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ABRUPT CHANGES IN THE SPECTRA OF THE LAPLACIAN WITH
CONSTANT COMPLEX MAGNETIC FIELD

DAVID KREJČIŘÍK, THO NGUYEN DUC, AND NICOLAS RAYMOND

Abstract. We analyze the spectrum of the Laplace operator, subject to homogeneous complex
magnetic fields in the plane. For real magnetic fields, it is well-known that the spectrum consists
of isolated eigenvalues of infinite multiplicities (Landau levels). We demonstrate that when the
magnetic field has a nonzero imaginary component, the spectrum expands to cover the entire
complex plane. Additionally, we show that the Landau levels (appropriately rotated and now
embedded in the complex plane) persists, unless the magnetic field is purely imaginary in which
case they disappear and the spectrum becomes purely continuous.

1. Introduction

1.1. Motivation. The spectrum of the Laplacian on the Euclidean plane is purely continuous.
In 1930, Landau [14] perceived the striking fact that turning on the homogeneous magnetic field
makes the spectrum pure point. Now the mathematical description is through the magnetic
Laplacian

Lb = (−i∇−A)2 in L2(R2) (1.1)

with the vector potential A(x) = b (0, x1) generating the constant magnetic field curlA =
b ∈ R. Unless b = 0, the spectrum of Lb is composed of isolated eigenvalues of infinite
multiplicities called Landau levels (see (A) versus (B) in Figure 1). The quantization of spectra
has been fundamental in describing magnetic phenomena in physics, in particular the quantum
Hall effect. We refer to [2, 6, 15, 9, 10, 16] for mathematically oriented surveys.

Because of the quantum-mechanical purposes, the almost century-long history has been re-
stricted to real-valued magnetic fields. Recent years, however, have brought new physical
motivations for considering the Laplacian with complex magnetic fields. Among these, there
are superconductors, quantum statistical physics, stability of black holes in general relativity
and the new concept of quasi-self-adjointness in quantum theory. We refer to our preceding pa-
pers [11, 12] and references therein. Mathematically, the complexification involves the necessary
passage to the unexplored realm of non-self-adjoint Schrödinger operators with complex-valued
vector potentials.

The case of constant magnetic field was left untouched in our precedent paper [12] for two
reasons. First, the unboundedness of the vector potential A leads to technical difficulties
that we have been able to overcome only now. Second, and more importantly, the effect of
complexifying the uniform magnetic field leads to spectrally striking phenomena that do not
exist in the case of local fields considered in [12]. Indeed, the objective of the present paper
is to show that the spectrum of Lb becomes the whole complex plane unless b is real. What
is more, the complexification has little effect on the Landau levels (they are just rotated in
the complex plane), unless b is purely imaginary in which case they disappear completely (see
Figure 1). In summary, the purely real or purely imaginary homogeneous magnetic fields are
the only realizations for which the magnetic Laplacian possesses a purely continuous spectrum.
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(A) b = 0.
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(B) b = ±1.
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(C) b = ±eiπ/4.
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(D) b = ±e−iπ/4.
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(E) b = ±i.

Figure 1. The spectrum of the operator Lb for various values of b. The contin-
uous spectrum is depicted in cyan, while the point spectrum is shown in magenta.

1.2. Main results. Let us now describe the content of this paper in more detail. We are
interested in the maximal realization of (1.1), where b ∈ C. More specifically, we consider

Lb =(−i∂x1)
2 + (−i∂x2 − bx1)

2 ,

Dom(Lb) =
{
ψ ∈ L2(R2) :

[
(−i∂x1)

2 + (−i∂x2 − bx1)
2
]
ψ ∈ L2(R2)

}
.

(1.2)

When b is real, the operator Lb can be defined by using the Lax–Milgram theorem on
an appropriate magnetic Sobolev space. However, when b is not real, this approach is not
applicable due to the lack of coerciveness of the corresponding quadratic form (see [12, Ex. 1]).
Consequently, there is no standard tool to compute the adjoint of Lb in this case. Moreover, in
(magnetic) Sobolev spaces, the density of C∞

c (R2) can be established by employing mollifiers
together with an expanding cutoff sequence. This relies on the assumption that first-order
(covariant) derivatives belong to L2(R2). However, when b is complex, this property no longer
holds in Dom(Lb), as the operator is not essentially self-adjoint. Consequently, proving the
density of C∞

c (R2) becomes unattainable in the usual sense. To overcome this difficulty, in
Section 2.1, we introduce a novel approach, which we call the weak core method, to establish
that C∞

c (R2) forms a weak core of the domain. This result enables us to compute the adjoint
of the maximal operator Lb directly from its definition. In this way, we manage to show that
Lb is well defined for any b ∈ C.

Proposition 1.1. Lb is a closed, densely defined operator and its adjoint is given by

L ∗
b = Lb = CLbC

−1 , (1.3)

where

C : L2(R2) → L2(R2), (Cψ)(x1, x2) = ψ(−x1, x2) .
Consequently, Lb is self-adjoint if and only if b is real.

Since Lb is closed, the spectrum can be decomposed as

Spec(Lb) = Specp(Lb) ∪ Specc(Lb) ∪ Specr(Lb) ,

where the disjoint sets on the right-hand side denote the point, continuous and residual spec-
tra, respectively (to recall the standard definitions, see Section 1.3). The relationship (1.3)
reveals that Lb is complex-self-adjoint with respect to the conjugation C. Consequently (see
[4, Prop. 1]), its residual spectrum is always empty: Specr(Lb) = ∅.

