Decoupled structure-preserving discretization of incompressible MHD equations with general boundary conditions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Decoupled structure-preserving discretization of incompressible MHD equations with general boundary conditions

Artur Palha
  • Fonction : Auteur
  • PersonId : 1479561
Andrea Brugnoli
Deepesh Toshniwal
  • Fonction : Auteur
  • PersonId : 1479562
Marc Gerritsma
  • Fonction : Auteur
  • PersonId : 1479563

Résumé

In the framework of a mixed finite element method, a structure-preserving formulation for incompressible MHD equations with general boundary conditions is proposed. A leapfrog-type temporal scheme fully decouples the fluid part from the Maxwell part by means of staggered discrete time sequences and, in doing so, partially linearizes the system. Conservation and dissipation properties of the formulation before and after the decoupling are analyzed. We demonstrate optimal spatial and second-order temporal error convergence and conservation and dissipation properties of the proposed method using manufactured solutions, and apply it to the benchmark Orszag-Tang and lid-driven cavity test cases.
Fichier principal
Vignette du fichier
2410.23973v1.pdf (2.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04840777 , version 1 (16-12-2024)

Identifiants

  • HAL Id : hal-04840777 , version 1

Citer

Yi Zhang, Artur Palha, Andrea Brugnoli, Deepesh Toshniwal, Marc Gerritsma. Decoupled structure-preserving discretization of incompressible MHD equations with general boundary conditions. 2024. ⟨hal-04840777⟩
0 Consultations
0 Téléchargements

Partager

More