are an upper and a lower bound for YN .
U2 is an upper bound set for YN according to Ehrgott and Gandibleux (2001) and Ehrgott and
Gandibleux (2007), but not according to Villarreal and Karwan (1981) since u (depicted by +)
does not dominate any y ∈ YN . U1 is an upper bound set for YN according to Definitions 10, 11
and 12.
L1 is a lower bound set for YN according to Villarreal and Karwan (1981) and Ehrgott and
Gandibleux (2007), but not according to Ehrgott and Gandibleux (2001) since y does not dom-
inate any point of L1. L2 is a lower bound set for YN according to Definitions 10, 11 and 12.

This definition establishes that the upper bound set U1 dominates U2 if U1 is “below” U2.
Obtaining this relation between upper bound sets is rare. Indeed generally when comparing two
upper bound sets U1 and U2, there exists u ∈ U1 such that u ∈ U2 −Rp≥ and there exists u ∈ U2

such that u ∈ U1 − Rp≥ (there are some parts of U1 which are “below” U2 and some part of U2

which are “below” U1). Then we say that U1 and U2 are incomparable.
Figure 1.4 gives a graphical example of an upper bound set for YN dominating another and of

two incomparable upper bound sets for YN .
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Figure 1.4: Comparison of two upper bound sets U1 and U2 for YN

In Proposition 1, from (Ehrgott and Gandibleux, 2007), two upper bound sets for Ȳ are
“merged” in order to create a third upper bound set for Ȳ which dominates both of the former
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upper bound sets.

Proposition 1 ((Ehrgott and Gandibleux, 2007)). If U1, U2 are upper bound sets for Ȳ and U1−
Rp= 6= U2−Rp= then U∗ = [(U1−Rp=)∩ (U2−Rp=)]N is an upper bound set dominating U1 and

U2.

Figure 1.5 illustrates Proposition 1.
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Figure 1.5: Illustration of Proposition 1

1.3 Relaxations

Bounds or bound sets are often a key component of exact solution methods, for single-objective
as well as for multi-objective problems. Relaxations are used to compute upper bounds or bound
sets in exact methods. A relaxation of a problem is a simplification of the initial problem and is
defined, for the single-objective case, in Definition 14.

Definition 14 (Relaxation in the single-objective context (Wolsey, 1998)). A problem (RP) zR =
max{f(x) : x ∈ X ′ ⊆ Rn} is a relaxation of a single-objective problem (P) z∗ = max{z(x) :
x ∈ X ⊆ Rn} if:

– X ⊆ X ′
– f(x) ≥ z(x) for all x ∈ X , f : Rn → R and z : Rn → R

The main property of a relaxation is that zR ≥ z∗.
The direct extension of this definition to the multi-objective context involves f : Rn → Rp

and z : Rn → Rp and the second item becomes: f(x) = z(x) for all x ∈ X .
In this section, we only present the three relaxations that we will use in this manuscript. How-

ever, there exists several other ones, such as the Lagrangian relaxation, the composite relaxation,
the combinatorial relaxation, etc.

1.3.1 Linear programming relaxation

In the linear programming relaxation (LP relaxation) of an optimization problem with integer
variables, the constraints on the integrality on the value of the variables are omitted. For an ILP,
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let suppose that xj ∈ {m, . . . ,M}, then this constraint is replaced by m ≤ xj ≤ M in the LP
relaxation, j ∈ {1, . . . , n}. For example, for a problem with binary variables, the constraints
xj ∈ {0, 1} are replaced by 0 ≤ xj ≤ 1 for j = 1, . . . , n. The objective functions are unchanged.
For a single-objective optimization problem, we denote z∗ the optimal value of the problem and
zLP the optimal solution of its LP relaxation. Obviously we have zLP ≥ z∗.

The extension of the LP relaxation to a multi-objective problem is straightforward. The re-
laxed problem being a MOLP, there generally exists an infinite number of efficient solutions. This
problem can be solved by using a dichotomic method or a multi-criteria simplex. The nondom-
inated points of this relaxed problem constitute a convex upper bound set for YN of the original
problem.

1.3.2 Convex relaxation

The convex relaxation of a problem consists in relaxing its feasible set X , by considering as
feasible the convex hull of X . Since it does not affect the objective functions, its definition is
similar for single-objective and multi-objective contexts. However, solving the relaxed problem
differs depending on the number of considered objective function.

For a single-objective problem, the optimal solution of its convex relaxation is the optimal
solution of the original problem. Finding the formulation of convX is the purpose of polyhe-
dral methods. Finding the ideal linear formulation of convX is generally an NP-hard problem
(Wolsey, 1998).

In the multi-objective context, the reformulation of the feasible set is not required to solve the
convex relaxation. Indeed, the nondominated points of the convex relaxation is (conv YN )N for
the original problem. (conv YN )N is an upper bound set for YN and is even the tightest convex
upper bound set for YN , i.e. it dominates any other upper bound set for YN . The extreme points
of (conv YN )N are the supported nondominated points of the problem. They can be found using
a dichotomic method (see Section 1.4.1) using the weighted sum problem. The convex relaxation
of MOILP, MOMILP and MOCO problems are easy to solve if the single-objective version of the
problem can be solved by a polynomial or pseudo-polynomial time complexity algorithm.

1.3.3 Surrogate relaxation

The surrogate relaxation was introduced for the first time in (Glover, 1965), for single-objective
problems. It aggregates l constraints by summing them, using a multiplier µ ∈ Rl≥. For an ILP
problem P , the surrogate relaxed problem S(µ) is the following:

max z(x)

s.t.
l∑

i=1

µiAi x ≤
l∑

i=1

µi bi

Ai x = bi ∀i ∈ {l + 1, . . . ,m}
x ∈ Zn

(SR(µ))

where Ai is the i-th line of the constraint matrix A.
All the feasible solutions for P are feasible for SR(µ) with µ ∈ Rl≥. Thus the value of the

optimal solution of SR(µ) is an upper bound for the feasible solutions of P . The value of the
upper bound depends on the multiplier µ used. The surrogate dual problem SD provides the
tightest upper bound (Glover, 1975).

z(SD) = min
µ∈Rp≥

z(SR(µ))
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The extension of the surrogate relaxation to a multi-objective context is straightforward. In-
deed, the surrogate relaxation deals only with the decision space, the multiplicity of the objective
functions does not impact the definition of the surrogate relaxation. However, the extension of the
surrogate dual problem is more difficult. Indeed the surrogate relaxation being a MOCO prob-
lem, its nondominated set is a discrete. Two upper bound sets obtained by two different surrogate
relaxation, using different multipliers, are not necessarily comparable.

1.4 Solution methods for multi-objective combinatorial optimization
problems

In this section we describe different solution methods for MOCO problems. Reviews of the
literature on MOCO problems can be found in (Ehrgott and Gandibleux, 2000) and (Ehrgott and
Gandibleux, 2002). They present applications of MOCO problems and present different dedicated
solution methods.

Even if Section 1.4.7 deals with approximation solution methods, we mainly present exact
solution methods, since the thesis focuses on the exact solution of knapsack problems. We partic-
ularly detail branch-and-bound and two phase methods. For most of these methods, we highlight
the difference between the bi-objective version and the version with strictly more than two objec-
tives. Indeed, bi-objective solution methods often rely on the natural order of the nondominated
points.

1.4.1 Dichotomic method

This first method does not aim to find XEm , but guarantee to find XSE1m . Some other so-
lutions in XSE1 or XSE2 can potentially be found. For a problem P , the dichotomic method is
based on its weighted sum scalarization Pλ defined by Geoffrion (1968).

Aneja and Nair (1979) first introduced this method for bi-objective transportation problems.
The pseudo-code of the algorithm is presented in Algorithm 1.

The initialization of the method (lines 2 to 10) consists in finding the two lexicographic optimal
solutions x1 and x2, for the permutation of objective functions (1,2) and (2,1) respectively. When
searching for the lexicographic optimal solutions, to avoid weakly efficient solutions that are not
efficient solutions, ε is used in the directions. Thus ε should be a small value.

At lines 11 to 18, the method searches iteratively for the other supported efficient solutions by
successively considering each pair of adjacent (regarding the natural order) supported nondomi-
nated points found during the execution. During the first iteration, the only pair is z(x1), z(x2).
Each iteration consists in computing a search direction, searching the optimal solution x∗ in this
direction and updating the pair of adjacent supported nondominated points. For a pair of points
yr, yl, such that yl1 < yr1 (and yl2 > yr2 due to the natural order), the direction computed accord-
ing to the formula of line 13 is orthogonal to the line (yr, yl). The next steps of the execution
depend on the point z(x∗) obtained during the solution. If z(x∗) is above the line (yr, yl), i.e. if
λ z(x∗) > λyr (λ yl = λ yr), then two new pairs have to be considered: yr, z(x∗) and z(x∗), yl.
If this is not the case, the search stops in for this direction.

Lines 6 and 7 correspond to the specific case of a unique nondominated point for the problem
P .

Figure 1.6 illustrates graphically an execution of the dichotomic method. The arrows represent
the optimization direction used for each iteration.
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Algorithm 1: Dichotomic method (Aneja and Nair, 1979)
input : A bi-objective combinatorial optimization problem instance
output: The XSE1m of this instance

1 begin
/* getOptimalP(λ ↓) returns an optimal solution of Pλ */

/* addToS(yr ↓, yl ↓) adds the pair yr, yl to the set of pairs S */

/* popFromS() returns the first pair yr, yl of S and deletes it
from S */

/* ε > 0 is a small value */
2 XSEm

← ∅
3 S ← ∅
4 x1 ← getOptimalP((1, ε) ↓)
5 x2 ← getOptimalP((ε, 1) ↓)
6 if z(x1) = z(x2) then
7 XSE1m ← {x1}
8 else
9 addToS(z(x1) ↓, z(x2) ↓)

10 XSE1m ← {x1, x2}
11 while S 6= ∅ do
12 yr, yl ← popFromS()

13 λ← (yl2 − yr2, yr1 − yl1)
14 x∗ ← getOptimalP(λ ↓)
15 if λ z(x∗) > λyr then
16 XSE1m ← XSEm ∪ {x∗}
17 addToS(yr ↓, z(x∗) ↓)
18 addToS(z(x∗) ↓, yr ↓)

19 return XSE1m

20

21 Comment. In the algorithms, the symbols ↓, ↑ and l specify the transmission mode of a parameter to
a procedure; they correspond respectively to the mode IN, OUT and IN OUT.

We can remark that this method is also applicable to MOLP and MOILP problems, by adjust-
ing the function getOptimal.

The dichotomic method has been adapted for strictly more than two objectives in (Przybylski
et al., 2010b) and (Özpeynirci and Köksalan, 2010). In this context, the search directions are com-
posed of three or more dimensions and can be defined by more than two points. Thus determining
the directions to find all supported nondominated point is a more complex process. Since the scope
of our work does not include problems with more than two objective functions, we do not develop
those methods in this manuscript.

Obviously, the dichotomic method does not allow to find non-supported efficient solutions and
does not guarantee to find all non-extreme supported efficient solutions. Section 1.4.6 shows how
the dichotomic method can be combined with a enumeration method to find XEm .

1.4.2 ε-constraint method

The ε-constraint method was first introduced in (Haimes et al., 1971); it allows to find XEm .
Contrary to the dichotomic method, this method does not aggregate the constraints. It transforms



36 CHAPTER 1. MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

z1

z2

×
y1

(a) Initialization: search of the lexi-
cographic optimal for the permutation
(1,2). y1 is obtained.

z1

z2
×

y2

×
y1

(b) Initialization: search of the lexi-
cographic optimal for the permutation
(2,1). y2 is obtained.

z1

z2
×

y2

×
y3

×
y1

(c) Iteration 1: the search direction is
defined by y2, y1. y3 is obtained with
λ y3 > λy2.

z1

z2
×

y2
×

y4
×

y3

×
y1

(d) Iteration 2: the search direction is
defined by y2, y3. y4 is obtained, with
λ y4 = λ y2

z1

z2
×

y2
×

y4
×

y3
×y

5

×
y1

(e) Iteration 3: the search direction is
defined by y3, y1. y5 is obtained with
λ y5 > λy3

z1

z2
×

y2
×

y4
×

y3
×y

5

×
y1

(f) Iteration 4 and 5: the search direc-
tion is defined by y3, y5 and y5, y1.
No new point is obtained.

Figure 1.6: Illustration of the dichotomic method

the multi-objective problem into a single-objective one by keeping only one of the original ob-
jective functions, the other objective functions are transformed into constraints. The resulting
problem is called the ε-constraint problem:

max zl(x)
s.t. zk(x) ≥ εk ∀k ∈ {1, . . . , p} \ {l}

x ∈ X

where ε ∈ Rp=. Solving this problem, we obtain at least a weakly efficient solution.

We present the ε-constraint method in a MOCO context with p = 2.

To find XEm , the ε-method iteratively solves the ε-problem using different values for ε. The
first iteration aims to find the optimal solution of the problem by considering only the first objective
function. There is no constraint on the other objective. At the (i + 1)-th iteration, the vector ε is
chosen such that the weakly efficient solutions found during the first i iterations are not feasible
for the ε-constraint problem, while all the other efficient solutions remain feasible. Let us consider
xi, the optimal solution of the i-th iteration. The following ε-constraint problem is the problem
used for the (i+ 1)-th iteration:
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max z1(x)

s.t. z2(x) ≥ z2(xi) + ε
x ∈ X

When dealing with some non-integer coefficients for the objective function, the value ε has to
be a small value, guaranteeing that there is no efficient solutions xwith z2(x) ∈

]
z2(xi), z2(xi) + ε

[
.

When the coefficients of the objective function are integer, ε can be set to 1, thanks to the
integrity of the variables. Indeed there is no possible value for the second objective function in the
open interval

]
z2(xi), z2(xi) + 1

[
.

Figure 1.7 is an illustration of the ε-constraint method on a bi-objective problem. At each
iteration, the plain line indicates the ε-constraint introduced, the shadowed area corresponds to
the non-feasible area with regards to the ε-constraint and the arrow indicates the optimization
direction. The first iteration is not presented since it is similar to Figure 1.6a (the second objective
is not constrained).
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Figure 1.7: Illustration of the ε-constraint method

Generalization of the ε-constraint method for optimization problems with three objective func-
tions or more have been proposed by Laumanns et al. (2005), Lokman and Köksalan (2013), Özlen
et al. (2014), Kirlik and Sayın (2014) and Dächert and Klamroth (2014). In the latter, the algorithm
requires the solving of a linear number of subproblems.
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1.4.3 Branch-and-bound method

The branch-and-bound method is an implicit enumeration method to find XEm . The feasible
set is successively divided by fixing one or several variables. The partitioning of the feasible set
can be represented by a tree whose root node is the global problem (i.e. the original problem to
solve) and each node represents a subproblem, in which certain variables are fixed. The variables
of a subproblem which are not fixed are called free variables.

In order to perform an implicit enumeration of all solutions, each subproblem is evaluated.
This evaluation aims to prove if no efficient solution for the global problem is feasible for this
subproblem. In this case the node is fathomed, i.e. the partitioning stops in this branch. In the
following, we denote ȲN the nondominated points of the subproblem associated to a node and YN
the nondominated points of the global problem.

The branch-and-bound method was introduced for single-objective optimization problems
before being generalized to multi-objective problems. Kiziltan and Yucaoğlu (1983) presents
the first generalization to multi-objective integer optimization, with binary variables. This sec-
tion only deals with multi-objective branch-and-bound for binary problems. Most of the multi-
objective branch-and-bound methods are dedicated to a particular problem: the bi-objective mini-
mum weight spanning tree problem for (Ramos et al., 1998) and (Sourd and Spanjaard, 2008), the
bi-objective assignment problem for (Delort and Spanjaard, 2010). The knapsack problems are
the focus of some multi-objective branch-and-bound methods (see Section 2 for details). Vincent
et al. (2013) has developed a branch-and-bound method for MOMILP problems. All works will
be presented for maximization problems, with non-negative coefficients and variables.

We describe the different strategic stages of a branch-and-bound method.

Separation procedure

The separation procedure partitions the feasible set X . Generally, for binary variables, the
partitioning procedure consists in fixing one variable to 0 or 1. The choice of the variable to fix
during the partitioning procedure is called the branching strategy. The branching strategy can
be either static (fixing variables in a pre-established order) or dynamic (using information of the
enumeration to make the choice).

Static strategies are more often used, particularly in multi-objective contexts. The static
branching strategies are most of the time problem dependent.

Lower bound set

In a branch-and-bound method, a lower bound set on YN aims to ease the pruning of branches.
The branch-and-bound method keeps an updated list of feasible solutions found during the enu-
meration, filtered by dominance. A solution in this list is called a potentially efficient solution,
since it is a feasible solution such that no solution dominating it have been found, at a given stage
of the execution, even if this could happen later in the execution. The points associated to those
solutions constitute the lower bound set and are called potentially nondominated points. At the
beginning of the algorithm, if no feasible solution is available, the lower bound set is initialized
with the point (0, . . . , 0). To improve its quality an initialization can be performed (see paragraph
Obtaining new feasible solutions).



1.4. SOLUTION METHODS FOR MOCO PROBLEMS 39

Upper bound set

At each node, an upper bound set U for ȲN (the nondominated set of the subproblem) is
computed, in order to evaluate if the node can be fathomed. Generally the upper bound set is
obtained thanks to a relaxation of the subproblem. This strategic stage has evolved from using an
upper bound (reduced to a single point) to using an upper bound set (defined by several points).

In the earliest multi-objective branch-and-bound methods, the upper bound is often an utopia
point, i.e. a point yU = (yI1 + ε1, . . . , y

I
p + εp) where εk > 0, k = 1, . . . , p. For example, in

(Kiziltan and Yucaoğlu, 1983), the upper bound is the ideal point of the unconstrained version of
the subproblem. In (Ulungu and Teghem, 1997) and (Florios et al., 2010), the upper bound is also
an utopia point.

In (Visée et al., 1998) the authors use three upper bounds: two for the problems consider-
ing only one objective function (they are in a bi-objective context) and one for a weighted sum
problem. This method will be detailed in Section 2.4.

In more recent works, upper bound sets are used to evaluate the subproblem. Mostly convex
upper bound sets are considered. The convex relaxation is used to compute the upper bound set
in many recent works, as in (Sourd and Spanjaard, 2008), (Jorge, 2010) and (Delort, 2011)). As
mentioned in Section 1.2.4, the convex relaxation leads to a particularly tight convex upper bound
set and is easy to compute when the single-objective version is solvable in polynomial or pseudo-
polynomial time complexity. The use of the convex relaxation to compute the upper bound set
appears to be an important factor of the practical efficiency of recent multi-objective branch-and-
bound methods.

Fathoming of nodes

A node is fathomed when it is proven that the feasible solutions for the associated subproblems
cannot be efficient solutions of the global problem. We can distinguish three ways for a node to
be fathomed:

By infeasiblity If the subproblem defined does not have any feasible solution, then it is obvious
that no efficient solution for the global problem can be feasible for this subproblem. We can
remark that the feasibility of a subproblem only depends on the constraints, and not on the
number of objectives.

By optimality If the solutions associated to the upper bound set are feasible, then they are efficient
for the subproblem. But it does not guarantee that all efficient solutions of the subproblems
have been found. To guarantee that, we would have to determine a lower bound set for ȲN
with the equality U − Rp= = L − Rp= with U the upper bound set on ȲN and L the lower
bound set on ȲN , which is unlikely to happen in the multi-objective context. Indeed, the
upper bound and the lower bound sets are generally of different nature (convexity, bound
or bound set). However, there exists one special case: if the upper bound set is composed
of a single point which is feasible for the subproblem, then the node can be fathomed by
optimality.

By dominance Fathoming a node by dominance requires to compare the upper bound set U com-
puted for ȲN (subproblem) and the lower bound set L for YN (global problem). The node
can be fathomed if U is dominated by L, i.e. for all u ∈ U there is l ∈ L such that l = u
(see Figure 1.8a). Then obviously all feasible solutions of the subproblem are weakly dom-
inated by a feasible point in L and no new nondominated points for the global problem can
be found in this branch of the search tree.
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However, if a single point of U is not weakly dominated by any point of L then the node
cannot be fathomed (see Figure 1.8b).
The fathoming by dominance emphases the importance of the quality of the upper and lower
bound sets. Indeed when using a tight upper bound set and a lower bound set composed
of feasible solutions of good quality then the nodes are more likely to be fathomed by
dominance.
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Figure 1.8: Comparison of an upper bound set U for ȲN with a lower bound set L for YN to
determined if the node can be fathomed

Moreover, when dealing with integer or binary variables and coefficients, the integrity can
be used. Let us consider L the lower bound set for YN and U the upper bound set for ȲN
such that (L + Rp=) ∩ (U − Rp=) 6= ∅ but does not contain any integer point. Then no new
nondominated point can be found in this branch. However, the fathoming rule by dominance
must be strengthened. In (Sourd and Spanjaard, 2008), the authors use this integrality and
remark that each point of the lower bound set for YN can be shifted by (1,1) without losing
any nondominated points. This shifted lower bound set, illustrated in Figure 1.9, makes it
possible to prune the node in the situation above.

Choice of the active node

An active node is a node that has not been fathomed, i.e. corresponding to a subproblem for
which the feasible solutions may be efficient solutions of the global problem. Those nodes must
be investigated. The branch-and-bound method investigates the nodes iteratively by selecting at
each step one node in order to apply the separation procedure. It is well known that the order in
which the nodes are investigated influences the size of the search tree. Indeed, when investigating
a node, some new potentially nondominated points can be found, improving the lower bound set
for YN , which can make it possible to fathom by dominance some active nodes.

The choice of the active node can either be static (depth first search or breadth first search)
or dynamic (for example, choosing the node with the highest value for the upper bound, called
best value first strategy in single-objective optimization). Most of the multi-objective branch-and-
bound methods use the depth first search strategy. Even if the best value first strategy is used
in the single-objective context (the bounds are always comparable), its definition is complex in
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ȲN

U

Figure 1.9: The upper bound set U for ȲN is not dominated by the lower bound set L on YN ,
however by using the shifted lower bound set L′ for YN the node can be fathomed.

the multi-objective context because dominance relation cannot always be determined between two
upper bound sets. A measure of the quality of an upper bound set can be defined in several ways,
as in (Jorge, 2010) to choose the active node.

Generating new feasible solutions

Generating new feasible solutions is important for two reasons. Firstly, it makes it possible
to find the solutions of a set XEm , which have to be returned by the algorithm. Secondly, the
quality of the lower bound set is essential for the practical efficiency of the method, facilitating the
fathoming of nodes by dominance during the execution.

New feasible solutions can be found either at the beginning of the algorithm, initializing the
lower bound set, and/or all along the search-tree. The quality of the feasible solutions found is
important for the practical efficiency of the method.

Usually the initialization of the lower bound set is achieved by computing YSN (by solving the
convex relaxation of the global problem) as in (Ramos et al., 1998), (Sourd and Spanjaard, 2008),
(Jorge, 2010) or (Delort and Spanjaard, 2010); or by using a heuristic (see (Sourd and Spanjaard,
2008) or (Delort and Spanjaard, 2010)). We can note that it is possible to apply both procedures
or to execute a metaheuristic to find efficient solutions of good quality.

In (Florios et al., 2010), feasible solutions are generated during the initialization. The LP
relaxation of the problem is solved. The extreme efficient solutions of this relaxation are generally
not integral and thus not feasible for the original problem. The authors round the variables, aiming
to generate feasible solutions.

Feasible solutions can also be found all along the algorithm (it is actually essential to return
XEm). The most basic method to find a feasible solution is to develop a branch of the search-tree
until the subproblem does not contain any free variable, i.e. at a leaf of the search-tree. Then the
corresponding solution can be used to improve the lower bound set, if it is feasible and if its image
in objective space is not dominated by any point of the lower bound set. Even if this process can
be used when the choice of the active node is a depth first search, it has the drawback that the
branch has to be entirely developed, favoring large search-trees.
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Finding feasible solutions before reaching a leaf node can ease the fathoming of nodes by
dominance and thus reduce the search-tree. Heuristics can be used to generate feasible solutions.
For example, for a knapsack problem, the solution for which all free variable are fixed to 0 is
feasible. The algorithms presented in (Ulungu and Teghem, 1997) and (Visée et al., 1998) generate
this solution at each node. In an other context, this solution is not necessarily feasible. However,
Kiziltan and Yucaoğlu (1983) generates this solution and tests its feasibility at each node, in order
to improve the lower bound set.

The generation of new feasible solutions during the enumeration is often linked to the compu-
tation of the upper bound set. Indeed, when the upper bound set contains feasible solutions, those
solutions might improve the lower bound set. For example, when using the convex relaxation, see
(Sourd and Spanjaard, 2008), (Jorge, 2010) and (Delort, 2011), the extreme solutions are feasible
for the subproblem and the global problem. Thus they are likely to improve the lower bound set
for YN .

1.4.4 Branch-and-cut

The branch-and-cut method is derived from the branch-and-bound method. The branch-and-
cut method has been originally defined for single-objective optimization problems (Wolsey, 1998).
During the search process, the upper bound is tightened by introducing valid inequalities, i.e. ad-
ditional constraints that do not modify the feasible set but which can be violated by solutions of a
relaxation (for example by the optimal solution of the LP relaxation). Wolsey (1998) stated that
the philosophy of a branch-and-cut method is not the same as for a branch-and-bound method,
since a particular effort is spent on tightening the upper bound. To obtain an efficient branch-
and-cut method, one must find the tradeoff between the quality of the upper bound obtained at
each node and the computational time spent on the generation of cuts. The term branch-and-cut
was introduced for the first time in (Padberg and Rinaldi, 1987). (Lucena and Beasley, 1996) re-
views those methods and their applications. They are used to solve NP-hard problems, such as
the traveling salesman problem (Padberg and Rinaldi, 1987), the cardinality constrained knapsack
problem (de Farias Jr. and Nemhauser, 2003), the generalized assignment problem and the ca-
pacitated p-median problem (Vasil’ev, 2009). They are also very commonly used in commercial
softwares, such as CPLEX (IBM, 2015), and open source softwares, such as GLPK (Makhorin,
2015). The generation of cuts used in branch-and-cut methods are generally derived from cutting
plane algorithms. For an ILP, the Gomory’s cuts (Gomory, 1958) and the Chvátal-Gomory cuts
(Chvátal, 1973) are well known. For the knapsack problem, Crowder et al. (1983) introduced valid
inequalities, called the cover inequalities.

The interest for the branch-and-cut methods in a multi-objective context is very recent. Joze-
fowiez et al. (2012) proposes an enumerative single-objective branch-and-cut method for the min-
imum labeling Hamiltonian cycle problem and two of its variants. The problem considers two
objective functions. The second one is bounded with a small range of values and can only take
integer values. On the same principle than for the ε-constraint method, this objective function
is replaced by an inequality constraint. The algorithm firstly considers an initial value for the
right hand side of the inequality, creating a subproblem and solve this subproblem by a dedicated
branch-and-cut method. The value on the second objective function of the weakly efficient solu-
tions found during the solving of the subproblem are used to determine the next right hand side to
use in the inequality derived from the objective function.

Multi-objective branch-and-cut methods have been presented in recent conferences.
A very recent work on an optimized parallel branch-and-cut method for the bi-objective travel

salesman problem has been presented at the Recent Advances in Multi-Objective Optimization



1.4. SOLUTION METHODS FOR MOCO PROBLEMS 43

workshop, an article on the subject should be published soon (Stidsen and Andersen, 2015).
In (Gadegaard et al., 2015), the authors propose to add cuts to the computation of upper bound

sets based on a weighted sum of the linear relaxation, in a branch-and-bound method designed for
bi-objective combinatorial optimization problems.

1.4.5 Dynamic programming

Dynamic programming (Bellman, 1957) is an implicit enumeration method, often designed
for a specific problem. They have been used to solve multi-objective optimization problems, such
as the shortest path problem (Martins, 1984), knapsack problems ((Klamroth and Wiecek, 2000),
(Captivo et al., 2003), (Bazgan et al., 2009a) and (Figueira et al., 2013)), among others.

For example to solve a knapsack problem, dynamic programming methods represent the fea-
sible solutions using an oriented acyclic graph, in which there exists a one to one association
between the paths and the feasible solutions. For each node, the corresponding nondominated
points are sought thanks to a recursive formula, using the nondominated points of its predecessors
in the graph. On a similar principle than for the branch-and-bound method, bound sets can be used
to reduce the number of nodes to consider.

1.4.6 Two phase method

A two phase method is a general principle introduced by (Ulungu and Teghem, 1995) to solve
bi-objective MOCO problems. As its name indicates, this method searches the efficient solutions
in two phases: the extreme supported efficient solutions firstly and then all the others. We present
only the bi-objective version of the two phase method, however the method has been extended for
three objectives and more (for MOCO problems (Przybylski et al., 2010a), for MOMILP problems
(Vincent, 2013)). The extension to more than two objectives is not straightforward since the natural
order is lost.

The first phase aims to find XSE1m , the dichotomic method presented in 1.4.1 of Aneja and
Nair (1979) is generally employed.

The second phase consists in finding the non-supported and the non-extreme supported ef-
ficient solutions. In the bi-objective context, the natural order of the nondominated points al-
lows to characterize the localization of such solutions. Indeed, the non-supported and supported
non-extreme nondominated points are located in the triangles defined by two adjacent supported
nondominated points (according to the natural order). Let yr and yl be two adjacent supported
nondominated points according to the natural order, with yl1 < yr1 (and thus yl2 > yr2 due to the
natural order), we define the triangle4(yr, yl) composed of the points yr, yl and (yl1, y

r
2). Those

triangles are illustrated in Figure 1.10. The point (yl1, y
r
2) called a local nadir point.

The second phase consists in investigating all triangles to find the non-supported nondomi-
nated points and the non-extreme supported nondominated points, using a multi-objective solution
method. During this phase, the search space is reduced to the triangle investigated and a solution
method specific to the problem to solve is executed. It can be a branch-and-bound method ((Visée
et al., 1998) for the bi-objective knapsack problem or (Vincent, 2013) for MOILP problems), a dy-
namic programming method ((Delort and Spanjaard, 2010) for the bi-objective knapsack problem)
or a ranking method ((Przybylski et al., 2008) for the bi-objective assignment problem, (Jorge,
2010) for the bi-objective knapsack problem). The ranking method is a single-objective solution
method which searches the k best solutions.
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Figure 1.10: Illustration of the triangles4(yr, yl)

1.4.7 Approximation methods

When dealing with difficult problems, the exact solution methods can be highly time consum-
ing, in particular when the instance has a large number of variables. In practical situations, the
size of the instances to solve can be larger than what an exact solution method can handle. The
aim of an approximation method is to provide a good approximation of the optimal solution (or
efficient solutions) within a reasonable time. One could think about stopping a branch-and-bound
or dynamic programming method after a given execution time, however this technique does not
provide any guarantee on the quality of the obtained solutions. An approximation method offers
a tradeoff between the quality of the obtained solutions and the time and memory complexity of
the algorithm. In this section, we present several approximation solution methods, divided in two
categories: approximation schemes; heuristic and metaheuristic methods.

Approximation schemes

An approximation scheme guarantees the quality of the approximation returned by the algo-
rithm, prior to the execution. Definition 15, from Erlebach et al. (2001), formalizes this guarantee
in the single and multi-objective context.

Definition 15 ((Erlebach et al., 2001)).

– For ρ ≥ 0, a solution x1 is called a ρ-approximation of a solution x2 if zk(x1) ≥ zk(x
2)

ρ
for all k = 1, . . . , p.

– A set X̄ of feasible solutions for a problem P is called a ρ-approximation ofXE if, for every
solution x ∈ XE , X̄ contains a feasible solution x̄ that is a ρ-approximation of x.

– An algorithm that runs in polynomial time in the size of the input and that always outputs a
ρ-approximation of XE is called a ρ-approximation algorithm.

– A polynomial-time approximation scheme (PTAS) for XE is a family of algorithms that
contains, for every fixed constant ε > 0, a (1 + ε)-approximation algorithm Aε.

– If the running-time of Aε is polynomial in the size of the input and in ε−1, the family of
algorithms is called a fully polynomial-time approximation scheme (FPTAS).

For a multi-objective optimization problem, a ρ-approximation method guarantees a maximal
gap between the approximation solutions and the efficient solutions, which is independent from
the range of the coefficients.
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In (Safer and Orlin, 1995a), the authors highlight necessary and sufficient conditions for the
existence of FPTAS for MOCO problems. In (Safer and Orlin, 1995b), they prove the existence
of a FPTAS for several network flow, knapsack and lot-sizing problems. An improved FPTAS for
the multi-objective shortest path problem is proposed in (Tsaggouris and Zaroliagis, 2006).

Heuristic and metaheuristic methods

In (Reeves, 1993), the authors defined heuristic methods as methods seeking a good approx-
imation of the efficient solutions, without any guarantee, at a low computational cost. It leads
quickly to solutions of good quality, however it rarely finds an efficient solution (or optimal solu-
tion depending on the context) and is often stuck into local optima. A heuristic is often problem
specific, however they can be classified based on the approach used.

The greedy heuristics construct a solution from scratch by iteratively setting variables, bringing
immediately the best value according to the objective function. For example, when dealing with a
traveling salesman problem, the route can be iteratively built by systematically going to the nearest
neighbor.

The local search methods are based on a different approach. Knowing a “good” feasible so-
lution (obtained by a greedy heuristic for example), they investigate its neighborhood hoping to
find a better solution. A neighborhood is a set of solutions differing only by a few characteris-
tics. For example, the neighbors of a solution can be the solutions differing on only one variable.
The local search method have received a particular attention and there exist several variants of
those methods. Among others, we can cite the Pareto local search (see (Hoos and Stützle, 2004)
or (Dubois-Lacoste, 2014) for reviews), the iterated Pareto local search (see (Lourenço et al.,
2003) for a review), the two phase pareto local search ((Paquete and Stützle, 2003) and (Lust
and Teghem, 2010) for the bi-objective traveling salesman problem) and the indicator-based local
search (Basseur and Burke, 2007).

In (Glover and Kochenberger, 2003), the metaheuristics are defined as “solution methods that
orchestrate an interaction between local improvement procedures and higher level strategies to
create a process capable of escaping from local optima and performing a robust search of a so-
lution space”. Contrary to the heuristics, the metaheuristics are generally applicable to several
problems. Metaheuristic methods are widely used for multi-objective problems. In (Ehrgott and
Gandibleux, 2000), the metaheuristics are classified into two main categories: the methods of local
search in objective space (simulated annealing, tabu search, greedy randomized adaptive search,
variable neighborhood search, path relinking, etc) and the population based methods (generic pro-
gramming, ant colony systems, evolutionary methods, etc). Many articles deal with metaheuristic
methods in the multi-objective context, among them the evolutionary algorithm have received a
particular attention (see (Deb, 2015) for a review). The most well-know general evolutionary
method may be NSGA-II (Deb et al., 2002).

The tradeoff between the exploitation and exploration (also called intensification and diver-
sification) is an important concept for both heuristic and metaheuristic methods. Indeed without
exploitation (intensification), the quality of the solutions remains low and without exploration (di-
versification) the method could be stuck into local optimum. If in general the local search methods
offers a fast convergence to efficient solutions, they need to be guided to cover the set of nondom-
inated points. On contrary the evolutionary algorithms do not need any guide, but can converge
slowly to efficient solutions. In order to take advantage of the two approaches, hybrid metaheuris-
tic methods have been proposed, a review is presented in (Ehrgott and Gandibleux, 2008). The
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matheuristic methods mix (Maniezzo et al., 2010) metaheuristic methods and exact solution meth-
ods. For example, the algorithm introduced in (Gandibleux and Fréville, 2000) is a tabu search in
which cuts are introduced to solve the multi-objective knapsack problem.

1.5 Conclusion

Due to their theoretical and practical complexity, the multi-objective combinatorial optimiza-
tion (MOCO) problems have received a lot of attention in the literature. Many methods have been
developed to solve them either exactly or approximately. In this thesis we focus on exact solution
methods for MOCO methods. Most of the methodologies developed in this context are general.
However, in order to achieve a good practical efficiency, their algorithmic instantiation is specific
and exploit the problem structure. It is in particular the case for branch-and-bound problems. The
majority of the MOCO problems for which there exists an exact solution method are problems
whose single-objective version can be solved in polynomial or pseudo polynomial time. Then the
solution methods rely on the convex relaxation of the problem, as it is for example the case in two
phase methods and branch-and-bound methods. However, there exists only a few solution meth-
ods, efficient in practice, for problems whose single-objective version is more difficult to solve.
Different components should also adapt to this increased difficulty. In this thesis, we intend to
analyze the branch-and-bound method components in this case and to design a solution method
efficient in practice.

Among the components to adapt, the computation of the upper bound set is the first to analyze,
since its impact on the performances is important. The convex relaxation may be too expensive to
be used if the single-objective version of the problem is difficult in practice. Then other relaxations
should be used. The relaxations could be specific to the considered problem or generic (as the lin-
ear programming relaxation). However, using a generic relaxation might lead to large upper bound
sets and it may be desirable to introduce cuts to prune earlier subproblems. When introduced in
the context of a branch-and-bound method, the resulting methodology is a branch-and-cut method,
for which the interest in multi-objective contexts is very recent.

In the literature, the attention is mainly centered around the upper bound sets and the other
components of branch-and-bound method are less considered. For example, the separation strate-
gies and the choice of the active node are generally static. However, designing dynamic strategy
could allow a better adaptation to the problem and the different instances and thus improve the
solution method.

In this thesis, three main components are analyzed: the upper bound set, the separation strategy
and the generation and exploitation of cuts.

In order to be provided with reference works and in absence of similar studies, the different
algorithms are presented and tested on the case study of knapsack problems.



2
Knapsack problems

Knapsack problems are reference combinatorial optimization problems, for two reasons: (1)
a large range of real life applications can be formalized as knapsack problems and (2) knapsack
problems appear as subproblems in the mathematical formulation of many more complex prob-
lems. As a consequence, the knapsack problem is one of the most studied combinatorial optimiza-
tion problems in the operations research community. Over the years, many contributions have
been brought on knapsack problems, such as fundamental results and a large number of dedicated
solution methods. Moreover, knapsack problems are also widely used as benchmark for generic
algorithms, such as heuristic or metaheuristic methods.