By taking the partial Fourier transform F in the x2-variable and the complex change of
variable y1 := x1 − b−1ξ2 where ξ2 = F(−i∂x2)F

−1, the operator Lb is formally similar to the
complex-rotated harmonic oscillator (originally due to [7] and recently revised in [1])

−∂2y1 + b2 y21 in L2(R2) . (1.4)

Of course, this procedure is purely formal (unless b is real), but it naturally leads to the
definition of complex Landau levels

Λb = {±(2k + 1)b : k ∈ N0} if ± Re b > 0 , (1.5)
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being the eigenvalues of (1.4). Also, it is clear that the eigenvalues are infinitely degenerate
(for the variable y2 is missing in the action of (1.4)).

It is well known that Spec(Lb) = Specc(Lb) = [0,+∞) if b = 0. At the same time,
Spec(Lb) = Specp(Lb) = Λb if b ∈ R \ {0}. In the following theorem, we characterize the
spectrum in the unexplored situations.

Theorem 1.2. (i) When b ∈ C \ (R ∪ iR), the spectrum is the whole complex plane, in-
cluding the complex Landau levels as the only eigenvalues:

Spec(Lb) = C, Specc(Lb) = C \ Λb, Specp(Lb) = Λb .

(ii) When b ∈ iR\{0}, the spectrum is the whole complex plane and contains no eigenvalues:

Spec(Lb) = C, Specc(Lb) = C, Specp(Lb) = ∅ .

In both cases, all types of essential spectra are identical to the spectrum

Specess,k(Lb) = Spec(Lb), ∀k ∈ {1, . . . , 5} .

Since Lb is complex-self-adjoint, it follows that all the sets Specess,k(Lb) are identical for
k ∈ {1, . . . , 4} (cf. [8, Thm. 9.1.6(ii)]). In the proof of Theorem 1.2, we demonstrate that
Specess,2(Lb) = C, which implies the equivalence of the remaining essential spectra, including
the fifth one. Illustrations of the spectra for selected values of b are presented in Figure 1.
From Theorem 1.2, it is evident that the numerical range of Lb encompasses the entire

complex plane when b is not real. This explains why Lb can not be realized as an m-sectorial
operator, as discussed in [12, Ex. 1]. Nevertheless, an intriguing observation is that the point
spectrum always resides within the right-hand half-plane (unless b is purely imaginary).
We emphasize that the established results are obtained for a special choice of the vector

potential A(x) = b (0, x1) in (1.1) generating the constant magnetic field curlA = b. Unlike
the self-adjoint case (when b is real), the results do not automatically extend to other choices
of A satisfying curlA = b. This is due to the lack of gauge invariance in the non-self-adjoint
setting. It is interesting to explore how the spectrum appears for other choices of the magnetic
potential A satisfying curlA = b, in particular for the transverse gauge A(x) = 1

2
b (−x2, x1).

1.3. General notations. Let us fix some notations employed throughout the paper.

(1) The inner product on L2(R2) is denoted by ⟨·, ·⟩ and we use ∥ · ∥ for L2-norm.
(2) The characteristic function of any subset E of R is denoted by 1E.
(3) For a linear operator L , we denote its kernel, range and spectrum, respectively, by

Ker(L ), Ran(L ) and Spec(L ). The point, continuous and residual spectra are, re-
spectively, defined by

Specp(L ) = {z ∈ C : L − z is not injective} ,

Specc(L ) = {z ∈ C : L − z is injective and Ran(L − z) = H and Ran(L − z) ⊊ H} ,

Specr(L ) = {z ∈ C : L − z is injective and Ran(L − z) ⊊ H} .

We also recall here five types of essential spectra of a closed operator L spectra as
defined in [13, Sec. 5.4.2]:

Specess,1(L ) = C \ {z ∈ C : L − z is semi-Fredholm} ,
Specess,2(L ) = C \ {z ∈ C : Ran(L − z) is closed and dimKer (L − z) is finite} ,
Specess,3(L ) = C \ {z ∈ C : L − z is Fredholm} ,
Specess,4(L ) = C \ {z ∈ C : L − z is Fredholm with index 0} ,
Specess,5(L ) = C \ {z ∈ C : z is an isolated eigenvalue with finite algebraic multiplicity

and Ran(L − z) is closed} .
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(4) For the multi-valued exponential function zc where z, c ∈ C, we choose its principal
value and still denote it as zc, i.e., zc = ec Log z, where Log z = log |z|+ i Arg z. Then,
we have

|zc| = e−(Arg z)(Im c)|z|Re c . (1.6)

(5) For two real-valued functions a and b, we write a ≲ b (respectively, a ≳ b) instead of
a ≤ Cb (respectively, a ≥ Cb) for an insignificant constant C > 0. We write a ≈ b when
a ≲ b and a ≳ b.

(6) The Fourier transform is given by

Fx 7→ξ(ψ)(ξ) =
1

2π

∫
R2

e−ix·ξψ(x)dx . (1.7)

The partial Fourier transform in the second variable is given by

Fx2 7→ξ2(ψ)(ξ) =
1√
2π

∫
R
e−ix2ξ2ψ(x) dx2 . (1.8)

They are unitary on L2(R2).

1.4. Structure of the paper. The paper is organized as follows: In Section 2, we show that
the operator Lb is complex-self-adjoint and present several equivalent spectra for operators
corresponding to different values of b. The spectral analysis of the operator is investigated in
Sections 3 and 4 as regards the cases (i) and (ii) of Theorem 1.2, respectively.

