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Abstract. Real-time object detection is crucial for autonomous vehicles, and YOLO (You Only Look Once)
algorithms have demonstrated their effectiveness for this purpose. This study examines the performance of
YOLOv4 [3] for real-time object detection on an embedded architecture. We focus on optimizing the compu-
tationally intensive convolution operations by employing the cuDNN library to achieve efficient inference. The
evaluation assesses critical performance metrics, including object detection accuracy in terms of Mean Average
Precision (mAP) and inference latency on the embedded architecture. We conduct a comparative analysis using
the publicly available KITTI [7] database. The reported results establish a benchmark between the parallelized
YOLOv4 model and the baseline implementation, assessing the advantages of cuDNN acceleration for real-time
object detection on resource-constrained devices.

1 Introduction

Autonomous vehicles (AVs) have the potential to trans-
form the transportation sector by providing safer, more ef-
ficient, and easily accessible mobility solutions. However,
for AVs to operate safely and reliably, they need to be able
to perceive and understand their environment in real-time
with a high degree of accuracy. Achieving this real-time
perception involves combining various sensors and robust
processing algorithms.

Real-time object detection is a crucial part of this pro-
cessing pipeline, involving identifying and locating ob-
jects of interest (e.g., pedestrians, vehicles, traffic signs)
in the environment captured by sensors such as cameras.
Convolutional neural networks (CNNs), particularly "You
Only Look Once" (YOLO) algorithms, have emerged as a
leading approach to object detection due to their powerful
feature learning capabilities, offering a good balance be-
tween accuracy and computational complexity, and being
well-suited to real-time applications such as autonomous
driving [2]

However, deploying CNN-based object detectors on
resource-constrained embedded architectures, typically in-
tegrated in AVs, presents a significant challenge due to
limited processing power, memory, and high energy con-
sumption. Optimizing object detection models for efficient
inference on embedded architectures is crucial for deploy-
ing AVs in the real world [1].

Therefore, this work is developed within a hardware-
software codesign methodology [17]. It examines the
performance of YOLOv4, a state-of-the-art object detec-
tion algorithm, on an embedded architecture for real-
time object detection in autonomous vehicles. YOLOv4
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shares key computational characteristics with its succes-
sors, such as General Matrix Multiplication (GEMM) op-
erations, making our findings relevant to newer versions
like YOLOv5 through YOLOv8. The focus is on using the
cuDNN library, a powerful tool for accelerating computa-
tionally intensive convolution operations in the YOLOv4
model, to quantify the benefits of cuDNN acceleration by
analyzing object detection accuracy, inference latency, and
resource utilization on the embedded architecture. Ulti-
mately, this study will highlight the feasibility of deploy-
ing YOLOv4 for real-time object detection on resource-
constrained embedded architectures, paving the way for
safer and more reliable autonomous vehicles.

The primary contributions of this study can be summa-
rized as follows:

• Performance evaluation of YOLOv4 on embedded
architectures: This study provides a detailed analysis
of the performance of the YOLOv4 object detection al-
gorithm when deployed on resource-constrained embed-
ded architectures, focusing on real-time applications in
autonomous vehicles.

• Acceleration using cuDNN: The study explores using
the cuDNN library to accelerate the computationally in-
tensive convolution operations in the YOLOv4 model. It
quantifies the benefits of using cuDNN in terms of ob-
ject detection accuracy, inference latency, and resource
utilization.

• Feasibility Analysis for Real-Time Object Detection:
By examining the trade-offs between accuracy, speed,
and resource consumption, the research highlights the
feasibility of using YOLOv4 for real-time object detec-
tion on embedded architectures used in autonomous ve-
hicles.
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The paper’s organization is structured as follows: Sec-
tion 2 provides a comprehensive review of current object
detection algorithms, focusing on their implementation on
embedded architectures. Section 3 details the YOLOv4
object detection algorithm, including its architecture and
functional blocks. In Section 4, the paper synthesizes
techniques for parallelizing convolutional operations to
achieve real-time performance on embedded architectures.
Section 5 analyzes and discusses the experimental results.
Finally, Section 6 summarizes the essential findings and
conclusions drawn from the study.