The multi-objective version of the problem also raises a particular interest. Two variants
emerge, uni-dimensional and multi-dimensional knapsack problems. These variants are used to
elaborate dedicated solution methods and also to evaluate generic algorithms.

This chapter presents different variants of knapsack problems and key components of the ded-
icated solution methods, which will be necessary for the following of the manuscript.

2.1 Definition

The variant of the knapsack problem that we will investigate in this thesis is the most general
one: the multi-dimensional multi-objective knapsack problem (pOmDKP ), defined below. As
its name indicates, it considers multiple objective functions and multiple constraints (also called
dimensions). However, in this chapter we will also be interested in simpler variants, consider-
ing fewer objective functions and/or constraints. Indeed, the first solution methods for knapsack
problems were historically dedicated to those simpler variants.

The interest accorded to the different variants of knapsack problems comes from their practical
applications, such as capital budgeting or allocating processors (see Martello and Toth (1990),
Kellerer et al. (2004) and da Silva et al. (2004)). In (Clausen et al., 2010), the two-dimensional
knapsack problem is used to solve the problem of assigning seats in a train for a group of people
traveling together. In (Aisopos et al., 2013), the knapsack problem is used to model resource
management in software.

47
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The pOmDKP consists in choosing items such that the capacity on each dimension is not
exceeded, while maximizing the objective functions. Each item j ∈ {1, . . . , n} has a weight
wij ∈ N on each dimension i ∈ {1, . . . ,m} and a profit ckj ∈ N on each objective k ∈ {1, . . . , p}.
ωi ∈ N∗ is the capacity on the dimension i ∈ {1, . . . ,m}.

The mathematical formulation of the pOmDKP is thus:

max

n∑
j=1

ckj xj k = 1, . . . , p

s.t.
n∑
j=1

wij xj ≤ ωi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(pOmDKP )

As in (Kellerer et al., 2004), to avoid trivial situations and without lost of generality, we assume
that:

– wij ≤ ωi ∀j ∈ {1, . . . , n} ∀i ∈ {1, . . . ,m}, i.e. no item exceeds the capacity of any
dimension, otherwise the item j could never be selected.

–
n∑
j=1

wij > ωi, ∀i ∈ {1, . . . ,m}, i.e. all the items cannot be selected all together on one

dimension without exceeding the capacity, otherwise the constraint i would be redundant.

–
m∑
i=1

wij > 0, ∀j ∈ {1, . . . , n}, i.e. it is allowed for an item to have a null weight on a

dimension, as long as it does not have a null weight on all dimensions. Otherwise the item
j would trivially always be selected.

–
p∑

k=1

ckj > 0, ∀j ∈ {1, . . . , n}, similarly to the previous point, it is allowed for an item to

have a null profit on an objective function, as long as it does not have a null profit on all
objective functions. Otherwise the item j would trivially never be selected.

The knapsack problem knows many variants, depending on the number of objectives and di-
mensions considered. We denote those variants pOmDKP with p being the number of objective
functions to maximize and m the number of dimensions. If p = 1 then “1O” is omitted in the
denomination of the problem, similarly if m = 1 “1D” is omitted. The classical single-objective
uni-dimensional knapsack problem is thus denoted KP . KP being NP-hard, all the variants of
the pOmDKP are alsoNP-hard (Kellerer et al., 2004). The next section details the characteristic
of each variant and the solution methods designed to solve them. The reader can also refer to dif-
ferent reviews on knapsack problems: (Kellerer et al., 2004, Fréville, 2004, Jalali Varnamkhasti,
2012) and (Lust and Teghem, 2012), in which applications of knapsack problems and other vari-
ants (which are not in the scope of the thesis) are presented.

2.2 Single-objective uni-dimensional knapsack problem

The KP is the most classic version of pOmDKP and the easiest since it only considers one
constraint and one objective function. To simplify the definitions given in this section, the formu-
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lation of the problem is stated as follows:

max

n∑
j=1

cj xj

s.t.
n∑
j=1

wj xj ≤ ω

xj ∈ {0, 1} j = 1, . . . , n

(KP )

2.2.1 Utility and bound

This problem has the interesting property that its LP relaxation is particularly easy to solve.
A simple algorithm to solve this LP relaxation is given in (Dantzig, 1957). The items are ordered
according to the non-increasing order of the profit-to-weight ratio, also called the utility of an item
(Definition 16).

Definition 16 (Utility of an item). Let us consider the item j ∈ {1, . . . , n}. The utility of this item
is uj =

cj
wj

.

When the items are ordered in non-increasing order of the utilities, the optimal solution xLP of
the LP relaxation is obtained as follows. The first items are selected, until the residual capacity is
not enough to select the next item completely. This latter item is called the break item. A fraction
of the break item is added to the solution, such that it fills the residual capacity. Thus we obtain
the following solution: 

xLPj = 1 j = 1, . . . , b− 1

xLPb =
ω −

∑b−1
j=1wj

wb
xLPj = 0 j = b+ 1, . . . , n

where b is the index of the break item, b = min

k :

k∑
j=1

wj > ω

.

Since the coefficients and the variables of the knapsack problem are integer, then bzLP c is also
an upper bound for the optimal solution.

The solution x̂ such that: {
x̂j = 1 j = 1, . . . , b− 1
x̂j = 0 j = b, . . . , n

is a feasible solution for the KP problem. Thus it can be used as a lower bound for the objective

value of the optimal solution. We denote ĉ =

b−1∑
j=1

cj its profit and ŵ =

b−1∑
j=1

wj its weight.

In (Martello and Toth, 1977), the authors proposed an upper bound for the optimal value, based
on x̂. Instead of adding a portion of the break item, they analyze two situations: the break item is
entirely selected (xb = 1) or it is not selected at all (xb = 0). The upper bound is:

uMT = max

{⌊
ĉ+ (ω − ŵ)

cb+1

wb+1
)

⌋
,

⌊
ĉ+ cb + (ω − ŵ − wb)

cb−1

wb−1

⌋}



50 CHAPTER 2. KNAPSACK PROBLEMS

The corresponding solution is either:
xMT
j = 1 j = 1, . . . , b− 1

xMT
b = 0

xMT
b+1 =

ω − ŵ
wb+1

xMT
j = 0 j = b+ 2, . . . , n

or


xMT
j = 1 j = 1, . . . , b− 2

xMT
b−1 = 1− ŵ + wb − ω

wb−1

xMT
b = 1

xMT
j = 0 j = b+ 1, . . . , n

The authors proved that uMT ≤ bzLP c.
Example 3 computes for an instance of KP the optimal solution of the LP relaxation and uMT .

Example 3 (LP relaxation of a KP ). We consider the following instance of KP , where the item
are ordered in the non-increasing order of the utilities.

max 20x1 + 7x2 + 8x3 + 10x4 + 7x5

s.t. 2x1 + x2 + 7x3 + 13x4 + 11x5 ≤ 17
xj ∈ {0, 1}, j = 1, . . . , 5

(KP -1)

min

k :
k∑
j=1

wj > 17

 = 4, thus x4 is the break item. The value of the optimal solution of

the LP relaxation is: zLP = 20 + 7 + 8 +
17− (2 + 1 + 7)

13
10 = 35 +

7

13
10 ≈ 40.384 and the

corresponding solution is xLP = (1, 1, 1,
7

13
, 0).

bzLP c = 40 is also an upper bound for KP -1.

x̂ = (1, 1, 1, 0, 0), ĉ = 35 and ŵ = 10. x̂ is a lower bound for the optimal value.

The upper bound from (Martello and Toth, 1977) is uMT = max{b35+(17−10)
7

11
)c, b35+

10 + (17− 10− 13)
8

7
c} = max{39, 38} = 39. The solution corresponding to this upper bound

is xMT = (1, 1,
1

7
, 1, 0).

The optimal solution of this instance is (1, 1, 0, 1, 0) of objective value 37.

2.2.2 Core concept

The ordering of the items according to the utilities is used not only to compute the optimal
solution of the LP relaxation, but also in many solution methods dedicated to the KP . Indeed the
utility of an item reflects the interest to select this item and more particularly its tendency to be
selected in an optimal solution. An item with very high utility would be almost certainly selected
in an optimal solution, while an item with a very low utility would be almost certainly not selected.

In (Balas and Zemel, 1980), the authors observed that, for random instances, the optimal solu-
tion of a KP instance varies from the optimal solution of its LP relaxation by only a few variables,
whose indexes are generally near to the break item (if the items are ordered according to the utili-
ties). They introduced the notion of core. Based on the knowledge of the optimal solution x∗, the
core is a set of items xj , j = n1, . . . , n2, with n1 = min{j, x∗j = 0} and n2 = max{j, x∗j = 1}.
We have x∗j = 1 for j = 1, . . . , n1 − 1; x∗j = 0 for j = n2 + 1, . . . , n; and the KP problem can
be reduced to the core problem KPC :
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max

n2∑
j=n1

cj xj +

n1−1∑
j=1

cj

s.t.
n2∑
j=n1

wj xj ≤ ω −
n1−1∑
j=1

wj

xj ∈ {0, 1} j = n1, . . . , n2

(KPC)

Obviously the optimal solution is not known in advance. However, several exact solution
methods for the KP are based on this notion of core. The optimal solution is found by successively
approximating the core. The core problem being smaller than the original KP problem, its optimal
solution is easier to find.

2.2.3 Solution methods

Various methods have been proposed to solve exactly KP . One of the most efficient in practice
is Combo presented in (Martello et al., 1999). It is a dynamic programming method using the
notion of core. It is an improvement of Minknap (Pisinger, 1994). The time complexity of Combo
is pseudo polynomial in O(nω).

More recently, parallel algorithms have been investigated, for example in (Boyer et al., 2012)
the method introduced is a parallel dynamic programming method.

A different approach of the KP has been presented in (Hifi and Mhalla, 2013), presenting a
sensitivity analysis of the optimal solution regarding the variation of weights of the items.

All KP instances have not the same practical difficulty, even for the same number of variables.
The ratio

ω∑n
j=1wj

, called the tightness ratio, is often used as a difficulty indicator. It is commonly

accepted that the KP instances with a tightness ratio around 0.5 are the most difficult to solve.

2.2.4 Preprocessing treatments

It is well known that the computational time required to solve the KP increases with the
number of variables. Therefore, preprocessing treatments are often applied, prior to the solution
method, to reduce the number of variables. One of the first variable reduction procedure dedi-
cated to KP has been presented in (Ingargiola and Korsh, 1973). The method consists in creating
subproblems by fixing one variable xj to 0 and 1 for each xj , j = 1, . . . , n. An upper bound is
computed for each of those subproblems and compared to the best feasible solution found (cor-
responding to the lower bound). If the objective value of this upper bound on the subproblem is
lower than the objective value of the lower bound then the variable can be fixed to its opposite
value. The upper bound based on the LP relaxation is particularly suitable for this method, since
it is easy to compute and differs only slightly among the subproblems. We can remark that even if
this variable reduction procedure has been defined specifically for the KP problem, it can easily be
adapted to any other problem as long as an upper bound is available. This preprocessing treatment
has been adapted to knapsack problems with more objective functions and/or more constraints.

2.3 Single-objective multi-dimensional knapsack problem

In practical problems several, resources can be limited. It is to represent this situation that the
knapsack problem considering several dimensions and one objective function (mDKP ) is studied.
It is also called the d-dimensional knapsack (d-KP) in (Kellerer et al., 2004).
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The mDKP is considerably more difficult than KP (Fréville, 2004). The mDKP withm ≥ 2
is proven to have no FPTAS algorithm in (Gens and Levner, 1979), however it has a PTAS algo-
rithm.

Many solutions methods have been designed specifically to solve this problem, both in an ex-
act and approximate approach. Even if this manuscript focuses on exact approaches, we can note
that many heuristic and metaheuristic methods have been developed for the mDKP . For exam-
ple, in (Hanafi and Fréville, 1998) a tabu search based on the surrogate relaxation is presented; in
(Boyer et al., 2009) two heuristic methods are presented, both based on the surrogate relaxation of
mDKP ; Khemakhem et al. (2012) presents a hybrid metaheuristic mixing a tabu search method
and neighborhood search; Glover (2013) presents a greedy algorithm using the surrogate relax-
ation. A review on the heuristic and metaheuristic methods to solve this problem can be found in
(Jalali Varnamkhasti, 2012).

2.3.1 Solution methods

Solving exactly the mDKP is the subject of many works. Most of the solution methods for this
problem are branch-and-bound methods. The first branch-and-bound method designed to solve the
mDKP was in (Thesen, 1975). The LP relaxation is less often used in a solution method for this
problem than for the KP problem. Indeed, it is more complex to solve and the optimal solution
of the LP relaxation often have more than one variable with a fractional value.

Few years later Shih (1979) provides another branch-and-bound method for the mDKP . The
upper bound is based on the problems considering only the constraint i, for i = 1, . . . ,m. The
LP relaxation of those m problems is solved and the minimum value obtained defines the upper
bound of the problem.

In the branch-and-bound algorithm introduced in (Gavish and Pirkul, 1985)), the upper bound
is based on the surrogate relaxation of the problem. Experiments have been conducted on different
separation strategies (including some using the surrogate multipliers) and on strategies to update
the surrogate multipliers. Procedures to reduce the number of constraints and the numbers of
variables are performed as a preprocessing treatment and during the algorithm.

Several dynamic programming methods have also been designed to solve the mDKP . In
(Weingartner and Ness, 1967) two approaches of dynamic programming are presented. The first
one starts with an empty knapsack and iteratively adds items in it, while the second one starts with
an infeasible knapsack in which all items are selected and it iteratively removes items from it.

The concept of core has been generalized for the mDKP by Puchinger et al. (2006). Different
generalizations of the utility of an item are tested to order the items for the core problem.

The special case of the 2DKP has received a particular attention. In (Fréville and Plateau,
1996), a branch-and-bound method is designed for which the bounds are based on the surrogate
dual of the problem (Fréville and Plateau, 1993). Another branch-and-bound algorithm is pre-
sented in (Martello and Toth, 2003) using jointly the Lagrangian, surrogate and LP relaxations.
Schulze et al. (2013) consider the 2DKP by transforming one of the constraints into an objective
function. The problem becomes a bi-objective optimization problem with one constraint. Since
the coefficients of the new objective function are negative, it is a special variant of 2OKP . They
implemented a dynamic programming method to solve it. In (Schulze and Klamroth, 2015) this
method is generalized to the 3DKP .
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2.3.2 Preprocessing treatments

As for the KP , preprocessing treatments are applied to reduce the number of variables. Since
the practical complexity of the mDKP also increases with the number of constraints, preprocess-
ing treatments also aim to reduce the number of constraints.

In (Gavish and Pirkul, 1985), the authors adapt the preprocessing treatment introduced in
(Ingargiola and Korsh, 1973) to the multi-dimensional case. The upper bound used is based on the
LP relaxation.

Another preprocessing treatment is presented in (Fréville and Plateau, 1994) to reduce the
number of variables and constraints of the problem, based on the dual surrogate problem. The
procedure presented in (Osorio et al., 2002) to fix variables is also based on the surrogate relax-
ation.

In the preprocessing treatment presented in (Balev et al., 2008), another relaxation is exam-
ined: the LP relaxation. The procedure aims to fix subsets of variables by comparing the upper
and lower bounds of subproblems. The upper bound is based on the LP relaxation and the lower
bound is computed by a dynamic programming principle.

In (Hill et al., 2012), the Lagrangian relaxation and core concepts are used to reduce the
number of variables.

2.3.3 Surrogate relaxation

We can remark that the surrogate relaxation of the mDKP is both used in exact and approx-
imation solution methods, as well as in some preprocessing treatments to reduce the number of
variables and/or constraints. This relaxation is one of the most used when dealing with mDKP .
Indeed, by aggregating the constraints, the resulting problem is a KP problem, for which there
exist exact pseudo-polynomial time algorithms (for example (Martello et al., 1999)).

As already explained in Section 1.3.3, the dual surrogate problem gives the tightest upper
bound based on the surrogate relaxation for mDKP . However, solving the surrogate dual is NP-
hard (Boyer, 2007). Several methods have been developed to solve the dual surrogate for mDKP
(for example (Karwan and Rardin, 1979) and (Dyer, 1980)). (Boros, 1986) has shown that the
number solution of knapsack problems required to been solved is linear in the number of consid-
ered constraints. (Fréville and Plateau, 1993) presents an exact solution method for the surrogate
dual problem in the bi-dimensional case.

The particular structure of 2DKP (two constraints) allows to define the surrogate problem
with only one multiplier by normalizing the multiplier µ ∈ R2

≥. In (Fréville and Plateau, 1993)
the authors use the normalization presented in (Gavish and Pirkul, 1985). In this manuscript, we
will use another normalization to explain the algorithm proposed by (Fréville and Plateau, 1993).

The surrogate problem for 2DKP can be formulated using a multiplier u ∈ [0, 1]:

max cj xj

s.t. u

n∑
j=1

w1j xj + (1− u)

n∑
j=1

w2j xj ≤ uω1 + (1− u)ω2

xj ∈ {0, 1}, j = 1, . . . , n

(SR(u))

The problems SR(µ) with µ ∈ R2
≥ and SR(u) with u ∈ [0, 1] are equivalent with

u =
µ1

µ1 + µ2
. We have chosen to use the same notation SR for the definition using a vec-

tor µ and the one using a scalar u for the sake of simplicity. In the remainder of the manuscript,
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only the definition using a scalar is used. The constraint of the problem SR(u) is called the surro-
gate constraint and u the surrogate multiplier. We denote xu the optimal solution of the surrogate
relaxation SR(u).

In (Fréville and Plateau, 1993), the authors remark that xu, with u ∈ [0, 1] cannot violate both
constraints simultaneously. Indeed, if both constraints are violated, then the surrogate constraint
is violated too. Moreover, if xu does not violate any of the constraints, then it is feasible for the
mDKP problem and thus it is the optimal solution of the mDKP problem. Thus when xu the
optimal solution of SR(u) is not feasible for the mDKP problem, then it violates one and only
one of the two constraints of the mDKP problem.

The interval of surrogate multipliers for which the solution xu is feasible for the surrogate
relaxation can be calculated and it depends on which constraint is violated by xu, it is given in
Proposition 2.

Proposition 2. We define

v(xu) =

ω2 −
n∑
j=1

w2j x
u
j

n∑
j=1

w1j x
u
j −

n∑
j=1

w2j x
u
j − ω1 + ω2

– If xu violates the first constraint of the mDKP problem then xu is feasible for every surro-
gate relaxation SR(u′) with u′ ∈ [0, v(xu)].

– If xu violates the second constraint, then xu is feasible for every surrogate relaxation
SR(u′) with u′ ∈ [v(xu), 1].

The algorithm SADE (Fréville and Plateau, 1993) is based on this observation to compute SD
the surrogate dual. They perform a dichotomic method on the values of the surrogate multipliers.
At any step of the algorithm, if the optimal solution xu of a surrogate problem SR(u) (with
u ∈ [0, 1]) is feasible for the mDKP problem, then z(SD) = z(SR(u)). The dual surrogate is
found so the algorithm stops. For the remaining of the explanation, to avoid redundancy, we do
not repeat this condition, it is applied implicitly.

During the algorithm an interval [ul, ur] is refined such that there exists u ∈ [ul, ur] with
z(SR(u)) = z(SD). If the optimal solution x1/2 of SR(1/2) violates the first constraint of
the mDKP problem, the interval [ul, ur] is initialized to [v(x1/2), v(x1)], x1 being the optimal
solution of SR(1). If on the contrary x1/2 violates the second constraint of the mDKP problem,
the interval [ul, ur] is initialized to [v(x0), v(x1/2)], x0 being the optimal solution of SR(0).

If ul > ur the algorithm stops and we have z(SD) = min(z(SR(ul)), z(SR(ur))). If

ul ≤ ur then SR
(
ul + ur

2

)
is solved. If its optimal solution x∗ satisfies the first constraint,

then the interval is refined to [v(x∗), ur], otherwise it is refined to [ul, v(x∗)].
The algorithm SADE is proven to be correct and to converge in a finite number of steps

(Fréville and Plateau, 1993). The authors observed that in practice the number of steps executed
is independent of the number of variables in the mDKP problem.

2.4 Multi-objective uni-dimensional knapsack problem

Since the middle of the 90’s, the pOKP has gained interest. The pOKP is considerably more
difficult than the KP . Indeed, we no longer search for one optimal solution but for several efficient
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solutions. Moreover, the notion of utility of items, which led to a key component of the solution
methods for the KP , is more difficult to define for the pOKP . Indeed, for each objective function
a utility can be computed. Since the objective functions are often conflicting, the utility of a same
item can vary drastically regarding the considered objective.

The pOKP is #P-complete and intractable. In (Safer and Orlin, 1995b), the authors show
that there exists a FPTAS for the pOKP . Bazgan et al. (2009b) also developed a FPTAS for this
problem.

2.4.1 Solution methods

Even if pOKP has received a lot of attention for the elaboration or the test of metaheuristic
methods ((Gandibleux and Fréville, 2000) for a tabu search method, (da Silva et al., 2007) for a
scatter search method), many exact solution methods have been developed for this problem. Gen-
erally, the solution methods employed are generalizations of single-objective solution methods.

Dynamic programming methods have been developed for the special case of 2OKP (for ex-
ample Captivo et al. (2003), Delort and Spanjaard (2010), Figueira et al. (2013)), as well as for
the general pOKP (for example Klamroth and Wiecek (2000) and Figueira et al. (2010)). In
(Figueira et al., 2015), the authors aim to reduce the memory consumption of a dynamic program-
ming method for the 2OKP .

The core concept, which has proven its practical efficiency for the KP , is generalized to pOKP
in (da Silva et al., 2008).

Several branch-and-bound methods have also been developed to solve the pOKP . This section
describes especially those methods which are in the scope of this thesis, along with two phase
methods.

The branch-and-bound method presented in (Ulungu and Teghem, 1997) is one of the first
algorithms specifically designed for 2OKP . In this method, the upper bound is the point whose
value on the objective function k = 1, . . . , p is the upper bound of (Martello and Toth, 1977) uMT

for the single-objective version of the problem, considering only the objective function k.

In (Visée et al., 1998) a branch-and-bound method is embedded in a two phase method to
solve 2OKP . The single-objective version of 2OKP is a KP for which there exists a pseudo-
polynomial time algorithm to solve it (for example in (Martello et al., 1999)). Thus the supported
nondominated points are “easy” to obtain (using a dichotomic method on the weighted sum prob-
lem). Each triangle 4(yr, yl) is investigated individually, with yr and yl are adjacent supported
nondominated points. Three upper bounds are computed v1, v2 and vλ, for three weighted sum
problems, whose directions are respectively (1, 0), (0, 1) and λ = (yl2− yr2, yr1 − yl1). Each bound
is uMT presented in (Martello and Toth, 1977). If v1 < yl1 or v2 < yr2, then no feasible solution
can belong to the triangle 4(yr, yl). Therefore, the node is fathomed by infeasibility. The node
can be fathomed by dominance under two circumstances: there exists l ∈ L such that l ≥ (v1, v2)
or for all l ∈ L, λT l ≥ vλ; L being the lower bound set of the problem.

Jorge (2010) and Delort (2011) also developed a two phase method. However, the second
phase is not a branch-and-bound method but a ranking method (Jorge, 2010) and a dynamic pro-
gramming method (Delort, 2011). These two Ph.D. thesis also propose preprocessing treatments
to reduce the number of variables, which will be detailed in Section 2.4.2.

Jorge (2010) also presents a branch-and-bound method to solve the 3OKP problem. The
author proposed two versions of the branch-and-bound algorithm.

In the first version, similarly to what is done in (Ulungu and Teghem, 1997), three upper
bounds (y1, y2 and y3) are computed, for the problems considering only, respectively, the first, the
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second and the third objective function. Each of these bounds is uMT presented in (Martello and
Toth, 1977). Then the point yU = (y1

1, y
2
2, y

3
3) is defined. If this point does not allow to prune the

subproblem, then the weighted sum problem with direction λ = yU is solved exactly; we denote
yλ the obtained solution. The upper bound set is defined by {y ∈ Rp : y1 5 yU1 , y2 5 yU2 ,
y3 5 yU3 , λ

T y 5 λT yλ}N is used for the dominance test. The search-tree is built according to a
depth first search strategy. The variables are fixed according to a static order based either on an ag-
gregation of the utilities (average, maximum or minimum of the utility, detailed in Section 3.1.1),
on a dominance relation on the utilities or on the dominance rank of the items. The author remarks
that the branching strategy giving the best results is not always the same, even for instances built
with the same generator.

In the second version of (Jorge, 2010), the upper bound set is the convex relaxation of the
problem. The choice of the active node is a dynamic strategy. Five criteria are considered lexico-
graphically to determine the active node; three on them consider the structure of the subproblem
(tightness ratio, capacity and number of variables) while the two others concern the upper bound
set (number of supported solutions and number of supported solutions belonging to the lower
bound set). The branching strategy is also dynamic. If there exists a variable which has the same
value in all the solutions of the lower bound set, then this variable is chosen for the branching.
Otherwise the static strategy of the first version is applied.

2.4.2 Preprocessing treatments

Preprocessing treatments have been elaborated to reduce the number of variables of the in-
stances to solve. Indeed, some variables have the same value in all the efficient solutions. An
item selected in all efficient solutions is called a mandatory item and an item not selected in any
efficient solution is a forbidden item (using the terminology of (Delort, 2011)). The aim of those
treatments is to identify and fix those variables in order to obtain a smaller instance and thus speed
up the solving. Ideally we would like to identify all mandatory and forbidden items, using pre-
processing treatments. However, this task is difficult. In a two phase method, the preprocessing
treatments can be achieved at two levels: before the first phase (global preprocessing treatment)
or during the second phase before the solving in each triangle (local preprocessing treatment).
When executed during the second phase, the preprocessing treatment generally allows to fix more
variables. Indeed, there are only a few mandatory and forbidden variable when considering the
whole objective space. However, they are more when considering a restricted area, like a triangle
when the preprocessing is done during the second phase.

In the following of this section, we omit the indexes relative to the dimension since only one
dimension is considered in a pOKP . Thus the problem is defined as follows:

max

n∑
j=1

ckj xj k = 1, . . . , p

s.t.
n∑
j=1

wj xj ≤ ω

xj ∈ {0, 1} j = 1, . . . , n

(pOKP )

In (Jorge, 2010), the preprocessing treatment is a global preprocessing treatment, based on
two concepts: the bounds on the cardinality of an efficient solution and the dominance relations
between items. The first notion was introduced in (Glover, 1965) for the KP and extended to the
pOKP in (Gandibleux and Fréville, 2000); it is presented in Definition 17.
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Definition 17 (Cardinality of an efficient solution (Gandibleux and Fréville, 2000)). Let

e(x) =

n∑
j=1

xj be the cardinality of an efficient solution x ∈ XE . Then LB(ω) ≤ e(x) ≤ UB(ω)

with:

– LB(ω) = max s :
s∑
j=1

wj ≤ ω, (wj) sorted in decreasing order.

– UB(ω) = max s :
s∑
j=1

wj ≤ ω, (wj) sorted in increasing order.

In (Jorge, 2010), the items are compared to each other using a relation of dominance. To do so
a vector vj = (c1

j , . . . , c
m
j ,−wj) is associated to each item j = 1, . . . , n. An item j ∈ {1, . . . , n}

dominates an item l ∈ {1, . . . , n} if vj ≥ vl, i.e. if ckj ≥ ckl , k = 1, . . . ,m and wj ≤ wl.
Informally an item dominates another one if the profit associated to this item is higher than for the
other one, while the weight is lower. For each item, the set of its dominated items is defined as
well as the set of items dominating it (see Definition 18).

Definition 18 (Preferred and dominated sets (Jorge, 2010)). Let j ∈ {1, . . . , n}.
– The preferred set of j is Pref(vj) = {l ∈ {1, . . . , n} : vl ≥ vj}.
– The dominated set of j is Dom(vj) = {l ∈ {1, . . . , n} : vj ≥ vl}.

Based on this definition and on the cardinality of an efficient solution, Jorge (2010) highlights
four propositions, that are used by the preprocessing treatment. Those propositions are given in
Proposition 3.

Proposition 3 ((Jorge, 2010)). Let j ∈ {1, . . . , n}.
– If |Pref(vj)| ≥ UB(ω), then xj = 0, ∀x ∈ XEM .
– If

∑
l∈Pref(vj)

wl + wj > ω then xj = 0, ∀x ∈ XEM .

– If n− |Dom(vj)| ≤ LB(ω), then xj = 1, ∀x ∈ XEM .
– If

∑
l /∈Dom(vj)

wl + wj ≤ ω then xj = 1, ∀x ∈ XEM .

The preprocessing treatment used in (Visée et al., 1998) and (Delort and Spanjaard, 2010)
is a local preprocessing treatment, considering successively each variable and each value for it.
A subproblem is created differing from the global problem by only one fixed variable j. The
variable is fixed to a value v ∈ {0, 1}. The upper bound set U for ȲN (subproblem) is computed
and compared to the lower bound set L for YN (global problem). The comparison of bound sets
is similar to the branch-and-bound method. If (U − Rp=) ∩ (l + Rp=) = ∅ (i.e. U is “below” L)
then there cannot exist any efficient solution with xj = v. Thus for all efficient solution, we have
xj = 1 − v. Thus this variable can be fixed to the value xj = 1 − v, without altering the set of
efficient solutions.

This preprocessing treatment fulfills two goals: the reduction of the set of variables and ini-
tialize the lower bound set with feasible solutions

2.5 Multi-objective multi-dimensional knapsack problem

By considering simultaneously several constraints and several objective functions, pOmDKP
gathers the difficulties of pOKP and mDKP . This induces a real difficulty to elaborate practical
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efficient exact solution methods. In (Erlebach et al., 2001), the authors present an PTAS for the
pOmDKP . A review on this problem can be found in (Lust and Teghem, 2012).

Due to its difficulty, many works have developed metaheuristics for pOmDKP . In (Zitzler and
Thiele, 1999), the authors considered the special case of pOmDKP where the number of objective
functions equals the number of dimensions and conceived an evolutionary algorithm. Jaszkiewicz
(2004) and Ishibuchi et al. (2009) present evolutionary algorithms for pOmDKP . In (da Silva
et al., 2004), the authors designed an evolutionary algorithm based on the surrogate relaxation for
2OmDKP . A local search is implemented in (Tricoire, 2012).

The next section focuses on exact methods developed to solve the pOmDKP .

2.5.1 Solution methods

The types of methods employed to solve the pOmDKP are mostly the same as for mDKP ,
i.e. core concept methods, branch-and-bound method and dynamic programming methods.

Mavrotas et al. (2009) and Mavrotas et al. (2011) extended the concept of core to 2OmDKP
and proposed an exact solution method based on this concept. A more generic core-based method
is implemented for pOmDKP in (Lust and Teghem, 2012).

A branch-and-bound method is developed in (Florios et al., 2010) to solve the special case of
3O3DKP . Its upper bound set for ȲN of a subproblem is the ideal point of the linear relaxation. To
initialize the lower bound set, the LP relaxation of the global problem is solved; then the fractional
variables in the extreme efficient solutions are rounded creating integer solutions; among those
solutions, the feasible ones are added to the lower bound set. In the experiments of (Florios et al.,
2010), four branching strategies are tested and compared to a random branching strategy. In the
first one, the variables are ordered based on the extreme efficient solutions of the LP relaxation of
the global problem. The values of the variables on those solutions are summed and the branching
fixes uppermost the variable with the highest sum. The three other branching strategies are based
on the utilities defined for each pair objective-constraint, considering either the average value of
all utilities, either its maximum, either a lexicographic order of the utilities. According to the
experiments, the authors note that the branching strategies are essential for the practical efficiency
of the algorithm and that the first branching strategy seems to give the best results.

The authors remarked that the branch-and-bound method is too time consuming to solve bigger
instances, thus they proposed two evolutionary algorithms.

The special case 2O2DKP was the focus of the work of Gandibleux and Perederieieva (2011).
A dynamic programming method is developed, using upper bound sets based on the LP relaxation
and the surrogate relaxation (detailed in Section 2.5.2). The dominance relation defined in (Bazgan
et al., 2009a) are adapted to 2O2DKP and used during the dynamic programming method. Three
orders have been compared for the items. The first one is the composite branching proposed by
Florios et al. (2010), in the second one the variables are ordered according to the average of the
utilities (one for each pair objective-constraint) and in the third one they are ordered according to
the maximum utility value and the equalities are broken thanks to the average of the utilities.

2.5.2 Surrogate relaxation

As it was the case for mDKP , the surrogate relaxation is also used in approximation methods
(da Silva et al., 2004) and exact methods (Gandibleux and Perederieieva, 2011) for pOmDKP .

In (da Silva et al., 2004), the surrogate relaxation is used in the diversification and intensi-
fication components of the evolutionary algorithm to convert the 2OmDKP into a 2OKP . The
authors remark that the convex relaxation of the surrogate relaxation, for a given multiplier, can
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be close to the supported efficient solutions of 2OmDKP problem for some parts of the objective
space, but far away from it on other parts. Thus they aim to find a set of multipliers in order to
obtain a tight upper bound set, they use a subgradient-like method to find those multipliers.

In (Gandibleux and Perederieieva, 2011), the upper bound set is based on the LP relaxation
and the surrogate relaxation. The convex relaxation of the surrogate relaxation of the problem is
computed using several surrogate multipliers. The upper bound sets obtained are merged, using
Proposition 1 (page 32), to obtain a tighter upper bound set, this upper bound set is called a
surrogate family. The upper bound set obtained by the LP relaxation is merged with the surrogate
family bound set. The authors remark that the tightness of the upper bound set obtained increases
with the number of surrogate multipliers employed, however the computational time required to its
computation also increases. In order to maintain an interesting tradeoff between the computational
time and the quality of the upper bound set, the authors select a restricted set of well spread
surrogate multipliers. Based on the experimental results, a set of three multipliers seems be a good
tradeoff for their method.

2.6 Conclusion

In most of the works presented in this chapter, the order in which the items are considered
impacts the practical efficiency of the methods, both in single and multi-objective contexts, no
matter the number of considered dimensions. However, the difficulty of finding a strategy leading
to good performances depends on the number of objectives and dimensions. In the classic KP
variant, sorting the items according to their utility generally leads to efficient methods in practice.
For the other variants (mDKP , pOKP and pOmDKP ), several utilities are defined for each item
and their values for a same item generally vary a lot, so it is more difficult to exploit this informa-
tion. The elaboration of “good” strategies to determine the order in which the items are considered
has arisen a lot of interest. Many different strategies have been elaborated (using or not the notion
of utility of items, they are generally static) and have been compared. It has been observed that
the strategy offering the best result is not necessarily the same on all instances.

Even if the classes of solution methods are the same for the different variants of the knap-
sack problem (branch-and-bound method, dynamic programming method, etc), the components
of those methods differ regarding the considered variant. This is in particular true between single
and multi-objective problems. For instance, when dealing with bi-dimensional knapsack, the sur-
rogate relaxation plays an important role. For 2DKP , there exists a practically efficient method
(Fréville and Plateau, 1993) to compute the dual surrogate, i.e. computing the tightest upper bound
based on the surrogate relaxation. For 2O2DKP , several surrogate multipliers are used to improve
the quality of the obtained upper bound sets (Gandibleux and Perederieieva, 2011). Even if the
authors remark that the quality of the upper bound set increases with the number of considered
multipliers, there is no guarantee to find the tightest upper bound set based on this relaxation.

On the other hand, in a bi-objective context, the convex relaxation leads to good performance
in practice when the single-objective version of the problem is solvable in polynomial or pseudo-
polynomial time, as it is the case for 2OKP . However, this is not the case for 2OmDKP , so the
performance obtained by this relaxation might be less interesting.

Among the classes of employed methods, the branch-and-cut method is absent, despite its
practical efficiency when solving combinatorial optimization problem in the single-objective con-
text. The aim of this thesis is to elaborate an efficient branch-and-cut method for the knapsack
problem considering simultaneously several objective functions and several constraints. In the
first part on this manuscript, we investigate the branching strategies (determining the order in
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which the items are considered) and try to elaborate a dynamic strategy. In the second part, we
focus on the computation of a tight upper bound set for 2O2DKP based on the surrogate relax-
ation and propose a generalization of the dual surrogate in the multi-objective context. The last
part deals with the elaboration of a branch-and-cut method for the same problem.



3
Branching strategies for the
bi-objective knapsack problem

In the previous chapters, we have observed that many works investigated the order in which
the variables are considered in a solution method, in particular for branch-and-bound and dynamic
programming methods. Most of the strategies are static. The definition of an order for variables
is generally linked to the structure of the problem. For knapsack problems, the utilities of an item
reflect the interest of selecting it. Therefore, the order in which the variables are considered in a
solution method for knapsack problems relies on this notion of utility. Obviously, the information
emerging from the utilities of the items is easier to exploit for the version of the knapsack with
only one objective function and one constraints, since a single utility per item can be defined.
When the number of objective functions and/or constraints increases, utilities can be defined for
each pair objective-constraint and the value obtained for a same item can be very different. In this
chapter, we consider the problem 2OKP . Many orders for variables have been proposed for this
problem but no real study has been conducted to compare them.

In this chapter, we aim to elaborate a practically efficient branching strategy in a branch-and-
bound method to solve the 2OKP . We firstly compare different static branching strategies, which
have been defined for 2OKP or adapted from other variants of the knapsack problem. Obviously,
we consider orders in the context of branch-and-bound methods, but also in the context of dynamic
programming methods. The second part of this chapter consists in the definition of a dynamic
branching strategy for the 2OKP , which is tested experimentally on a benchmark of instances.

3.1 Introduction

As already mentioned, for a pOmDKP , a utility can be defined for each pair objective-
constraint for each item. Thus for the particular case of pOKP , p utilities are defined for each

item j ∈ {1, . . . , n} by ukj =
ckj
wj

for k = 1, . . . , p.

The next section presents different orders elaborated for the consideration of the variables in
solution methods. We only describe orders based on the notion of utilities.

61
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3.1.1 Orders of variables and branching strategies in the literature

We can remark that a branching strategy can be defined by any order of the variables. Thus,
we do not present only the strategies introduced for branch-and-bound methods, but also the or-
ders defined for dynamic programming methods, since they can be adapted to define a branching
strategy. In the literature, no work has highlighted a specific order for the variables as the best for
every possible instance and it is probably impossible to elaborate such a static order.