2. Definition of the magnetic Laplacian

The main objectives of this section are to prove Propositions 2.1 and to demonstrate that
the analysis for all b can be reduced to b lying on the first-quadrant arc of the unit circle.
As usual, we understand the action of Lb in (1.2) in the sense of distribution. It means that

ψ ∈ Dom(Lb) if and only if ψ ∈ L2(R2) and there exists f ∈ L2(R2) such that〈
ψ,

[
(−i∂x1)

2 + (−i∂x2 − bx1)
2
]
φ
〉
= ⟨f, φ⟩ ∀φ ∈ C∞

c (R2) , (2.1)

and we denote Lbψ = f .

2.1. A weak core result. In order to find the adjoint of the maximal operator Lb, we need
the following “weak core” result.

Proposition 2.1. Let b ∈ C. For any ψ ∈ Dom(Lb), there exists a sequence (ψn) ⊂ C∞
c (R2)

such that ψn −−−−→
n→+∞

ψ in L2(R) and Lbψn −−−−→
n→+∞

Lbψ weakly in L2(R2).

Proof. We consider two cut-off functions χ and ρ in C∞
c (R2) such that

• 0 ≤ χ ≤ 1, Suppχ ⊂ B(0, 1) and χ = 1 on B(0, 1
2
),

• ρ ≥ 0, Supp ρ ⊂ B(0, 1) and
∫
ρ(x) dx = 1.

We then define the usual expanding cut-offs and shrinking mollifiers as follows:

χn(·) = χ
( ·
n

)
, ρn(·) = n2ρ(n·) .

For ψ ∈ Dom(Lb), we will show that ψn = χn(ρn ∗ ψ) satisfies our requirements. It is known
that ψn ∈ C∞

c (R2) (cf. [3, Prop. 4.20]) and ψn −−−−→
n→+∞

ψ in L2(R2) (cf. [5, Lem. 1.9]). To prove

that Lbψn converges weakly to Lbψ in L2(R2), we write

Lbψn − Lbψ = In + Jn +Kn ,

where

In =Lb(χnρn ∗ ψ)− χnLb(ρn ∗ ψ) ,
Jn =χn [Lb(ρn ∗ ψ)− ρn ∗ (Lbψ)] ,

Kn =χn(ρn ∗ Lbψ)− Lbψ .
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As Lbψ ∈ L2(R2), Kn −−−−→
n→+∞

0 in L2(R2). Below, we evaluate Lb only for smooth functions,

using the expansion
Lb = −∆+ 2ibx1∂x2 + b2x21 . (2.2)

For In, using the chain rule, we have

In =
1

n2
∆χ

( ·
n

)
(ρn ∗ ψ) + 2

1

n
∇χ

(x
n

)
· ∇(ρn ∗ ψ) .

Since Supp(ρn ∗ ψ) ⊂ Suppψ + B(0, 1) is fixed and the derivatives of x 7→ χ
(
x
n

)
vanish for

|x| ≤ n
2
, it follows that In = 0 for sufficiently large n.

Now, we will show that Jn converges weakly to zero. Given η ∈ C∞
c (R2), thanks to integration

by parts and [3, Prop. 4.16], we have

⟨Lb(ρn ∗ ψ), η⟩ = ⟨ρn ∗ ψ,Lbη⟩ = ⟨ψ, ρ̌n ∗ Lbη⟩ , (2.3)

where ρ̌n(x) = ρn(−x).
By the linearity of convolution, we get

ρ̌n ∗ Lbη = ρ̌n ∗ (−∆η) + 2ib ρ̌n ∗ (x1∂x2η) + b
2
ρ̌n ∗ (x21η) .

From [3, Prop. 4.20], which establishes the commutative property of mollifiers with the deriva-
tives, and the definition of the convolution, we see that

ρ̌n ∗ (−∆η) =−∆(ρ̌n ∗ η) ,
ρ̌n ∗ (x1∂x2η) =x1∂x2 (ρ̌n ∗ η)− ((x1ρ̌n) ∗ ∂2η) ,

ρ̌n ∗ (x21η) =x21 (ρ̌n ∗ η)− 2x1 ((x1ρ̌n) ∗ η) +
(
(x21ρ̌n) ∗ η

)
.

Combining these identities, we obtain

ρ̌n ∗ Lbη = Lb (ρ̌n ∗ η)−Rη , (2.4)

where
Rη = b

2 (
(x21ρ̌n) ∗ η

)
− 2b

2
x1 ((x1ρ̌n) ∗ η)− 2ib ((x1ρ̌n) ∗ ∂2η) .

From (2.3) and (2.4), we deduce that

⟨Lb(ρn ∗ ψ), η⟩ =⟨ψ,Lb (ρ̌n ∗ η)⟩ − ⟨ψ,Rη⟩
=⟨Lbψ, ρ̌n ∗ η⟩ − ⟨ψ,Rη⟩
=⟨ρn ∗ Lbψ, η⟩ − ⟨ψ,Rη⟩ .

