Abrupt changes in the spectra of the Laplacian with constant complex magnetic field - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Abrupt changes in the spectra of the Laplacian with constant complex magnetic field

Résumé

We analyze the spectrum of the Laplace operator, subject to homogeneous complex magnetic fields in the plane. For real magnetic fields, it is well-known that the spectrum consists of isolated eigenvalues of infinite multiplicities (Landau levels). We demonstrate that when the magnetic field has a nonzero imaginary component, the spectrum expands to cover the entire complex plane. Additionally, we show that the Landau levels (appropriately rotated and now embedded in the complex plane) persists, unless the magnetic field is purely imaginary in which case they disappear and the spectrum becomes purely continuous.

Fichier principal
Vignette du fichier
KNR24b.pdf (417.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04854144 , version 1 (23-12-2024)

Licence

Identifiants

  • HAL Id : hal-04854144 , version 1

Citer

David Krejcirik, Tho Nguyen Duc, Nicolas Raymond. Abrupt changes in the spectra of the Laplacian with constant complex magnetic field. 2024. ⟨hal-04854144⟩
0 Consultations
0 Téléchargements

Partager

More