To obtain a single order based on several utilities, an aggregation of the utilities can be used. In
(Ulungu and Teghem, 1997), the authors define an order Ok for each objective function k = 1, 2.
In Ok, the variables j ∈ {1, . . . , n} are sorted in decreasing order of the utilities ukj , for k = 1, 2.
The rank rkj of an item j ∈ {1, . . . , n} is the position of the item j in the order Ok, k = 1, 2. The
ranks are then summed and the items sorted according to the increasing order of this sum.

In (Bazgan et al., 2009a), the definition of the orders Ok in extended to pOKP . The authors
consider three aggregations of the ranks, aiming to find a compromise between the orders Ok,
k = 1, . . . , p.

The first one is the one from (Ulungu and Teghem, 1997), it sorts the items in increasing order
of the sum of the ranks ( the value associated to the item j is

∑p
k=1 r

k
j ). According to this strategy,

the first variable considered is the one having the lowest average rank on Ok, k = 1, . . . , p.
The second branching strategy presented in (Bazgan et al., 2009a) sorts the items in increasing

order of the maximum of the ranks defined for this item. In case of equality, the sum of the ranks
is used to break ties. The value associated to each item j = 1, . . . , n and use to sort the items is
the following:

max{rkj , k = 1, . . . , p}+

∑p
k=1 r

k
j

p n
.

The items are thus sorted according to their worst rank.
The last branching strategy is symmetric to the previous one. We associate to each item

j = 1, . . . , n its best rank, i.e.

min{rkj , k = 1, . . . , p}+

∑p
k=1 r

k
j

p n
.

The items are then sorted in increasing order of their best rank and the equalities are broken by the
average rank in Ok, k = 1, . . . , p.

These three branching strategies presented in (Bazgan et al., 2009a) are also compared in
(Jorge, 2010), with other branching strategies. Among those strategies, k ones are defined by
using each Ok, k = 1, . . . , p as a branching strategy. The item first fixed in the algorithm is then
the most promising item, according to the considered objective function k ∈ {1, . . . , p}. We do
not describe here the other orders in this chapter.

In a two phase method, the orders of the items may depend on the triangle investigated. In
(Visée et al., 1998), when investigating the triangle4(yr, yl), the search direction λ = (yl2 − yr2,
yr1 − yl1) weights the utilities u1 and u2 in a weighted average. The items are considered in
decreasing order of the weighted average. This order has been also used in (Delort, 2011) and
compared to the order based on the maximum rank of the items defined in (Bazgan et al., 2009a)
and a random order on the variables.
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The orders in which the variables are considered in a solution method have also been defined
for pOmDKP . In (Florios et al., 2010), three orders based on a scalarization of the utilities
are tested as branching strategies for the 3O3DKP . A utility is defined for each pair objective
function/dimension. The first order considers only the maximum of the utilities defined and the
items are sorted in decreasing order of this value. The second one deals with the average value
of the utilities, again the items are sorted in decreasing order of this value. In the last one, the
variables are sorted according a lexicographic order of the utilities, in decreasing order.

In (Gandibleux and Perederieieva, 2011), two branching strategies are used. The first one is
the branching strategy based on the average of the utilities presented in (Florios et al., 2010). The
second one is based on the maximum of the utilities of an item, similarly to the one presented in
(Florios et al., 2010), except that in case of equality, the average of the utilities is used to break the
ties.

The different separation strategies that we have presented are very diverse. Some of them take
into account the value of the utilities of the items, some the rank of the items in the orders Ok,
k = 1, . . . , p. The orders considering the value of the utilities can be sensitive to the range of
the coefficients. For example, an objective function can have higher coefficients than another and
would then impact the ordering more that another objective function. This is less the case for the
order based on the direction defined by triangles.

Despite those differences, all the orders select the “best” variable (the most promising variable)
in first position. This paradigm aims to increase the chances of obtaining efficient solutions or at
least solutions of good quality early in the execution of the algorithm, thus allowing to prune nodes
or states earlier in the remaining of the execution.

Each of the previous works compare a restricted number of branching strategies. Usually they
compare few new branching strategies with one or two branching strategies from the literature,
which were assessed to give the best performance. In all the studies, no order lead to a higher
practical efficiency than the others on all instances, even if some are better on average.

3.1.2 Branching strategies of the study

In this section, we compare a set of 23 branching strategies for 2OKP , that we will call
branching heuristics. Among them, there will be branching strategies corresponding to the orders
presented in Section 3.1.1, but also new ones. In particular, we do not consider only the “best
variable first” paradigm but also the “worst variable first” paradigm. This second paradigm aims
to determine early in the solution method the variables that will never be selected in efficient
solutions. The name of a branching heuristic will be composed of the criterion used to sort the
items, followed by “best” if it follows the “best variable first” paradigm, “worst” otherwise.

The first branching strategy is the random branching heuristic Rand, used as a reference for
the comparisons. Since the instances we use (described in Section 3.3) are generated randomly,
the random order is the order of the variables in the instance file.

Table 3.1 presents the 22 other heuristics used in this section. The best variable first strategies
are presented in the columns (3) and (4) and the worst variable first strategies are in columns (5)
and (6). The column (2) indicates the criterion according to which the variables are sorted and
columns (4) and (6) the order used for the strategy on this criterion. The names of the strategies
are given in column (3) and (5).

The simplest branching heuristics (Lines 1 and 2 of Table 3.1) order the items only according
to their value on the objective functions, without taking into account their weight. On the same
idea of considering only one of the two objective functions, four branching heuristics (Lines 3 and
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Best variable first strategies Worst variable first strategies
(1) (2) (3) (4) (5) (6)

Criterion for j = 1, . . . , n Name Order Name Order
1 c1

j Z1-best decreasing Z1-worst increasing

2 c2
j Z2-best decreasing Z2-worst increasing

3 u1
j U1-best decreasing U1-worst increasing

4 u2
j U2-best decreasing U2-worst increasing

5 min(u1
j , u

2
j ) Min-best decreasing Min-worst increasing

6 max(u1
j , u

2
j ) Max-best decreasing Max-worst increasing

7
u1
j + u2

j

2
Avg-best decreasing Avg-worst increasing

8
λ1 u

1
j + λ2, u

2
j

λ1 + λ2
Triang-best decreasing Triang-worst increasing

9 r1
j + r2

j SumRank-best increasing SumRank-worst decreasing

10 min(r1
j , r

2
j ) +

r1
j + r2

j

2n
MinRank-best increasing MinRank-worst decreasing

11 max(r1
j , r

2
j ) +

r1
j + r2

j

2n
MaxRank-best increasing MaxRank-worst decreasing

Table 3.1: Branching heuristics of the study. λ = (yl2 − yr2, yr1 − yl1) for the investigated triangle
4(yr, yl).

4) are defined using either the utility u1 either u2. The utilities u1 and u2 can also be aggregated by
a minimum, maximum, average or weighted average function (Lines 5 to 8). The last separation
heuristics are based on the rank of the variables on O1 and O2 and the aggregations used in
(Bazgan et al., 2009a) (Lines 9 to 11).

Example 4. Let us consider the following 2OKP instance:

max 11x1 + 2x2 + 8x3 + 10x4 + 9x5 + x6

max 2x1 + 7x2 + 8x3 + 4x4 + x5 + 3x6

s.t. 4x1 + 4x2 + 6x3 + 4x4 + 3x5 + 2x6 ≤ 11
xj ∈ {0, 1}, j = 1, . . . , 6

(2OKP -2)

The utilities and rank are given in Table 3.2.
Table 3.2 gives few examples of orders defined by branching heuristics. The first column

indicates the name of the considered branching heuristic and the second column the order on the
variables.
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Items j 1 2 3 4 5 6

u1
j 2.75 0.5 1.33 2.5 3 0.5

u2
j 0.5 1.75 1.33 1 0.33 1.5

r1
j 2 5 4 3 1 6

r2
j 5 1 3 4 6 2

Table 3.2: Utilities and ranks of the items for the instance 2OKP -2.

Branching strategy Order for the variables
U2-best x2, x6, x3, x4, x1, x5

U2-worst x5, x1, x4, x3, x6, x2

MaxRank-worst x6, x5, x2, x1, x3, x4

Triang-best for4((10, 15), (21, 12)), thus direction (5, 9) x4, x3, x1, x2, x5, x6

3.2 Specification of the algorithm

The algorithm we used here is a two phase method. In the first phase, the extreme supported
nondominated points are searched by a dichotomic method (Aneja and Nair, 1979) using the KP
solver Combo (Martello et al., 1999). In the second phase, a branch-and-bound method is executed
to investigate every triangle4(yr, yl) defined by the extreme supported nondominated points. The
upper bound set for ȲN (the nondominated set of the subproblem) is the convex relaxation (com-
puted by the method employed in the first phase). The lower bound set for YN (the nondominated
set of the global problem) is based on the potential nondominated points found so far by the algo-
rithm. In this work, the solution method aims to find XEm and does not aim to find XEM , we are
not interested in equivalent solutions. Since the variables and the coefficients are integer, we use
the shifted lower bound set as defined in Section 1.4.3.

The search-tree is explored following a depth-first search strategy, the separation strategy sets
one variable to 1 first and 0 after. The branching strategy is the same during all the execution,
it is chosen among the ones defined in Section 3.1.2. The triangles are explored in the lexico-
graphic order, i.e. 4(yr1, yl1) is investigated before4(yr2, yl2) if yr11 > yr21 (then yr11 < yr21 and
yl1 >lex yl21 by definition of the triangles).

The preprocessing treatments of Jorge (2010) and Delort and Spanjaard (2010) presented in
Section 2.4.2 can be applied. All along this study, two versions will be considered depending
on whether preprocessing is applied or not. This will allow us to analyze the impact of this
preprocessing on the performance of the branching heuristics.

During the separation procedure, the dominance relations from the preprocessing treatment of
Jorge (2010) are exploited: when a variable is fixed to 0, all variables dominated by it are also
fixed to 0; and symmetrically when a variable is fixed to 1, all variables dominating it are fixed
to 1.

3.3 Benchmark

In this chapter, the performance of the branching strategies will be assessed on 53 instances.
Their origins and the generators used for those instances are presented in this section. n is the
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number of variables in the instance, i.e. the size of the instance. Table 3.3 presents the source and
the size of the instances.

Name Source Number of variables
2KP50-11

Gandibleux and Fréville (2000)
50

2KP50-50 50
2KP100-50 100
2KPn-1A

Visée et al. (1998) n
n ∈ {50, 100, 150, 200, 250, 300}
2KPn-1B

Degoutin and Gandibleux (2002) n
2KPn-1C
2KPn-1D
n ∈ {50, 100, 150, 200, 250, 300}
4WnW1

Captivo et al. (2003) n
n ∈ {50, 100, 150, 200, 250, 300}
F5050Ws

Captivo et al. (2003) 50K5050Ws
s ∈ {01, . . . , 10}

Table 3.3: Sources and number of variables of each instance for 2OKP

The tightness ratio is of 0.5 for all instances, except 2KP50-11 for which it is 0.11.
The generation of objective and constraint coefficients are detailed here.
– For 2KP50-11, 2KP50-50 and 2KP100-50, the objective coefficients are generated ac-

cording to a uniform distribution in {30, . . . , 100} and the constraint coefficients in
{20, . . . , 500}.

– For 2KPn-1A, the objective and constraint coefficients are generated according to a uniform
distribution in {1, . . . , 100} and the tightness ratio is 0.5.

– For 2KPn-1B, the coefficients on the first objective function and the constraint are generated
according to a uniform distribution in {1, . . . , 100}. The second objective is obtained by
taking the objective coefficients of the first objective function in reverse order.

– For 2KPn-1C, the constraint coefficients are generated according to a uniform distribu-
tion in {1, . . . , 100}. The objective coefficients are repeated over several items, forming a
plateau which size is generated according to a uniform distribution in {1, . . . , b0.1nc}. The
objective coefficients are generated according to a uniform distribution in {1, . . . , 100}.

– The instances 2KPn-1D, are based on the instances of the previous category. The second
objective function and the constraint are the same and the first objective function is obtained
by taking the objective coefficients of the second one in reverse order.

– For 4WnW1, the coefficients of the second objective function are generated according to a
uniform distribution in {111, . . . , 1000} and the constraint coefficients in {1, . . . , 1000}.
The coefficients of the first objective function are said to be weakly correlated with
the second objective function. c1

j is generated according to a uniform distribution in
{c2
j − 100, . . . , c2

j + 100}, j = 1, . . . , n.
– For F5050Ws, the objective and constraint coefficients are generated according to a uniform

distribution in {1, . . . , 300}.
– For K5050Ws, the objective and constraint coefficients are generated according to a uniform

distribution in {1, . . . , 1000}.

Since some of the dynamic branching strategies presented in the following are time consuming
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(Sections 3.5 and 3.6), we defined three groups considering instances with different size. The first
group G1 is composed of all instances with 150 variables or less, except 4W150W1 which is more
difficult in practice. The second group G2 contains all instances with 200 variables or less, at the
exception of 4W150W1 and the last group G3 contains all the instances presented in this section.

For the experiments presented in this chapter, we use virtual machine equipped with a Intel
Xeon E5620 2.40GHz processor with 6 Go of RAM. All algorithms are implemented in C++.

3.4 Comparison of the branching heuristics

In this section, the performance of the branching heuristics presented in Section 3.1.2 are
assessed on the benchmark G3 of instances presented above.

When using the preprocessing treatments from (Jorge, 2010) and (Delort and Spanjaard, 2010),
the method can run on bigger instances (with more variables). When running the algorithm without
any preprocessing treatment, the size of the search-tree and the computational time are higher than
when using those treatments. The difference grows with the size of the instance. The algorithm
without the preprocessing treatments cannot handle four of the instances of the benchmark group
G3: 2KP300-1A, 2KP300-1C, 4W250W1 and 4W300W1. They are thus excluded for this version
of the algorithm.

The time required to compute the order of the variables is negligible in the algorithm and is
more or less the same for all the branching heuristics. The size of the resulting search-tree is then
a reliable measure to assess the branching heuristics. The computational time increases propor-
tionally with the size of the search-tree. The evaluation criteria used to assess the performance
of the branching heuristics will only rely on the size of the search-tree, without considering the
computational time. Three criteria are considered.

The first evaluation criterion assigns to each branching heuristic the number of instances for
which it leads to the smallest search-tree (among all the branching heuristics). The results are
presented in Figure 3.1. The y-scale is normalized to the number of instances considered (49
when not using preprocessing, 53 otherwise).

When no preprocessing is used (Figure 3.1a), we can see a large difference between the branch-
ing heuristics, for this evaluation criterion. The branching heuristic Triang-worst gives the smallest
search-tree 40 times over the 49 instances. The second best heuristic according to this evaluation
criterion is Triang-best, giving the smallest search-tree on 8 instances.

When using the preprocessing treatments (Figure 3.1b), the performances of the branching
heuristics are closer to each other. Triang-best is the one with the highest value on the evalua-
tion criterion, it leads to the smallest search-tree 13 times over the 53 instances. Min-worst and
MaxRank-worst are the second best, giving the smallest search-tree on 6 instances.

Figure 3.1 also shows that no branching heuristic performs better than all the others on all in-
stances. This evaluation criterion focuses for each instance on the branching heuristic that provides
the smallest search-tree. Thus for each branching strategy, the highlight is only on the instances
for which the performance of the heuristic is the best. However, a branching heuristic can have
very good performance (the best) on some instances and very poor on others. This criterion does
not give any information on the average performance of the branching strategies.

The two following evaluation criteria aim to assess the average performance of a branching
heuristic. For the first one, an order of the branching heuristic is defined for every instance. The
branching heuristics are sorted in increasing order of the size of the search-tree obtained. A score
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Figure 3.1: Number of instances for which the heuristics give the smallest search-tree.

is associated to each branching strategy for each instance and is inversely proportional to the rank
of the heuristic in the order defined according to the instance. The score equals 22 if the heuristic
leads to the smallest search-tree, 21 if it leads to the second smallest, etc. Figure 3.2 shows for
each branching heuristic the sum of the scores obtained on all the instances. A high sum of scores
corresponds to a branching heuristic performing well in average.
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Figure 3.2: Sum of the scores obtained on the instances, for each breaching strategy.
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The last evaluation criterion, to assess the performances of the branching heuristics, measures
for each instance the relative difference between the size of the search-tree obtained when using
the branching heuristics and the size of the smallest search-tree obtained. This measure will be
called the improvement ratio of the size of the search-tree (IRS). For a given instance, we note
st the size of the search-tree obtained by heuristic tested and sr the size of the smallest search-tree

obtained (used as a reference), we define IRS =
sr − st

sr
. A high value of IRS indicates a good

performance of the branching heuristic. On the contrary, a negative value indicates a degradation
of the size of the search-tree. If IRS is equal to -2, then the size of the search-tree is twice the size
of the search-tree obtained for the reference. The comparison is done with the smallest search-tree
for all instances, so it is no possible to have a positive value of IRS here. Figure 3.3 shows for
each branching heuristic the average and standard deviation of IRS over all instances.
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Figure 3.3: Average and standard deviation of IRS for each branching strategies.

The difference between the branching heuristics is more important when no preprocessing
treatment is used, than for the version using preprocessing treatments. The branching strategies
can be ordered according to the two evaluation criteria showed in Figures 3.2 and 3.3. They are
given in Table 3.4.

For a given version of the algorithm, the orders defined by the two evaluation criteria are
similar. However, the orders on the heuristics (Table 3.4) are very different depending on whether
preprocessing is applied or not. In particular, the branching heuristic Min-worst has a rank 1 or 2
when the preprocessing treatments are activated but a rank 5 or 10 when they are inactive.

Usually, branching strategies use “best variable first” paradigm. However, this paradigm is
not necessarily better than the opposite paradigm. For example, Min-worst presents better perfor-
mances than Min-best. According to Table 3.4, the “best variable first” paradigm is better than the
“worst variable first” paradigm in only half of the cases.

The branching heuristic Rand presents poor performance, which vary from an execution to
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Without preprocessing treatments With preprocessing treatments
According to Sum of scores IRS Sum of scores IRS
1 Triang-worst Triang-worst Triang-best Min-worst
2 Triang-best Triang-best Min-worst Triang-best
3 SumRank-worst SumRank-worst MaxRank-worst Triang-worst
4 SumRank-best Avg-worst Triang-worst MaxRank-worst
5 Avg-worst Min-worst Max-best Max-best
6 Avg-best MaxRank-worst U2-worst U2-worst
7 MaxRank-worst SumRank-best U1-worst MinRank-best
8 MinRank-best Avg-best Z1-best SumRank-worst
9 Max-best MinRank-best U1-best Z1-best
10 Min-worst U2-worst MinRank-best U1-worst
11 U2-worst Max-best SumRank-worst U1-best
12 Max-worst U1-worst Z2-best Avg-worst
13 U1-best U1-best Avg-best Avg-best
14 MinRank-worst Max-worst Avg-worst Z2-best
15 U1-worst MinRank-worst U2-best U2-best
16 U2-best U2-best SumRank-best SumRank-best
17 Min-best Z1-best Z1-worst Z1-worst
18 Z1-best Min-best Z2-worst Max-worst
19 MaxRank-best Z2-best Max-worst Z2-worst
20 Z2-best MaxRank-best MinRank-worst MinRank-worst
21 Rand Z1-worst Rand Rand
22 Z2-worst Z2-worst Min-best Min-best
23 Z1-worst Rand MaxRank-best MaxRank-best

Table 3.4: Branching heuristics ordered according to the evaluation criteria

another. For this reason, in the rest of the manuscript, we do not include Rand in the branching
heuristics employed.

3.5 Combination of branching heuristics by the oracle method

In the previous section, we have highlighted that, even if some branching heuristics lead to
better performances in average than others, no branching heuristic reveals to be the best on all
instances. The variation of performance of a branching heuristic might depend on the character-
istics of the instance. In a branch-and-bound method, the characteristics of the subproblems vary
from one node to another. However, the branching strategies we tested use the same branching
heuristic for all separations during the solving. In this section, we wonder if using different branch-
ing heuristics during the same execution (during different separation procedures) can improve the
solving, i.e. lead to a smaller search-tree and a smaller computational time. The alternating of the
branching heuristics will thus be called a combination of heuristics.

An ideal method would always choose the combination of heuristics leading to the smallest
search-tree, among all possible combinations. However, the search-tree being composed of a few
hundreds of nodes and considering 22 heuristics, a method testing all possible combinations is not
conceivable.

Instead of testing all possible combinations, we elaborated a method, called the oracle method,



3.5. COMBINATION OF BRANCHING HEURISTICS BY THE ORACLE METHOD 71

aiming to find a good combination of heuristics, without enumerating exhaustively all the com-
binations. At each separation procedure, the 22 different branching heuristics are compared, the
“best” one is chosen and used in the separation procedure. The “best” branching heuristic is the
one leading to the best child nodes. The measure used to evaluate the quality of the nodes ob-
tained by a branching heuristic is described in Section 3.5.1. The oracle method is a method with
a visibility on the branching heuristics one step forward.

3.5.1 Evaluation of the quality of a branching heuristic

The quality of a separation can be measured on several characteristics of the two child nodes,
based on the variation of the upper bound set or lower bound set for example.

Since the coefficients of the objective functions and the variables are non-negative in a 2OKP ,
the feasible solutions are in R2

=. The variation of the upper and lower bound sets will be measured
based on the area of the zones defined by the bound sets. We denote by A(V ) the area of the
polyhedron V ∩ R2

=, with V ⊂ R2.

Three quality criteria

An upper bound set U specifies that the feasible solutions of the corresponding subproblem
are located in (U − R2

=) ∩ R2
=, which will be called the feasibility zone. We can remark that the

feasibility zones of the child nodes are included in the one of the parent node (since the problems
associated to the child nodes are subproblems of the one associated to the parent node). A sepa-
ration procedure leading to a largely smaller feasibility zone in the child nodes is more likely to
have a small number of descendants than if the feasibility zone is only slightly smaller.

Definition 19. Let us consider U0 the upper bound set of the parent node and U1 and U2 the
ones of the child nodes. The relative reduction of the feasible zone of the child node l ∈ {1, 2}
compared to the parent node is given by the following formula.

A(U0 − R2
=)−A(U l − R2

=)

A(U0 − R2
=)

The first criterion defining the quality of a separation is the average of the relative reductions
(Definition 19) of the two child nodes, it is denoted by UB. A separation will be considered of
good quality if this value is high.

The lower bound set is common to the whole search-tree, but is updated whenever the upper
bound set of a node is computed. The area A(L− R2

=) under the lower bound set L might in-
crease after the computation of the upper bound sets of the child nodes, if new potentially efficient
solutions are found (i.e. solution which are not dominated by solutions of the lower bound set).
The probability of fathoming a node by dominance increases with the quality of the lower bound
set. Thus a large difference of A(L− R2

=) before and after the computation of the upper bound
sets of the child nodes indicates a good choice of the branching variable. This measure will be the
second criterion determining the quality of a separation, it is denoted by LB.

The last criterion allowing us to evaluate the quality of a separation, denoted by Other, consid-
ers the number of potentially efficient solutions found in an other triangle than the one currently
investigated. Indeed finding such solutions in an other triangle increases the quality of the lower
bound set at the beginning of the solving in this triangle. Thus it increases the probability to ob-
tain a small search-tree for this triangle. Even if those solutions do not speed up the solving in the
triangle currently investigated, having a high number of potentially efficient solutions in the other
triangles can be a criterion to evaluate the quality of a separation.
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Quality measures

In the oracle method, at each separation, the quality measure will be used in order to determine
which branching heuristic is the best. Numerous quality measures can be elaborated based on the
three criteria presented above, depending on the importance given to each criterion. The quality
measure is accurate if the oracle method considering this measure leads to small search trees.
The performances of the different measures will be assessed with the IRS measure presented in
Section 3.4. st is the size of the search-tree obtained when using the tested measure. The reference
sr is the same than in Figure 3.3, i.e. the smallest search-tree obtained for each instance. In the
following, we call this reference Best-heur, since it corresponds to the method applying the best
branching heuristic (the one giving the smallest search-tree) for each instance. This reference
method is not realistic since it supposes to know a priori which one of the 22 branching heuristics
would lead the smallest search-tree.

Several quality measures based on the three criteria presented have been evaluated. Due to
the difference of scale and measurement unit between the quality criteria, a weighted sum on
the criteria is not easy to establish and might be dependent on the range of the coefficients in
the considered instance. Thus we choose to consider the criteria in a lexicographic order: the
branching heuristics are ordered according to a first criterion and the equalities are broken using
a second one, if the equalities persist a third criterion is used and if necessary ties are broken
randomly. The components of the name of a measure are the criteria considered, in the order of
importance. It can contain less than three components if some of the three quality criteria are not
considered by the measure. For example, the measure UB-Other orders the branching heuristics
according to the criterion UB, the equalities on this criteria are broken thanks to the criterion Other.
For this measure, the criterion LB is not considered.

Figure 3.4 shows the average and standard deviation of IRS for the oracle method using the
different measures. Figure 3.4a presents those results for the version of the algorithm in which
no preprocessing treatment is used. Figure 3.4b deals with the version of the algorithm using the
preprocessing treatments. Since the oracle method considers 22 branching heuristics at each sep-
aration, it is time consuming. Thus the quality measures could not be evaluated on the biggest
instances presented in Section 3.3. For the version using the preprocessing treatments, the bench-
mark used isG1. The benchmark is even more restricted when no preprocessing treatment is used:
the 28 instances of 50 variables or less, 2KP100-1B and 2KP100-1D composed this benchmark.

The behavior of the quality measures is similar whether the preprocessing treatments are used
or not. However, the difference is larger when no preprocessing is used than when they are used.
Figure 3.4 highlights that the criterion UB is essential in the measure of the quality of a separation.
Indeed, when it is not used, performances drop. The best performances are obtained when UB
is the first criterion in the lexicographic order. No significative difference exists between the
average IRS of those measures when we use preprocessing treatments, they differ from less
than 0.02. However, when no preprocessing treatment is applied, the measure presenting the best
performance in average is UB-Other-LB. Thus the most important criterion is UB, the equalities on
this criterion are broken thanks to the criterion Other and then LB. If several branching heuristics
have the same value over the three criterion, the best one is determined randomly. This measure is
the one used in the oracle method, in the following.

3.5.2 The oracle method

In the previous section, we investigated the impact of the quality measure on the performances
of the oracle method, regarding only the size of the search-tree. In this section, the performances
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Figure 3.4: Average and standard deviation of IRS obtained for the oracle methods using the
different quality measures.

of the oracle method are analyzed with more details: comparison to three reference methods and
study of the impact of the size of the instances.

Figure 3.5 shows the performances obtained for the oracle method using the UB-Other-LB
quality measures, regarding the size of the search-tree in Figure 3.5a and the computational time
in Figure 3.5b. The benchmark used is G3 when the preprocessing treatments are applied and G2

otherwise.

The performances of Figure 3.5a are measured by IRS, with three different references. The
two first references are algorithms applying the same branching heuristic all along the execution.
We consider the two branching heuristics presenting the best performances in Table 3.4, i.e. Min-
worst and Triang-best. The last reference is the one used in the previous section: Best-heur.

When comparing the computational time (in Figure 3.5a), the used measure is based on the
same idea as IRS. Let tt be the computational time spent by the method to evaluate on a
given instance and tr the computational time spent by the reference method on the same instance.

IRT =
tr − tt

tr
is called the improvement ratio on the computational time. Similarly to IRS, a

positive value of IRT indicates that the evaluated method leads to a smaller computational time
than the reference method, thus the evaluated method is better regarding the computational time.
A high value of IRT indicates good performances of the evaluated method. Figure 3.5b presents
the average and standard deviation of this measure over all instances of the benchmark, for the
same three reference methods than in Figure 3.5a.

Figure 3.5a shows that the size of the search-tree is reduced on average by 34% compared
to Best-heur and by 44% compared the branching heuristics Min-worst and Triang-best, when
preprocessing treatments are used. Thus there exist combinations of branching heuristics leading
to smaller search-tree than when the same branching heuristic is applied all along the branch-and-
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Figure 3.5: Comparison of the oracle method and the use of one heuristic.

bound method.
However, Figure 3.5b shows that the computational time for the oracle method is 14 to 16 times

larger than for the references, when the preprocessing treatments are applied. The difference of
computational time is even larger when no preprocessing treatment is used. This phenomenon
was expected since at each separation the oracle method tries 22 branching heuristics, compute
the upper and lower bound sets, before choosing only the best heuristic according to the quality
measure. Thus each separation is considerably more expensive than applying only one branching
heuristic.

Figure 3.6 aims to highlight the impact of the size of the instances on the oracle method. The
reference method taken is Best-heur.

In Figure 3.6, we can observe that the behavior of the oracle method varies with the size of the
instances and this variation is similar whether the preprocessing treatments are used or not.

Figure 3.6a shows that the average IRS increases when the size of the instance increases
and is between 50 and 200 variables. IRS seems to stagnate when the size of the instances is
between 200 and 300, for the version of the algorithm using the preprocessing treatments. When
the preprocessing treatments are used, the average IRS is between 30% and 43% for all size of
instances.

The impact of the size of the instances is the opposite on the computational time (Figure 3.6b).
IRT seems to decreases when the size of the instances increases and is between 50 and 200, then
it stagnates. For all sizes of instances, the computational time is largely more important for the
oracle method than for Best-heur.

Even if the oracle method allows to reduce significantly the size of the search-tree compared to
the use of one single branching heuristic, the computational time largely exceeds the one obtained
by the use of one branching heuristics. Because of the computational cost, the oracle method
cannot be employed in practice to solve a 2OKP .
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Figure 3.6: Comparison of the oracle method and Best-heur, with respect to the size of the in-
stances.

The oracle method has shown that using a combination of branching heuristics can lead to
smaller search-trees than when using the same branching heuristic all along the solving.

In this section, we combined all the branching heuristics. At each separation during the oracle
method, the best branching heuristic, according to the quality measure, is chosen as the branching
strategy. However, it is possible that several branching heuristics are the best according to the
quality measure for a given separation, either because they choose the same branching variable, or
because even if the branching variables differ the quality measure has the same value. Choosing
one or the other of the branching heuristics does not make a difference for the oracle method.
Since the branching heuristics are all based on the utilities of the items, this situation is not rare in
practice. The 22 branching heuristics might not be necessary in the oracle method.

In the next section, we aim to highlight a subset of branching heuristics to use during the oracle
method, decreasing the computational time, without compromising the quality of the separations.

3.5.3 Selection of a set of branching heuristics

We aim to improve the computational time of the oracle method by considering a subset of
branching heuristics. In order to reduce the impact on the size of the search-tree obtained, this
subset will be composed of the branching heuristics that give the most often the best value re-
garding the quality measure. To determine this subset, we apply an incremental method, on each
instance. We callH the set of the branching heuristics (the 22 used in the oracle method presented
above), H ′ the subset of branching heuristics searched. S is the set of all separations done during
the oracle method, on the given instance. The incremental method assigns Bh,s to 1 if h has the
best quality measure during the separation s, 0 otherwise, for h ∈ H and s ∈ S. We recall that it is
possible to have Bh,s = 1 for several h ∈ H for a given separation s ∈ S, since several branching
heuristics can lead to the same branching variable. Then the method incrementally builds the set
H ′ by executing the following steps:
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1. Let h′ = arg max
h∈H

{∑
s∈S
Bh,s

}
then H ′ ← H ′ ∪ {h′}.

2. S ← S \ {s ∈ S,Bh,s = 1} and H ← H \ {h′}.
3. If S 6= ∅, go to Step 1.

We aim to find a subset of branching heuristics H ′ such that there is a large part of the separa-
tions for which the best quality measure is obtained by one of the branching heuristics inH ′. Thus
in Step 2, we delete from S the set of separations for which h′ gives the best quality measure.
The following of the execution focuses only on the separation for which none of the branching
heuristics giving the best quality measure is in H ′.

By definition of the incremental method, the first branching heuristic added in H ′ is more
important for the oracle method, on the given instance, than the last one. In order to reflect this
relative importance of the branching heuristics, a score is affected to each branching heuristic for
each instance. The score is 22 for the first branching heuristic added in H ′, 21 for the second, etc.
If a branching heuristic is not added in H ′, its score is 0.

During Step 1, several branching heuristics can have the same
∑

s∈S Bh,s. Thus h′ may be
chosen among several branching heuristics. In order to be fair, when this situation occurs one set
is created for every possible choice of h′ and the method continues independently on each one of
those sets. At the end of the method, the score affected to each branching heuristic is the average
of the score obtained for each set built.

When this method is executed on each instance of a benchmark, the branching heuristics can
be sorted according to the decreasing average score. The branching heuristics are sorted for both
versions of the oracle method presented in Section 3.5.2. The orders obtained are presented in
Table 3.5.

The orders presented in Table 3.5 are very similar. The branching heuristics with a good rank
in those orders are more important in the oracle method (more often selected by the separation
procedure) than the ones with a poor rank. Thus if we want to elaborate an oracle method using
only c branching heuristics, with c ∈ {1, . . . , 22}, then the c first branching heuristics in the
order defined in Table 3.5 are the most suitable ones. This variant of the oracle method is called
the reduced oracle method. It considers the first c ∈ {1, . . . , 22} branching heuristics in the
order obtained for the version using the preprocessing treatments (since it is the version giving the
highest value of IRS). c is a parameter of the method. In case of equalities regarding the quality
measure, the reduced oracle method favors the branching heuristics with a better rank in the order
presented in Table 3.5.

Figures 3.7 and 3.8 present the performances of the reduced oracle method for every value of c.
The two versions of the method (applying or not the preprocessing treatments are considered). The
methods are evaluated according to two aspects: the size of the search-tree (measured by IRS)
and the computational time (measured by IRT ). The reference method used in the measures
IRS and IRT is Best-heur.

Remark 2. The reduced oracle method using c = 22 heuristics is the oracle method, at the
exception that the equalities on the quality measure are broken by giving the advantage at the
branching heuristic with the better rank in the reduce oracle method.

The evolution of the reduced oracle method regarding the number of considered branching
heuristics is similar whether preprocessing treatments are used or not. IRS increases following a
logarithmic curve when the number of branching heuristics used increases. The growth of IRS



3.5. COMBINATION OF BRANCHING HEURISTICS BY THE ORACLE METHOD 77

Rank Without preprocessing treatment With preprocessing treatments
1 Z2-best Z1-best
2 Z1-best Z2-best
3 Triang-worst Triang-worst
4 U1-best U1-worst
5 U1-worst U1-best
6 U2-best U2-best
7 U2-worst U2-worst
8 Z1-worst Triang-best
9 MaxRank-best Max-worst
10 Triang-best MaxRank-best
11 Max-worst SumRank-best
12 Z2-worst MinRank-worst
13 MinRank-worst Avg-worst
14 SumRank-best Z1-worst
15 Avg-worst Min-best
16 Min-best Z2-worst
17 SumRank-worst SumRank-worst
18 Avg-best Avg-best
19 Min-worst MaxRank-worst
20 Max-best Min-worst
21 MinRank-best Max-best
22 MaxRank-worst MinRank-best

Table 3.5: Orders obtained by analyzing the performance of the branching heuristics during the
oracle method, for the two versions of the method.
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Figure 3.7: Impact of the number of branching heuristics used in the reduced oracle method. No
preprocessing treatment is applied.
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Figure 3.8: Impact of the number of branching heuristics used in the reduced oracle method. The
preprocessing treatments are applied.

seems to stagnate when more than 5 branching heuristics are used. When the preprocessing treat-
ments are used, the reduced oracle using 5 branching heuristics has an average IRS only 0.05
less than for the reduced oracle method using the 22 branching heuristics. When no preprocessing
treatment is used, the difference on the average IRS of the reduced oracle method compared to
the oracle method using the 22 branching heuristics is 0.13 when 5 branching heuristics are used
and 0.05 when 9 branching heuristics are used.
IRT decreases linearly when the number of heuristics considered in the reduced oracle

method increases. This evolution is the one expected since the number of upper bound sets com-
puted (which is the most expensive component) is linear in the number of branching heuristics
considered by the reduced oracle method.

The combination of the 5 first heuristics in the order given in Table 3.5 (with preprocessing
treatments) allows to reduce the average size of the search-tree compared to a method using the
same branching heuristic all along the execution. Moreover this improvement is relatively close
from the one obtained by the oracle method (using 22 branching heuristics). However, the compu-
tational time required to execute this reduced oracle method is 3 times more important than when
using only one branching heuristic when preprocessing treatments are used and 11 times more
important when no preprocessing treatments are considered.

Those results concerning the reduced oracle method allow us to conclude that using the 5
branching heuristics Z1-best, Z2-best, Triang-worst, U1-worst and U1-best can reduce signifi-
cantly the size of the search-tree (with an IRS of 0.26 compared to Best-heur when using pre-
processing treatments). However, the oracle method is not suitable since the computational time
is significantly more important.

In the following section, we present adaptive methods and test their use as branching strategies
in our solution method for 2OKP .
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3.6 Combination of branching heuristics by adaptive methods

We aim to combine branching heuristics in a method presenting a more interesting tradeoff
between the size of the obtained search-trees and the computational time than the reduced oracle
method. At each iteration we have to choose over the branching heuristics the one to apply.
Adaptive methods aim to choose among a list of applicable operators the one to apply at each
iteration. They are generally employed in constraint programming or evolutionary algorithms.
A survey on those methods can be found in (Maturana et al., 2012). The performances of the
operators may vary all along the execution and the best one may not be the same for every iteration.
Adaptive methods analyze the performances of the operators on the previous iterations (i.e. the
empirical quality of the operators) and use this information to choose the next operator to be
applied. In this manuscript, several adaptive methods are used as branching strategies to choose at
each separation procedure the branching heuristic to apply. The branching heuristics are thus the
operators for the adaptive methods. The algorithm is the one presented in Section 3.2 in which the
branching strategy is replaced by an adaptive method.

Adaptive methods rely on quality measures for the operators applied in order to determine the
empirical quality of the operator. These measures assign to each application of an operator a scalar,
usually in [0, 1], indicating the quality of the operator on this iteration. This value is the reward
of the operation on this iteration. The empirical quality of an operator over several iterations is an
aggregation of those successive rewards (it can for example be the average reward).