Here, in the second equality, noting that ρ̌n ∗ η ∈ C∞
c (R2), we employed (2.1) and in the third

equality, as Lbψ ∈ L2(R2), we applied [3, Prop. 4.16] again. Therefore, thanks to Cauchy-
Schwarz inequality, we have, for every η ∈ C∞

c (R2),

|⟨Lb(ρn ∗ ψ)− ρn ∗ Lbψ, η⟩| ≤ ∥ψ∥∥Rη∥ .
By choosing η = χnφ for a fixed but arbitrary φ ∈ C∞

c (R2), we have

|⟨Jn, φ⟩| ≤ ∥ψ∥∥Rχnφ∥ . (2.5)

Let us estimate each term in Rχnφ. By using Young’s inequality, we have

∥(x21ρ̌n) ∗ (χnφ)∥ ≤ ∥x21ρ̌n∥L1∥χnφ∥ ≤ 1

n2
∥x21ρ∥L1∥φ∥ ,

∥x1 [(x1ρ̌n) ∗ (χnφ)] ∥ ≤ C∥(x1ρ̌n) ∗ (χnφ)∥ ≤ C∥x1ρ̌n∥L1∥φ∥ ≤ C

n
∥x1ρ∥L1∥φ∥ ,

∥(x1ρ̌n) ∗ ∂2(χnφ)∥ ≤ ∥x1ρ̌n∥L1∥∂2(χnφ)∥ ≤ 1

n
∥x1ρ∥L1∥∂2(χnφ)∥ ≤ 1

n
∥x1ρ∥L1∥∂2φ∥ .

As Supp [(x1ρ̌n) ∗ (χnφ)] ⊂ B(0, 1) + Suppφ for n large enough, the constant C depends only
on the support of φ. From these bounds and from (2.5), we deduce that Jn converges weakly
to zero in L2(R2) and thus, Lbψn converges weakly to Lbψ in L2(R2). □
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Now, we turn to the main task of this section.

Proof of Proposition 2.1. Clearly, C∞
c (R2) ⊂ Dom(Lb), and since C∞

c (R2) is dense in L2(R2),
it follows that Lb is densely defined.
To prove that Lb is closed, let ψn ∈ Dom(Lb) be a sequence such that ψn −−−−→

n→+∞
ψ and

Lbψn −−−−→
n→+∞

f in L2(R2). We need to show that ψ ∈ Dom(Lb) and Lbψ = f . By (2.1), for

all φ ∈ C∞
c (R2), we have,

⟨ψ,Lbφ⟩ = lim
n→+∞

⟨ψn,Lbφ⟩ = lim
n→+∞

⟨Lbψn, φ⟩ = ⟨f, φ⟩ .

This implies that ψ ∈ Dom(Lb) and f = Lbψ, as desired. Thus, Lb is closed.
To determine the adjoint of Lb, let g ∈ Dom(L ∗

b ). By definition, g ∈ L2(R2) and there
exists g∗ ∈ L2(R2) such that

⟨Lbφ, g⟩ = ⟨φ, g∗⟩, ∀φ ∈ Dom(Lb) .

By Proposition 2.1, this is equivalent to

⟨Lbφ, g⟩ = ⟨φ, g∗⟩, ∀φ ∈ C∞
c (R2) ,

which implies that

g ∈ {ψ ∈ L2(R2) :
[
(−i∂x1)

2 + (−i∂x2 − bx1)
2
]
ψ ∈ L2(R2)} ,

and L ∗
bg = g∗ = Lbg. Thus, the adjoint of Lb is L ∗

b = Lb.
Now, suppose b is real. Then b = b, so Lb = L ∗

b , showing that Lb is self-adjoint. Con-
versely, assume Lb = L ∗

b . Take any real-valued function ψ ∈ C∞
c (R2). Using the explicit form

(2.2) of Lb, we have

Lbψ − Lbψ = −4b2x1 (∂x2ψ − ib1x1ψ) ,

where b = b1 + ib2 with b1,b2 ∈ R. Since x1 (∂x2ψ − ib1x1ψ) is a nonzero function, this
implies that b2 = 0, so b must be real.

Finally, we show that Lb is C-self-adjoint. Let φ ∈ C∞
c (R2). A straightforward calculation

verifies that (LbC)φ = (CLb)φ. For any ψ ∈ Dom(L ∗
b ), we have

⟨Cψ,Lbφ⟩ = ⟨Cψ,CLbCφ⟩ = ⟨LbCφ, ψ⟩ = ⟨Cφ,L ∗
bψ⟩ = ⟨CL ∗

bψ, φ⟩ .
Here, the second and fourth equalities follows from the properties ⟨Cu, v⟩ = ⟨Cv, u⟩ for any
u, v ∈ L2(R2) and C2 = I. Therefore,

⟨Cψ,Lbφ⟩ = ⟨CL ∗
bψ, φ⟩ , ∀φ ∈ C∞

c (R2) .

This implies that Cψ ∈ Dom(Lb) and LbCψ = CL ∗
bψ. Hence, L ∗

b = CLbC, proving that
Lb is complex-self-adjoint. □

2.2. Spectral reducibility. Below, we outline the equivalence of the spectra of the operator
Lb for different values of the parameter b. These equivalences highlight the symmetry prop-
erties and scaling behavior of Lb in relation to its defining parameters, providing insights into
the spectral characteristics of the system.

Proposition 2.2. Given b ∈ C, we write b = |b|eiθ where θ = Arg b. Then,

(i) Specτ (Lb) = |b| Specτ (Leiθ) ,
(ii) Specτ (Leiθ) = Specτ (L−eiθ) ,

(iii) Specτ (Leiθ) = Specτ (Le−iθ) ,

where τ ∈ { ; r; p; c; ess,2; ess,5}.

