Optimizing Convolution Operations for YOLOv4-based Object Detection on GPU - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Optimizing Convolution Operations for YOLOv4-based Object Detection on GPU

Résumé

Real-time object detection is crucial for autonomous vehicles, and YOLO (You Only Look Once) algorithms have demonstrated their effectiveness for this purpose. This study examines the performance of YOLOv4 [3] for real-time object detection on an embedded architecture. We focus on optimizing the computationally intensive convolution operations by employing the cuDNN library to achieve efficient inference. The evaluation assesses critical performance metrics, including object detection accuracy in terms of Mean Average Precision (mAP) and inference latency on the embedded architecture. We conduct a comparative analysis using the publicly available KITTI [7] database. The reported results establish a benchmark between the parallelized YOLOv4 model and the baseline implementation, assessing the advantages of cuDNN acceleration for real-time object detection on resource-constrained devices.
Fichier principal
Vignette du fichier
itmconf_maih2024_04008.pdf (413.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04838213 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Fatima Zahra Guerrouj, Sergio Rodríguez Flórez, Abdelhafid El Ouardi, Mohamed Abouzahir, Mustapha Ramzi. Optimizing Convolution Operations for YOLOv4-based Object Detection on GPU. International Conference on Mobility, Artificial Intelligence and Health (MAIH2024), Nov 2024, Marrackech, Morocco. pp.04008, ⟨10.1051/itmconf/20246904008⟩. ⟨hal-04838213⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More