In the oracle method, the quality measure for the branching heuristics is a lexicographic order
on three different criteria. Since those criteria are of different nature and are not on the same
range of values, it is complex to aggregate them in a scalar value using a weighted sum. However,
we have observed in Figure 3.4 that the most important evaluation criterion is UB. Moreover, the
oracle method using only this criterion gives performances close to the best one (the difference
on IRS is less than 0.03 when no preprocessing treatment is applied and less than 0.005 when
the preprocessing treatments are applied). Thus the adaptive methods will consider the quality
measure UB to evaluate the branching heuristics and compute the reward.

In this section, different adaptive methods are presented and tested as branching strategies.
We consider both versions of the algorithm (with and without preprocessing treatments). The
evaluation of the performances considers two aspects: the size of the search-tree (evaluated by
IRS) and the computational time (evaluated by IRT ). Three reference methods, applying the
same branching heuristics all along the execution, will be considered: Min-worst, Triang-best and
Best-heur. The performances of the adaptive methods are assessed on the benchmark G1 (the
smallest instances) to highlight the best value of the parameters for each method and the method
leading to the best performances. Since some methods contain a random component, all the results
presented here are an average over 10 executions of the algorithm.

3.6.1 Uniform wheel

Selecting randomly, at each iteration, the branching heuristic is an easy way to combine heuris-
tics, which can be used as reference for the adaptive methods. The uniform wheel, as its name
indicates, assigns to each branching heuristic the same probability to be chosen. The method can
consider the 22 branching heuristics or a restricted set (as in the reduced oracle method). We
have observed that the set of five branching heuristics Z1-best, Z2-best, Triang-worst, U1-worst
and U1-best leads to good performances in the reduced oracle method, when considering the size
of the search-trees. The results obtained when using the uniform wheel as branching strategy to
choose the branching heuristics to apply are presented in Figures 3.9 and 3.10, respectively for
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the version not applying the preprocessing treatments and applying them. 22-heur stands for the
uniform wheel using the set of 22 branching heuristics and 5-heur for the one composed of five
branching heuristics.
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Figure 3.9: Performances obtained when the uniform wheel is used as branching strategy when no
preprocessing treatment is applied.
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Figure 3.10: Performances obtained when the uniform wheel is used as branching strategy when
the preprocessing treatments are applied.



3.6. COMBINATION OF BRANCHING HEURISTICS BY ADAPTIVE METHODS 81

We can observe that the performances of the versions using the restricted set of branching
heuristics offer better performances than the one using the set of 22 branching heuristics. So the
observation done on the reduced oracle method seems to be confirmed here: the set of branching
heuristics Z1-best, Z2-best, Triang-worst, U1-worst and U1-best are enough to bring diversity and
using the 22 branching heuristics is not necessary. In the following method, the set of branching
heuristics used is this set of five branching heuristics. Indeed, for all the proposed adaptive meth-
ods, the use of the restricted set offers better performances than using the 22 heuristics, since the
learning is easier. In order to lighten the experiments presented in this chapter, the results obtained
for the different adaptive methods using the 22 branching heuristics will not be presented in this
manuscript.

When no preprocessing treatments in used, the uniform wheel using the set of five branching
heuristics does not allow to improve the size of the search-tree nor the computational time com-
pared to Best-heur. When compared to Min-worst, the size of the search-trees is slightly reduced
on average.

When the preprocessing treatments are applied, the difference between the method using the
uniform wheel and the reference methods are tighter. The uniform wheel does not allow to obtain
better results than Best-heur regarding both the size of the search-tree and the computational time.
The obtained computational times are slightly better than for Min-worst and Triang-best.

3.6.2 Probability matching

The probability matching, as the uniform wheel, chooses at each iteration an operator ran-
domly. However, the probability assigned to each operator is not the same (it is not uniform) and
can vary all along the algorithm. The probability matching (Goldberg, 1990) is thus a wheel-like
process.

We denote K = {1, . . . , k} the set of operators considered (the branching heuristics in our
context). The probability Pa(t) of an operator a ∈ K to be chosen at the iteration t is proportional
to its empirical quality in the previous iterations, t ∈ N. At each application of an operator, a
reward is attributed (in our case the reward is the value of the quality measure UB obtained during
the separation procedure). The empirical quality of an operator is the average reward obtained. We
denote Ra(t) the reward obtained by operator a at iteration t ∈ N if it was applied, 0 otherwise.
na(t) is the number of times the operator a has been applied up to iteration t ∈ N. Qa(t) is the
empirical quality of the operator a up to the iteration t, t ∈ N. For the probability matching,

the empirical quality of an operator is the average of the rewards: Qa(t) =

∑t
l=1Ra(l)

na(t)
for the

operator a ∈ K and the iteration t ∈ N.

An operator can have a poor empirical quality until a given iteration, but be better than the
others later in the execution. The probability that this operator has to be chosen should not be
too low, so that it can still be chosen. Thus a minimum probability Pmin is established so that
no operator can have a probability lower than Pmin. We denote Pmax the maximum probability,
Pmax = 1 − k Pmin. Pmin is the only parameter of this method. If Pmin has a too small value,
some operator might never be applied and if it is too high the algorithm will often apply an other
operator than the best empirically.

At the beginning of the algorithm, the probability is
1

k
for each operator. At each iteration,

an operator is randomly chosen according to the probabilities Pa(t), a = 1, . . . , k. At a given
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iteration t+ 1, t ∈ N, the probability of the operator a is calculated by the formula:

Pa(t+ 1) = Pmin + (1 + k Pmin)
Qa(t)∑k

a′=1Qa′(t)

The probability matching is employed as branching strategy in our solution method. It con-
siders the set of five branching heuristics (operators for the probability matching) highlighted in
Section 3.5.3. The reward attributed to the branching heuristics is the quality measure UB. Sev-
eral values of the parameter Pmin have been tested. Since the method considers 5 heuristics, the
minimum probability has to be between 0 and 0.2. In order to differentiate significantly the high
and low probabilities, we did not consider Pmin higher than 0.1. The performances obtained for
the different values of the parameters are presented in Figures 3.11 and 3.12. To compare the
parameters, the only reference method used here is Best-heur (the two other references give the
same information).
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Figure 3.11: Impact of Pmin on the solution method using the probability matching as branching
strategy when no preprocessing treatment is applied.

We can see that the probability matching does not allow to improve the results obtained for
Best-heur, neither regarding the computational time nor the size of the search-tree, for both ver-
sions of the algorithm (using or not preprocessing treatments). The influence of Pmin is weak, but
the method seems to present slightly better performances for Pmin = 0.05.

The comparison with the other references (Min-worst and Triang-best) are presented for
Pmin = 0.05 in Figures 3.19 and 3.20, in which the performances of all the adaptive meth-
ods are presented.

3.6.3 Adaptive pursuit

Adaptive pursuit (Thierens, 2005) is an extension of the probability matching. A new param-
eter β is introduced controlling the rapidity with which the best operator converges to Pmax while
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Figure 3.12: Impact of Pmin on the solution method using the probability matching as branching
strategy when the preprocessing treatments are applied.

the others converge to Pmin. β is called the learning rate. The choice of the operator to apply at an
iteration is the same than in the probability matching and the notation used here is the one defined
for the probability matching. The main difference with the proportional wheel is the update of the
probabilities. We denote a∗ the operator for which Qa(t) is the highest, a ∈ {1, . . . , k}. The new
probability for a∗ is calculated with the formula:

Pa∗(t+ 1) = Pa∗(t) + β (Pmax − Pa∗(t)).

The probabilities of the other operators a ∈ {1, . . . , k} \ {a∗} are calculated according to the
formula:

Pa(t+ 1) = Pa(t) + β (Pmin − Pa(t)).

The adaptive pursuit method considers two parameters: Pmin and β. The adaption rate β is
in [0,1].

The adaptive pursuit is tested as branching strategy (to choose the branching heuristic to apply
at each separation) in our method. The performances obtained are presented in Figures 3.13 and
3.14 for different values of parameters. The reference method used for IRS and IRT is Best-
heur.

The values of the parameters do not impact strongly the performances of the algorithm. The
set of parameters Pmin = 0.05 and β = 0.7 seems to give the best performances. This method
does not give result significantly better than the uniform wheel.

3.6.4 Upper confidence bound

A multi-armed bandit (MAB, Berry and Fristedt (1985)) is composed of K arms. For each
arm, the player has a probability pa, a ∈ {1, . . . ,K} to get a reward equal to 1 and otherwise he
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Figure 3.13: Impact of the parameters on the solution method using the adaptive pursuit as branch-
ing strategy when no preprocessing treatment is applied.
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Figure 3.14: Impact of the parameters on the solution method using the adaptive pursuit as branch-
ing strategy when the preprocessing treatments are applied.

gets a reward equal to 0. The probabilities assigned to each arms are independent and unknown.
The aim of the player is to minimize the regret, i.e. the difference between the maximal possible
rewards and the rewards obtained.



3.6. COMBINATION OF BRANCHING HEURISTICS BY ADAPTIVE METHODS 85

The upper confidence bound (UCB, Auer et al. (2002)) achieve the optimal regret for MAB. In
UCB the tradeoff between exploration and exploitation is considered. At each iteration, the algo-
rithm chooses the operator a with the highest value for the formula (using the notations presented
in Section 3.6.2):

Qa(t) + α

√
2 log

∑k
a′=1 na′(t)

na(t)

In this formula, the first part is the exploitation part, it tends to take the best operator. The
second part is the exploration part, it ensures that each operator is taken infinitely many times as
t ∈ N grows to infinity. α ∈ R is the scaling factor balancing the exploration and the exploitation
parts, which are classic in reinforcement learning. α is the only parameter of this method. Qa(t) is
the empirical quality of the operator a, as defined in the section dealing with probability matching
(in Section 3.6.2). UCB has many variants, see DaCosta et al. (2008) for further details.
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Figure 3.15: Impact of the value of α of the UCB when no preprocessing treatment is applied.

The performances of the algorithm using the UCB method as a branching strategy increase
when the parameter α decreases. The difference is more visible when no preprocessing is used.
α = 0.2 seems to be the best value for the parameter. This value does not give the best average for
IRT in Figure 3.16b. However, the difference between the average IRT for the different values
of α is small and the computational times are small too. So this divergence between IRS and
IRT can be explained by measure imprecision.

In this work we also considered two variants of UCB. The empirical quality of the operators
varies all along the execution and in particular the best operator can deteriorate. The UCB method
can take a long time before the new best operator emerges. Both variants aim to handle those
changes of quality.

The first variant is the dynamic multi-armed bandit (DMAB). The Page-Hinkley test (Page,
1954) is used in the DMAB method to detect changes in the reward. The Page-Hinkley test mea-
sures the difference between the reward obtained at this iteration with the average reward obtained
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Figure 3.16: Impact of the value of α of the UCB when the preprocessing treatments are applied.

for the same operator in the previous execution. If this difference exceeds a given threshold γ then
the method interprets it as a change in the quality obtained by the operators and the UCB method is
restarted from scratch. This restart makes it possible to find quickly the new best operator. When
the value of γ is small then the method is really sensitive to changes and might restart very fre-
quently. On the contrary when the value of γ is high, the method does not restart frequently. The
DMAB considers thus two parameters: the threshold γ and the scaling factor α. Experimentally
the best values for those parameters are α = 0.2 and γ = 0.8, the result of theses experiments
can be found in Appendix A.1. The performances obtained for this method are overall worst than
those obtained for the classical UCB.

The second variant is the UCB with a sliding time window. The numbers of iterations, on
which the empirical quality is calculated, is restricted and only considers the last iterations. The
size of the window considered is a parameter of this method. In the experiments the size of the
window depends on the number of variables in the considered instances. The results obtained using
this method as branching strategy are presented in Appendix A.2. Same as for the DMAB, the
overall results obtained for the UCB method with sliding window are worst than for the classical
UCB.

Figures 3.19 and 3.20 present the performances of those three methods (only with the tuning
of parameter giving the most promising results) with all the other adaptive methods and compare
them to the three references (Min-worst, Triang-best and Best-heur).

3.6.5 Vote

We have already mentioned that some branching heuristics can select the same variable to
branch on. We can suppose that a variable selected by several branching heuristics is a good choice
(it is the best according to different criteria). We elaborated a method based on this supposition,
called the vote method. In this method, the branching variable is the one that has been selected by
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the more branching heuristics, if there exist equalities they are broken randomly. This method does
not have any parameter. We consider the same set of five branching heuristics used previously.

An inconvenient of the vote method as branching strategy is that at many iterations, there does
not exist only one branching heuristic winning the vote, but several (even all of the heuristics if
they have all selected different variables). The choice of one or another branching heuristic is then
a random choice, so there is not any guarantee on the pertinence of the choice. This is the reason
why we built a hybrid method mixing the vote method (which allows to choose a variable quickly)
and the reduced oracle method (insuring the quality of the separations). At each separation, if there
exist only one heuristic winning the vote then this heuristic is chosen for the branching, otherwise
the oracle method is employed to break the equalities. This method does not have any parameter.

The last adaptive method is a variant of the hybrid method between the vote and the reduced
oracle, called the weighted vote. The selection of the branching variable is the same than in the
previous method except that the votes are weighted. At the beginning of the execution all the
branching heuristics have the same weight. When the reduced oracle method is executed (when
they are equalities), the weight of branching heuristics selected by the reduced oracle method
increases (by one). The idea of this method is to give more importance to the branching heuristics
which have been chosen by the oracle part.

The performances of the three vote oriented methods are presented in Figures 3.17 and 3.18.
Vote denotes the first method presented in this section, Hybrid-vote-oracle is the hybrid method
mixing the vote method and the reduced oracle method and weighted vote is the last method
presented.
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Figure 3.17: Performances of the vote, the hybrid vote and oracle and the weighted vote method
as branching strategies when no preprocessing treatment is applied.

The hybrid vote and reduced oracle method allows to reduce the significantly the size of the
search-tree, however the computational time is much more important (in average four time more
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Figure 3.18: Performances of the vote, the hybrid vote and oracle and the weighted vote method
as branching strategies when the preprocessing treatments are applied.

important). Indeed this method applies the reduced oracle method when the vote does not allow
to select one branching heuristic. The performances obtained for the hybrid method are actually
similar to those obtained for the reduced oracle method (important reduction of the search-tree
and increase of the computational time).

Thanks to the dynamic adaptation of the weights in the weighted vote method, less iterations
of the reduced oracle method are performed. This method presents better results than both the
hybrid method and the vote method, in terms of computational time and size of the search-tree.

3.6.6 Summary of the adaptive methods

Figures 3.19 and 3.20 summarize the performances obtained for all the adaptive methods pre-
sented in this section, for the instances of the group G1 (smallest instances). The three references
are considered. The name of the adaptive method has been reduced in the legend: UniWheel
stands for the uniform wheel method (it is followed by the group of branching heuristics used),
Prob-match stands for the probability matching method, etc.

Even if the size of the search-tree is an indicator of the performance of the method, here we
are more interested in the computational times. Indeed the aim of this chapter is to elaborate a
dynamic branching strategy efficient in practice to solve 2OKP . We can notice that the use of
adaptive methods makes to possible to reduce the computational time more significantly when the
preprocessing treatments are used. Two method are distinctly worse than the others: the uniform
wheel based on the 22 branching heuristics and the hybrid method. The performances of the others
are quite close. However, only two adaptive methods have a positive IRT with respect to one of
the reference method (Min-worst): the UCB and the weighted vote methods.

When the preprocessing treatments are used, the difference on IRS are more important. Ex-
cept for the uniform wheel with 22 heuristics and the hybrid method, the adaptive methods allow
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Figure 3.19: Performances of the adaptive methods as branching strategies when no preprocessing
treatment is applied.
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Figure 3.20: Performances of the adaptive methods as branching strategies when the preprocessing
treatments are applied.

to obtain a positive value of IRT regarding at least one reference. The adaptive method lead-
ing to the best performances in terms of computational time, over the three reference methods, is
the method UCB. Table 3.6 presents the performances obtained for the UCB method, Min-worst,
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Triang-best and Best-heur for all the instances of the benchmark, i.e. the group G3. The size
of the search-trees (nbNodes) and the computational time (expressed in seconds) are presented.
Since the UCB method contains a random component, the results are presented as an average over
10 executions. Since the computational time is lower when the preprocessing treatments are ex-
ecuted, Table 3.6 only presents the performances obtained for the version of the algorithm using
those treatments.

Strategy UCB Weighted vote Min-worst Triang-best Best-heur
Instance nbNodes time nbNodes time nbNodes time nbNodes time nbNodes time
2KP50-11 509.3 0.196 501.1 0.176 541 0.265 600 0.279 419 0.249
2KP50-50 571.3 0.198 468.1 0.207 528 0.314 660 0.322 523 0.241
2KP100-50 2593.4 1.329 2521.5 1.315 2665 1.228 2812 1.200 2513 1.376
2KP50-1A 257.7 0.083 216.4 0.092 256 0.097 312 0.138 240 0.082
2KP100-1A 2786.4 1.281 3112.7 1.359 3651 1.427 3226 1.232 3042 1.350
2KP150-1A 3527.1 3.717 6774.9 3.526 6850 3.496 5923 3.054 5923 3.099
2KP200-1A 7563.1 9.835 11765.5 10.657 12595 9.569 11968 9.851 11968 11.369
2KP250-1A 9881.8 23.240 19101.6 24.263 17333 20.255 18324 22.397 17197 19.857
2KP300-1A 10744.3 41.745 26784.1 43.373 29039 38.790 23414 38.052 21325 37.368
2KP50-1B 306.6 0.134 308.4 0.113 281 0.151 297 0.152 277 0.136
2KP100-1B 2971.5 1.865 2886.2 1.574 2888 1.413 3576 1.545 2822 1.415
2KP150-1B 5611.1 5.505 9662.6 5.654 10082 6.502 9693 5.317 9372 5.682
2KP200-1B 5904.4 9.153 10787.4 9.603 12617 8.962 9475 8.041 9475 8.602
2KP250-1B 9290.5 24.884 21885.1 25.807 20389 22.163 19594 22.189 17815 19.948
2KP300-1B 9585.7 35.510 23041.8 35.901 30347 36.486 20000 30.320 20000 31.806
2KP50-1C 1084.9 0.247 932.9 0.213 1161 0.443 893 0.318 893 0.301
2KP100-1C 1870.9 0.578 1968.3 0.585 1780 0.835 2956 0.766 1590 0.762
2KP150-1C 3931.7 3.139 10979.5 3.859 6037 2.574 9632 3.459 6037 2.960
2KP200-1C 6686.2 10.885 30573.7 13.946 35444 13.375 24741 9.964 24741 9.773
2KP250-1C 7744.3 30.134 38598.6 29.746 51230 31.530 29868 21.123 29749 20.331
2KP300-1C 9991.6 41.048 79942 53.027 64003 42.771 70378 38.343 53237 32.649
2KP50-1D 1058.9 0.311 1337.1 0.259 1118 0.369 1259 0.371 1118 0.244
2KP100-1D 1384.4 0.558 1353.5 0.616 1677 0.552 2242 0.625 1231 0.530
2KP150-1D 5595.3 4.687 13911.8 5.221 12929 4.380 17786 5.352 12929 4.562
2KP200-1D 7359.6 14.293 29967.3 14.945 33025 13.620 24415 11.334 24415 11.696
2KP250-1D 8048.3 15.668 26190.7 19.205 23357 15.866 25265 16.094 23007 15.778
2KP300-1D 6806.3 9.948 16372 11.456 15685 10.409 17142 10.604 12994 9.432
4W50W1 2357.1 0.611 2458.4 0.631 2816 0.804 2429 0.816 1921 0.604
4W100W1 4340 5.680 14985.3 5.737 16143 5.759 11840 4.364 11840 4.735
4W150W1 6977.5 21.515 37324.5 24.022 37150 22.664 28417 17.882 28417 17.679
4W200W1 12553.6 74.111 72742.3 77.830 81649 72.871 53591 51.156 53591 51.354
4W250W1 13393.4 164.818 112226 179.816 110386 137.549 76161 114.847 76161 112.597
4W300W1 16978 371.751 - - 180994 341.312 109272 242.358 109272 239.574
F5050W01 176 0.071 147 0.090 199 0.060 153 0.085 151 0.051
F5050W02 276.3 0.104 260.8 0.112 291 0.156 221 0.082 221 0.085
F5050W03 663.1 0.193 636.6 0.180 648 0.231 681 0.287 612 0.193
F5050W04 213 0.114 182.8 0.104 192 0.101 298 0.107 180 0.099
F5050W05 1043.7 0.220 1011.2 0.220 1037 0.314 956 0.329 884 0.323
F5050W06 286.5 0.071 300.8 0.059 270 0.051 359 0.056 222 0.047
F5050W07 306.1 0.109 290.4 0.062 227 0.057 521 0.072 221 0.151
F5050W08 569.5 0.129 503.5 0.127 485 0.199 540 0.194 464 0.175
F5050W09 816.6 0.228 949.5 0.235 1093 0.209 1152 0.208 693 0.301
F5050W10 984.6 0.323 992.4 0.273 967 0.367 959 0.416 890 0.364
K5050W01 504.9 0.163 459.2 0.150 605 0.255 540 0.247 434 0.234
K5050W02 462.3 0.113 383 0.113 483 0.114 354 0.107 317 0.100
K5050W03 846.7 0.232 797 0.193 727 0.188 893 0.209 722 0.282
K5050W04 708.4 0.159 644.3 0.141 724 0.120 609 0.114 599 0.125
K5050W05 1032.5 0.172 966.7 0.154 903 0.132 1025 0.132 903 0.150
K5050W06 244.9 0.103 194.1 0.086 223 0.087 319 0.088 223 0.109
K5050W07 753.9 0.203 764.3 0.201 628 0.162 923 0.185 628 0.238
K5050W08 1180 0.325 1099.8 0.274 1108 0.246 1133 0.390 1034 0.405
K5050W09 282 0.111 307.2 0.106 283 0.093 397 0.098 256 0.091
K5050W10 1243.9 0.200 1173.7 0.254 1008 0.193 1128 0.193 979 0.180

Table 3.6: Comparison of the solution methods using UCB, weighted-vote, Min-worst, Triang-best
and Best-heur as branching strategies.
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instance size UCB weighted vote

% best than Min-worst

50 51.85 55.56
100 50.00 50.00
150 40.00 20.00
200 20.00 0.00
250 40.00 20.00
300 60.00 20.00

global 52.83 58.49

% best than Triang-best

50 51.85 62.96
100 33.33 33.33
150 40.00 20.00
200 20.00 0.00
250 20.00 0.00
300 20.00 0.00

global 60.38 60.38

Table 3.7: Percentage of instances for which the adaptive methods UCB and weighted vote give a
smaller computational time than the reference methods Min-worst and Triang-best, regarding the
size of the instances.

We printed in bold and blue, for each instance, the smallest search-tree obtained and in bold
and green the smallest computational time, we excluded Best-heur since it is not a realistic method.
The instance 4W300W1 exceeded the memory size allocated for the adaptive method weighted
vote. For some small instances, the smallest computational time can be obtained for a method
leading to a search-tree that is not the smallest. This phenomenon can be explained by the fact that
computational time are of the order of 0.1 seconds and that the measure of the computational time
can be imprecise.

Table 3.7 presents the percentage of instances for which the adaptive methods give smaller
computational time. The UCB method allows to reduce the computational time, according to
the reference methods, for more than 52% of the instances and the weighted vote method for
more than 58% of the instances. The performances of the methods varies with the size of the
considered instances. If the performances of the UCB seems to be stable regarding the size of the
instances compared to Min-worst, when compared to Triang-best they seem to slightly decrease
when the size of the instance increase. The weighted vote method also gives better performances
on instances of 50 variables than on bigger instances, compared to both reference methods.

3.7 Conclusion

In this chapter, we compared different branching strategies in a two phase method to solve
2OKP in which the second phase is a branch-and-bound method. As noticed in Chapter 2, most
of the branching strategies for knapsack problems are static and based on the notion of utility.

The first part of this chapter has consisted in comparing a large number of static branching
strategies (called the branching heuristics), among which some are extracted from the literature.
We have remarked that the preprocessing treatments of (Jorge, 2010) and (Delort, 2011) impact
significantly the performance obtained by the branching heuristics. While the branching heuristic
Triang-worst seems to be by far better than the others when no preprocessing treatments is used,
no branching heuristic plays the same role when the preprocessing treatments are applied. The
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performance obtained for the branching heuristics are close to one another when the preprocessing
treatments are applied. Moreover we have observed that none of the branching heuristics presented
is the best for every instance of the benchmark.

The second part of the chapter aims to determine if a combination of the branching heuristics
during the solving method can lead to a more efficient solution method in practice. The oracle
method showed that the size of the search-tree can be reduced by up to 34% when the preprocess-
ing treatments are employed and 14% otherwise, compared to the smallest search-tree obtained
when only one branching heuristic is applied. Moreover, the average improvement of the search-
tree seems to increase with the size of the considered instance. However, the oracle method is
a very expensive method that cannot be used in practice, since it considers, at each separation,
22 branching strategies before to select the best one.

The reduced oracle method, by considering a restricted set of heuristics, offers a better tradeoff
between the computational time and the size of the search-tree obtained than the oracle method.
But this method is still considerably more time consuming than a method using the same branching
heuristic all along the execution (3 times more expensive).

Several adaptive methods have been tested as branching strategies in the solution method.
Some of them present interesting computational times compared to the reference method, which
use the same branching heuristic all along the execution. The upper confidence bound (UCB)
method seems to be the one leading to the smallest computational time in average. It leads to a
smaller computational time than the reference methods in more than 50% of the instances tested.
Unfortunately those performances seem to decrease when the size of the instances increases, in
particular when it is compared to the reference method Best-heur. However, we must recall that
Best-heur does not apply the same branching heuristics for all the instances, it applies the one
leading to the smallest search-tree which is an information we do not have for a new instance.
Thus this reference method is not realistic.

We have noticed that the set of available instances is restricted when dealing with a large num-
ber of variables. It would be interesting to generate new instances with a large number of variables
in order to evaluate more accurately the performances of the UCB method used as branching
strategies compared to the three references.

Moreover we could work to improve the practical efficiency of the UCB method by reducing
the time spent to compute the reward of a branching heuristic. Indeed the reward is based on
the area of a polyhedron, whose computation might be time consuming. Using another quality
measure could improve the efficiency of the measure.

The use of an adaptive method could particularly be useful in the context of a more complex
problem, for example dealing with a larger number of objective functions and/or a larger number
of constraints. Indeed in the context of those problems, the number of defined utilities grows and
thus does the number of branching strategies.

In this chapter, we focused only on the context of a branch-and-bound method embedded in a
two phase method. We elaborated a dynamic branching strategy to determine the order in which
the variables are considered. However, the question of the order of the variables is also of interest
in other solution methods such as the dynamic programming method for example. It would be
interesting to generalize the dynamic approach to those solution methods.



4
Surrogate based upper bound set for
the bi-objective bi-dimensional
knapsack problem

In a branch-and-bound method all the components impact the practical efficiency of the algo-
rithm: the separation procedure, the upper and lower bound sets, the procedure allowing to find
new feasible solutions and the choice of the active node. In the previous chapter, we have analyzed
the impact of the branching strategy. In the literature, a key element of the practical efficiency of
a branch-and-bound method in the multi-objective context seems to be the use of the convex re-
laxation to compute the upper bound set. Indeed this relaxation has two main advantages: its
nondominated points form the tightest convex upper bound set for the original problem and its
extreme nondominated points are nondominated points of the original problem. This relaxation
is “easy” to compute if the single-objective version of the problem is solvable by a polynomial
or pseudo-polynomial time algorithm, which is the case for 2OKP for example. However, its
computation can be time consuming when this is not the case, for example, for 2O2DKP .

The surrogate relaxation is generally used in solution methods for the multi-dimensional knap-
sack problems, both in the single-objective and multi-objective context. For 2DKP , the algorithm
from (Fréville and Plateau, 1993) gives the tightest possible bound based on the surrogate relax-
ation. In the multi-objective context, if several multipliers are considered for the computation of an
upper bound set based on the surrogate relaxation (for example in (Gandibleux and Perederieieva,
2011)), there is no guarantee on the quality of the obtained bound set.

This chapter deals with the definition and the computation of upper bound sets, based on the
surrogate relaxation, for 2O2DKP . It introduces two upper bound sets (Section 4.1): the Optimal
Surrogate Upper Bound set (OSUB), which is the tightest upper bound set we can obtain based
on the surrogate relaxation, and the Optimal Convex Surrogate Upper Bound set (OCSUB), which
is the tightest upper bound set we can obtain based on the convex relaxation of the surrogate re-
laxation. The first part of the chapter focuses on the OCSUB. Section 4.2 presents an attempt
to adapt the dichotomic method to compute the OCSUB. Section 4.3 presents properties on the
convex relaxation of the surrogate relaxation. Those properties are exploited to propose two exact

93
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algorithms: an enumerative algorithm (Section 4.4) and its improved version (Section 4.5). This
second algorithm results from an accurate analysis of the surrogate multipliers and the dominance
relations between bound sets. Based on the improved exact algorithm, an approximated version is
derived (Section 4.6). The exact and approximate algorithms are adapted to the optimal surrogate
upper bound set in Section 4.7. The proposed algorithms are benchmarked using a dataset com-
posed of three groups of numerical instances (Section 4.8). The performances are assessed thanks
to a comparative analysis where exact algorithms are compared between them, the approximated
algorithm is confronted to an algorithm introduced in (Gandibleux and Perederieieva, 2011).

4.1 Definition and notations

4.1.1 Surrogate relaxation

In this chapter we deal with the surrogate relaxation of 2O2DKP . The definition of the
surrogate relaxation in this context is the following:

max

n∑
j=1

ckj xj k = 1, 2

s.t. u

n∑
j=1

w1j xj + (1− u)

n∑
j=1

w2j xj ≤ uω1 + (1− u)ω2

xj ∈ {0, 1} j = 1, . . . , n

(2OSR(u))

for u ∈ [0, 1], using the same normalization as in Section 2.3.3.

The surrogate relaxation of 2O2DKP is an instance of 2OKP . A distinction between feasible
solutions and points of the initial problem 2O2DKP and those of its relaxation 2OSR(u) will
be necessary. We will denote YN (u) the set of nondominated points of 2OSR(u), and YN is the
set of nondominated points of 2O2DKP . This notation is extended analogically to YSN , YSN1,
YSN2 and YNN . YN (u) defines an upper bound set for YN . Obviously, the computation of this
upper bound set is practically expensive, since it is generally composed of supported and non-
supported nondominated points. The set of extreme supported nondominated points YSN1(u) of
2OSR(u) defines an upper bound set (conv YSN (u)N ) for YN (u). By transitivity, it is thus also an
upper bound set for YN . This last upper bound set has been used by Gandibleux and Perederieieva
(2011). It will be called the convex surrogate upper bound set (CSUB) for 2OSR(u) and we
will denote CSUB(u) = (conv YSN (u))N (it can be computed by a dichotomic method on a
2OKP ). Analogously we denote surrogate upper bound set (SUB) the upper bound set defined
for 2OSR(u) by SUB(u) = YN (u).

The purpose of this chapter is to define and compute a tight upper bound set based on the sur-
rogate relaxation for 2O2DKP . Next section defines two upper bound sets, the optimal surrogate
upper bound set and the optimal convex surrogate upper bound set based respectively on SUBs
and CSUBs.

4.1.2 Optimal surrogate upper bound set and optimal convex surrogate upper bound
set

As stated in Section 1.2.4 (page 28) two upper bound sets are not necessarily comparable, this
is in particular true for CSUBs defined using different multipliers. Perederieieva (2011) has used
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Proposition 1 (Page 32) to “merge” a number h of incomparable CSUBs, and thus to obtain a
tighter upper bound set.

Proposition 4 ((Perederieieva, 2011)). ( ∩hi=1(CSUB(ui) − R2
=))N is a valid upper bound set

and it dominates any of the bound sets (conv YSN (ui))N used in the intersection.

Obviously, considering a larger set of CSUBs in Proposition 4 allows to obtain a tighter upper
bound set. Ideally, we would like to consider all possible CSUB to obtain the tightest possible
upper bound set based on CSUB.

The feasible solutions of 2OSR(u), u ∈ [0, 1] are binary solutions x ∈ {0, 1}n, where n is the
number of variables in 2OSR(u) (by definition of the surrogate relaxation, n is also the number
of variables in the original 2O2DKP ). There exist at most 2n possible feasible solutions for a
2OSR(u). Each 2OSR(u) is defined by a subset of those solutions. Therefore, there exists a
finite number of different 2OSR(u) and thus a finite number of different YSN1(u) = CSUB(u).
Therefore, Proposition 4 can be applied to merge all CSUBs. We can thus give a first generalization
of the dual surrogate problem.

Definition 20. (∩u∈[0,1](CSUB(u)− R2
=))N is the tightest upper bound set based on the convex

surrogate relaxation and the number of multipliers to consider in order to obtain it is finite. It is
denoted the optimal convex surrogate upper bound set (OCSUB).

Using the same arguments, another generalization of the dual surrogate problem is possible.
Using Proposition 1 in order to merge bound sets of the kind YN (u), we can obtain the tightest
upper bound set based on the surrogate relaxation.

Definition 21. (∩u∈[0,1](SUB(u)−R2
=))N is the tightest upper bound set based on the surrogate

relaxation and the number of multipliers to consider in order to obtain it is finite. It is denoted the
optimal surrogate upper bound set (OSUB).

Since the nature of a CSUB and a SUB are different, the nature of the OSUB and the OC-
SUB is also different. The OCSUB is a convex upper bound set, while the OSUB is an upper
bound set generally non-convex. By definition, the OSUB is tighter than the OCSUB, however
the computation of the OSUB is also more expensive than the computation of the OCSUB. Indeed
the computation of the OSUB requires to find YN (u) for a finite number of multipliers u ∈ [0, 1]
whereas for the OCSUB only YSN1(u) is required. Because of the practical difficulty to compute
the OSUB, this chapter focuses principally on the computation of the OCSUB.

In the following of this chapter, we aim to design an algorithm allowing to compute the OC-
SUB of a 2O2DKP . In the next section, we attempt to apply a classical dichotomic method
to compute the OCSUB, applying the method presented in (Fréville and Plateau, 1993) at each
iteration.

4.2 Dichotomic method

From Definition 20, we can deduce that the OCSUB verifies the following properties:
(OCSUB − R2

=) is convex and (OCSUB − R2
=) is a polyhedron. A first natural idea for the

computation of the upper bound set OCSUB is to use the existing algorithms for the solution of
the single-objective case. Indeed, the following result can be used.
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Proposition 5 ((Ehrgott and Gandibleux, 2007)). Considering a relaxation P̃ of a MOCO problem
P , P̃λ is a relaxation of Pλ for all λ ∈ R2

≥.

Solving a surrogate relaxation (for any surrogate multiplier) of 2O2DKPλ with λ ∈ R2
≥, we

obtain a solution x̃ whose image in objective space is given by ỹ = z(x̃). Proposition 5 implies
that YN ⊂ (λT ỹ − R2

=). Using different directions λ1, . . . , λk ∈ R2
= and denoting ỹ1, . . . , ỹk

the image of the optimal solutions of surrogate relaxations of the corresponding weighted sum
problems, we obtain that

YN ⊂
k⋂
i=1

(λi
T
ỹi − R2

=).

Thus (
k⋂
i=1

(λi
T
ỹi − R2

=))N is an upper bound set for YN . Obviously, this upper bound set will be

tighter if we solve the dual surrogate problem for each considered weighted sum problem.

As (OCSUB−R2
=) is a polyhedron, there exists a finite number of direction λ1, . . . , λl defining

the normal to each edge of OCSUB. Therefore, we can compute OCSUB by solving exactly the
dual surrogate problem associated to each of these weighted sum problems. However, we do not
know these directions initially.

This problem seems similar to the computation of the convex relaxation (conv YSN )N of a
bi-objective combinatorial optimization problem. Indeed (conv YSN − R2

=) is a polyhedron and
its computation can be done by a dichotomic algorithm (Aneja and Nair, 1979). It seems thus very
natural to apply the same algorithm with a minor modification: the exact solution of the weighted
sum single-objective problem (2DKP) would be replaced by the solution of the corresponding
dual surrogate problem. Nevertheless, some difficulties will immediately appear (see Example 5).

Example 5. We consider the following instance of 2O2DKP .

max 10x1 + 7x2 + 20x3 + 7x4 + 8x5

max 15x1 + 17x2 + 7x3 + 4x4 + 10x5

s.t. 3x1 + 1x2 + 9x3 + 4x4 + 9x5 ≤ 13
13x1 + 11x2 + 2x3 + 1x4 + 7x5 ≤ 17

xj ∈ {0, 1}, j = 1 . . . 5

(2O2DKP -1)

We initialize the dichotomic method with the directions λ1 = (1, 0) and λ2 = (0, 1). For
λ1 = (1, 0), the optimal solution obtained solving the dual surrogate problem (Fréville and
Plateau, 1993) is x1 = (1, 0, 1, 0, 0) with z(x1) = (30, 22). For λ2 = (0, 1), the optimal so-
lution obtained solving the dual surrogate problem is x2 = (0, 1, 1, 1, 0) with z(x2) = (34, 28).
We can immediately note that x2 dominates x1. Using these two points is thus inappropriate in or-
der to define a direction to continue the application of the dichotomy. Thus, we can only conclude
that YN ⊂ {y ∈ R2 : y1 ≤ 30} ∩ {y ∈ R2 : y2 ≤ 28}.

However, by using the direction λ3 = (3, 7), we can improve the bound set (see Figure 4.1).
Indeed, the optimal solution obtained solving the dual surrogate is then again x1 = (1, 0, 1, 0, 0)
with z(x1) = (30, 22). Finally, there is no immediate way to guess this direction using a di-
chotomic principle.

The idea behind the attempt of dichotomic method is, knowing an appropriate direction defin-
ing an edge of the OCSUB, to deduce the associated multiplier. However, Example 5 shows
that these directions are not straight-forward to find. In the following, we will consider another
approach based on the computation of CSUBs.
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•
z(x1)

•
z(x2)
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z1
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(a) Upper bound set obtained by the di-
chotomic method

•
z(x1)

•
z(x2)
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1 |−

z1

z2

(b) Upper bound set obtained by
adding the direction (3,7)

Figure 4.1: Illustration on the example of the dichotomic method

4.3 CSUB and multiplier-set decomposition

Definition 20 shows that the computation of the OCSUB can be done by an enumeration of a
finite set of CSUBs. A finite set of multipliers can therefore be used to compute these CSUBs. In
this section, we study the association of multipliers to CSUBs. Ideally, we would like to obtain a
multiplier-set decomposition with a one-to-one correspondence between subsets of multipliers and
CSUBs. Such a decomposition would guarantee an exhaustive enumeration of all CSUB, without
redundancy.