Proof. The proof is a direct application of [13, Prop. 5.5.1], utilizing suitable (anti-)unitary
operators. In particular, (i) and (ii) are deduced, respectively, from

V −1
b LbVb = |b|L|b|−1b, S−1LbS = L−b ,
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where Vb and S are unitary operators defined by

Vb : L2(R2) → L2(R2), Vbψ(x) = |b|
1
2ψ(|b|

1
2x) ,

S : L2(R2) → L2(R2), (Sψ)(x1, x2) = ψ(−x1, x2) .

While (iii) is ensured from the complex-self-adjointness of Lb, Lb = CLbC
−1. □

As a consequence of Proposition 2.2, for b ∈ C \ {0}, the spectral analysis of Lb can be
systematically reduced as follows:

1. Scaling: By Proposition 2.2 (i), it suffices to consider the case where b lies on the unit
circle, i.e., b = eiθ with θ ∈ (−π, π].

2. Symmetry: Using Proposition 2.2 (ii), this further reduces the analysis to b = eiθ with
θ ∈

(
−π

2
, π
2

]
.

2. Reflection Symmetry: Finally, by Proposition 2.2 (iii), it suffices to restrict to the
case b = eiθ with θ ∈

[
0, π

2

]
.

In summary, it is enough to analyze Lb on the first-quadrant arc of the unit circle.

3. When the magnetic field is non-real and non-imaginary

This section is devoted to the proof of Theorem 1.2 (i). From Section 2.2, we may assume
that b = eiθ, with θ ∈

(
0, π

2

)
. Thanks to the partial Fourier transform (1.8), we get

L̂b = Fx2 7→ξ2LbF
−1
x2 7→ξ2

= −∂2x + (bx− ξ2)
2,

Dom(L̂b) =
{
g ∈ L2(R2) : (−∂2x + (bx− ξ2)

2)g ∈ L2(R2)
}
.

3.1. Weyl sequence construction. In this section, we show that the spectrum of L̂b is the
whole complex plane. Let θ ∈

(
0, π

2

)
and λ ∈ C be fixed. Consider

tθ =
1

cos(θ)
,

choose d ∈ (0, tan(θ)) and take a function φθ ∈ C∞
c (R) such that 0 ≤ φθ ≤ 1 and

φθ(t) =

®
1 if t ∈ [tθ − d, tθ + d] =: J ′

θ ,

0 if t /∈ [tθ − 2d, tθ + 2d] =: Jθ .
(3.1)

Then, we define the following family of functions:

Ψn(x, ξ2) = 1[n−1,n+1](ξ2)φθ

Å
x

ξ2

ã
u(x, ξ2) , (3.2)

where

u(x, ξ2) = e−
1
4
Z2(x,ξ2)Z(x, ξ2)

λ
2b

− 1
2 , with Z(x, ξ2) =

√
2b

Å
x− ξ2

b

ã
. (3.3)

For each n ∈ N, observe that

Supp(Ψn) ⊂
{
(x, ξ2) ∈ R2 : x ∈ [(tθ − 2d)ξ2, (tθ + 2d)ξ2], ξ2 ∈ [n− 1, n+ 1]

}
,

which is a bounded set in R2, and on which (x, ξ2) 7→ φ
Ä

x
ξ2

ä
u(x, ξ2) is smooth, thus Ψn ∈

L2(R2).

In the rest of this section, we prove that (Ψn) is a Weyl sequence for the operator L̂b

associated with λ. In other words, we are going to prove the validity of the limit (3.5) below.
To do so, we start by bounding ∥Ψn∥ from below when n is large.

Lemma 3.1. We have, as n→ +∞,

∥Ψn∥2 ≳ nRe (λ
b )−1e

sin2 θ
cos θ

(n−1)2 .
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Proof. Thanks to the expressions

Re Z2(x, ξ2) = 2
[
cos(θ)x2 − 2xξ2 + cos(θ)ξ22

]
, |Z(x, ξ2)|2 = 2

[
x2 − 2 cos(θ)xξ2 + ξ22

]
,

and (1.6), we have∫
R2

|Ψn(x, ξ2)|2 dxdξ2

=

∫ n+1

n−1

∫ (tθ+2d)ξ2

(tθ−2d)ξ2

∣∣∣∣φÅ xξ2ã∣∣∣∣2 |u(x, ξ2)|2 dxdξ2

≳
∫ n+1

n−1

∫ (tθ+d)ξ2

(tθ−d)ξ2

e−(cos(θ)x2−2xξ2+cos(θ)ξ22)
(
x2 − 2 cos(θ)xξ2 + ξ22

)Re ( λ
2b)−

1
2 dxdξ2 .

By the change of variable x = tξ2, it leads to∫
R2

|Ψn(x, ξ2)|2 dxdξ2 ≳
∫ n+1

n−1

ξ
Re (λ

b)
2

∫ tθ+d

tθ−d

eξ
2
2 p(t)q(t) dtdξ2 ,

where

p(t) = − cos(θ)t2 + 2t− cos(θ) , q(t) = (t2 − 2 cos(θ)t+ 1)Re ( λ
2b)−

1
2 . (3.4)

Since p attains its maximum at tθ (with p(tθ) = sin2(θ)
cos(θ)

> 0), the Laplace method yields, as

ξ2 → +∞, ∫ tθ+
1
2

tθ− 1
2

eξ
2
2 p(t)q(t) dt ∼

…
π

cos(θ)
q(tθ)

ep(tθ)ξ
2
2

ξ2
.

Since n− 1 < ξ2 < n+ 1, we have

ξ
Re (λ

b)−1

2 ≳ nRe (λ
b)−1 and p(tθ)ξ

2
2 > p(tθ)(n− 1)2 .

