Optimisation of space-time periodic eigenvalues - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2025

Optimisation of space-time periodic eigenvalues

Résumé

The goal of this paper is to provide a qualitative analysis of the optimisation of space-time periodic principal eigenvalues. Namely, considering a fixed time horizon T and the d-dimensional torus T d , let, for any m ∈ L ∞ ((0, T ) × T d ), λ(m) be the principal eigenvalue of the operator ∂t -∆ -m endowed with (time-space) periodic boundary conditions. The main question we set out to answer is the following: how to choose m so as to minimise λ(m)? This question stems from population dynamics. We prove that in several cases it is always beneficial to rearrange m with respect to time in a symmetric way, which is the first comparison result for the rearrangement in time of parabolic equations. Furthermore, we investigate the validity (or lack thereof) of Talenti inequalities for the rearrangement in time of parabolic equations. The numerical simulations which illustrate our results were obtained by developing a framework within which it is possible to optimise criteria with respect to functions having a prescribed rearrangement (or distribution function).

Fichier principal
Vignette du fichier
BMFNFinal.pdf (2.18 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04866202 , version 1 (06-01-2025)

Identifiants

  • HAL Id : hal-04866202 , version 1

Citer

Beniamin Bogosel, Idriss Mazari, Grégoire Nadin. Optimisation of space-time periodic eigenvalues. 2025. ⟨hal-04866202⟩
0 Consultations
0 Téléchargements

Partager

More