4.3.1 Critical multipliers and stability intervals

In this section, we consider individually solutions that are feasible for a problem 2OSR(u)
where u ∈ [0, 1]. To shorten the notations, this kind of solution will be called u-surrogate feasible.

The characterization of the interval of surrogate multiplier for which a given u-surrogate fea-
sible solution x is feasible is the same as in the single-objective context, presented in Section 2.3.3
(Page 53). We recall that a u-surrogate feasible solution x can either satisfy both constraints of
2O2DKP or satisfies only one of them (if x does not respect any of the constraints, it does not
respect this constraint neither).

If x satisfies the two constraints, then it is feasible for 2O2DKP and is thus u-surrogate
feasible for any u ∈ [0, 1].

If x satisfies only one of the two constraints, according to Proposition 2 at page 54, we can
compute v(x) as

v(x) =

ω2 −
n∑
j=1

w2j xj

n∑
j=1

w1j xj −
n∑
j=1

w2j xj − ω1 + ω2

and x is u-surrogate feasible for any u ∈ [0, v(x)] if x violates the first constraint and respects the
second and for any u ∈ [v(x), 1] if x respects the second constraint and violates the first. v(x)
is therefore a particular multiplier associated to x. Indeed, it defines one of the extremities of the
interval of multipliers u such that x is u-surrogate feasible.
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Definition 22.
(i) A critical multiplier u is a multiplier such that there exists at least one solution x that is

u-surrogate feasible but not u− ε-surrogate feasible or not u+ ε-surrogate feasible, for any
ε > 0. The solution x and the critical multiplier u are called associated.

(ii) The stability interval of a solution x is the interval of all multipliers u such that x is u-
surrogate feasible.

Based on these observations, we can highlight three kinds of stability interval:
– [0, 1] for a solution feasible for 2O2DKP ;
– [0, v(x)] for a solution x feasible only for the second capacity constraint of 2O2DKP . The

critical multiplier v(x) is said to be of type 0M;
– [v(x), 1] for a solution x feasible only for the first capacity constraint of 2O2DKP . The

critical multiplier v(x) is said to be of type M1.
As a critical multiplier can be associated to several solutions, it can be simultaneously 0M and

M1. The x will be omitted in the notation v(x), simplified in v, whenever there is no ambiguity
for the considered solution x.

The definitions of critical multipliers and the different kinds of stability interval are illustrated
on Example 6.

Example 6. The 2O2DKP instance considered in this example is the one presented in Example 5.
Let us consider the solution x1 = (1, 0, 1, 1, 0), its weight on the first constraint is 16 and

on the second constraint it is 16. Thus the associated critical multiplier, given by the formula in

Proposition 2, is v1 =
17− 16

16− 16− 13 + 17
=

1

4
. Since x1 respects the second constraint and

violates the first, thus x1 is u-surrogate feasible for any u ∈
[
0,

1

4

]
and v1 is a critical multiplier

of type 0M.

When considering the solution x2 = (1, 1, 0, 0, 0), the associated critical multiplier is
7

16
and

x2 is u-surrogate feasible for u ∈
[

7

16
, 1

]
and

7

16
is a M1 critical multiplier.

When considering the solution 3 = (0, 0, 1, 1, 1), the associated critical multiplier is also
7

16

but x3 is u-surrogate feasible for u ∈
[
0,

7

16

]
. Therefore,

7

16
is not only a M1 critical multiplier,

it is also a 0M critical multiplier.

4.3.2 Critical multipliers and CSUB

In Definition 20, the OCSUB is defined as the intersection of CSUB(u) − R2
= for a finite

number of surrogate multipliers u ∈ [0, 1]. Ideally all CSUB used in the intersection are different.
Indeed having twice the same CSUB in the intersection does not bring any more information. It
is then necessary to determine when CSUB are different. By definition CSUB(u) is defined by
its extreme point, which are supported nondominated point of 2OSR(u), for u ∈ [0, 1]. Then two
CSUBs are different if their sets of extreme points are not identical. This comes obviously from
particular differences between the feasible sets of corresponding problems 2OSR(u). Lemma 2
provides a necessary condition for two CSUBs to be different.

Lemma 2. Let ui ∈ [0, 1] and uj ∈ [0, 1] be two different multipliers, if CSUB(ui) and CSUB(uj)
are different then at least one of the extreme supported solutions of 2OSR(ui) and 2OSR(uj) is
feasible for one problem and not for the other one.
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Proof. Let x1 ∈ XSE1(ui). Suppose that z(x1) is not an extreme point of CSUB(uj), then
x1 /∈ XSE1(uj). This is obviously the case if x1 is not uj-surrogate feasible (Figure 4.2a).
Otherwise, two sub-cases need to be considered.

– There is an uj-surrogate feasible solution x2 dominating x1 (Figure 4.2b). Therefore, x2 is
not ui-surrogate feasible as it would contradict the efficiency of x1 for 2OSR(ui).

– There are two solutions x2, x3 ∈ XSE1(uj) such that a point y ∈]z(x2), z(x3)[ weakly
dominates z(x1) (Figure 4.2c). Therefore, x2 and/or x3 are not ui-surrogate feasible as it
would contradict the assumption that x1 ∈ XSE1(ui).

0 z1

z2

•
z(x2)

•z(x1)

•
z(x3)

CSUB(ui)

CSUB(uj)

(a) x1 is ui-surrogate feasible but
not uj-surrogate feasible

0 z1

z2

•
z(x1)

•
z(x3)

•
z(x4)

•
z(x2)

CSUB(ui)

CSUB(uj)

(b) x2 dominates x1
0 z1

z2

•
z(x1)

•
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•
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•
z(x2)

CSUB(ui)

CSUB(uj)
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Figure 4.2: Illustration of the proof of Lemma 2

Remark 3. The converse of Lemma 2 is not true. Indeed, if the solution x1 used in the proof
of this Lemma is not uj-surrogate feasible, there may exist another solution x2 such that x2 is
uj-surrogate feasible and z(x1) = z(x2).

Consequently to Lemma 2, the differences between CSUBs come only from the (in)feasibility
of extreme supported solutions of corresponding surrogate relaxations. Thus, only critical multi-
pliers associated to these solutions will be of interest.

Definition 23. A critical multiplier associated to a solution x ∈ XSE1(u) is also called critical
multiplier associated to CSUB(u), and x is called solution associated to CSUB(u).

Given two multipliers u and u′, the proof of Lemma 2 provides an analysis of the reason why a
solution x associated to CSUB(u), is not necessarily associated to CSUB(u′): either this solution
is not u′-surrogate feasible or x 6∈ XSE1(u′).

Definition 24. Let x be a solution associated to a CSUB, if x is u-surrogate feasible and
x /∈ XSE1(u) then x is called u-masked. More precisely, if there is a u-surrogate feasible solu-
tion x′ such that x′ dominates x, we will say that x is u-masked by x′. If there are two u-surrogate
feasible solutions x′ and x′′ such that z(x) is weakly dominated by a point in ]z(x′), z(x′′)[, we
will say that x is u-masked by the pair of solutions x′ and x′′. More generally, a solution that is
u-masked for all u in a set U ⊂ [0, 1] will be called masked on U .

Knowing the list of all multipliers associated to all possible CSUB, Proposition 6 makes it
possible to find a finite set of multipliers in order to compute the set of all CSUBs.

Proposition 6. Suppose we know the list of all multipliers associated to all CSUBs, then the list
of all CSUBs is given by the following enumeration:
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(i) CSUB(0) and CSUB(1);

(ii) For all interval defined by two consecutive critical multipliers : CSUB(u) for a multiplier u
in the relative interior of this interval;

(iii) CSUB(u) for all multiplier u that is simultaneously 0M and M1.

Proof. Lemma 2 implies that CSUB(u) is identical for all u ∈]v1, v2[ where v1 and v2 are con-
secutive critical multipliers. It is thus useless to consider two multipliers in such an open interval
]v1, v2[. On the contrary, CSUB(u) and CSUB(u′) such that u and u′ belong to the interior of dif-
ferent intervals given by consecutive critical multipliers, implies that CSUB(u) and CSUB(u′)
may be different (but are not necessarily as the converse of Lemma 2 is not true). Knowing
CSUB(u) for u multiplier in the interior of all interval defined by consecutive critical multipliers
is thus necessary to guarantee an exhaustive enumeration of all CSUBs (item (ii)). If 0 and 1 are
not critical multiplier, one multiplier must also be considered in the interval [0, umin[ and ]umax, 1]
where umin and umax are respectively the smallest and the greatest critical multiplier, CSUB(0)
and CSUB(1) are appropriate choices. Nevertheless, it is not sufficient to obtain an exhaustive
enumeration of CSUBs. Indeed if we consider a multiplier v that is simultaneously 0M and M1,
and a small number ε > 0 such that there is no other critical multiplier in [v − ε, v + ε]. As v is
0M then CSUB(v) may be different to CSUB(v+ ε), and as v is M1 then CSUB(v) may be dif-
ferent to CSUB(v− ε). The computation of CSUB(v) is thus also necessary (item (iii)). For the
same reason, the computation of CSUB(0) (respectively CSUB(1)) is also required if 0 is a 0M
multiplier (respectively 1 is a M1 multiplier). Computing CSUB(0) and CSUB(1) is therefore
required in all cases (item (i)).

The multiplier set-decomposition described by Proposition 6 does not exactly give a one-to-
one correspondence between subsets of multipliers and CSUBs (as the converse of Lemma 2 is not
true) but guarantees the determination of all CSUB. However, a way to obtain the set of all critical
multipliers is necessary in order to use this last statement. Proposition 7 is based on an assumption
that is easier to verify: only a subset of CSUBs with their associated critical multipliers are known.
In this context, there may exist unknown solutions associated to unknown CSUBs, that are either
u-masked or not u-surrogate feasible for each multiplier u considered so far. In order to determine
these unknown solutions, we must find multipliers u such that these solutions are potentially u-
surrogate feasible and not u-masked. A characterization of the intervals of multipliers S on which
a solution is masked is provided by Proposition 7.

Proposition 7. Suppose we know some CSUBs, with their associated solutions and critical mul-
tipliers. Let x be an unknown solution associated to a CSUB, then x is u-masked for all u ∈ U
where U is an union of intervals. The possible patterns for these intervals, relies on the stability
interval of x.

(1) If the stability interval of x is [0, 1], then these patterns are:

(i) [0, v0] where v0 is a known 0M multiplier;

(ii) [v1, 1] where v1 is a M1 multiplier ;

(iii) [v1, v0] where v0 and v1 are respectively known 0M and M1 multipliers.

(2) If the stability interval of x is [0, v], then these patterns are:

(i) [0, v0] where v0 is a known 0M multiplier such that v0 < v;

(ii) [v1, v] where v1 is a known 0M multiplier such that v1 ≤ v;

(iii) [v1, v0] where v0 (such that v0 ≤ v) and v1 are respectively known 0M and M1 multipli-
ers.
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(3) If the stability interval of x is [v, 1]:
(i) [v, v0] where v0 is a known 0M multiplier such that v ≤ v0;

(ii) [v1, 1] where v1 is a known M1 multiplier such that v < v1;

(iii) [v1, v0] where v0 and v1 (such that v ≤ v1) are respectively a 0M and M1 critical
multipliers.

Proof.

(1) We assume that the stability interval of x is [0, 1].
We suppose first that x is u′-masked by one solution x′ for a given multiplier u′, then x is u-
masked for all multiplier u such that x′ is u-surrogate feasible. In other words, if we denote by
S the stability interval of x′, then x is masked on S. The interval S is either of the kind [0, v0]
(pattern (i)) or [v1, 1] (pattern (ii)) where v0 and v1 are respectively 0M and M1 multipliers.
The case S = [0, 1] is not possible since x is a solution associated to a CSUB.
We suppose next that x is u′-masked by the pair of solutions x′ and x′′ for a given multiplier
u′, then x is u-masked for all multipliers u such that both solutions are u-surrogate feasible. In
other words, if we denote the stability interval of both solutions by S1 and S2 then x is masked
on S1∩S2. If both solutions are associated to 0M critical multipliers v01, v02 then x is masked
on [0,min(v01, v02)] (pattern (i)). If both solutions are associated to M1 critical multipliers
v11, v12, then x is masked on [max(v11, v12), 1] (pattern (ii)). If one solution is associated to
a 0M critical multiplier v0 and the other one is associated to a M1 critical multiplier v1, then
x is masked on [v1, v0] (pattern (iii)).

(2) We assume that the stability interval of x is [0, v] where u is a 0M critical multiplier. In order
to find the possible pattern for this second case, we just need to compute the intersection of
[0, v] with the pattern enumerated in the case (1). For the pattern (1)(i), we necessarily have
[0, v0] ∩ [0, v] = [0, v0] with v > v0 (pattern (i)), otherwise x is u-masked for all u in its
stability interval. For the pattern (1)(ii), we either have [v1, 1] ∩ [0, v] = [v1, v] with
v ≥ v1 (pattern (ii)) or [v1, 1] ∩ [0, v] = ∅ if v < v1. For the pattern (iii), we have either
[v1, v0]∩[0, v] = [v1, v0] (pattern (iii)) with v1 < v0 ≤ v, or [v1, v0]∩[0, v] = [v1, v] (pattern
(ii)) with v1 ≤ v < v0 (we always have v1 ≤ v since solutions associated to v0 and v1 are a
pair masking x).

(3) The proof is symmetric to the case (2).

Remark 4. Given a unknown solution x associated to a CSUB, the (disjoint) union of intervals U
on which x is masked by known solutions, is composed of zero or one interval of type [0, v0] (or
[v, v0] for the case (3)), zero or one interval of type [v1, 1] (or [v1, v] for the case (2)) and zero or
several disjoint intervals of type [v1, v0].

The exact computation of the union of intervals U would require to know the solution x.
Nevertheless, Proposition 7 only gives the patterns of intervals on which an unknown x is masked.
However, as the boundaries of these intervals (except v) are defined by known multipliers, it will
be possible to deduce particular multipliers u such that potential unknown solutions associated to
CSUBs are not u-masked by known solutions or pairs of solutions.

4.4 Total enumerative algorithm

In this section, we describe a first enumerative algorithm for the computation of the OCSUB,
based on Propositions 6 and 7. The main idea of this algorithm is to determine first the set of all
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multipliers associated to all possible CSUB (line 2 of Algorithm 2), and next to deduce the set
of all CSUBs (line 3 of Algorithm 2). The OCSUB can finally be computed by an application of
Definition 20.

Algorithm 2: Algorithm TotalEnumerative
input : A 2O2DKP Instance
output: bound: the OCSUB for the instance of 2O2DKP

1 begin
/* allMult denotes the set of all enumerated multipliers */
/* bound denotes the bound obtained by merging CSUBs */

2 EnumerateCriticalMultiplier(allMult ↑,bound ↑)
3 ComputeOCSUB(allMult ↓,bound l)

4.4.1 First part: the enumeration of all critical multipliers associated to all possible
CSUB

In order to initialize our enumeration, we start by computing CSUB(0) and CSUB(1) and
deducing their associated critical multipliers (line 2 of Algorithm 3). The computation of these
CSUBs is indeed required in all cases according to Proposition 6. Another interesting property
about these two multipliers is given by Lemma 3.

Lemma 3. All solutions associated to any CSUB are either 0-surrogate feasible or 1-surrogate
feasible or both.

Proof. We already know that the stability interval of solutions associated to CSUBs are of three
kinds: [0, u], [u, 1], [0, 1]. The statement follows.

Consequently to this lemma, the union of intervals on which an unknown solution x (associ-
ated to an unknown CSUB) is masked by a known solution cannot be empty after this initialization.

According to Lemma 2, a way to enumerate new CSUBs is to consider multipliers u such
that at least one solution associated to a known CSUB is no longer u-surrogate feasible. In other
words, we need to consider multipliers u outside of the stability interval of known solutions. There
will be two cases to consider, a solution is associated to a 0M multiplier or a M1 multiplier (there
is nothing to do in the case of a solution for which the stability interval is [0, 1] as it is u-surrogate
feasible for all u ∈ [0, 1]). In the case of a 0M multiplier v0, any multiplier u > v0 will guarantee
that the solution(s) associated to v0 is (are) no longer u-surrogate feasible. Symmetrically, any
multiplier u < v1 will guarantee that the solution(s) associated to a M1 multiplier v1 is (are) no
longer u-surrogate feasible.

In an iteration of the procedure (line 5-10 of Algorithm 3), a critical multiplier v is considered
individually (a multiplier simultaneously 0M and M1 is here considered as two different multipli-
ers) to define a multiplier u whose value is as near as possible to v. Ideally, there must not be any
critical multiplier between v and u. Thus, appropriate values u are defined by u := v + ε if u is
a 0M multiplier, and u := v − ε if u is a M1 multiplier, where ε > 0 is a small value (see Ap-
pendix B.1 for an upper bound on ε). CSUB(u) is next computed; and its associated multipliers
are deduced.

All CSUBs computed during the execution of this algorithm are merged using Proposition 4
(line 4,10 of Algorithm 3).

Proposition 8. Algorithm 3 finds all critical multipliers associated to all possible CSUB.
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Algorithm 3: Procedure EnumerateCriticalMultiplier
input : A 2O2DKP instance
output: allMult: the list of all critical multipliers associated to all possible CSUB
bound: An upper bound set for YN

1 begin
/* compAllCM computes all critical multipliers associated to a

CSUB */
/* multToDo denotes the multipliers from which deriving a new

multiplier */
/* Here, a 0M and M1 multiplier is considered as two distinct

multipliers */
2 allMult← compAllCM(CSUB(0) ↓) ∪ compAllCM(CSUB(1) ↓)
3 multToDo← allMult
4 bound← [(CSUB(0)− R2

=) ∩ (CSUB(1)− R2
=)]N

5 while multToDo 6= ∅ do
/* Select a multiplier into the list */

6 v ← getMult(multToDo ↓); multToDo← multToDo \ {v}
7 if v is 0M then u← v + ε else u← v − ε
8 multToDo← multToDo ∪ [compAllCM(CSUB(u) ↓) \ allMult]
9 allMult← allMult ∪ compAllCM(CSUB(u) ↓)

10 bound← [(bound− R2
=) ∩ (CSUB(u)− R2

=)]N

Proof. Let u be a critical multiplier associated to a CSUB. We denote by x a solution associated
to u. If u is associated to CSUB(0) or CSUB(1), then u is found during the initialization (Line 2
of Algorithm 3). If u is not associated to either CSUB(0) nor CSUB(1), then we show that u is
found in an iteration of Algorithm 3. We consider thus an iteration of this algorithm and suppose
that u has not been found in a preceding iteration. Proposition 7 states the pattern of intervals
U the union on which x is masked by known solutions. According to Lemma 3, there is at least
one interval U defined by Proposition 7 on which x is masked. The interval U has either a left-
extremity defined by a M1 multiplier v1 or a right-extremity defined by a 0M multiplier v0 or
both (see Remark 4). Algorithm 3 considers the computation of all CSUBs of the following kind:
CSUB(v0 + ε), CSUB(v1− ε), with possible new solutions and critical multipliers found. There
are two possible conclusions: u is one of these new critical multipliers or not (i.e. all solutions
associated to u are still masked). In the latter case, new critical multipliers allow to performs new
iterations. Again, u will be found or not. By repeated computations of CSUBs, u will be finally
found in a finite number of computations of CSUB, as the number of critical multipliers is finite
and as multipliers v such that x is not v-masked by known solution(s) can always be deduced.

4.4.2 Second part: computation of the OCSUB

After the first part, all critical multipliers associated to all CSUBs are known. Thus, Propo-
sition 6 can be used in order to compute all CSUBs. We summarize the CSUBs computed in the
part 1:

(i) CSUB(0) and CSUB(1) in the initialization;

(ii) CSUB(u+ ε) for all u 0M multiplier;

(iii) CSUB(u− ε) for all u M1 multiplier.
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Items (ii) and (iii) of the enumeration above imply that at least one multiplier has been used in
the interior of intervals defined by consecutive critical multipliers such that the left hand side is
0M or the right hand side is M1. To complete Item (ii) of Proposition 6, it remains thus to use
one multiplier in each interval for which the left side is M1 and the right side of which is 0M. If
we denote by u the left hand side of this last kind of interval, the multiplier u+ ε is an appropriate
choice for the computation of a CSUB.

In conclusion, to achieve the enumeration of all CSUBs, it remains to compute:
– CSUB(u + ε) for all interval of consecutive critical multipliers [u, u0] such that u is M1

and u0 is 0M (Item (ii) of Proposition 6);
– CSUB(u) for all multiplier u that is 0M and M1 (Item (iii) of Proposition 6).

Algorithm 4 summarizes this final computation.

Algorithm 4: Procedure ComputeOCSUB
input : A 2O2DKP instance, the set of all critical multipliers allMult,
bound: an upper bound set for YN
output: bound: the OCSUB for the 2O2DKP instance

1 begin
2 foreach u ∈ allMult do
3 if u is 0M and M1 then bound← [(bound− R2

=) ∩ (CSUB(u)− R2
=)]N

4 foreach Interval of consecutive critical multipliers [u, v] such that u is M1 and v is 0M do
5 bound← [(bound− R2

=) ∩ (CSUB(u+ ε)− R2
=)]N

Example 7. The TotalEnumerative algorithm is performed on the instance of 2O2DKP intro-
duced in Example 5. To facilitate the understanding of the output, Table 4.1 reports all solutions
associated to at least one CSUB and their stability interval.

Table 4.1: Information relative to the solutions associated to at least one CSUB

Name Solution Objective value Stability interval

x1 (1,0,1,1,0) (37,26)
[
0,

1

4

]
x2 (0,1,1,1,0) (34,28)

[
0,

3

4

]
x3 (1,1,1,0,0) (37,39) [1, 1]

x4 (1,1,0,0,1) (25,42) [1, 1]

x5 (0,0,1,1,1) (35,21)
[
0,

7

16

]
x6 (1,1,0,0,0) (17,32)

[
7

16
, 1

]
x7 (1,0,1,0,0) (30,22) [0, 1]

x8 (1,1,0,1,0) (24,36)
[

8

13
, 1

]
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The solutions are represented in objective space on Figure 4.3a. The stability intervals of
those solutions are represented on Figure 4.3b. On the representation of the stability interval of a
solution xi, the dashed parts correspond to the interval of multipliers on which xi is masked.

•z(x1)
•

z(x2)

•z(x3)
•z(x4)

•
z(x5)

•z(x6)

•z(x7)

•z(x8)

0 1
1 |−

z1

z2

OCSUB

(a) The solutions in the objective space

0 1

| | 1
4

x1

| | 3
4

x2

|1x3

|1x4

| | | 7

16

0M
x5

| | |7

16

M1
x6

| | |x7

| |8

13
x8

(b) Stability interval of the solutions

Figure 4.3: Information relative to the eight solutions associated to a CSUB for the instance of
2O2DKP in Example 7

The execution of the algorithm is presented in Table 4.2.

Nb CSUB u type e CSUB(u+ e) multToDo multipliers

Initialization 1 0 - 0 {x1, x2}
1

4
,
3

4

1

4
,
3

4

2 1 - 0 {x3, x4}
1

4
,

3

4
,1

1

4
,

3

4
,1

First part 3
1

4
0M +ε {x2, x5}

7

16

0M

,
3

4
, 1

1

4
,
7

16
,

3

4
, 1

4
7

16

0M

0M +ε {x2, x6}
7

16

M1

,
3

4
, 1

1

4
,
7

16
,

3

4
, 1

5
7

16

M1

M1 −ε {x2, x5}
3

4
, 1

1

4
,

7

16
,

3

4
, 1

6
3

4
0M +ε {x7, x8}

8

13
, 1

1

4
,

7

16
,
8

13
,

3

4
, 1

7
8

13
M1 −ε {x2, x6} 1

1

4
,

7

16
,

8

13
,

3

4
, 1

8 1 M1 −ε {x7, x8} ∅ 1

4
,

7

16
,

8

13
,

3

4
, 1

Second part 9
7

16
0M&M1 0 {x2, x5, x6} - "

10
8

13
M1 +ε {x2, x8} - "

Table 4.2: Example of execution of Algorithm 2. The bold values correspond to new multiplier

(found during this iteration). NB: the value of u =
7

16
corresponds simultaneously to one 0M and

one M1. To avoid any confusion, the type of origin which is derived the value is mentioned in
superscript.
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The OCSUB is defined by the set of extreme points (rounded to 10−2) {(30,22); (27.43,28)}.

Remark 5. When “merging” upper bound sets based on the surrogate relaxation, using Propo-
sitions 1 (Page 32), the extreme points of the resulting upper bound set may not be feasible for
any surrogate relaxation. In particular, intersection points may not have integer coordinates (as
in Example 7).

In checking Figure 4.3a and Table 4.2, a number of obtained CSUBs, outcame of the TotalEnu-
merative algorithm, appears dominated by other CSUBs. Such a situation may appear in general,
and these dominated CSUBs are therefore useless for the computation of the OCSUB. The next
section gives an analysis of the dominance relation between the different CSUBs.

4.5 0M-M1 intervals

4.5.1 Bound sets and dominance

The dominance between CSUBs is based on the following Lemma, illustrated by Figure 4.2
(in Section 4.3.2 Page 99).

Lemma 4. We consider CSUB(ui) and CSUB(uj) two different CSUBs, defined respectively by
the set of extreme points P i and P j :

1. If P j ⊂ P i then CSUB(uj) dominates CSUB(ui) (Figure 4.2a)

2. If P j = P j1 ∪ P j2 such that P j1 ⊂ P i and the points of P j2 are either dominated by
points of P i (Figure 4.2b) or weakly dominated by interior points in the edges defined by
two points of P i (Figure 4.2c), then CSUB(uj) dominates CSUB(ui).

Dominated CSUBs do not contribute to the computation of the OCSUB. It is therefore useless
to determine such CSUBs. However, it is difficult to know that a CSUB is dominated by another
one before its computation. In the following, we provide a characterization allowing to know
without additional computation that some CSUBs are dominated.

Given a known critical multiplier u, we consider CSUB(u−ε) and CSUB(u+ε) with ε small
enough such that u is the only critical multiplier associated to a CSUB in the interval [u−ε, u+ε].

Suppose u is 0M and not M1, then there exists at least one solution associated to CSUB(u−ε)
which is not u+ ε-surrogate feasible. Since u is not M1, there does not exist a solution associated
to CSUB(u + ε) that is not u − ε-surrogate feasible. Thus, by application of Lemma 4, either
CSUB(u + ε) dominates CSUB(u − ε), or CSUB(u + ε) = CSUB(u − ε) (case of equiva-
lent solutions). In both cases, the computation of CSUB(u − ε) is useless. We will say that
CSUB(u + ε) weakly dominates CSUB(u− ε).

We can do the symmetric analysis in the case u is M1 but not 0M and a similar one if u is both
0M and M1. Proposition 9 summarizes this result.

Proposition 9.
1. If a multiplier u is 0M and not M1 then CSUB(u+ ε) weakly dominates CSUB(u− ε) =

CSUB(u).

2. If a multiplier u is M1 but not 0M then CSUB(u − ε) weakly dominates CSUB(u + ε) =
CSUB(u).

3. If a multiplier u is 0M and M1 then CSUB(u−ε) and CSUB(u+ε) may not be comparable.
Both weakly dominate CSUB(u).
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If 0 is a critical multiplier, then 0 is 0M and Proposition 9 holds, except that we ignore the
comparison with CSUB(0− ε) which is not defined. Similarly if 1 is a critical multiplier, it is M1
and CSUB(1 + ε) is not defined.

Proposition 9 is illustrated in Figure 4.4, an arrow from CSUB(uj) to CSUB(ui) means that
CSUB(uj) weakly dominates CSUB(ui). “=” indicates an equality between two CUSBs and “?”
indicates that no domination relation between the two CSUBs can be deduce a priori.

|
u− ε

CSUB(u− ε)
|

u, 0M

CSUB(u)
|

u+ ε

CSUB(u+ ε)
=

(a) Proposition 9.1

|
u− ε

CSUB(u− ε)
|

u, M1

CSUB(u)
|

u+ ε

CSUB(u+ ε)
=

(b) Proposition 9.2

|
u− ε

CSUB(u− ε)
|

u, 0M, M1

CSUB(u)
|

u+ ε

CSUB(u+ ε)

?

(c) Proposition 9.3

Figure 4.4: Properties of 0M and M1 multipliers

Proposition 9 allows only a local analysis around critical multipliers. We will say that we
can know a priori that a CSUB is weakly dominated. In the following, we apply the result of this
proposition on the set of all critical multipliers associated to any CSUB, to obtain a stronger result.

Definition 25. Let L be a list of critical multipliers sorted by increasing values. We call 0M-M1
interval in L any pair u0 − u1 of successive critical multipliers in L ∪ {0, 1}, such that u0 is 0M
and u1 is M1 and u0 < u1. 0 and 1 are respectively considered as 0M and M1 multipliers.

Proposition 10. We denote by Lall the list of all critical multipliers associated to all CSUBs. The
only CSUBs that are not weakly dominated a priori are CSUB(u) where u0 < u < u1 for any
0M-M1 interval u0 − u1 in Lall.

Proof. We consider all possible types for a pair of critical multipliers u1 and u2 and we analyze the
dominance relation between the CSUBs around these two critical multipliers. We only present the
case for which u1 is 0M (but not M1). The proof is similar if it is M1 or, 0M and M1. As u1 is 0M,
Proposition 9 implies that CSUB(u1 + ε) weakly dominates CSUB(u1) = CSUB(u1 − ε). As
there is no critical multiplier between u1 and u2, CSUB(u1 + ε) = CSUB(u2− ε). The question
is next whether CSUB(u1 + ε) is weakly dominated or not by CSUB(u2 + ε) or CSUB(u2). In
all cases, the answer comes from the application Proposition 9 for the multiplier u2.

1. If u2 is 0M and not M1, then CSUB(u1 + ε) is weakly dominated by CSUB(u2 + ε).

2. If u2 is M1 and not 0M, then CSUB(u1 + ε) weakly dominates CSUB(u2 + ε).

3. If u2 is 0M and M1, then CSUB(u1 + ε) weakly dominates CSUB(u2).

The only cases for which CSUB(u1 + ε) = CSUB(u2 − ε) is not dominated a priori, happen
when u2 is M1.

Suppose 0 is not a critical multiplier, and we denote the smallest critical multiplier by umin.
The same CSUB is therefore obtained for CSUB(u) for u ∈ [0, umin). Depending of the type of
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umin, CSUB(umin − ε) is weakly dominated (umin is 0M) or not (umin is M1). The case of the
multiplier 1 is symmetric.

| | | | | | | | | | | |
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Figure 4.5: Illustration of Proposition 10

Figure 4.5 illustrates Propositions 9 and 10. Dominance between CSUBs is again represented
by an arrow, and the CSUBs that are not dominated a priori are denoted in solid red.

4.5.2 0M-M1 interval algorithm

The 0M-M1 interval algorithm is based on Proposition 10 which states that the only multiplier
u such that CSUB(u) is not dominated a priori are in the interior of the 0M-M1 intervals in Lall.
Obviously, the direct use of this result requires to know Lall. Knowing only a subset of CSUBs
with their associated solutions and critical multipliers, Proposition 7 defines an union of intervals
U such that an unknown solution associated to a critical multiplier v is masked on U . To find such
an unknown solution x, it is necessary to compute CSUB(u) for u ∈ S \U where S is the stability
interval of x. According to Proposition 7 and Remark 4, U is composed of zero or one interval of
type [0, v0] (or [v, v0] if v is a M1 multiplier), zero or one interval of type [v1, 1] (or [v1, v] if v is a
0M multiplier) and zero or several disjoint intervals of type [v1, v0] where the multipliers denoted
v0 and v1 are known 0M and M1 multipliers. It is interesting to note that the set S \U is an union
of 0M-M1 intervals defined by a subset of known multipliers, with the exception of at most one
interval for which the extremities are a known critical multiplier and v (unknown).

The 0M-M1 algorithm (Algorithm 5) is based on these observations. An iteration of the algo-
rithm is performed as follows: given a 0M-M1 interval u0 − u1 in the list of known multipliers,
CSUB(u0 + ε) is computed and the new critical multipliers are stored. We call this operation the
exploration of the 0M-M1 interval. Since the exploration of a 0M-M1 interval is based on the 0M
multiplier, we store the 0M multiplier for each explored 0M-M1 interval, in order to avoid repet-
itive computations of a same CSUB. Indeed, new multipliers may be found with the computation
of a new CSUB. If a new M1 multiplier is inserted between a pair of 0M and M1 multiplier, a new
0M-M1 interval is defined, but its exploration is done by computing the same CSUB.

The initialization is reduced to the computation of CSUB(0). Indeed CSUB(1) is either
dominated or redundant with the exploration of a 0M-M1 interval.

4.5.3 Correctness of the 0M-M1 interval algorithm

In this part we prove the correctness of the 0M-M1 interval algorithm. In this proof, we denote
by Lalg the list of known critical multipliers at the end of Algorithm 5. This proof is decomposed
in two propositions, its main idea is to show that the listLalg contains at least the minimum number
of critical multipliers to guarantee that the OCSUB is obtained as an output of the algorithm. As
Algorithm 5 computes CSUB(u0 + ε) for each 0M-M1 interval u0−u1 in Lalg, it is necessary for
Lalg to contain all 0M multiplier that defines a 0M-M1 in the list Lall (Proposition 11). Moreover
to ensure that CSUB(u0 + ε) is computed for all u0 defining a 0M-M1 interval u0 − u1 in Lall,
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Algorithm 5: 0M-M1 interval algorithm
input : A 2O2DKP instance
output: The OCSUB of the instance of 2O2DKP

1 begin
/* multipliers is sorted in non increasing order, 1 is considered

as a M1 multiplier */
2 bound← CSUB(0)
3 multipliers← compAllCM(CSUB(0) ↓) ∪ {1}
4 0MDone← ∅
5 while there exists a 0M-M1 interval u0 −u1 such that u0 /∈ 0MDone do
6 0MDone← 0MDone ∪ {u0}
7 bound← [(bound− R2

=) ∩ (CSUB(u0 + ε)− R2
≥)]N

8 multipliers← multipliers ∪ compAllCM(CSUB(u0 + ε) ↓)
9 return bound

Lalg must also contain a M1 multiplier u2 > u0 such that there does not exist any 0M multiplier
in ]u0, u2[ (Proposition 12).

We can note that for a same u0 defining a 0M-M1 interval u0 − u1 in Lall, several M1 critical
multipliers are appropriate to ensure the computation of CSUB(u0 + ε). To illustrate this, we
consider the example of Figure 4.5. The CSUBs to be computed to guarantee that the OCSUB is
found, are CSUB(u+ ε) with u = u2, u5, u6, u7, u10. Lalg must therefore contain these 0M crit-
ical multipliers. The M1 critical multiplier that may cause the exploration of the 0M-M1 interval
u2 − u3 (in Lall) can be either u3 or u4. Indeed there does not exist any 0M critical multiplier in
]u2, u3[ or in ]u2, u4[, thus the explorations of u2 − u3 and u2 − u4 are the same: CSUB(u2 + ε).
The other M1 multipliers to find are u6, u7 and, u8 or u9.

Proposition 11. Algorithm 5 finds all multiplier u0 such that there is a 0M-M1 interval u0 − u1

in Lall.

Proof. Let u0 − u1 be a 0M-M1 interval in Lall, and x0 be a solution associated to u0. We show
in the following that x0 (and thus u0) is found by Algorithm 5. If x0 is associated to CSUB(0),
then x0 is found with the initialization. If x0 is not associated to CSUB(0) then it is 0-masked
(since x0 is 0-surrogate feasible). By Proposition 7, the union of intervals on which x0 is masked
is composed of zero or one interval [0, v0], zero or several intervals of the kind [v1, v0], and zero
or one interval of the kind [v1, u0], where the multipliers denoted v1 and v0 are respectively M1
and 0M multipliers in Lalg. Since x0 is 0-masked, it is in particular masked on one interval [0, v0].
Consequently, x0 is surrogate feasible and not masked by known solutions on a non-empty union
of zero or several ]v0, v1[ open intervals, and zero or one ]v0, u0] interval. The computation of
CSUB(u) for u in the interior of one of these intervals, performed in the context of Algorithm 5,
necessarily guarantee to obtain x0. Otherwise new solutions masking x0 would be found with their
associated critical multipliers, and this contradict the assumption that Lalg is the list of known
critical multipliers at the end of Algorithm 5.

– If the first kind of interval ]v0, v1[ exists, v0 and v1 are respectively a 0M and M1 multiplier
in Lalg. Hence, there is a 0M-M1 interval (in Lalg) in [v0, v1] and this 0M-M1 interval is
explored during the algorithm.

– If the second kind of interval ]v0, u0] exists, we prove next that there is a 0M-M1 interval in
Lalg such that the 0M part is in [v0, u0].
– If there is no 0M multiplier bigger than u0 in Lalg, then since 1 is considered as a M1

multiplier, there is a 0M-M1 interval u′0−1 in Lalg where u′0 is the biggest 0M multiplier
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found.
– If there is at least one 0M multiplier greater than u0 in Lalg, we denote by u0SF the

smallest one. Since u0 − u1 is a 0M-M1 interval in the list Lall, then there exists at least
one M1 multiplier in ]v0, u0SF ] (at least u1). We prove next that at least one of these
multipliers necessarily belong to Lalg.
Suppose there is no M1 critical multiplier in ]v0, u0SF ]∩Lalg, we consider u2 a M1 multi-
plier in ]v0, u0SF ]∩Lall and x2 one of its associated solution. If there are several possible
critical multipliers u2, we consider one such that x2 is not masked by any solutions or
pair of solutions associated to any other M1 multipliers of the interval ]v0, u0SF ]. By
Proposition 7, the union of intervals on which x2 is masked is composed of zero or one
interval [u2, v′0], zero or several intervals of the kind [v′1, v′0], and zero or one interval
of the kind [v′1, 1], where the multipliers denoted v′1 and v′0 are respectively M1 and 0M
multipliers in Lalg. Consequently, x2 is not masked on a non-empty union of zero or sev-
eral ]v′0, v′1[ intervals, and zero or one [u2, v′1[ interval. The computation of CSUB(u)
for u in the interior of one of these intervals, performed in the context of Algorithm 5,
necessarily guarantee to obtain x2.
– If the former kind of interval ]v′0, v′1[ exists, v′0 and v′1 are respectively a 0M and M1

multiplier in Lalg. Hence, there is a 0M-M1 interval in [v′0, v′1]∩Lalg and this 0M-M1
interval is explored during the algorithm. Consequently, x2 and thus u2 is found.