The conclusion follows. □

Proposition 3.2. We have

lim
n→+∞

∥∥∥ÄL̂b − λ
ä
Ψn

∥∥∥2

∥Ψn∥2
= 0 . (3.5)

Proof. By using the definition of the function u in (3.3), a straightforward computation gives(
−∂2x + (bx− ξ2)

2 − λ
)
u(x, ξ2) =

Cλ,b

Z2(x, ξ2)
u(x, ξ2) , Cλ,b = −λ

2

2
+ 2λ− 3b

2
.

Then, it yields thatÄ
L̂b − λ

ä
Ψn(x, ξ2)

=1[n−1,n+1](ξ2)

ï
− 1

ξ22
φ′′
Å
x

ξ2

ã
u(x, ξ2)− 2

1

ξ2
φ′
Å
x

ξ2

ã
∂xu(x, ξ2)

ò
+

Cλ,b

Z2(x, ξ2)
Ψn(x, ξ2) .

From the inequalities

2 sin2(θ)ξ22 ≤ |Z(x, ξ2)|2 ≤ 2(|x|+ |ξ2|)2,
we deduce that, for all n ≳ 1, all ξ2 ∈ [n− 1, n+ 1], and all x ∈ ξ2Jθ,

|Z(x, ξ2)| ≈ |ξ2| ≈ n . (3.6)

Hence, it leads to ∥∥∥ÄL̂b − λ
ä
Ψn

∥∥∥2

∥Ψn∥2
≲
ï∥T1,n∥2 + ∥T2,n∥2

∥Ψn∥2
+

1

n4

ò
,
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where

T1,n(x, ξ2) = 1[n−1,n+1](ξ2)
1

ξ22
φ′′
Å
x

ξ2

ã
u(x, ξ2) ,

T2,n(x, ξ2) = 1[n−1,n+1](ξ2)
1

ξ2
φ′
Å
x

ξ2

ã
∂xu(x, ξ2) .

Notice that, for k ∈ {1, 2},

SuppTk,n ⊂
{
(x, ξ2) ∈ R2 : x ∈ ξ2 (Jθ \ J ′

θ) , ξ2 ∈ [n− 1, n+ 1]
}
.

Let us start with T1,n. By using the change of variable x = ξ2t, we get∫
R2

|T1,n|2 dxdξ2

=

∫ n+1

n−1

1

ξ42

∫
ξ2(Jθ\J ′

θ)

∣∣∣∣φ′′
Å
x

ξ2

ã∣∣∣∣2 |u(x, ξ2)|2 dxdξ2

≈
∫ n+1

n−1

1

ξ42

∫
ξ2(Jθ\J ′

θ)

∣∣∣∣φ′′
Å
x

ξ2

ã∣∣∣∣2 e− cos(θ)x2+2xξ2−cos(θ)ξ22

×
(
x2 − 2 cos(θ)xξ2 + ξ22

)Re ( λ
2b)−

1
2 dxdξ2

≈
∫ n+1

n−1

ξ
Re (λ

b)−4

2

∫
Jθ\J ′

θ

|φ′′(t)|2eξ22 p(t)q(t) dtdξ2 ,

where p(t) and q(t) are given in (3.4). Since p is a concave polynomial of degree two and attains
its maximum at tθ ∈ (tθ − d, tθ + d), we have

p(t) ≤ κθ = p (tθ + d) < p(tθ) , ∀t ∈ Jθ \ J ′
θ .

Note that κθ = cos θ((tan2 θ − d2). Thus, we get∫
R2

|T1,n|2 dxdξ2 ≲
∫ n+1

n−1

ξ
Re (λ

b)−4

2 eκθξ
2
2 dξ2 ≲ nRe (λ

b)−4eκθ(n+1)2 , as n→ +∞ .

For the term T2,n, we observe that

∂xu(x, ξ2) =
√
2b

ï
−Z(x, ξ2)

2
+

Å
λ

2b
− 1

2

ã
1

Z(x, ξ2)

ò
u(x, ξ2) .

Thanks to (3.6) and arguing as above, we get∫
R2

|T2,n|2 dxdξ2 ≲ nRe (λ
b)eκθ(n+1)2 , as n→ +∞ .

From the estimates of T1,n and T2,n above and Lemma 3.1, we deduce that∥∥∥ÄL̂b − λ
ä
Ψn

∥∥∥2

∥Ψn∥2
≲
ï
neκθ(n+1)2−p(tθ)(n−1)2 +

1

n4

ò
, as n→ +∞ .

Since p(tθ)− κθ > 0, the right-hand side goes to zero as n→ +∞. □

Proposition 3.2 establishes that λ ∈ Spec(L̂b). Since the support of Ψn escapes to infinity in
the ξ2 direction, it yields that fn = Ψn

∥Ψn∥ weakly converges to zero. Applying [8, Thm. 9.1.3(i)],

we obtain the following result:

Corollary 3.3. We have Specess,2(L̂b) = C.
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3.2. Complex Landau levels. Let us show that the elements of Λb = {(2k + 1)b : k ∈ N0}
are the eigenvalues of L̂b (recall that Re b > 0 in this section). For that purpose, we recall
that the Hermite functions ψk ∈ L2(R) are defined by

ψk(x) = cke
−x2

2 Hk(x) ,

where Hk is the k-th Hermite polynomial and ck > 0 is a normalizing constant (see [17,
Thm. 6.2]). They satisfy Å