– If the later kind of interval [u2, v′1[ exists, we have v0 < u0 < u0SF < v′1. There exists
a 0M-M1 interval in [v0, v′1] ∩ Lalg. If its 0M part is smaller than u0 its exploration
is the computation of a CSUB in ]v0, u0[, and consequently x0 (and u0) is found.
Otherwise, the 0M part is greater than u0 (and thus greater than u0SF ), consequently
u2 and x2 are found.

Proposition 12. If u0 − u1 is a 0M-M1 interval in Lall, then there is a M1 multiplier u2 ∈ Lalg
such that no 0M critical multiplier exists in ]u0, u2[.

Proof. Let u0 − u1 be a 0M-M1 interval in Lall. By Proposition 11, u0 ∈ Lalg.
If u0 is the greatest 0M multiplier in Lall, then there is no 0M multiplier in ]u0, 1[ and 1 is

(considered as) a M1 multiplier in Lalg.
If u0 is not the greatest 0M multiplier in Lall, we denote by u0S the smallest 0M multiplier

in Lall such that u0 < u0S . Since 1 is a M1 critical multiplier, there exists a 0M-M1 interval
in Lall ∩ [u0S , 1]. According to Proposition 11 the 0M part of this interval is also found by the
algorithm. Thus there is at least one 0M multiplier greater than u0 in Lalg, we denote by u0SF

the smallest one. Since there is no 0M multiplier in Lalg∩]u0, u0SF [, there does not exist any
M1 critical multiplier in Lall∩]u0S , u0SF [ (otherwise according to Proposition 11 a 0M critical
multiplier would be found in ]u0, u0SF [). Thus the M1 multipliers in ]u0, u0SF ] and in ]u0, u0S ]
are the same.

We show in the following that there is a M1 multiplier in Lalg∩]u0, u0SF [. We consider u2

a M1 multiplier in Lall∩]u0, u0SF ] and an associated solution x2 that is not masked by any other
solution (or pair of solutions) associated to a M1 multiplier in ]u0, u0SF ]. By Proposition 7, the
union of intervals on which x2 is masked is an union of zero or one interval [u2, v0], zero or several
intervals of the kind [v1, v0], and zero or one interval of the kind [v1, 1], where the multipliers
denoted v1 and v0 are respectively M1 and 0M multipliers in Lalg. Consequently, x2 is not masked
on a non-empty union of zero or several ]v0, v1[ intervals, and zero or one [u2, v1[ interval.

– If the former kind of interval ]v0, v1[ exists: there exists a 0M-M1 interval in [v0, v1]∩Lalg
and it is thus explored during the algorithm.
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– If the latter kind of interval [u2, v1[ exists: since there is no M1 critical multiplier found in
(u0, u0SF ] then u0SF < v1. Thus there exists a 0M-M1 interval in [u0SF , v1] ⊂ [u2, v1] and
it is thus explored during the algorithm.

Algorithm 5 is applied on the instance of 2O2DKP introduced in Example 5.

Example 8. At the beginning multipliers contains the M1 multiplier 1. The first bound set to be

computed is CSUB(0) = B1. x1 and x2 compose this bound set. Then
1

4
and

3

4
(of type 0M) are

added to multipliers.

The only 0M-M1 interval in multipliers is
3

4
− 1. Then the next CSUB computed is

CSUB(
3

4
+ ε) = B2. This is composed of x7 and x8. Thus the multiplier

8

13
(of type M1)

is added to multipliers (represented in Figure 4.6).

|
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1
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Figure 4.6: Content of multipliers after the computation of B2

There is two 0M-M1 intervals in multipliers now:
1

4
− 8

13
and

3

4
−1. Since CSUB(

3

4
+ ε) has

already been computed then we do not compute it again. CSUB(
1

4
+ ε) has not been computed

before. So we compute it, it is B3 composed of x2 and x5. The new 0M multiplier
7

16
is added to

multipliers.
7

16
− 8

13
is the only new 0M-M1 interval. Since CSUB(

7

16
+ ε) = B4 has not been computed

yet, we compute it now. It is composed of x2 and x6. The new M1 multiplier
7

16
is added to

multipliers. The content of multipliers is represented in Figure 4.7.
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Figure 4.7: Content of multipliers after the computation of B4

The three 0M-M1 intervals found are
1

4
− 7

16
,

7

16
− 8

13
and

3

4
− 1. All of them have already

been explored. So the algorithm ends.

4.5.4 Initialization of the 0M-M1 interval algorithm

The list of critical multipliers of the 0M-M1 interval algorithm can be initialized using the
dichotomic algorithm we presented in Section 4.2 (Page 95). We showed that this algorithm does
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generally not give the OCSUB and that it may stop prematurely, however it finds surrogate-feasible
solutions that defines edges of the OCSUB with their associated critical multipliers. The early
knowledge of these critical multipliers permits next to avoid the enumeration of weakly dominated
CSUBs. Finally, each step of the dichotomic method consists in solving the dual surrogate problem
for 2DKP , which is less time consuming than to compute a CSUB according to our observations.

The next section presents a heuristic derived from the 0M-M1 interval algorithm, and a heuris-
tic from the literature.

4.6 Heuristic methods for the OCSUB

4.6.1 A heuristic based on the 0M-M1 interval algorithm

We describe here a method to compute an approximation of the OCSUB, based on the 0M-M1
interval algorithm and called 0MM1H. This heuristic works the same way as the 0M-M1 interval
algorithm, initialized by the dichotomic method, except that the number of iterations is limited
to h. Thus all 0M-M1 interval will generally not be explored. Hence we have to define how
we choose the 0M-M1 interval to explore at each iteration. If there are several 0M-M1 intervals
u0 − u1 to explore, then we choose the one for which u1 was part of the most 0M-M1 intervals
previously explored. In case of equality we choose the lowest u0. The idea is to explore improving
CSUBs immediately.

If there does not exist any 0M-M1 interval to explore, then the method stops even if the maxi-
mum number of iterations is not achieved. Indeed the OCSUB is found, any additional computa-
tion of CSUB is therefore useless.

An alternative and more intuitive heuristic, with a lower running time per iteration since it
does not analyze the critical multipliers, is now presented.

4.6.2 The SurrogateFamily heuristic

The SurrogateFamily heuristic (SF) has been introduced in the master thesis of Perederieieva
(2011) (see Section 2.5.2). SurrogateFamily has not been designed with the aim to compute the
OCSUB, its purpose is to compute an upper bound set in a short computational time. Thus, there is
no guarantee to determine the OCSUB using this method, even with a large number of iterations.

The principle of SurrogateFamily is simple. It computes h CSUBs: {CSUB(u1), . . . ,
CSUB(uh)} where the multipliers {u1, . . . , uh} are equidistant in the interval [0, 1]. Obviously
if we increase the value of h, a tighter upper bound set will be computed, but with a larger com-
putational cost.

In SurrogateFamily, the choice of the multipliers is completely static. No information is used
to avoid the computation of dominated CSUBs. In particular, even if the OCSUB is obtained,
SurrogateFamily will continue its execution until the last iteration.

4.7 Computation of the OSUB

The OSUB is a non-convex upper bound set which is tighter than the OCSUB. While OCSUB
is based on the computation of CSUBs, OSUB is based on SUBs, see Definition 21 (Page 95).
Since SUB(u), for u ∈ [0, 1], is defined by all the nondominated points of 2OSR(u) (whereas
CSUB(u) is defined only by the extreme supported nondominated points), the computation of
SUB(u) is more time consuming than the one of CSUB(u). Therefore, the computation of the
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OSUB is also more time consuming than for the OCSUB. In this section we highlight the differ-
ences between the computation of the OCSUB and the OSUB.

The notion of critical multipliers and stability interval in Section 4.3.1 are defined for solutions
and can thus be indifferently used when computing the OSUB or the OCSUB. The principal dif-
ference between the computation of those two upper bound sets comes from the condition under
which two CSUBs and two SUBs are different. Lemma 2 (page 98) states a necessary but not
sufficient condition for two CSUBs to be different. This lemma can easily be adapted for two
SUBs, as follows.

Lemma 5. Let ui ∈ [0, 1] and uj ∈ [0, 1] be two different multipliers, if SUB(ui) and SUB(uj)
are different then at least one of the efficient solutions of 2OSR(ui) and 2OSR(uj) is feasible for
one problem and not for the other one.

As for Lemma 2, the converse of Lemma 5 is not true because of the potential equivalent solu-
tions. The only difference between Lemmas 2 and 5 is that all nondominated points are considered
in the latter while only the extreme supported ones are considered in the former. This difference
in the range of considered solutions implies a difference in the characterization of the interval
on which a given solution is masked (Proposition 7 at page 100 when computing the OCSUB).
When computing the OSUB, the interval on which a solution is masked is defined by Proposition
7, except the points (1)(iii), (2)(iii) and (3)(iii). Indeed those last points are not longer needed
since a solution cannot be masked by a pair of solutions (a SUB is not convex). The same way
as when computing the OCSUB, one extremity of each interval on which a solution is masked is
a critical multiplier when computing the OSUB. Thus the principles behind the total enumerative
and 0M-M1 interval algorithms remain valid to compute the OSUB.

The algorithms defined to compute the OCSUB can easily be adapted to the computation of the
OSUB. The only change is that the computation of the CSUBs (convex relaxation of 2OSR(u), for
u ∈ [0, 1]) is replaced by the computation of the SUBs (exact solution of 2OSR(u), for u ∈ [0, 1]).
We can also remark that the heuristics method for the computation of the OCSUB can be adapted
similarly for the computation of the OSUB.

The next section present experimental results on the algorithms and heuristics approaches to
compute the OCSUB and the OSUB.

4.8 Numerical experiments

4.8.1 Protocol

The numerical experiments aim (1) to show experimentally the performances of the proposed
algorithms, (2) to observe if an algorithm presents in general better performances than its com-
petitor, (3) to examine the behavior of the algorithm when the number of variables increases, and
(4) to note, if it exists, the influence of correlations between the values of the instances on the
behavior of the algorithm. To discuss about those factors, six descriptors are elaborated. The two
first concern the exact algorithms (TotalEnumerative and 0M-M1 interval),

Descriptor 1. The number of computed CSUBs. A low number shows a fast convergence to the
OCSUB.

Descriptor 2. CPU time to get the OCSUB.

The two following are for the approximation algorithms (0MM1H and SurrogateFamily).
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Descriptor 3. Quality of the approximation. The quality assessment of an approximated bound
set will be stated in comparison with the OCSUB. Here, an area measure (called A-metric)
is proposed and reported in terms of percentage. A small A-metric value indicates an ap-
proximation close to the OCSUB.

Descriptor 4. CPU time to get the approximated OCSUB.

The two last are for the comparison of OSUB and OCSUB (0MM1H and SurrogateFamily).

Descriptor 5. Quality of the OCSUB compared to the OSUB. Here, an area measure (called A′-
metric) is proposed and reported in terms of percentage. A small A′-metric value indicates
an approximation close to the OCSUB.

Descriptor 6. CPU time to get the OCSUB and the OSUB.

All our implementations require to fix a value for ε (small positive number used in Algorithms
3, 4 and 5). The smallest value manageable by our solver’s implementation is ε = 10−9 (the rec-
ommended value returned using the computing method described in Appendices B.1 is smaller).
Next, the methods approximating the OCSUB require to fix a value for the parameter h. The
following values have been used: 10, 50, 100.

The computer used for the experiments is equipped with a Intel Core i7 2640M 2.8 Ghz pro-
cessor with 8 GB of RAM, and runs under Mac OS X Lion 10.7.5. All algorithms have been
implemented in C++. The binaries have been obtained using the compiler GCC version 4.2.1.
with the optimizer option -O3. Combo from (Martello et al., 1999) has been used to solve single-
objective uni-dimensional knapsack problems and the algorithm from (Jorge, 2010) has been used
to solve the 2OKP in the computation of SUBs.

4.8.2 Numerical instances

All algorithms have been evaluated on a dataset composed of 28 instances available on the
MCDMLib 1, and organized in three groups:

Group 1: 6 instances of various sizes, randomly generated with the same generator, with-
out any specific correlation. ZTL100, ZTL250, ZTL500 and ZTL750 are 4 in-
stances picked from the collection maintained by Zitzler and Laumanns 2. ZTL28 and
ZTL105 are 2 additional instances derived respectively from ZTL100 and ZTL250, where

ωi ≈ 0.5

n∑
j=1

wij , i = 1, . . . ,m. The number following ZTL in the name gives the number

of variables.

Group 2: 15 correlated instances with 28 variables, introduced by Perederieieva (2011). A1,
A2, A3, A4, D1, D2, D3, D4, kp28W-ZTL, kp28, kp28-2, kp28W,
kp28W-Perm, kp28c1W-c2ZTL and kp28cW-WZTL are extention of 2DKP in-
stances available on the OR-library 3 where a second objective has been added with respect
to several definitions of correlation to obtain a 2O2DKP instance. The second objective of
kp28W-Perm is a permutation of the coefficients of the first objective function. The second
objective function is not correlated to the first objective function, neither the constraints for
the instances kp28W-ZTL, kp28, kp28-2, kp28W, kp28c1W-c2ZTL. For the
other instances, the second objective is correlated with the first one. Further details are
given in (Perederieieva, 2011).

1. http://www.mcdmsociety.org/MCDMlib.html
2. http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
3. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
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Group 3: 7 additional correlated instances with 105 variables, obtained following the
rules described for the Group 2. W7BI-rnd1-1800, W7BI-rnd1-3000,
W7BI-tube1-1800, W7BI-tube1-3000, W7BI-tube1-asyn,
W7BI-tube2-1800, Wcollage-tube are summarized in Table 4.3.

instance (a) (b) (c) (d)

W7BI-rnd1-1800 Weing7 Osorio’s method 0.48 0.50
W7BI-rnd1-3000 Weing7 Osorio’s method 0.80 0.84
W7BI-tube1-1800 Weing7 anti-correlated 0.50 0.50
W7BI-tube1-3000 Weing7 anti-correlated 0.80 0.84
W7BI-tube1-asyn Weing7 anti-correlated 0.80 0.20
W7BI-tube2-1800 Weing7 anti-correlated 0.48 0.50
Wcollage-tube Weing1 anti-correlated 0.50 0.50

Table 4.3: Information about instances. Column (a) gives the name of the original single-objective
2DKP . Column (b) indicates the way to generate the second objective: negatively correlated with
the first one or, done according to the method reported in (Osorio and Cuaya, 2005). Column (c)
reports the ratio

ω1∑n
j=1w1j

for the first dimension (the first constraint). The column (d) is similar

to the column (c), for the second dimension.

4.8.3 Comparison between TotalEnumerative and 0M-M1 interval

In this section, we compare the two methods that determines the OCSUB. In order to mea-
sure the impact of its initialization, the 0M-M1 interval algorithm is tested with and without its
initialization. All results are summarized in Figure 4.8. In this figure, we denote by respectively
TotEnum, 0MM1 and 0MM1 + init, the TotalEnumerative algorithm, the 0M-M1 interval without
initialization, and the 0M-M1 interval algorithm using the initialization.

In Figure 4.8, the y-axis is reported on a logarithmic scale for all graphics. The left column
reports the numbers of computed CSUBs (descriptor 1), and the computational times (descriptor 2)
are on the right column. The line on the top, the middle and the bottom correspond respectively to
instances of Group 1, 2 and 3.

For all three groups of instances, the two versions of 0M-M1 interval are always faster than
TotalEnumerative. The profile of the curves of time are similar. The difference of execution time
increases with the size of the instance. This especially allows 0M-M1 interval without initialization
to determine the OCSUB for ZTL500 and ZTL750 instances with less than 700 seconds of CPU
time, while TotalEnumerative is unable to compute it in less than one hour.

The additional cost of the initialization in the 0M-M1 interval algorithm is largely balanced
for most instances. The only exceptions concerns small instances which solution time is particu-
larly low with or without initialization (less than 0.1s). Moreover, the benefit of the initialization
increases significantly with instance size, as can be seen in Figure 4.8 (b).

For groups 2 and 3, an obvious correlation appears between the required computational time
and the number of CSUBs to compute. On the other hand, there is no particular difficulty for the
algorithms to deal with numerical instances presenting various correlations.

For four particular instances (D2, D3, D4 and tube-asyn), TotalEnumerative algorithm
computes a large number of CSUBs, while 0M-M1 interval only computes 1. This difference is of
course reverberated on the computational time.
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(a) Comparison for the number of computed CSUBs
for the instances of Group 1

(b) Comparison of computational times for the instances of
Group 1

(c) Comparison for the number of computed CSUBs
for the instances of Group 2

(d) Comparison of computational times for the instances of
Group 2

(e) Comparison for the number of computed CSUBs
for the instances of Group 3

(f) Comparison of computational times for the instances of
Group 3

Figure 4.8: Comparison of the TotalEnumerative and 0M-M1 interval algorithms.

In conclusion of the analysis, 0M-M1 interval outranks TotalEnumerative, and shows no par-
ticular difficulty to deal with instances with correlations. The initialization procedure allows to
largely reduce the computational time for large instances. The recommended algorithm for com-
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puting the OCSUB is thus the 0M-M1 interval algorithm with initialization. However, the com-
putational time of the OCSUB remains far to be negligible, in particular for big instances. A
better trade-off between computational time and quality of the obtained upper bound set should be
used, to be embedded as a component of an implicit enumeration algorithm aiming to generate a
complete set of efficient solutions for a 2O2DKP .

4.8.4 A-metric as a quality measure

In order to evaluate the quality of the heuristics, we define a quality indicator. It aims to
measure the gap between a heuristic upper bound set and the OCSUB. According to Definition 12,
an upper bound set B for YN should verify YN ⊂ (B − R2

=). If we consider an upper bound set
H obtained by 0MM1H or SurrogateFamily heuristics, we necessarily have (OCSUB − R2

=) ⊂
(H−R2

=). We denote next byA(V ) the area of the polyhedra V ∩R2
=. A possible way to measure

the gap between H and the OCSUB could be to compare A(H−R2
=) and A(OCSUB − R2

=).
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Figure 4.9: Area measure for the comparison

In order to have the same scale for all instances, we could consider the following ratio.

A(H− R2
=)−A(OCSUB −R2

=)

A(OCSUB −R2
=)

However, such an indicator would be very sensitive to the range of data. In particular, for instances
for which the objective values of nondominated points are very large, there would be a large
intersection between A(H−R2

=) and A(OCSUB − R2
=), for all possible upper bound sets H .

Consequently, an indicator defined this way would necessarily return small values.
In order to highlight the differences between bound sets, we propose to define our quality

indicator by putting aside common parts between A(H−R2
=) and A(OCSUB − R2

=), for all
possible upper bound sets H . Figure 4.9 illustrates the definition of this indicator. The OCSUB
is composed of b extreme points {p1, . . . , pb} lexicographically ordered. The search area at the
bottom left of p1 is common to all possible upper bound set H and to the OCSUB, thus we do not
need to consider it in the measure. The same statement holds for pb. Thus C := (p1 − Rp=) ∪
(pb−Rp=) is included into (H −R2

=) for all possible upper bound set H . In the following, we call
A-metric (Figures 4.10 to 4.12) the following measure of quality of a heuristic bound set H:

A(H − Rp=)−A(OCSUB− Rp=)

A(OCSUB− Rp=)−A(C)
∗ 100
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This quality indicator has the effect to highlight with large values the difference between bound
sets.

4.8.5 Comparison between 0MM1H and SurrogateFamily heuristic

(a) Comparison of A-metric for h = 10 (b) Comparison of A-metric for h = 50

(c) Comparison of A-metric for h = 100 (d) Comparison of computational times

Figure 4.10: Comparison of both heuristics 0MM1H + init and SurrogateFamily, for
h = {10, 50, 100}, regarding the A-metric and the computational time, for the Group 1.

The results are summarized in Figure 4.10, 4.11 and 4.12 respectively for instances of groups
1, 2, and 3. In each figure, the graphics (a), (b) and (c) compare both heuristics according to
descriptor 3 for respectively h = 10, h = 50 and h = 100. The y-axis is logarithmic. For
an instance and a heuristic, if a bar is not visible, it means that the obtained upper bound set
is the OCSUB or so close to it that the difference is insignificant. The graphics (d) present the
computational times in six curves (descriptor 4), the names of the curves are composed by the
name of the heuristic and the parameter h. To read this graphics, it is important to notice that, for
a same heuristic, the curve for a given value of h cannot be lower than the one for a smaller value
of h (h is the maximum number of iterations allowed). Thus in graphics (d), for a same heuristic,
the curve at the bottom corresponds to h = 10 and the one at the top to h = 100.

For all groups of instances, both algorithms behave the same way in terms of computational
time. Generally the computational time of 0MM1H is slightly larger than for SurrogateFamily,
because of the initialization and the analysis of the critical multipliers. For some instances, es-
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(a) Comparison of A-metric for h = 10 (b) Comparison of A-metric for h = 50

(c) Comparison of A-metric for h = 100 (d) Comparison of computational times

Figure 4.11: Comparison of both heuristics 0MM1H + init and SurrogateFamily, for h =
{10, 50, 100}, regarding the A-metric and the computational time, for the Group 2.

sentially from Group 2, 0MM1H appears faster. This is due to the early obtention of the OCSUB
by 0MM1H. Consequently, this heuristic stops its execution, while SurrogateFamily continue its
execution until the final iteration.

In 85% of the cases 0MM1H performs better than SurrogateFamily, according to descriptor 3.
When 0MM1H is performed with h = 100, the OCSUB is obtained for 16 of the 28 instances,
doing less iterations than h.

The quality of the upper bound set found by 0MM1H does not seem to be related to the size
of the instances. Indeed in Group 1, the performance of 0MM1H is outranked by SurrogateFamily
for the instances of size 105 and 750 variables, however the opposite occurs for the instances of
size 250 and 500. For the instances of Group 2, 0MM1H gives upper bound set of good quality
in a smaller number of iterations than SurrogateFamily, except for two instances (A1 and A3).
The difference between both heuristics is also important for several other instances (for example
A2), in favor of 0MM1H. In Group 3, both heuristics are almost equivalent in terms of descriptor
4. Finally, the best heuristic for an instance is not necessarily the same for every value of h.
The instance tube1-1800 is an example of this phenomenon: for h = 10 both heuristics are
equivalent, for h = 50 SurrogateFamily performs better and the opposite occurs for h = 100.

The difference of behavior can be explained by the the use of uniformly distributed multipliers
in SurrogateFamily. Therefore, the obtained bound set is constructed from various CSUBs. In
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(a) Comparison of A-metric for h = 10 (b) Comparison of A-metric for h = 50

(c) Comparison of A-metric for h = 100 (d) Comparison of computational times

Figure 4.12: Comparison of both heuristics 0MM1H + init and SurrogateFamily, for
h = {10, 50, 100}, regarding the A-metric and the computational time, for the Group 3.

0MM1H, the values of the multipliers are determined with the purpose to improve locally the
bound set. Thus, with a low number of computed CSUBs, we obtain a bound set that may be very
tight locally but not globally. This explanation is confirmed by the results collected for Group 2.
In conclusion of the analysis, 0MM1H is competitive for every size of instances and every tested
h, except for some rare instances. A deep analysis of those instances may allow us to find a better
order for the exploration of the 0M-M1 intervals. The heuristic using this order could provide
better results.

4.8.6 Comparison between the OCSUB and the OSUB

Figure 4.13 shows the computational time required to compute the OCSUB and the OSUB,
using the 0M-M1 interval algorithm with the initialization, for the instances of the three groups.
The top, middle and bottom rows present the results obtained for, respectively the Group 1, the
Group 2 and the Group 3 of instances. The left column shows the computational time spent on the
computation of the two upper bound sets. The y-scale of those figures is logarithmic. The second
column presents a measure similar to theA-metric, called theA’-metric. This metric indicates the
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gap between the OSUB and the OCSUB. It is calculated by the formula:

A(OCSUB− Rp=)−A(OSUB− Rp=)

A(OSUB− Rp=)−A(C ′)
∗ 100

where C := (p′1 −Rp=) ∪ (p′b −Rp=) with p′1 and p′b the lexicographic extreme points of OSUB.

The high values of the A’-metric in Figures 4.13b, 4.13d and 4.13f show that the OSUB is an
upper bound set significantly tighter than the OCSUB. This gap between those two upper bound set
does not seem to depend on the size of the instances, neither on the correlation of those instances.
One instance can be particularly remarked, the kp28W-ZTL, for which the value of theA’-metric
is particularly high. Indeed the OSUB of this instance is composed of only two points, the value of
theA’-metric is then not defined (division by zero sinceA(OSUB−Rp=) = A(C ′)). The OCSUB
being a convex upper bound set, the gap between the OCSUB and the OSUB is infinitely larger
than the area A(OSUB− Rp=)−A(C ′).

The computational time required to compute the OSUB is in average 96 longer than the one re-
quired to compute the OCSUB (see Figures 4.13a, 4.13c and 4.13e). Indeed, the OSUB computes
SUBs which are more time consuming to compute than the CSUBs for the OCSUB. Moreover,
the OSUB requires the solution of a number of surrogate relaxation which is more than twice the
one required for the OCSUB (2.2 times in average and up to 11.3). The difference of computa-
tional time seems to increase exponentially with the size of the instances (see Figure 4.13a). The
variations of computational time between the instances are the same for the computation of the
OCSUB as for the computation of the OSUB.

Even if the quality of the OSUB is significantly tighter than the OCSUB, the computational
time required to compute the OSUB is considerably higher. Because of this computational cost, it
is not reasonable to consider the OSUB as upper bound set in an implicit enumerative method.

Obviously the OSUB can be approximated by the heuristic methods introduced in Section
4.6. For a sake of readability of this manuscript, the experimental results of the heuristic methods
approximating the OSUB are presented in Appendix B.3. The behavior of those methods to ap-
proximate the OSUB are very similar to the one obtained when approximating the OCSUB. As for
the exact computation, the computational time required by those heuristic methods is significantly
higher when approximating the OSUB than the OCSUB.

4.9 Conclusion

The optimal convex surrogate upper bound (OCSUB) is the tightest bound set that it is possible
to define and to compute with the convex surrogate relaxation. This chapter gives a formal defini-
tion of the OCSUB, introduces two exact algorithms for computing the OCSUB, and demonstrates
their correctness. A heuristic version is also introduced for a use when the computational time is
limited. The numerical experiments clearly demonstrate the effectiveness of the algorithm called
0M-M1 interval, using the initialization procedure, for the computation of the OCSUB, and show
that the algorithm is not sensitive to the presence of correlation in the numerical instances.

The OCSUB finds its usage naturally in the context of an implicit enumerative method for
solving a bi-objective bi-dimensional binary knapsack problems (2O2DKP ). For example, OC-
SUB is ready to be embedded in an evaluation component aiming to prune or not a node of a
branch-and-bound algorithm, or a state in dynamic programming algorithm. However, it is not
surprising to note that the computation of the OCSUB may require a significant CPU time, even
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Figure 4.13: Comparison of the OCSUB and the OSUB, computed using the 0M-M1 interval
algorithm with the initialization.
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for mid-size numerical instances. Due to this fact, and in the state of knowledge, it is currently
not reasonable to consider such an usage of the OCSUB. The introduction of a heuristic variant
for the computation of the OCSUB is therefore justified. The quality of the resulting measured
approximation, even for a short CPU time, shows the practical interest of the heuristic algorithm
to compute an approximation of the OCSUB. Thus, it appears as a powerful component to encap-
sulate in an implicit enumeration method, in particular to solve instances of 2O2DKP . 0MM1H
seems to be a good choice to determine an approximation of the OCSUB, even if its efficiency
drops for some rare instances. However, there remain several possible improvements that may
change favorably this situation.

The optimal surrogate upper bound set (OSUB) is the tightest (non-convex) upper bound set
based on the surrogate relaxation. In this chapter, we have presented the adaptation of the algo-
rithms developed to compute the OCSUB, to compute the OSUB. The adaptation of the 0M-M1
interval algorithm have been tested experimentally. Since at each iteration of this algorithm, all
nondominated points of the surrogate relaxation are searched, the computational time is consid-
erably more important than for the computation of the OCSUB. As a consequence, the use of the
OSUB as upper bound set in an implicit enumerative method is not worth considering.

The following prospect allow to expect interesting improvements in terms of the OCSUB
computation time, and on the use of the 0MM1H in an implicit enumeration method. It is linked
to the use of these algorithms in an implicit enumeration method, following a re-optimization
principle, e.g. between two levels of the enumeration tree. The idea aims to avoid to repeat
computations between two successive OCSUBs (or approximations), while the two nodes in the
tree vary only by a small subset of variables changing from a free status to fixed. This idea is
currently under research.





5
A branch-and-cut method for the
bi-objective bi-dimensional knapsack
problem

Branch-and-bound methods are more and more used to solve bi-objective combinatorial opti-
mization problems. The upper bound sets for ȲN (the nondominated set of the subproblems) are
generally based on a relaxation of the problem. Solution methods dedicated to multi-objective
knapsack problems generally use either the convex or the LP relaxation. The surrogate relaxation
can also be used.

The convex relaxation leads to the tightest convex upper bound set. Moreover its extreme
supported efficient solutions are feasible. It is “easy” to solve if the single objective version of the
problem can be solved in polynomial or pseudo polynomial time. However the resolution of this
relaxation can be time consuming if the single-objective version is not tractable in a reasonable
time.

The LP relaxation leads to an upper bound set which is less tight than the convex relaxation.
However, its computation is less time consuming, since it can be performed by a parametric sim-
plex method.

The surrogate relaxation is used for single-objective knapsack problems and recently for bi-
objective ones. In Chapter 4, we presented two tight upper bound sets for the 2O2DKP based on
the surrogate relaxation.

In this chapter we aim to design a solution method to solve 2O2DKP . After the description
of the benchmark instances in Section 5.1, Section 5.2 presents a branch-and-bound method em-
bedded in a two phase method. Several relaxations are used and their practical performances are
evaluated. The impact of the initialization of the set of feasible solutions is also assessed. Section
5.3 introduces cover inequalities, which are adapted for the multi-objective context in Section 5.4.
This latter section also presents the branch-and-cut method and different variants of it. The vari-
ants consider different generation mechanism for the cover inequalities. Finally, in Section 5.5,
the performances of those variants are assessed.

125
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5.1 Benchmark

All along this chapter, different implementations of the branch-and-bound based and branch-
and-cut based methods are assessed on benchmarks of instances. Most of the instances used for
our experiments are the same than the ones used in Chapter 4.

In order to have a sample of sizes for the instances, we introduce four new instances: ZTL150-
f250, ZTL150-f500, ZTL200-f250 and ZTL200-f500. The two first ones are composed
of 150 variables and the two last ones of 200 variables. These four instances are derived from
2O2DKP instances, by randomly selecting items (weights and objective coefficients) and fixing
the tightness ratio to 0.5 on each constraint. ZTL150-f250 and ZTL200-f250 are derived
from ZTL250 and ZTL150-f500 and ZTL200-f500 are derived from ZTL500.

The computer used for the experiments is the same as described in Section 4.8.1: equipped
with a Intel Core i7 2640M 2.8 Ghz processor with 8 GB of RAM, and runs under Mac OS X Lion
10.7.5. All algorithms have been implemented in C++.

5.2 A branch-and-bound method for the bi-objective bi-dimensional
knapsack problem

In this section, we aim to design a branch-and-bound method embedded in a two phase method
to solve 2O2DKP and test different variants of this method. Firstly, we describe the lower bound
set, the preprocessing treatments, the generation of new feasible solutions and the separation strat-
egy, for which the implementation is the same in all variants. Next, we propose different im-
plementations for the upper bound set, the branching strategy and the initialization procedure,
respectively in Sections 5.2.2, 5.2.3 and 5.2.4.

5.2.1 Solution method

The method used in this section is a two phase method whose second phase is a branch-and-
bound method. The different components of the branch-and-bound method are described below.

The lower bound set

The lower bound set for YN used here is the set of potentially nondominated points found so
far. Since we are not interested in finding equivalent efficient solutions, the lower bound set is
shifted (by the vector (1,1)).

Preprocessing treatments

In order to reduce the number of variables, two preprocessing treatments are applied.

The first one is the global preprocessing treatment presented in (Jorge, 2010) (see Section 2.4.2
for further details). Even if this preprocessing treatment was introduced for pOKP , it is easily
adapted to pOmDKP by generalizing the notion of dominance between variables. The vector
vj = (c1

j , . . . , c
p
j ,−w1j , . . . ,−wmj) is defined for each item j ∈ {1, . . . , n}. The generalization

of the definitions of the dominance relation and of the preferred and dominated sets directly result
from the vectors vj . Moreover, their properties remain unchanged.

The second preprocessing treatment is the one introduced in (Ingargiola and Korsh, 1973)
for KP and adapted to 2OKP by Visée et al. (1998) and Delort and Spanjaard (2010) (see Sec-
tion 2.4.2 for further details). The generalization of this preprocessing treatment from 2OKP to
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2O2DKP is straightforward by considering an appropriate upper bound set. The upper bound set
used in this preprocessing treatment, in our method, is the one used during the branch-and-bound
execution. This preprocessing treatment is done for each investigated triangle, defined by two ad-
jacent supported nondominated point (see Section 1.4.6), before executing the branch-and-bound
method.

Generation of new feasible solutions

An important part of a branch-and-bound method is the ability to find new good solutions.
Indeed those solutions may be used to improve the lower bound set and may allow to prune earlier
branches of the search-tree. We compare the practical efficiency of three relaxations (convex, LP
and surrogate). Generating new feasible solutions is more or less straightforward, depending on
the considered relaxation.

The extreme supported efficient solutions of the convex relaxation are feasible for the original
problem. Thus when using this relaxation to compute the upper bound set, we obtain feasible
solutions of good quality at each node.

As explained in Chapter 4, the solutions of the surrogate relaxation of 2O2DKP respects
one or the two constraints. Thus when computing a CSUB, the solutions found may respect the
two constraints, i.e. be feasible for 2O2DKP . By performing a simple feasibility check on the
solutions associated to CSUB, we obtain feasible solutions for 2O2DKP .

However when the LP relaxation is used, the extreme supported efficient solutions of this
relaxation (defining the upper bound set) are mostly fractional, thus they are very rarely feasible
for 2O2DKP . In our method, a procedure is launched after every computation of the upper
bound set to “correct” the extreme supported efficient solutions of the LP relaxation into integer
solutions. Let us consider x one of those solutions with a fractional value for at least one variable.
If all the fractional variables of x are fixed to 1 (instead of their fractional value), then obviously
the capacity constraints would be violated. The quality of the corrected solution depends on the
choice of variables to fix to 0 and 1, among the fractional variables. In this method we fix the

fractional variables according to the utility uj =
c1
j + c2

j

w1j + w2j
and we want to favor the variables

with a higher uj . The procedure, applied here, consists in fixing initially all fractional variables to
0. Then for each item j ∈ {1, . . . , n}, in the decreasing order of uj , the value 1 is affected if the
item can be added without exceeding the capacity. Otherwise, the value of this variable is kept to
0. The procedure does not stop as soon as an item does not fit in. Indeed items with a lower uj
might be added in the knapsack without exceeding the capacity.

Separation strategy

The branch-and-bound method explores the nodes in a depth-first search approach. The branch
in which the variable is fixed to 1 is explored first. By exploiting the dominance relations presented
in (Jorge, 2010), when fixing a variable during the separation procedure, other variables can be
fixed without altering the efficient solutions (Jorge, 2010). When fixing a variable to 1, all variables
in its preferred set can also be fixed to 1. Symmetrically, when fixing a variable to 0, all the
variables in its dominated set can also be fixed to 0.

5.2.2 Comparison of the upper bound sets

The implemented upper bound sets are based on three different relaxations: the convex relax-
ation, the surrogate relaxation and the LP relaxation. The same relaxation is considered for every
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node in the search-tree.
The convex relaxation of 2O2DKP is solved using the classical dichotomic search. For each

chosen direction, the resulting 2DKP is solved using CPLEX version 12.6.1. The computation
of this upper bound set is restricted to the considered triangle, following the method explained
in (Delort and Spanjaard, 2010), i.e. a direction is investigated if and only if it is possible for
the image of the optimal solution to be located in the explored triangle. Moreover, as it is done in
(Delort and Spanjaard, 2010), the computation of this upper bound set at a given node is initialized
with the supported efficient solutions of the relaxation of the parent node, which are feasible for
the considered child node.

The second upper bound set is the Optimal Convex Surrogate Upper Bound set (OCSUB)
defined in Chapter 4, (using the initialization by the dichotomic method). To build this upper
bound set in a given triangle, the 0M-M1 interval algorithm might use solutions whose image is
located outside of the triangle. Thus the computation of the OCSUB can hardly be reduced to
the investigated triangle. Two versions are considered in this chapter. The first one consists in
computing the whole OCSUB at each node of the branch-and-bound algorithm, which might be
expensive. The second version restrict each CSUB to the considered triangle, as done for the
convex relaxation. The obtained upper bound set will not be the OCSUB restricted to the triangle
since there is no guarantee to find all solutions associated to CSUBs. However, the computational
time of this approximated version of the OCSUB should be lower than for the exact version. In
the following, we call ApproxOCSUB the approximation version of the OCSUB.

For both versions, the set of critical multipliers at a node is initialized with the critical multi-
pliers found during the computation of the upper bound set for the parent node, for which at least
one associated solution is feasible for this child node.

The upper bound set based on the LP relaxation is restricted to the explored triangle, two con-
straints are added: the first ensures that the first objective value of a solution is greater than the one
of the nadir point of this triangle; the second is similar for the second objective function. In order
to avoid numerical instabilities during the evaluation of the different strategies, we have chosen to
solve the LP relaxation using a dichotomic method (on the weighted sum of the objectives), in-
stead of a parametric simplex. For each direction, the continuous single-objective bi-dimensional
problem is solved using the simplex implementation of CPLEX.

Experimental results

In this section, we compare the upper bound sets described previously, i.e. the convex re-
laxation, the two versions of the surrogate relaxation (OCSUB and ApproxOCSUB) and the LP
relaxation. The applied branching strategy fixes the variable in the same order as in the instance
file. Since the instances are generated randomly, this strategy can be considered as a deterministic
random strategy (random). No initialization of the lower bound set is done.

Table 5.1 presents the obtained results. Two indicators are used: the size of the search-tree (nb
nodes), which indicates the quality of the upper bound set; and the computational time in seconds
(time).

Table 5.1 is vertically separated in three parts corresponding to the size of the instances (from
top to bottom: 28, 100 or 105, 150 variables). The variant giving the smallest search-tree for
each instance is indicated in bold and blue and the one giving the smallest computational time is
indicated in bold and green. The execution of the solution method is limited to one hour, if this
limit is exceeded “-” appears instead of the size of the search-tree and the computational time. The
columns are named according to the used relaxation.
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instances Convex relaxation OCSUB ApproxOCSUB LP
nb nodes time nb nodes time nb nodes time nb nodes time

A1 780 40.102 1172 389.191 1172 219.705 35670 5.483
A2 1195 16.006 2499 86.295 2647 43.357 12617 2.472
A3 903 36.765 1683 249.168 1693 132.758 42271 7.596
A4 1669 8.056 2455 49.966 2481 48.940 7115 1.777
D1 700 19.848 702 9.418 706 9.348 7922 1.474
D2 1538 9.087 1528 7.274 1538 13.341 7296 1.604
D3 921 11.536 893 10.849 913 6.204 19671 3.187
D4 879 8.433 879 4.477 879 7.310 11033 1.846
kp28 2123 8.332 2705 54.174 2737 33.646 7553 1.604
kp28-2 202 4.340 250 15.545 252 10.958 1734 0.391
kp28W-Perm 587 6.512 819 89.550 819 33.523 2803 0.632
kp28W-ZTL 7 0.492 39 1.922 39 2.051 175 0.064
kp28W 708 4.947 962 36.402 962 29.467 2698 0.585
kp28c1W-c2ZTL 291 2.796 705 9.636 747 11.794 2567 0.532
kp28cW-WZTL 4102 60.932 7674 91.804 7878 99.047 34686 6.344
ZTL28 249 4.219 373 14.225 395 11.290 3125 0.695
W7BI-rnd1-1800 9376 584.149 - - 46288 2103.550 314304 87.362
W7BI-rnd1-3000 2057 41.637 10773 1041.190 11421 670.488 57005 15.474
W7BI-tube1-1800 16524 776.756 - - 52554 3546.080 303730 84.183
W7BI-tube1-3000 2968 126.216 6250 251.006 6484 227.189 44562 10.466
W7BI-tube1-asyn 13093 250.563 12975 75.954 14493 125.583 115365 36.440
W7BI-tube2-1800 17179 742.130 - - - - 332003 87.574
Wcollage-tube 20065 1007.720 - - - - 795817 217.923
ZTL100 3654 539.400 17126 1592.790 20878 1345.840 441828 118.809
ZTL105 5042 973.930 - - 45402 2492.440 696664 228.764
ZTL150-f250 - - - - - - 2986617 1003.960
ZTL150-f500 - - - - - - 4841105 1745.780

Table 5.1: Impact of the upper bound set on the performances of the branch-and-bound embedded
in a two phase method to solve 2O2DKP .

Regarding the size of the search-tree indicator, the results are as expected. Since the convex
relaxation gives the tightest possible convex upper bound set, the variant using this relaxation
generally leads to the smallest search-tree (the branches are cut earlier in the execution). However,
for three instances the variant using the surrogate relaxation (OCUSB) leads to smaller search-tree
than the one obtained by the variant using the convex relaxation. This can be explained by the fact
that the upper bound set based on the surrogate relaxation is not restricted to the explored triangle,
so it is possible to find during the exploration of the triangle a new feasible solution located in an
other triangle. This improves the lower bound set of the latter and may allow to cut earlier in the
search-tree during its exploration.

The use of the LP relaxation leads to largely bigger search-trees. However, the computation
of this upper bound set is largely faster than the ones based on the convex or surrogate relaxation.
This is why the LP relaxation leads to the smallest computational time for all instances.

The computational time obtained when using ApproxOCSUB as upper bound set is signifi-
cantly lower than the one obtained for OCSUB, while only a slight increase of the size of the
search-tree can be observed. ApproxOCSUB allows to solve two more instances than OCSUB,
without exceeding one hour of execution. However, the computational times obtained for variants
using the two upper bound sets based on the surrogate relaxation (OCSUB and ApproxOCSUB)
are considerably larger than for the convex and the LP relaxation.

Consequently to the results observed in Table 5.1, in the remaining of this chapter, we use the
upper bound set based on the LP relaxation.
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5.2.3 Comparison of the branching strategies

As observed in Chapter 3, the branching strategies also play an important role in the practical
efficiency of the method. In this section, we compare three branching strategies for the version of
the method using the LP relaxation (since it is the one leading to the best computational time).

The first branching strategy is the one applied in the previous section, for all four versions of
the algorithm. It is called random.

The two next strategies are based on the extreme efficient solutions of the LP relaxation. Since
the efficient solutions of the LP relaxation are generally fractional solutions, branching on a vari-
able which is “very” fractional in the upper bound set is interesting. Indeed the upper bound sets
of the child nodes will be very different from the one of the parent node. The difficulty is to de-
termine which variable is the “most” fractional in the LP relaxation. We have tested two slightly
different measures, for a variable j: the number of extreme efficient solutions of the LP relaxation
for which the variable j is fractional (nbFrac) and the distance of the value of the variable j to a
integer value, summed up over all the extreme efficient solutions of the LP relaxation (sumFrac).
The two branching strategies based on those measures fix the variables in decreasing order of the
considered measure. An example of these two branching strategies is presented in Example 9.

Example 9. Let us consider the 2O2DKP instance of Example 5 (Page 96):

max 10x1 + 7x2 + 20x3 + 7x4 + 8x5

max 15x1 + 17x2 + 7x3 + 4x4 + 10x5

s.t. 3x1 + 1x2 + 9x3 + 4x4 + 9x5 ≤ 13
13x1 + 11x2 + 2x3 + 1x4 + 7x5 ≤ 17

xj ∈ {0, 1}, j = 1 . . . 5

(2O2DKP -1)

The extreme efficient solutions of the LP relaxation are (0.265, 0, 0, 0.449, 0) and (0.261, 0, 0.198, 0, 0)
(rounded to 10−3). Table 5.2 presents the value obtained for each variables for the two branching
strategies nbFrac and sumFrac.

Strategy Measure value
x1 x2 x3 x4 x5

nbFrac 2 0 1 1 0
sumFrac 0.526 0 0.198 0.449 0

Table 5.2: Measure value obtained for the two branching strategies nbFrac and sumFrac

The variable x1 is thus chosen by the two strategies for the separation.

Experimental results

Table 5.3 analyzes the impact of the branching strategies when using the LP relaxation. The
three presented branching strategies are compared over the two indicators: the size of the obtained
search-tree (nb nodes) and the computational time (time). The considered instances are the same
as in Section 5.2.2 and the table is split in three parts according to the size of the instances.

Table 5.3 shows that the branching strategy has an important influence on both the size of the
search-time and the computational time. Indeed when the branching strategies are based on an
analysis of the extreme efficient solutions of the LP relaxation, then the two indicators are reduced
by around a factor 2 in average. Those two separation strategies, nbFrac and sumFrac, gives
similar results. However nbFrac is slightly more efficient in average than sumFrac. Thus from
now on we will only consider the separation strategy nbFrac when using the LP relaxation.
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instances random nbFrac sumFrac
nb nodes time nb nodes time nb nodes time

A1 35670 5.483 16936 3.092 17158 3.102
A2 12617 2.472 9537 2.140 10187 2.292
A3 42271 7.596 19177 3.791 20165 3.960
A4 7115 1.777 4981 1.182 4725 1.130
D1 7922 1.474 3740 0.907 3710 0.882
D2 7296 1.604 3754 0.917 4058 0.978
D3 19671 3.187 3899 0.911 4645 1.015
D4 11033 1.846 4517 0.944 5341 1.071
kp28 7553 1.604 3201 0.748 4001 0.907
kp28-2 1734 0.391 722 0.258 882 0.286
kp28W-Perm 2803 0.632 1291 0.444 1539 0.513
kp28W-ZTL 175 0.064 123 0.058 147 0.062
kp28W 2698 0.585 1112 0.360 1278 0.387
kp28c1W-c2ZTL 2567 0.532 1267 0.315 1283 0.323
kp28cW-WZTL 34686 6.344 19432 4.342 20948 4.584
ZTL28 3125 0.695 1635 0.452 1715 0.460
W7BI-rnd1-1800 314304 87.362 66434 24.299 106146 37.539
W7BI-rnd1-3000 57005 15.474 7167 2.621 8805 3.026
W7BI-tube1-1800 303730 84.183 247820 91.904 430842 147.777
W7BI-tube1-3000 44562 10.466 14060 4.927 17878 5.856
W7BI-tube1-asyn 115365 36.440 91021 29.528 169497 58.230
W7BI-tube2-1800 332003 87.574 244397 83.802 510871 167.853
Wcollage-tube 795817 217.923 64577 26.904 82415 32.408
ZTL100 441828 118.809 186258 69.166 179970 66.938
ZTL105 696664 228.764 289664 122.272 310520 129.256
ZTL150-f250 2986617 1003.960 1011437 433.879 1060527 458.828
ZTL150-f500 4841105 1745.780 1434267 676.123 1440927 676.563

Table 5.3: Impact of the branching strategy on the performances of the branch-and-bound em-
bedded in a two phase method to solve 2O2DKP , when the upper bound set is based on the LP
relaxation.

5.2.4 Initialization of the algorithm using a path relinking

In this section we want to evaluate the benefit of using a procedure initializing the branch-
and-bound method with feasible solutions. The aim of the initialization is to find “high” quality
solutions, which will allow us to fathom nodes from the early iterations of the algorithm. Since the
solving is done by a two phase method, supported efficient solutions are found before we launch
a branch-and-bound in each triangle (before the second phase). These solutions can be used to
generate other ones of good quality. It has been done in (Gandibleux et al., 2001), for example.

Our initialization method consists in applying several times a path relinking operator between
pairs of supported efficient solutions. The path relinking operator ((Glover et al., 2000), (Glover
and Kochenberger, 2003) for further details on this method) builds a path between two solutions,
called the initiating and the guiding solutions. It is initialized with a initiating solution and seeks
solutions to reduce the distance to a guiding solution, according to a distance measure.

The pseudo-code of our initialization method is given in Algorithm 6.

The initialization method executes the same number of calls to the path relinking operator as
the number of triangles defined by the supported efficient solutions. The initiating and guiding
solutions of an execution of the path relinking operator are chosen at Line 4. A path relinking is
executed at each iteration of Lines 5-13. Each step of the path relinking operator (each iteration of
the loop at Lines 6-10) generates a feasible solution x such that the Hamming distance between the
guiding solution and x (i.e. the number of bits differing between to binary solutions) is less than
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Algorithm 6: InitializationByPathRelinking
input : A 2O2DKP instance

SE: the set of supported efficient solutions
output: SF: the set of feasible solutions found

1 begin
/* ChooseInitGuid (nbIter ↓,SE ↓, initSol ↑,guidingSol ↑) chooses the

initiating and guiding solutions (initSol and guidingSol) among
the supported efficient solutions in SE at the iteration
nbIter */

/* HD(x1 ↓, x2 ↓) gives the Hamming distance between x1 and x2 */
/* Neighborhood(x ↓) returns the neighborhood of x */
/* ChooseNeighbor(feasibleNeighbors ↓) chooses the solution to

continue the path, among the neighborhood feasibleNeighbors */
/* Completion(x ↓) is the completion mechanism applied on x */

2 nbIter← 0
3 while nbIter < |SE| − 1 do
4 ChooseInitGuid (nbIter ↓,SE ↓, initSol ↑,guidingSol ↑)
5 x← initSol
6 while x 6= guidingSol do
7 feasibleNeighbors← {x′ ∈ Neighborhood(x ↓) : x′ is feasible and

HD(x′ ↓,guidingSol ↓) < HD(x ↓,guidingSol ↓)}
8 x← ChooseNeighbor(feasibleNeighbors ↓)
9 SF← SF ∪ {x}

10 if x is not complete then
11 sols← Completion(n)
12 SF← SF ∪ sols

13 nbIter← nbIter + 1

14 return SF

the Hamming distance between the guiding solution and x′ the solution generated at the previous
iteration. The solution x is chosen in the neighborhood of x′, i.e. the set of solutions differing
from x′ by only one bit (Line 7 and 8). Since we aim to generate feasible solution of good quality,
only the feasible solution in the neighborhood of x′ are considered. The path relinking stops when
the solution x added to the path is the guiding solution.

Among the solutions along the path, we can distinguish two categories, based on the saturation
of the capacities: the complete and the non-complete solutions (Definition 26).

Definition 26. A solution is called complete if it is not possible to add an item without exceeding
at least one capacity constraint.

Obviously, a non-complete solution cannot be efficient. Indeed, the value of the objective
function can be improved by adding another item. The mechanism at Lines 10 to 12, called
the completion, aims to generate better solutions than the non-complete solutions of the path, by
selecting additional items. The solutions generated by this mechanism are not part of the path. To
increase the chance to find good solutions, we complete a non-complete solution in any possible
ways (adding every valid combination of objects).

The solutions from the path and from the completion compose the set of feasible solutions
returned by the initialization, filtered by dominance.

Example 10 gives a numerical example of the path relinking initialization.
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Example 10. Let us consider the following 2O2DKP instance:

max 180x1 + 80x2 + 90x3 + 200x4 + 110x5

max 29x1 + 128x2 + 127x3 + 16x4 + 112x5

s.t. 180x1 + 76x2 + 90x3 + 198x4 + 98x5 ≤ 423
13x1 + 99x2 + 112x3 + 55x4 + 60x5 ≤ 167

xj ∈ {0, 1}, j = 1 . . . 5

(2O2DKP -2)

The supported efficient solutions are:
– (1, 0, 0, 1, 0) of value (380, 45)
– (0, 0, 0, 1, 1) of value (310, 128)
– and (0, 1, 0, 0, 1) of value (190, 240).
Thus two path relinking executions will be done during the initialization. Any pair of supported

efficient solutions can be chosen to constitute the initiating and guiding solutions. Let us consider
(1, 0, 0, 1, 0) as initiating solution and (0, 1, 0, 0, 1) as guiding solution.

Table 5.4 presents the execution of the initialization.

(1) (2) (3) (4) (5) (6)
It x feasibleNeighbor chosen complete? completions
1 (1, 0, 0, 1, 0)

– (0, 0, 0, 1, 0)
– (1, 0, 0, 0, 0)

(0, 0, 0, 1, 0) no
– (1, 0, 0, 1, 0)
– (0, 1, 0, 1, 0)
– (0, 0, 1, 1, 0)
– (0, 0, 0, 1, 1)

2 (0, 0, 0, 1, 0)
– (0, 1, 0, 1, 0)
– (0, 0, 0, 0, 0)
– (0, 0, 0, 1, 1)

(0, 1, 0, 1, 0) yes

3 (0, 1, 0, 1, 0) (0, 1, 0, 0, 0) (0, 1, 0, 0, 0) no
– (1, 1, 0, 0, 0)
– (0, 1, 0, 1, 0)
– (0, 1, 0, 0, 1)

4 (0, 1, 0, 0, 0) (0, 1, 0, 0, 1)

Table 5.4: Execution of the initialization with the initiation solution (1, 0, 0, 1, 0) and the guiding
solution (0, 1, 0, 0, 1). Column (1) numbers the executions of the Lines 6 to 13 of Algorithm 6,
(2) presents the solution x considered at these lines, (3) the neighborhood obtained at Line 7, (4)
indicates the solution we suppose to be chosen at Line 8, (5) indicates if the solution chosen if
complete and (6) gives the solutions obtained from the completion mechanism Lines 11 and 12 if
it is applied.

We can remark that the third solution from the completion in the first iteration selects an item
(x3) which is neither in the guiding or the initiating solution.

At the iteration 4, feasibleNeighbors is composed only of the guiding solution. Thus the ini-
tialization stops.

The set of feasible solutions, filtered by dominance, returned by the initialization method is
given in Table 5.5.
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Solution Value
(1, 0, 0, 1, 0) (380, 45)
(0, 0, 0, 1, 1) (310, 128)
(0, 0, 1, 1, 0) (290, 143)
(0, 1, 0, 1, 0) (280, 144)
(1, 1, 0, 0, 0) (260, 157)
(0, 1, 0, 0, 1) (190, 240)

Table 5.5: Feasible solutions returned by the initialization method

All the solutions in Table 5.5 are efficient solution and the only missing efficient solution is
(1, 0, 1, 0, 0) of value (270, 156).

We can see in Example 10 that there are two main points of choice in the initialization method:
the choice of the initiating and guiding solutions (Line 4 of Algorithm 6) and the choice of the next
neighbor in the path (Line 8 of Algorithm 6). In the next paragraph, we propose two implementa-
tions for the choice of the initiating and guiding solutions and three implementations for the choice
of the neighbor.

Choice of the initiating and guiding solutions and choice of the neighbor

Choosing different pairs of initiating and guiding solutions lead to different paths and thus
different feasible solutions. The two most intuitive choice strategies are: choosing randomly a
pair of supported solutions and choosing adjacent supported solutions. The first strategy, called
randSol, favors the diversity of the solution. The second one, named adjSol, aims to find points in
the triangle defined by the two considered supported efficient solution.

Selecting the solution to add in the path, at a given iteration, can be done according to differ-
ent strategies. In particular, the selected solution can be the one maximizing the weighted sum
defined by the initiating and guiding solutions (named bestN), or minimizing this measure (named
worstN); or it can be the result of a random choice (named randN).

Those variants on the choice of the initiating and guiding solution and on the choice of the
neighbor define six different implementations for the path relinking initialization. The six ini-
tialization versions are evaluated by launching the two phase method whose second phase is a
branch-and-bound method, using the tested initialization, the LP relaxation to compute the upper
bound sets and the nbFrac branching strategy. The name of an initialization version is the juxtapo-
sition of its components. The instances are presented in Section 5.1 with 28, 100 or 105 variables.
Larger instances are not computed to avoid large computational times. The obtained performances
are compared to the non-initialized method, on two indicators: the size of the search-tree and the
computational time.

The first indicator, on the size of the search-tree, aims to evaluate the quality of the solutions
found. Indeed a better quality of the solutions implies a smaller search-tree. The measure used

for this indicator is the improvement ratio IRS, defined for a given instance as: IRS =
sr − st

sr
where sr is the size of the search-tree obtained by the reference method (non-initialized) and st

is the size of the search-tree obtained by the method using the tested initialization. Figure 5.1a
shows the average and standard deviation of this measure over all instances.

Finding good solutions has a cost and even if the search-tree is largely decreased, the compu-
tational time can be deteriorated. The second indicator, comparing the computational times, uses
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the measure IRT , defined for a given instance as: IRT =
tr − tt

tr
where tr is the computational

time spent by the reference method (non-initialized) and tt is the computational time spent by the
method using the tested initialization. Figure 5.1b shows the average and standard deviation of
IRT for the considered instances.
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Figure 5.1: Comparison of the six variants of the path relinking initialization for two phase method
whose second phase is a branch-and-bound method. The non-initialized version of the method is
the reference.

On Figure 5.1, we can observe that building the path using the strategy BestN leads in average
to better performances than the two others strategies, independently of the choice of initiating and
guiding solutions. This strategy is the best regarding the computational time and the size of the
search time. The two other strategies (randN and WorstN) seem to have equivalent performances.

We can also remark that choosing adjacent solutions as initiating and guiding solutions leads
to smaller search-trees and smaller computational times in average than choosing the initiating and
guiding solutions randomly.

Thus the strategy giving the smallest search-tree and the smallest computational time is the
one executing a path relinking between two adjacent supported solutions (adjSol) and choosing
the best neighbor to built the path among feasible neighbors (bestN). In the following, we use this
variant.

Oscillation

As already mentioned, the solutions along the path can be divided in two categories: the
complete and non-complete solutions. The non-complete solutions cannot be efficient. However,
an improvement mechanism is applied on them (the completion Line 10 to 12 of Algorithm 6).
Thus the non-complete solutions of the path allow to generate several solutions.
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On the contrary, the complete solutions do not generate additional solutions. Indeed the com-
pletion mechanism cannot be applied on a complete solution.

On another hand, the solutions found during the path relinking executions, are quite similar and
it may be in particular the case for the solutions generated by the completion procedure. However
the efficient solutions can be very diversified. Therefore, it might be interesting to exploit the
complete solutions to generate several diversified feasible solutions.

To diversify the feasible solutions, we introduce a last mechanism called oscillation (Hanafi
and Fréville, 1998), that we add between Lines 9 and 10 of Algorithm 6, if the solution is complete.
Its principle is to degrade a complete solution x̄ by adding items (making it infeasible), then the
solution is restored generating several feasible solutions.

The first phase, consisting in adding items making the solution infeasible is called the degra-
dation. During this phase, a given number of items, with the value 0 in x̄, are set to 1. We call the
depth of the degradation the number of items added during the degradation phase, it is a parameter
of the procedure. In order to obtain good feasible solutions from the oscillation mechanism, the

items are added in decreasing order of the utility uλj =
λ1z

1
j + λ2z

2
j

w1j + w2j
, where λ is defined as the

normal of the hypothenuse of the triangle formed by the initiating and guiding solutions (since the
strategy adjSol is employed). The solution obtained at the end of the degradation phase is denoted
by xD.

The second phase, called the restoration phase, consists in removing items from xD, which is
infeasible, in order to obtain feasible solutions. There exist several ways to restore the solution
xD, depending on the set of items removed from the solution. We can apply a similar principle
than the completion, by generating every possible restorations. However, we are interested only
in good quality feasible solutions, therefore we generate only complete solutions (otherwise there
are proven to be dominated). The restoration procedure can then be represented by a decision-
tree in which a path corresponds to a set of deleted items and a node is pruned whenever the
corresponding solution is feasible. A node can also be pruned when the corresponding solution
is dominated by a supported solution, indeed in this case the solution cannot improve the lower
bound set.

Example 11 presents an example of the oscillation procedure.

Example 11. Let us consider the problem 2O2DKP -2, presented in Example 10, and the solution
x̄ = (0, 1, 0, 1, 0) obtained at the iteration 2 of the initialization procedure in Example 10.

We apply an oscillation with a depth of degradation of 1, in the path relinking presented in
Example 10. Then λ = (240− 45, 380− 190) = (195, 190). The item, with a value of 0 in x̄, with
the highest utility uλ is x5. Thus the solution xD is (0, 1, 0, 1, 1). The restoration phase builds
the decision-tree presented in Figure 5.2. The solutions generated by the restoration phase are
(0, 1, 0, 0, 1), (0, 0, 0, 1, 1) and (0, 1, 0, 1, 0), their respective value are (190, 240), (310, 128) and
(280, 144). The other possible restorations of xD would give non-complete solutions.

(0, 1, 0, 1, 1)

(0, 1, 0, 0, 1) (0, 0, 0, 1, 1) (0, 1, 0, 1, 0)

x4 = 0 x2 = 0 x5 = 0

Figure 5.2: Decision-tree for the restoration on the solution xD = (0, 1, 0, 1, 1)

If a depth of degradation is 2, then the solution xD would be (1, 1, 0, 1, 1), the decision-
tree built is presented in Figure 5.3. The solutions generated by the restoration phase would
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be (0, 1, 0, 0, 1),(1, 0, 0, 0, 1), (1, 1, 0, 0, 0), (0, 0, 0, 1, 1), (0, 1, 0, 1, 0) and (1, 0, 0, 1, 0), their re-
spective value are (190, 240), (290, 141), (260, 157), (310, 128), (280, 144) and (380, 45).

(1, 1, 0, 1, 1)

(1, 1, 0, 0, 1) (0, 1, 0, 1, 1) (1, 0, 0, 1, 1)

x4 = 0 x1 = 0 x2 = 0

(0, 1, 0, 0, 1) (1, 0, 0, 0, 1) (1, 1, 0, 0, 0) (0, 0, 0, 1, 1) (0, 1, 0, 1, 0) (1, 0, 0, 1, 0)

x1 = 0 x2 = 0 x5 = 0 x2 = 0 x5 = 0 x5 = 0

Figure 5.3: Decision-tree for the restoration on the solution xD = (1, 1, 0, 1, 1)

As we can see in Example 11, the quality of the solutions obtained by the oscillation mecha-
nism depends on the depth of the degradation. Indeed when the depth of the degradation increases
the quality and the number of obtained solutions increase too, but the computational time also
increases. In order to limit the computational time spent, while keeping a satisfying quality for
the generated solutions, we introduce a maximal number of solutions generated by the restoration.
Then the procedure favors the deletion of items j having the lowest uj , in the aim of maintaining
the quality of the feasible solutions. This parameter is illustrated in Example 12.

Example 12. In Example 11, when the depth is 2, if the maximum number of solutions from
the restoration phase is 3, then the first item to be deleted is x4 since it has the lower uλ with
λ = (195, 190). Then only the solutions (0, 1, 0, 0, 1), (1, 0, 0, 0, 1) and (1, 1, 0, 0, 0) would be
generated during the restoration phase.

The impact of the depth of the degradation, as well as the impact of the maximum number
of restored solutions generated are tested on instances of 28, 100 and 105 variables. The method
executed is the branch-and-bound method embedded in a two phase method, using the LP relax-
ation and the nbFrac branching strategy. The initialization uses the strategies adjSol and bestN.
Figure 5.4 shows the obtained results, with respect to different depths of the degradation; “n rest”
specifies the maximum number of restored solutions generated from a complete solution.

Figure 5.4a confirms that when the depth and the number maximum of solutions from the
restoration increase, the quality of the initial solutions increases and thus the size of the search-
tree decreases. However Figure 5.4b shows that the computational time increases in this case.
The depth of the degradation does not impact significantly the size of the search-tree for a fixed
maximum number of restorations. To get a good tradeoff between the quality of obtained solutions
and the computational time during the oscillation procedure, it is important to reduce the maximum
number of solutions generated during the restoration phase. The optimum maximum number of
generated solutions during this phase seems to be 5.

Considering the results in Figure 5.4, we will apply the initialization procedure with a degra-
dation of depth 2 and a maximum number of solutions from the restoration of 5.

Restriction of the number of completions

The principle to generate only a restricted number of solutions during the restoration phase
(presented in the previous paragraph) can be adapted to the completion procedure (Line 10 to 12
of Algorithm 6). In order to evaluate the impact of the maximal number of solutions generated by
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Figure 5.4: Impact of the depth of the degradation and of the maximal number of solutions gener-
ated during the restoration phase

the completion procedure on the initialization method, we run the method initialized, with different
values for this parameter. The initialization uses the strategies adjSol, bestN, degradations of depth
2 and restorations with a maximum number of solutions of 5. The upper bound set of the branch-
and-bound method is based on the LP relaxation and the branching strategy is nbFrac.

Figure 5.5 shows the impact of this maximum number of solutions generated during the com-
pletion procedure, regarding the size of the search-tree and the computational time, on instance of
28, 100 or 105 variables.

Figure 5.5a shows that, as expected, when the maximum number of solutions generated by the
completion procedure increases, the size of the search-tree decreases (IRS increases). However,
when the maximum number of solutions generated by the completion procedure increases, IRT
increases too, except when more than 50 solutions are allowed. However the difference in terms
of IRT is rather small when comparing the different tuning. In the following a maximum number
of 50 solutions is generated by the completion procedure.

5.2.5 Initialization by the nondominated set

Even if the path relinking initialization allows to reduce the size of the search-trees and the
computational time in average, this reduction is modest. Indeed the size of the search-tree is
reduced, on average, by approximately 4% and the computational time by approximately 8%. In
order to evaluate the maximum reduction we can reach with an initialization method, we initialize
the feasible solutions with the set of efficient solutions. Obviously this initialization is an ideal
initialization, which could not be achieved in practice. However since this is the best possible
initialization, it gives an upper bound on the reduction of the size of the search-tree and the one of
the execution time.

Figure 5.6 compares the performance obtained for the branch-and-bound based method with
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Figure 5.5: Impact of the maximal number of completion for each non-complete solution

the initialization method by the path relinking to the one using the initialization by the nondomi-
nated set. The path relinking initialization uses the strategies adjSol and bestN, with a degradation
of depth 2, 5 solutions generated during the restoration and 50 during the completion.
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Figure 5.6: Comparison of the initialization using the path relinking and the initialization by the
nondominated set.

Figure 5.6a shows that initializing the method with the nondominated set allows to reduce the
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search-tree by 16% in average. The difference of IRS seems to grow when the size of the instance
increases.

Regarding the computational time (Figure 5.6b), the initialization with the nondominated set
allows a reduction of 18%. The path relinking initialization allows almost half the possible reduc-
tion.

The average reduction of the computational time is highly correlated with the average reduc-
tion of the size of the search-tree, which indicates that the cost of the path relinking initialization
is reasonable. There still exists a large margin of improvement for the feasible solutions obtained
by the initialization method. However finding good solutions can be expensive. The path relinking
initialization method seems to provide an interesting tradeoff between the quality of the obtained
feasible solutions and the computational time spent on the initialization.

From the results presented in Figure 5.6, we can also observe that the reduction of the size of
the search-tree is modest when the method is initialized with the nondominated set. Thus the upper
bound set might not be tight enough and does not allow to prune branches early in the execution.
In Section 5.4, we introduce valid inequalities all along the solving process, in order to tighten
the upper bound set and thus prune more branches. The valid inequalities introduced are cover
inequalities, which are presented, in the single-objective context, in the next section.

5.3 Cover inequalities for the multi-dimensional knapsack problem

As observed in Table 5.1, the LP relaxation leads to a low computational time, however the
size of the search-trees obtained for this relaxation is largely higher than the one obtained for the
other relaxations. The idea behind the branch-and-cut method embedded in a two phase method
is to tighten the upper bound set obtained using the LP relaxation by adding valid inequalities.
In this section, we present the cover inequalities, which are valid inequalities introduced for the
mDKP , and we present two problems leading to cover inequalities based on the optimal solution
of the LP relaxation.

The notion of cover inequality was introduced by Crowder et al. (1983). A set C of items j is

a cover for the constraint i

 n∑
j=1

wij xj ≤ ωi

 if the sum of the weights of those items exceeds

the capacity ωi, i ∈ {1, . . . ,m}. The cover inequality corresponding to C is
∑
j∈C

xj ≤ |C| − 1. A

cover C is minimal if deleting any item of C implies that the resulting set is no longer a cover.
A cover inequality can be extended by adding all items which have a weight greater or equal to

any item in the cover. We call E(C) the extended set from cover C on the considered dimension.
The resulting inequality is then

∑
j∈E(C)

xj ≤ |C| − 1.

Since the definition of a cover inequality does not involve the objective function, the definition
is the same for single-objective and multi-objective contexts.

Example 13. We consider the 2O2DKP instance:

max 10x1 + 7x2 + 20x3 + 7x4 + 8x5

max 15x1 + 17x2 + 7x3 + 4x4 + 10x5

s.t. 3x1 + 1x2 + 9x3 + 4x4 + 9x5 ≤ 13
13x1 + 11x2 + 2x3 + 1x4 + 7x5 ≤ 17

xj ∈ {0, 1}, j = 1, . . . , 5

(2O2DKP -1)
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x2 +x3 +x4 ≤ 2 is a cover inequality (according to the first constraint). It can be extended in
x2 +x3 +x4 +x5 ≤ 2 since x5 has a weight (9) greater or equal than x2, x3 and x4 (respectively
1, 9 and 4).

In (Crowder et al., 1983), the authors remark that computing all cover inequalities would
be very time-consuming and even impossible to implement. Instead they consider the optimal
solution of the LP relaxation xLP and aim to find a cover inequality violated by xLP . To find such
a cover, they solve the following binary linear program, defined on the constraint i. This problem
is solved successively for every constraint.

min
n∑
j=1

(1− xLPj ) zj

s.t.

n∑
j=1

wij zj ≥ ωi + 1

zj ∈ {0, 1} j = 1, . . . , n

(5.1)

We call z∗ the optimal solution of Problem (5.1). The cover defined by z∗ is the set of items j
such that z∗j = 1.

They highlight a condition (cf Proposition 13) under which the cover inequality found is vio-
lated by xLP . In the following we will say that such a cover inequality is cutting.

Proposition 13. (Crowder et al., 1983) The cover inequality defined by the optimal solution z∗ of
(5.1) is violated by xLP if and only if the objective value of z∗ is strictly lower than 1.

They pointed out that Problem (5.1) finds the “most violated” cover inequality. Klabjan et al.
(1998) prove that Problem (5.1) is a NP-hard problem.

Bektas and Oguz (2007) explain that Problem (5.1) can be reduced to the set of fractional
variables for the LP relaxation, i.e. such that 0 < xLPj < 1. To explain that, we split the set
of variables according to their value in xLP : J0 = {j, xLPj = 0}, J1 = {j, xLPj = 1} and
JF = {j, 0 < xLPj < 1}.

According to Proposition 13, the cover inequality is cutting if and only if the objective value
of z∗ is strictly lower than 1. Thus if we have z∗j = 1 for any j ∈ J0, then the objective value of
z∗ would be greater or equal to one and the resulting cover inequality will not be violated by xLP .
Thus, we can systematically fix z∗j to 0 for every j ∈ J0. Moreover for any j ∈ J1, the objective
coefficient of zj is 0. Thus there exists one optimal solution z∗ with z∗j = 1 for each j ∈ J1. We
can reduce the size of Problem (5.1) by fixing each variable of J1 to 1. This preprocessing does
not affect the value of the optimal solution.

Problem (5.1) can be reformulated as follow:

min
∑
j∈JF

(1− x∗j ) zj

s.t.
∑
j∈JF

wij zj ≥ ωi −
∑
j∈J1

wij + 1

zj ∈ {0, 1} j ∈ JF

(5.2)

Since the original problem is a multi-dimensional knapsack, fixing zj to 0 for each j ∈ J0

can lead to an infeasible Problem (5.2) for one or several dimensions (but not all). In that case,
we can deduce that no cover inequality based on this constraint allows to cut the solution xLP . If
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the solution xLP is not integer, then the analysis of the other constraints will give a cutting cover
inequality.

Since the objective coefficient of some variables are 0 in Problem (5.1), the cover obtained
based on its optimal solution might not be minimal. However it is well known that minimal covers
are tighter than non minimal ones.

To avoid that situation, Gabrel and Minoux (2002) propose to solve another binary problem
with a non-linear objective function. In this chapter, the cover inequalities are minimalized by
deleting the items with the smallest weight from the cover.

The use of Problems (5.1) and (5.2) is illustrated in Example 14.

Example 14. We consider the weighed sum using multiplier (0,1) of the 2O2DKP instance pre-
sented in Example 13, i.e. the following 2DKP problem:

max 15x1 + 17x2 + 7x3 + 4x4 + 10x5

s.t. 3x1 + 1x2 + 9x3 + 4x4 + 9x5 ≤ 13
13x1 + 11x2 + 2x3 + 1x4 + 7x5 ≤ 17

xj ∈ {0, 1}, j = 1 . . . 5

(2DKP -1)

The optimal solution of 2DKP -1 is xLP = (0.26, 1, 0.80, 1, 0), rounded to 10−2.
Problem (5.1) defined on xLP based on the first constraint is:

min 0.74 z1 + 0 z2 + 0.2 z3 + 0 z4 + 1 z5

s.t. 3 z1 + 1 z2 + 9 z3 + 4 z4 + 9 z5 ≥ 14
zj ∈ {0, 1}, j = 1, . . . , 5

Fixing z2 and z4 to 1 and z5 to 0, Problem (5.2) derived from Problem (5.1) is:

min 0.74 z1 + 0.2 z3

s.t. 3 z1 + 9 z3 ≥ 4
zj ∈ {0, 1}, j = 1, 3

The optimal solution of this reduced problem is z1 = 0, z3 = 1. Therefore, considering the first
constraint leads to the cover inequality x2 + x3 + x4 ≤ 2. The same process considering the
second constraint gives the cover inequality x1 + x2 + x4 ≤ 2.

We can remark that the cover inequality x1 +x2 +x4 ≤ 2 obtained using the second constraint
is not minimal, since {x1, x2} constitutes a cover for the second constraint.

5.4 Branch-and-cut for the bi-objective bi-dimensional knapsack prob-
lem

In this section, we aim to generate cover inequalities all along the solution method for 2O2DKP .
Since the relaxation used to compute the upper bound set is the LP relaxation, this section will only
consider cover inequalities based on the LP relaxation. The main difference with the previous sec-
tion is that the solved problem is a multi-objective problem, thus there does not exist one single
optimal solution, but a set of efficient solutions for the LP relaxation. Problems (5.1) and (5.2),
defined in the previous section, can be defined for any efficient solution of the LP relaxation.

In the first part of this section, we wonder if it is interesting to generate cover inequalities based
on the surrogate constraint of 2O2DKP . The second part presents the branch-and-cut method and
different possible implementations for its components. The solution method implemented in this
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method is based on the method elaborated in Section 5.2.1, i.e. the two phase method, whose
second phase is a branch-and-bound. The branch-and-cut method uses all the components of
this branch-and-bound method: the upper bound set is based on the LP relaxation; the branching
strategy is nbFrac and the initialization method is the one defined in Section 5.2.4. Finally, the last
part of this chapter presents experimental results obtained for the different implementations of the
branch-and-cut method and determines the one leading to the best performances.

5.4.1 Cover inequalities and surrogate constraint

In this part of the chapter, we consider xLP an efficient solution of the LP relaxation of
2O2DKP .

We remark that Problems (5.1) and (5.2) are based on one constraint whereas 2O2DKP is
composed of two constraints. By definition, Problems (5.1) and (5.2) can be defined for one or
the other of the constraints, and by solving Problem (5.2) consecutively for both constraints, the
obtained cover inequalities may be different (cf Example 14).