− d2

dx2
+ x2
ã
ψk = (2k + 1)ψk . (3.7)

This suggests to consider the family

hkℓ(x, ξ2) = ψk

Å√
b

Å
x− ξ2

b

ãã
ψℓ

Å
ξ2√
cos θ

ã
,

which satisfies

L̂bhkℓ = b (2k + 1)hkℓ , L̂ ∗
bhkℓ = b(2k + 1)hkℓ , (3.8)

where we used Proposition 2.1 for the second equality. The presence of
√
cos θ is here to ensure

that hkℓ ∈ L2(R2). Indeed, we have

|hkℓ(x, ξ2)|2 = |ckcℓ|2
∣∣∣∣Hk

Å√
b

Å
x− ξ2

b

ãã
Hℓ

Å
ξ2√
cos θ

ã∣∣∣∣2 e−(cos(θ)x2−2xξ2+cos(θ)ξ22)e−
ξ22

cos θ ,

which is integrable since

cos(θ)x2 − 2xξ2 + cos(θ)ξ22 +
ξ22

cos θ
= cos θ

ñÅ
x− ξ2

cos θ

ã2
+ ξ22

ô
.

This shows that

Λb ⊂ Specp(L̂b) .

Lemma 3.4. The family (hkℓ)(k,ℓ)∈N2
0
is a total family in L2(R2).

Proof. The proof is standard. We recall the main steps for completeness. Take ψ ∈ L2(R2)
such that ψ is orthogonal to all the hkℓ. Then, ψ = ψ(x1, x2) is also orthogonal to all the familyÄ

xk1x
ℓ
2e

− 1
2
Q(x1,x2)

ä
(k,ℓ)∈N2

0

, where Q(x1, x2) = b
(
x1 −

x2
b

)2

+
x22

cos θ
.

We let, for all ξ ∈ R2,

F (ξ) =

∫
R2

ψ(x)e−ix·ξe−
1
2
Q(x)dx .

By using that Re Q is a positive definite quadratic form, the function F extends to a holo-
morphic function on a strip about R2. By using the dominate convergence theorem and the
aforementioned orthogonality, we get ∂αξ F (0) = 0, for all α ∈ N2

0. This shows that F is zero
and so is ψ thanks to the inverse Fourier transform. □

In fact, the Landau levels are the only elements of the point spectrum.

Proposition 3.5. Let b = eiθ with θ ∈
(
0, π

2

)
, then

Specp(L̂b) ⊂ Λb .

Proof. Consider λ in the point spectrum and ψ a corresponding normalized eigenfunction. We

have (L̂b −λ)ψ = 0 so that, for all (k, ℓ) ∈ N2
0, ⟨(L̂b −λ)ψ, hkℓ⟩ = 0. By using the adjoint and

(3.8), we get ⟨ψ, ((2k+ 1)b− λ)hkℓ⟩ = 0. Thus, for all (k, ℓ) ∈ N2
0, ((2k+ 1)b− λ)⟨ψ, hkℓ⟩ = 0.

If for all k ∈ N0, we have (2k + 1)b − λ ̸= 0, then Lemma 3.4 shows that ψ = 0 which is a
contradiction. □
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4. When the magnetic field is purely imaginary

In this section, we prove Theorem 1.2 (ii). Thanks to Proposition 2.2, it is enough to study
the operator when b = i. That is why we consider Li only.
It will be convenient to use a change of gauge to cancel the term x21:

L̃i = e−ix2
1/2Lie

ix2
1/2 = (−i∂x1+x1)

2+(−i∂x2−ix1)2 = −∂2x1
−∂2x2

+(x1Dx1+Dx1x1)−2ix1Dx2 .

By using the Fourier transform Fx 7→ξ given in (1.7), we get the first order differential operator

L̂i = Fx 7→ξ L̃i F
−1
x 7→ξ = 2(iξ1 + ξ2)∂ξ1 + ξ21 + ξ22 + i ,

Dom(L̂i) =
{
g ∈ L2(R2) :

[
2(iξ1 + ξ2)∂ξ1 + ξ21 + ξ22

]
g ∈ L2(R2)

}
.

(4.1)

The purely imaginary case is special since there is no point spectrum any more. Indeed, take

λ ∈ C, suppose that ψ is an eigenfunction corresponding to λ of L̂i, i.e., ψ ∈ Dom(L̂i) and

2(iξ1 + ξ2)∂ξ1ψ(ξ1, ξ2) +
(
ξ21 + ξ22 + i− λ

)
ψ(ξ1, ξ2) = 0 .

By fixing ξ2 ̸= 0 and solving the ordinary differential equation with respect to ξ1, we obtain a
solution in the form

u(ξ1, ξ2) = e−
1
2
ξ1ξ2+i

ξ21
4 (ξ1 − iξ2)

− 1+iλ
2 , (4.2)

and thus, for some constant C(ξ2), we have, for all ξ1 ∈ R, ψ(ξ) = C(ξ2)u(ξ). For all ξ2 ̸= 0,
u(·, ξ2) does not belong to L2(R). Thus, ψ = 0.
However, the spectrum is still the whole complex plane. To see this, it is sufficient to

consider λ with Im λ ≥ 0 and to construct an appropriate Weyl sequence. Indeed, in the
purely imaginary case, one has the extra symmetry TLi = LiT , where Tψ = ψ. Consequently,
λ ∈ Specess,2(Li) ⇐⇒ λ ∈ Specess,2(Li).
We fix λ ∈ C with Im λ ≥ 0. Choosing α ∈ (1, 2) and we set

Ψn(ξ1, ξ2) = 1[1,2](nξ2)φ

Å
ξ1
nαξ2

ã
u(ξ1, ξ2) ,

where φ ∈ C∞(R) is such that

φ(s) =

®
1 if s ≥ 2 ,

0 if s ≤ 1 .