In this Section we wonder if analyzing an aggregation of the two constraints allows us to obtain
tighter valid inequalities. The aggregation uses a multiplier u ∈ [0, 1], the obtained constraint,
called the surrogate constraint of 2O2DKP , is:

n∑
j=1

uw1j xj + (1− u)w2j xj ≤ uω1 + (1− u)ω2

Any feasible solution of 2O2DKP also respects the surrogate constraint. Thus the surrogate
constraint can be used to find cover inequalities without altering the feasible set. By defining
Problem (5.1) with the surrogate constraint, we obtain:

min

n∑
j=1

(1− xLPj ) zj

s.t.

n∑
j=1

uw1j zj + (1− u)w2j zj ≥ uω1 + (1− u)ω2 + 1

zj ∈ {0, 1} j = 1, . . . , n

(5.3)

We call z0 and z1 the optimal solutions of Problem (5.3) for respectively u = 0 and u = 1.
Let us consider z̄, the optimal solution of Problem (5.3) for a given u ∈ [0, 1]. By definition of
Problem (5.3), z̄ violates the surrogate constraint. Thus z̄ also violates one of the two constraints
of 2O2DKP . z̄ is feasible for Problem (5.3) with u = 0 or u = 1, i.e. for Problem (5.1) based
respectively on the second or the first constraint. As a consequence, the objective value of z̄ is
lower or equal than the one of z0 or z1, for Problem (5.3).

Example 15 gives an example of the solving of Problem (5.3) for u ∈]0, 1[.

Example 15. Let us consider the 2DKP instance presented in Example 14,
xLP = (0.26, 1, 1, 0.55, 0)

z0 = (1, 1, 0, 1, 0) is the optimal solution of Problem (5.3) with u = 0, its objective value
is 0.74; z1 = (0, 1, 1, 1, 0) the optimal solution with u = 1 and its objective value is 0.2 (see
Example 14).

For u = 0.9, Problem (5.3) is:

max 0.74 z1 + 0 z2 + 0.2 z3 + 0 z4 + 1 z5

s.t. 4 z1 + 2 z2 + 8.3 z3 + 3.7 z4 + 8.8 z5 ≥ 14.4
zj ∈ {0, 1}, j = 1 . . . 5
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Its optimal solution is (1, 1, 1, 1, 0) and its objective value is 0.94. The resulting cover in-
equality (x1 +x2 +x3 +x4 ≤ 3) is violated by xLP . However, the cover {1, 2, 3, 4} obtained with
u = 0.9 is included both in {1, 2, 4} (obtained with u = 0) and {2, 3, 4} (obtained with u = 1).

Generally the covers found for u ∈]0, 1[ are included in the covers found for u = 0 or u = 1
(as in Example 15), i.e. they are less tight and redundant than the ones found using u = 0 or
u = 1.

In some rare cases using a multiplier u ∈]0, 1[ can lead to a cutting cover inequality which
is not included in the one obtained for u = 0 and u = 1. Finding such inequalities would be
interesting, but the computational time required to find those rare inequalities may, most likely,
compromise the tradeoff between computational time and quality. In this study we have chosen to
analyze only the two constraints independently.

5.4.2 Generation of cover inequalities for 2O2DKP

The valid inequalities generated in our branch-and-cut are based on the principles explained
in Section 5.3.

Since Problems (5.1) and (5.2) were originally defined on the LP relaxation of a single-
objective binary optimization problems, we have to adapt them to 2O2DKP . Since the problem
we deal with is bi-objective, then the LP relaxation does not give an optimal solution, but a set
of efficient solutions. Problem (5.2) can thus be solved for any one of the efficient solutions of
the LP relaxation, which are generally in infinite number. In particular, it can be solved for every
extreme efficient solutions which are sufficient to define the upper bound set. In this section, we
present a branch-and-cut method for 2O2DKP . The cover inequalities introduced at each node
are based on the extreme supported efficient solutions of the LP relaxation, by solving Problem
(5.2), considering successively the two constraints.

We can remark that a cover inequality generated for a node can easily be adapted and used in
its child nodes (since only a few variables have been fixed). The adaptation of a valid inequality is
the following:

– for every variable in the valid inequality which has been fixed to 1, the right side of the
inequality is reduced by one and this variable is deleted from the inequality;

– for every variable in the valid inequality which has been fixed to 0, the variable is deleted
from the inequality, without changing the right side of the inequality. If the valid inequality
is redundant (i.e. the sum of the coefficient on the right side is lower or equal to the left
side), then the valid inequality can be deleted.

Example 16 illustrates how valid inequalities are adapted from the parent to the child node.

Example 16. We consider the valid inequality x2 + x3 + x4 + x5 ≤ 2 and suppose that the
variable x3 is fixed to 1 and next x5 to 0. Since x3 is fixed to 1, the valid inequality becomes
x2 + x4 + x5 ≤ 1. Since x5 is fixed to 0, the valid inequality becomes x2 + x4 ≤ 1. This valid
inequality is not redundant. It is the valid inequality inherited by the child node.

Based on this observation, at a given node of the branch-and-cut method, we can use the valid
inequalities generated for the parent node and even the one generated for all its ancestor nodes.
Those inherited inequalities make it possible to have a tighter upper bound set in the child node.

One way to tighten the upper bound set at each node could be to:

Step (I) compute the LP relaxation of 2O2DKP , to which we add the valid inequalities adapted
from the ancestor nodes;
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Step (II) generate cover inequalities based on every extreme efficient solutions of problem con-
sidered during Step (I), for both constraints;

Step (III) recompute the LP relaxation (with the cover inequalities generated during Step (II) and
those of Step (I)).

The upper bound set obtained during Step (III) is tighter than the one obtained during Step
(I), since it consider more cover inequalities. The upper bound set obtained by Step (III) is also
defined by extreme solutions, so Step (II) and (III) can be repeated several times, tightening the
upper bound set every time.

Intuitively, at a given node when the number of valid inequalities increases (thanks to Prob-
lemn (5.2) or inherited from the ancestor nodes), the upper bound is tighter. Therefore, performing
several times Steps (II) and (III) leads to tighter upper bound sets.

First experiments showed that even if this process (Steps (I), (II) and (III)) is done once, the
tradeoff between the computational time and the quality of the upper bound set is not interesting.
This process leads to a reduction of the search-tree by 10%, however since a second continuous
bi-objective problem has to be solved at each node, the computational time of the whole solu-
tion method is almost doubled (the computation of the upper bound set is, by far, the most time
consuming component of the method). Since the valid inequalities can be inherited to the child
nodes, the upper bound set obtained during Step (I) is tighter than if no valid inequality were used.
Therefore, Step (III) can be omitted. The valid inequalities generated during Step (II) allow to
tighten the upper bound set of the child nodes.

Moreover during the first experiments, we noticed that when the number of valid inequalities
increases, the cost of adapting those valid inequalities and the cost of the computation of the upper
bound set increase and the solution method is more time consuming, even if the search-trees are
smaller. So we have to regulate the number of valid inequalities at each node. This question is
discussed in Section 5.4.3

5.4.3 Strategies related to cover inequalities

To regulate the number of valid inequalities considered at each node, we can play on two levels
of the algorithm: when the valid inequalities are generated or when they are adapted from a parent
to a child node.

Let us first consider the generation of the cover inequalities. We recall that two cover in-
equalities (one for each constraint of the 2O2DKP ) can be generated for every extreme efficient
solution of the LP relaxation. However, it is not necessary to analyze each one of those solutions.
We can choose to generate cover inequalities only on a subset of those solutions, thus less cover
inequalities are generated. This raises two questions: How many solutions should be analyzed?
Which solutions should we analyze? In this study we will analyze different settings, answering
those two questions.

Concerning the first question, we can easily set a maximum number of analyzed solutions at
each node.

Concerning the choice of the solutions to analyze, we elaborated four strategies. Ideally, we
would like to generate the “best” cover inequalities. However, this notion is vague and requires
a characterization of the quality of a cover inequality. Thus we employ heuristic approaches,
detailed here:
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found The solutions are analyzed in the order they were found in the dichotomic method comput-
ing the LP relaxation. The lexicographic optimal solutions, which are more likely to be very
different, are analyzed first.

distributed It analyses well distributed solutions of the upper bound set. Let us consider the upper
bound set is composed of b extreme solutions and s solutions have to be analyzed (s ≤ b).

Then the solutions analyzed are the one at the positions
⌊

b

s+ 1

⌋
,

⌊
2 b

s+ 1

⌋
, . . . ,

⌊
s b

s+ 1

⌋
,

in the extreme solutions of the LP relaxation, in the natural order. The idea behind this
heuristic is that the cover inequalities generated for a given solution are likely to cut also the
adjacent extreme efficient solutions for the relaxed problem.

max0 It orders the solutions according to the number of variables with a value 0, and chooses
the solutions to analyze in decreasing order of this measure. Based on Problem (5.1), the
variables with a value of 0 do not appear in the generated cover inequality. Thus when the
number of variables at 0 increases, it is the more likely to obtain small cover inequalities.

min0 It is the symmetric of max0, the solutions are considered in increasing order of the number
of variables at 0. On the contrary to max0, using this strategy it is more likely to obtain
bigger covers, which are more likely to be non-redundant for a large number of descendant
node.

The second axis to regulate the number of cover inequalities is to select the valid inequalities to
inherit to the child node. As for the generation of the cover inequalities, it is difficult to determine
which one of the cover inequalities will be the most useful in the branch-and-cut method. Thus
we propose four heuristic approaches:
smallestRh It selects the valid inequalities with the smallest right side. This strategy aims to select

only one cover inequality. However, if several inequalities have this smallest right side, then
they are all adapted to the child node.

biggestRh It is the symmetric of smallestRh, it selects the valid inequalities with the biggest right
side. Similarly to the previous strategy, if several cover inequalities have the same value,
they are all adapted.

ratio It selects the valid inequalities with the smallest ratio right side over number of variables of
the valid inequality. Several inequalities can be adapted if they all have the smallest ratio.

active It adapts all the cover inequalities, except the ones that were not “active” during the com-
putation of the upper bound set. A cover inequality is considered as active if the constraint
derived from it is tight in at least one extreme efficient solution of the relaxation.

The branching strategies can also be based on the cover inequalities. We consider three cover-
based branching strategies. The cover based branching strategies only focuses on the cover in-
equalities that will be inherited by the child node. The first one is called cover and it fixes the
variable which appears the most often in those cover inequalities. The aim is to enforce the valid
inequalities at the child nodes. The two last ones mix the two separation strategies cover and
nbFrac. The separation called coverNbFrac is mainly based on the strategy cover and the equali-
ties are discriminated thanks to nbFrac. The second strategy, called nbFracCover, is mainly based
on the nbFrac and the equalities are broken by cover.

5.5 Experimental results

In this section, we evaluate the impact of the different variants of the branch-and-cut method
presented in the previous section (number of solution analyzed, choice of the solutions to analyze,
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choice of the cover inherited, branching strategy). We also analyze the impact of extending the
cover inequalities, i.e. adding items, which have a larger weight, to the cover.

All variants of the branch-and-cut method are compared to the branch-and-bound method
using the path relinking initialization, the LP based upper bound set and the nbFrac branching
strategy. Since the instances with 28 variables have a low computational cost, the evaluation of
those variants is done on the instances of the benchmark with 100 or 105 variables, in order to
highlight the differences between the variants. The variants are compared regarding two aspects:
the size of the search-tree and the computational time. The measures used for the comparison are
again IRS for the first aspect and IRT for the second.

In first experiments, which we do not show here, we observed that increasing the number of
analyzed solutions generally reduces the size of the search-tree but also increases the computa-
tional time. In more than 70% of the cases, the variants analyzing only one solution lead to the
best computational time in average. In order to reduce the number of variants to analyze in this
section we consider only variants considering one solution for Sections 5.5.1 and 5.5.2. However
the influence of the number of analyzed solutions to generate valid inequalities is studied more in
detail in Section 5.5.3.

5.5.1 Impact of the extension of the cover inequalities

To identify the most efficient way to generate the valid inequalities used during the branch-
and-cut component, we first consider the benefit to extend the generated cover inequalities. We
recall that a cover inequality is extended by adding in the left side of the inequality every item
whose weight is larger than the ones in the cover, without changing the right side of the inequality.
Therefore, the obtained cover inequality is tighter. We expect that the impact of the extension of the
cover inequalities depends on the covers inherited by the child node. For example the strategy ratio
is more likely to take advantage of the extension of cover inequality than the strategy biggestRh.

Figure 5.7 compares the variants using the extended cover inequalities (named ext) and the
ones using non-extended cover inequalities (named noExt). The results are separated according
to the heuristic of choice of the covers inherited by the child node. The presented results are
the average and standard deviation of IRS and IRT , over all instances and over the different
possible variants of the choice of the solutions to analyze. For all variants of the branch-and-cut
method, the upper bound set the branching strategy is nbFrac and the path relinking initialization
is used.

Figure 5.7a shows that the extension of covers inequalities leads to a reduction on average of
the size of the search-tree in the variants ratio and active. The performance obtained by extending
or not the cover inequalities for the variants smallestRh are equivalent. However, using extended
cover inequalities does not lead to better results for the variant biggestRh. This last result can
be explained by the fact that the branching strategy is dynamic (nbFrac). Indeed the introduced
inequalities change the obtained upper bound set and thus also influence this separation strategy.
Therefore, the size of the search-tree may increase when using extended cover inequalities.

As expected, Figure 5.7b shows that the extension of cover inequalities does not have the
same impact on the computational time depending on the strategy of choice of the inherited covers
inequalities. The only strategy for which the extension allows to reduce the computational time is
ratio.
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Figure 5.7: Impact of the extension of cover inequalities

5.5.2 Choice of the solutions to analyze and choice of the inherited cover inequali-
ties

Figure 5.8 compares the performances obtained for different heuristics of choice of the solution
to analyze and for different heuristics of choice of the cover inequalities inherited by the child
node. According to the results presented in Section 5.5.1, we consider extended cover inequalities
when dealing with the heuristic ratio and non-extended ones for smallestRh, biggestRh and active.
For every variant tested here, the branching strategy is nbFrac and the path relinking initialization
is used.

Both Figures 5.8a and 5.8b show that the heuristics max0 performs better or equivalently than
the other heuristics, independently of the considered heuristic of choice of the inherited cover.

According to the size of the search-tree, the best heuristic of choice of the inherited cover
inequalities is active-noExt, since it leads to an higher IRS than the other ones, regardless of the
heuristic used to choose the solution to analyze. However, this heuristic is expensive and it does
not give the best results regarding the computational time.

Figure 5.8b shows that the heuristic ratio-ext has the higher average IRT . The overall best
variant of branch-and-cut method, regarding the computational time, considers the heuristics ratio-
ext and max0.

5.5.3 Number of solutions analyzed

In this section, we are interested in understanding the impact of the number of analyzed solu-
tions, at each node, to generate the cover inequalities. Figure 5.9 compares different settings for
this parameter, in a branch-and-cut method using the combination of strategies ratio, ext and max0
to generate and adapt the cover inequalities, the nbFrac branding strategy and the path relinking
initialization.

Figure 5.9a shows that the number of analyzed solutions does not impact significantly the size
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Figure 5.8: Comparison of the heuristics of choice of the covers inherited and the heuristics of
choice of the solutions analyzed

of the search-tree. Analyzing a single solution at each node allows an average reduction of 27%
of the size of the search-tree and analyzing more solutions does not lead to a larger reduction.
Indeed, the cover inequalities generated for different solutions may not allow to cut more nodes.
Moreover, the branching strategy (nbFrac) is dynamic and can thus have a negative influence on
the size of the search-tree.

Figure 5.9b shows that analyzing only one solution at each node of the branch-and-bound tree
leads to the best performance. When more solutions are analyzed the computational time spent on
the generation of cover inequalities is not counterbalanced by the reduction of the search-tree.

5.5.4 Branching strategies

Figure 5.10 presents the results obtained for the five branching strategies, presented in the
previous section. The applied method is the branch-and-cut method, analyzing one solution at each
node and using the combination of strategies ratio, ext and max0. The path relinking initialization
is used.

Figure 5.10a shows that the branching strategies nbFrac and nbFracCover, which are based
mainly on the number of solutions for which the variables are fractional, lead to better results than
the two others, with respect to the average size of the search-tree. The difference between the
branching strategies nbFrac and nbFracCover, and the strategies cover and coverNbFrac is less
important regarding the execution time. The branching strategies nbFrac and nbFracCover give
equivalent performances regarding the size of the search-tree and the computational time. nbFrac
gives slightly lower computational time on average.
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Figure 5.9: Impact of the number of solutions analyzed for the combination of strategies max0,
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Figure 5.10: Impact of the number of solutions analyzed for the strategy max0, ratio, ext

5.5.5 Comparison to the ε-constraint method

Table 5.6 compares the branch-and-bound and the branch-and-cut methods, embedded in a
two phase method, along with an ε-constraint method. For the branch-and-bound and branch-
and-cut method, the path relinking initialization is applied, the upper bound set is based on the
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instance nb efficient epsilon constraint Branch-and-bound based Branch-and-cut based
indicator time (s) nb nodes time (s) nb nodes time (s)

A1 24 1,462 16880 3,052 6482 1,936
A2 26 1,343 9535 2,140 6721 2,011
A3 19 1,691 19177 3,699 11263 3,334
A4 58 1,197 4977 1,179 4307 1,345
D1 35 0,426 3740 0,928 2642 0,895
D2 63 1,340 3616 0,883 3360 1,007
D3 54 0,693 3853 0,875 3487 1,009
D4 24 0,440 4517 0,921 4107 1,074

kp28 85 0,820 3189 0,758 2753 0,805
kp28-2 35 0,281 718 0,259 616 0,281

kp28W-Perm 41 0,268 1237 0,426 975 0,417
kp28W-ZTL 6 0,066 123 0,063 95 0,062

kp28W 29 0,218 1108 0,359 1080 0,400
kp28c1W-c2ZTL 21 0,196 1235 0,305 1067 0,347

kp28cW-WZTL 132 2,412 19382 4,283 13284 4,088
ZTL28 18 0,193 1599 0,435 1213 0,452

rnd1-1800 239 4,931 66138 23,253 52580 22,823
rnd1-3000 73 0,906 6725 2,442 5419 2,611

tube1-1800 252 12,789 233222 84,783 139382 64,877
tube1-3000 100 2,270 13906 4,860 9222 4,777
tube1-asyn 394 6,012 66421 21,257 41851 19,933
tube2-1800 282 18,036 235477 79,162 161021 71,807

collage-tube 330 12,325 60145 24,645 50797 25,903
ZTL100 121 6,124 154884 54,799 118662 53,694
ZTL105 152 11,237 263214 108,516 197896 103,439

ZTL150-f250 249 39,321 990693 408,476 791737 408,357
ZTL150-f500 277 44,790 1337769 592,297 1095073 584,909
ZTL200-f250 377 105,084 3819631 1942,580 2959873 1803,420
ZTL200-f500 337 75,907 2710440 1457,240 2280104 1553,450

ZTL250 568 239,621 - - - -

Table 5.6: Comparison of the ε-constraint method, the branch-and-bound based method and the
branch-and-cut based method (nbFrac, max0, ratio, ext, 1 sol)

LP relaxation and the branching strategy is nbFrac. The strategies applied for the branch-and-
cut method are max0, ratio, ext and one solution is analyzed at each node to generate the cover
inequalities.

In Table 5.6, the column nb efficient indicates the number of efficient solutions for each in-
stance. The columns time (s) indicates the computational time, in seconds, and nb nodes indicate
the size of the search-trees obtained for the branch-and-bound and branch-and-cut methods. The
table is vertically divided according to the size of the instances (28, 100 or 105, 150, 200 and
250 variables). “-” indicates the instances whose computational time exceed the time limit of one
hour. For each instance, the best computational time among the three methods is indicated in bold
and the best computational time among the branch-and-bound and the branch-and-cut methods is
indicated in italic green.

Table 5.6 shows that the computational time obtained for the branch-and-bound based and
branch-and-cut based methods are equivalent for the instance of 28 variables. However, the differ-
ence between these two methods seems to enlarge when the size of the instances increases. The
size of the search-tree is always lower for the branch-and-cut method than for the branch-and-
bound method. Over the 30 instances, the branch-and-cut method has a lower computational time
than the branch-and-bound method on 17 instances and for 10 over the 13 instances with 100 or
more variables.
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Generally the ε-constraint method offers smaller computational time than the two others. If
the difference is small for the instances with 28 variables, it is more important for bigger instances.
This difference might be the result of the implementation of the LP relaxation solving. Indeed,
as explained at the beginning of the chapter, in order to avoid numerical imprecision, the LP
relaxation is solved by a dichotomic method. However it would be less time consuming to compute
it by a parametric simplex method. Since the LP relaxation is the main cost of the solution method,
changing its implementation should allow the branch-and-bound and branch-and-cut methods to
be competitive with the ε-constraint method.

5.6 Conclusion

In this chapter, we implemented a two phase method to solve 2O2DKP , whose second phase
is either a branch-and-bound method or a branch-and-cut method. In the first part, we compare
three relaxations to compute the upper bound set in the branch-and-bound method. As expected,
the convex relaxation leads to the smallest search-trees. However, since the single-objective ver-
sion of 2O2DKP is not solvable in polynomial or pseudo-polynomial time, solving the convex
relaxation is expensive. Therefore, using this relaxation leads to high computational time. The LP
relaxation gives the smallest computational times, however the size of the obtained search-trees
are largely bigger than those obtained for the convex relaxation.

In order to reduce the size of the search-tree obtained when using the LP relaxation, cover
inequalities are introduced along the solving process. Those inequalities are generated based on
the efficient solutions of the LP relaxation, adapting the method presented in (Crowder et al.,
1983). The quality of the LP relaxation increases with the number of introduced cover inequalities.
However the computational cost also increases. It was then necessary to find a tradeoff between
the quality of the upper bound set and its computational cost. Multiple variants of the branch-
and-cut method have been compared in order to find this tradeoff. These variants considered
several implementations of the different components of the branch-and-cut method: number of
analyzed solutions to generate the cover, choice of the analyzed solutions, use of extended covers,
choice of the cover inequalities inherited by the child node. Experiments show that introducing
cuts during the solving process allows to reduce the computational time in most of the instances
(56%) and in particular for big instances (77% of the instances with more than 100 variables).
However the solving method remains slower than the ε-constraint method, in particular because
of the implementation of the solution method for the LP relaxation.

This chapter also highlights that using a dynamic branching strategy based on the analysis
of the efficient solutions of the LP relaxation makes it possible to improve the solving process.
We have also presented an initialization method, executing path relinking operators between sup-
ported efficient solutions, in order to initialize the solution method in each triangle with good
feasible solutions. This initialization has been experimentally validated and compared to an ideal
initialization (initializing with all efficient solutions).

In order to improve the practical efficiency of the branch-and-cut method, we want to bring
several improvements to the implementation. The first one concerns the solution method for the
LP relaxation. Instead of using a dichotomic method, we will implement a parametric simplex
method, which will reduce the cost of the solution method. Moreover, we are looking for using
informations from the computation of the upper bound set of the parent node to speed-up the com-
putation of the upper bound set of the child node. On another hand, several additional instances
could be generated in order to assess more accurately the performances of the branch-and-cut
based method. Indeed, only a few 2O2DKP instances of more than 105 variables are available.
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Finally, the branch-and-cut method could be generalized to more complex pOmDKP , with more
constraints for example, or to other MOCO problems.





Conclusions and perspectives

This thesis aims to elaborate an efficient solution method for multi-objective combinatorial
optimization problems. The contributions of this work are structured in two axes: the analysis of
different components in order to propose a new branch-and-bound method, and the elaboration of
a new branch-and-cut method for a bi-objective combinatorial optimization problem. The multi-
objective knapsack problem is used as support problem of these researches.

The first two chapters of this thesis present the state of the art on multi-objective combinato-
rial optimization problems and focus on branch-and-bound methods and knapsack problems. We
identified three aspects that could be improved.

Branching strategies Many strategies have been proposed over the years to order the variables
during the solving process. Several works present a comparison of different strategies, for
example in Bazgan et al. (2009a), Jorge (2010), Delort (2011) and Florios et al. (2010).
However, these studies do not pinpoint a best strategy over all the instances. Indeed, since
most of the proposed strategies are static, they usually present good performances for some
instances, but not necessarily for other ones. Moreover, these studies focus on a restricted
number of strategies and no exhaustive comparison of all branching strategies have been
proposed.

Surrogate relaxation The use of surrogate relaxation becomes more difficult when considering
several objective functions than for the single-objective context. Indeed, in the single-
objective context and for two dimensions, an algorithm allowing to compute the dual sur-
rogate (the tightest surrogate relaxation) in reasonable time has been proposed by Fréville
and Plateau (1993). In multi-objective contexts, the surrogate relaxation is generally used
considering several surrogate multipliers (Gandibleux and Perederieieva (2011)), but no
guarantee is given regarding the quality obtained.

Branch-and-cut methods If they have presented interesting results for single-objective problems,
very few works have considered the generalization of branch-and-cut methods to multi-
objective problems. Jozefowiez et al. (2012) have proposed to execute several single-
objective branch-and-cut methods to solve a multi-objective problem.

These observations have defined the three main parts of this thesis.

Chapter 3 relates to the branching strategies in branch-and-bound methods. In this chapter,
we first compared different static strategies of the literature and observed that none of them gives
the best performance for all instances. Thus, we investigated if using different strategies, during
a single execution of branch-and-bound, could improve the performance of the solution method.
We proposed a method (the oracle method) that tests all strategies at each separation, for the next
step only, and chooses the best one according to a quality measure. This method appears to be
able to significantly reduce the size of the resulting search-trees. However, its computational cost
is significantly higher than the one obtained by a static strategy, even when using a restricted set
of branching strategies. Then, reinforcement learning methods are used to select dynamically
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one branching strategy at each separation. Numerous dynamic strategies, defined using adaptive
methods, have been experimentally assessed. The one offering the best results allows to reduce
the computational time for 58% of the instances, compared to a static strategy.

This chapter focuses on the application problem: the uni-dimensional bi-objective knapsack
problem. It would be interesting to generalize this work for other multi-objective combinatorial
problems. On the other hand, even if this work has considered only the branch-and-bound method,
it is directly applicable to other methods in which an order on the variables has to be defined
(dynamic programming method for example).

Chapter 4 consists in defining and computing tight upper bound sets for the bi-objective bi-
dimensional knapsack problem, based on the surrogate relaxation. Two upper bound sets are
defined : the optimal surrogate upper bound set (OSUB) and the optimal convex surrogate upper
bound set (OCSUB). These upper bound sets use several multipliers for the surrogate relaxation.
The OSUB is the tightest possible upper bound set based on the surrogate relaxation. The OCSUB
is the tightest upper bound set based on the convex relaxation of the surrogate relaxation. First, we
defined an enumerative method to compute these upper bound sets. Then, the dominance relations
between the surrogate relaxations are analyzed and lead to a more efficient method, considering a
reduced set of interesting surrogate multipliers. The correctness of these two algorithms is proven
and they are compared experimentally. A heuristic version of the latter algorithm allows us to
obtain an approximation of the upper bound sets, in a more restricted time. This approximation
is compared to another approximation method from Gandibleux and Perederieieva (2011) and
appears to offer an interesting tradeoff between computational time and quality of the obtained
upper bound set.

This chapter offers a theoretical basis on the surrogate relaxation for the bi-objective bi-
dimensional knapsack problem. In future research, we would like to generalize this theory to
knapsack problems with a larger number of objectives and/or constraints. Regarding the gener-
alization to more than two objectives, the challenge comes from the computation of the convex
relaxation of the surrogate relaxation. Several works can be used, e.g., Przybylski et al. (2010b),
to solve this relaxation. However, the generalization to more than two dimensions is more chal-
lenging. Indeed the properties of the convex surrogate upper bound sets might not hold. Finally,
OCSUB suffers from its computational cost when applied in a two phase method. So it would be
interesting to consider more intensively the triangle investigated when computing the OCSUB in
this context.

Chapter 5 aims to design a branch-and-cut method for the bi-objective bi-dimensional knap-
sack problem. Figure 5.11 presents the different components of the branch-and-cut method and
their interaction.

We can note that by deleting the components Generate cover inequalities and Inheritance of
the cover inequalities by the child nodes, we obtain the scheme of a branch-and-bound method.

In this chapter, different variants for the components of the branch-and-cut method, marked
by a ∗, are tested. In particular, several relaxations are considered to compute the upper bound
set on ȲN (the nondominated set of the subproblem). If the convex relaxation leads to small
search-trees, the required computational time is too high. On the contrary, the LP relaxation
gives small computational times, however the size of the obtained search-trees is considerably
higher than for the convex relaxation. This leads us to introduce valid inequalities all along the
solving process in order to improve it. The inequalities used are the extended cover inequalities.
They are generated based on extreme efficient solutions of the LP relaxation. By doing so we
generalize the principle presented by Crowder et al. (1983) for the single-objective context. When
the number of considered cover inequalities increases, the quality of the upper bound set increases,
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Figure 5.11: Main components of the branch-and-cut algorithm for 2O2DKP

but the computational cost increases too. To achieve a good tradeoff between computational cost
and quality of the upper bound set, several implementations have been defined and numerically
tested. The strategies differing in these implementations are: the number of analyzed solutions
to generate cover inequalities, the choice of these solutions, the choice of the cover inequalities
adapted to the child nodes and the extension of the cover inequalities. The obtained branch-and-cut
method allows to reduce the computational time, in particular for large instances, compared to the
branch-and-bound method. However, this method is not competitive with an ε-constraint method.
By using another method to solve the LP relaxation, executing a parametric simplex method, the
branch-and-cut method should be competitive with the ε-constraint method. This branch-and-cut
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method could also be applied to other multi-objective combinatorial problems.

Figure 5.11 highlights the links between the different parts of this thesis. The different mech-
anisms can be assembled to design a solution method hopefully efficient in practice. Indeed, the
basis given by Chapter 3 on the elaboration of a dynamic branching strategy could be adapted to
the different branching strategies presented in Chapter 5 for the branch-and-cut method. An inter-
esting perspective consists in designing an adaptive method mixing the strategies nbFrac, sumFrac
and cover for example. Even if the surrogate-based upper bound sets is too expensive to be com-
puted in every node of a branch-and-bound method, by the algorithms presented in this thesis, we
could compute them punctually, in order to prune branches earlier in the branch-and-cut method.
Rules defining when to compute this upper bound set need to be defined.



A
Adaptive methods as branching
strategies

A.1 Dynamic multi-armed bandit

Figures A.1 and A.2 show the results obtained for different values of the parameters α and γ
in the DMAB method.
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Figure A.1: Impact of the parameters on the solution method using the DMAB as branching
strategy when no preprocessing treatment is applied.

We can observe that the average IRS and IRT increase when γ increases and also when α
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Figure A.2: Impact of the parameters on the solution method using the DMAB as branching
strategy when the preprocessing treatments are applied.

decreases, whether the preprocessing treatments are used or not.

A.2 Upper confidence bound with a sliding window

The size of the window considered for the evaluation of the empirical quality of the branching
heuristic is proportional to the number of variables in the instance. Indeed changes might occur
more quickly when the instance considers only a few variables than when the instance considers
a large number of variables. The size of the window is controlled by a parameter s ∈ R, the size
of the window is s times the number of variables in the instance. Figures A.3 and A.4 show the
performances obtained for different values of the parameter s. We have fixed α = 0.2 since it was
the best value for UCB and DMAB.

It seems that the better performances in average are given by s = 0.75. However, the difference
of performance between the different values of the parameter is not very important.
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B
OCSUB and OSUB

B.1 Computation of an upper bound on ε, in the algorithm comput-
ing the OCSUB or the OSUB

In all the algorithms presented in Chapter 4, ε is added to critical multipliers u such that
u+ ε 6= u and there does not exist a critical multiplier u′ with u < u′ ≤ u+ ε or u+ ε ≤ u′ < u.
In these conditions we can find all critical multiplier associated to CSUB.

Our purpose is here to find ε > 0 such that it is smaller than the smallest difference between
two different critical multipliers.

To find a valid value for ε, we consider u and u′ two different critical multipliers, such that the
difference between u and u′ is the smallest difference between two different critical multipliers. x
is a solution associated to u and x′ is a solution associated to u′. We have shown in Section 4.3.1

that u =
ω2 − w2(x)

w1(x)− w2(x)− ω1 + ω2
. To simplify the notation we denote pi = wi(x), qi = wi(x

′)

for i = 1, 2. We have therefore

|u− u′| =

∣∣∣∣∣ ω2 − p2

p1 − p2 − ω1 + ω2
− ω2 − q2

q1 − q2 − ω1 + ω2

∣∣∣∣∣
=
|(ω2 − p2)(q1 − q2 − ω1 + ω2)− (ω2 − q2)(p1 − p2 − ω1 + ω2)|

|(p1 − p2 − ω1 + ω2)(q1 − q2 − ω1 + ω2)|
.

If the numerator equals 0 then u = u′, and we make the assumption that both multipliers
are different. Its value is then greater or equal to 1. Now we search the maximum value of the
denominator, denoted |D|.
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D =(p1 − p2 − ω1 + ω2)(q1 − q2 − ω1 + ω2)

D =p1q1 + p1ω2 + p2q2 + p2ω1 + ω1q2 + ω2
1 + ω2q1 + ω2

2

− (p1q2 + p1ω1 + p2q1 + p2ω2 + ω1q1 + 2ω1ω2 + ω2q2)

D ≤max(p1q1 + p1ω2 + p2q2 + p2ω1 + ω1q2 + ω2
1 + ω2q1 + ω2

2)

−min(p1q2 + p1ω1 + p2q1 + p2ω2 + ω1q1 + 2ω1ω2 + ω2q2)

Since p1 is the weight of the solution on the first dimension, we have 0 ≤ p1 ≤ M1 with

M1 =
n∑
j=0

w1j . Similarly 0 ≤ q1 ≤ M1. Symmetrically M2 =
n∑
j=0

w2j , 0 ≤ p2 ≤ M2 and

0 ≤ q2 ≤M2.
We can thus deduce that:

D ≤M2
1 + 2M1ω2 +M2

2 + 2M2ω1 + ω2
1 + ω2

2 − 2ω1ω2 = Dmax

and similarly

D ≥ ω2
1 + ω2

2 − 2ω1ω2 − 2M1M2 − 2M1ω1 − 2M2ω2 = Dmin

Thus |D| ≤ max(|Dmin|, |Dmax|) and ε <
1

max(|Dmin|, |Dmax|)
.

1

max(|Dmin|, |Dmax|)
is an upper bound on ε.

B.2 Example of comparison of the OSUB and the OCSUB

Figure B.1 presents the OCSUB and the OSUB for the instance A2.
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Figure B.1: Comparison of the OSUB and the OCSUB for the instance A2.
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B.3 Exact and heuristic approaches for the OSUB

Figures B.2, B.3 and B.4 present the results obtained by the approximation method to compute
the OSUB. The me sure used are similar to the comparison of the approximation methods for the
OCSUB in Section 4.8.5.
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(c) Comparison of A-metric for h = 100
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Figure B.2: Comparison of both heuristics 0MM1H + init and SurrogateFamily approximating
the OSUB, for h = {10, 50, 100}, regarding the A-metric and the computational time, for the
Group 1.
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Figure B.3: Comparison of both heuristics 0MM1H + init and SurrogateFamily approximating
the OSUB, for h = {10, 50, 100}, regarding the A-metric and the computational time, for the
Group 2.
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Thèse de Doctorat

Audrey CERQUEUS

Algorithmes de branch-and-cut bi-objectif
appliqués au problème de sac-à-dos en variables binaires
ensembles bornants surrogate, stratégies de branchement dynamiques,
génération et exploitation d’inégalités de couverture.

Bi-objective branch-and-cut algorithms
applied to the binary knapsack problem
surrogate bound sets, dynamic branching strategies,
generation and exploitation of cover inequalities.

Résumé
Dans ce travail, nous nous intéressons à la résolution de
problèmes d’optimisation combinatoire multi-objectif. Ces
problèmes ont suscité un intérêt important au cours des
dernières décennies. Afin de résoudre ces problèmes,
particulièrement difficiles, de manière exacte et efficace, les
algorithmes sont le plus souvent spécifiques au problème
traité. Dans cette thèse, nous revenons sur l’approche dite
de branch-and-bound et nous en proposons une extension
pour obtenir un branch-and-cut, dans un contexte bi-objectif.
Les problèmes de sac-à-dos sont utilisés comme support
pour ces travaux. Trois axes principaux sont considérés : la
définition de nouveaux ensembles bornants, l’élaboration
d’une stratégie de branchement dynamique et la génération
d’inégalités valides. Les ensembles bornants définis sont
basés sur la relaxation surrogate, utilisant un ensemble de
multiplicateurs. Des algorithmes sont élaborés, à partir de
l’étude des différents multiplicateurs, afin de calculer
efficacement les ensembles bornants surrogate. La stratégie
de branchement dynamique émerge de la comparaison de
différentes stratégies de branchement statiques, issues de
la littérature. Elle fait appel à une méthode d’apprentissage
par renforcement. Enfin, des inégalités de couverture sont
générées et introduites, tout au long de la résolution, dans le
but de l’accélérer. Ces différents apports sont validés
expérimentalement et l’algorithme de branch-and-cut
obtenu présente des résultats encourageants.

Abstract
In this work, we are interested in solving multi-objective
combinatorial optimization problems. These problems have
received a large interest in the past decades. In order to
solve exactly and efficiently these problems, which are
particularly difficult, the designed algorithms are often
specific to a given problem. In this thesis, we focus on the
branch-and-bound method and propose an extension by a
branch-and-cut method, in bi-objective context. Knapsack
problems are the case study of this work. Three main axis
are considered: the definition of new upper bound sets, the
elaboration of a dynamic branching strategy and the
generation of valid inequalities. The defined upper bound
sets are based on the surrogate relaxation, using several
multipliers. Based on the analysis of the different multipliers,
algorithms are designed to compute efficiently these
surrogate upper bound sets. The dynamic branching
strategy arises from the comparison of different static
branching strategies from the literature. It uses
reinforcement learning methods. Finally, cover inequalities
are generated and introduced, all along the solving process,
in order to improve it. Those different contributions are
experimentally validated and the obtained branch-and-cut
algorithm presents encouraging results.
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