Lemma 4.1. For all n ∈ N, we have Ψn ∈ L2(R2).

Proof. Fix n ∈ N, by using the change of variable ξ1 = sξ2, we have∫
R2

|Ψn(ξ1, ξ2)|2 dξ1dξ2 =
∫ 2

n

1
n

∫ +∞

nαξ2

∣∣∣∣φÅ ξ1
nαξ2

ã∣∣∣∣2 |u(ξ2, ξ2)|2 dξ1dξ2
≲
∫ 2

n

1
n

∫ +∞

nαξ2

e−ξ1ξ2(ξ21 + ξ22)
1
2
(Im λ−1) dξ1dξ2

=

∫ 2
n

1
n

ξIm λ
2

∫ +∞

nα

e−ξ22s(s2 + 1)
1
2
(Im λ−1) dsdξ2

≤
Ç∫ 2

n

1
n

ξIm λ
2 dξ2

åÅ∫ +∞

0

e−s/n2

(s2 + 1)
1
2
(Im λ−1) ds

ã
< +∞ .

□

Lemma 4.2. We have

∥Ψn∥2 ≳
®
nIm λ−1 if Im λ > 0,

ln(n)n−1 if Im λ = 0,
(4.3)

as n→ +∞.
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Proof. We have

∥Ψn∥2 ≥
∫ 2

n

1
n

∫ +∞

2nαξ2

e−ξ1ξ2(ξ21 + ξ22)
1
2
(Im λ−1) dξ1 dξ2

=

∫ 2
n

1
n

ξIm λ
2

∫ +∞

2nα

e−ξ22s(s2 + 1)
1
2
(Im λ−1) ds dξ2 (change ξ1 = ξ2s)

≈
∫ 2

n

1
n

ξIm λ
2

∫ +∞

2nα

e−ξ22ssIm λ−1 ds dξ2
(
use s2 ≤ s2 + 1 ≤ 2s2,∀s ≥ 1

)
=

∫ 2
n

1
n

ξ− Im λ
2

∫ +∞

2nαξ22

e−ttIm λ−1 dt dξ2
(
change t = ξ22s

)
=

∫ 2
n

1
n

ξ− Im λ
2 Γ(Im λ, 2nαξ22) dξ2 ,

where Γ(a, x) =
∫ +∞
x

ta−1e−t dt is the incomplete Gamma function. Since α < 2 and 2nαξ22 ≤
8nα−2 for all ξ2 ∈

[
1
n
, 2
n

]
, it implies that limn→+∞ 2nαξ22 = 0. Now we consider two cases. When

Im λ > 0, we have, by dominated convergence theorem,

lim
n→+∞

Γ(Im λ, 2nαξ22) = Γ(Im λ) .

Thus, it leads to

∥Ψn∥2 ≳
∫ 2

n

1
n

ξ− Im λ
2 dξ2 ≈ nIm λ−1 .

When Im λ = 0, we have

Γ(0, 2nαξ22) ≈ − ln(2nαξ22) ≈ − ln(nα−2) ≈ ln(n), for all ξ2 ∈
ï
1

n
,
2

n

ò
, as n→ +∞ ,

and then

∥Ψn∥2 ≳
∫ 2

n

1
n

ln(n) dξ2 ≈ ln(n)n−1 .

□

Proposition 4.3. We have

∥(L̂i − λ)Ψn∥2 ≲ n− Im λ−1−2α ,

as n→ +∞.

Proof. Notice that

(L̂i − λ)Ψn(ξ1, ξ2) = 2χ[1,2](nξ2)
1

nα

Å
i
ξ1
ξ2

+ 1

ã
φ′
Å

ξ1
nαξ2

ã
u(ξ1, ξ2).
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Then, we have

∥(L̂i − λ)Ψn∥2 =4

∫ 2
n

1
n

∫ 2nαξ2

nαξ2

1

n2α

ÇÅ
ξ1
ξ2

ã2
+ 1

å ∣∣∣∣φ′
Å

ξ1
nαξ2

ã∣∣∣∣2 |u(ξ2, ξ2)|2 dξ1dξ2
≲

1

n2α

∫ 2
n

1
n

∫ 2nαξ2

nαξ2

e−ξ1ξ2(ξ21 + ξ22)
1
2
(Im λ−1) dξ1dξ2

=
1

n2α

∫ 2
n

1
n

ξIm λ
2

∫ 2nα

nα

e−ξ22s(s2 + 1)
1
2
(Im λ−1) dsdξ2

≲
1

n2α

∫ 2
n

1
n

ξIm λ
2 dξ2 ≈ n− Im λ−1−2α.

□

By setting fn = Ψn

∥Ψn∥ , using Lemma 4.2 and Proposition 4.3, we get

lim
n→+∞

∥(L̂i − λ)fn∥ = 0 .

This shows that
{λ ∈ C : Im λ ≥ 0} ⊂ Spec(L̂i) = Spec(Li) .

Since α > 1 and Supp(fn) ⊂ [nα−1,+∞]×
[
1
n
, 2
n

]
, support of fn moves to infinity in ξ1 direction.

Hence, fn weakly converges to 0 in L2(R2).
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