2 Related Work

Recent advancements in deep convolutional networks
have revolutionized object detection, particularly in au-
tonomous vehicles where efficiency and accuracy are
paramount. One notable contribution by [19] The research
investigates the efficacy of different deep learning object
detection frameworks on various NVIDIA Jetson archi-
tectures, including Nano, TX2, NX, and AGX. It assesses
critical performance indicators such as accuracy (mAP and
AP), speed (FPS), and resource utilization. Notably, the
study emphasizes the pivotal role of the TensorRT library
in enhancing inference speed and efficiency while main-
taining accuracy. It focuses explicitly on person detection
by comparing one-stage and two-stage detectors. The find-
ings underscore the ability of architectures like TX2 and
NX to handle intricate models with appropriate optimiza-
tions effectively. However, the analysis also acknowledges
challenges stemming from memory limitations on specific
Jetson architectures, thereby underscoring the significance
of optimization techniques such as TensorRT for achieving
peak performance.

Furthermore, [20] delves into developing an efficient
system for real-time detection of pedestrians and vehicle
priority signs. The system is built on the NVIDIA Jetson
Nano architecture, known for its low-power capabilities,
and is equipped with cameras to capture the surrounding
environment. An LCD is also integrated to relay perti-
nent information to the driver. A custom-trained Convo-
lutional Neural Network (CNN) named SSD-MobileNet
was developed for object detection. The model under-
went training using diverse road images obtained under
varying environmental conditions. The research posits
that the system holds promise in enhancing road safety
by delivering reliable and cost-effective Advanced Driver-
Assistance Systems (ADAS). The system exhibits an aver-
age accuracy exceeding 90% in object detection and cor-
rect identification (recall rate). However, the processing
speed is noted to be suboptimal, at 8.7 frames per second,
necessitating enhanced speed for real-time applications.
Therefore, further refinements are essential to render the
system practical.

Additionally, [13] presents a novel low-latency ac-
celerator architecture tailored to enhance real-time ob-
ject detection performance. This architecture features a
finely-grained column-based pipeline with a padding skip
technique to minimize pipeline startup time, a double
signed multiplication correction circuit optimizing DSP

efficiency, and a pioneering pooling unit with a shared
buffer to reduce memory costs specifically for the pool-
ing layer. Demonstrated with the implementation of
YOLOv2-tiny on a development board, the architecture
achieves remarkable results—a 20.7% reduction in BRAM
consumption and a latency reduction of 2.125x to 2.34x
compared to previous FPGA accelerators for YOLOv2-
tiny, boasting a DSP efficiency of 95.2%. These advance-
ments collectively push the boundaries of real-time object
detection capabilities, which is crucial for advancing au-
tonomous vehicle technologies.

Moreover, [14] evaluates the performance of two ob-
ject detectors, EfficientDet-Lite and YOLOv3-tiny, on the
Nvidia Jetson TX2 mobile embedded architecture. Their
comprehensive assessment includes various network con-
figurations, leveraging EfficientNet-Lite backbone mod-
els and exploring TensorRT optimization alongside post-
training quantization techniques. The findings underscore
the suitability of YOLOv3-tiny and YOLOv3-tiny-3l mod-
els for achieving accurate real-time object detection on the
Jetson TX2. In contrast, the computational demands of
EfficientDet-Lite models pose challenges, with only the
EfficientDet-Lite0 model showing potential for near real-
time processing.

The studies concentrate on enhancing hardware and
software efficiency, accuracy, and integration. They also
showcase notable progress in real-time object detection
for self-driving cars. These works focus on improving
the speed and reliability of object detection, specifically
tailored for embedded architectures in autonomous vehi-
cles. While GPU-based architectures, like the Jetson AGX
Xavier, offer substantial performance advantages, alterna-
tive hardware options such as Digital Signal Processors
(DSPs) and Field Programmable Gate Arrays (FPGAs)
play an equally significant role. These architectures offer
distinct benefits regarding power efficiency and customiza-
tion capabilities, making them crucial for optimizing per-
formance and energy consumption in resource-constrained
environments. Integrating these diverse hardware solu-
tions can result in a more balanced and efficient embed-
ded architecture, particularly for applications related to au-
tonomous vehicles and similar domains.

However, achieving optimal performance requires a
comprehensive understanding of the nuances of the object
detection model. When deployed on resource-constrained
embedded architectures, this entails a detailed analysis of
their architectural designs, component functionalities, and
performance characteristics. Understanding these factors
is crucial for refining object recognition pipelines and ulti-
mately advancing the goal of ensuring safe and reliable au-
tonomous vehicles. This work represents the initial phase
of a hardware-software codesign approach that utilizes
GPU-CPU hybrid architectures. By harnessing the power
of GPUs for quick prototyping and identifying potential
software improvements, this approach lays the ground-
work for future development stages. The next phase will
incorporate FPGA-CPU hybrid solutions, which offer ad-
ditional power efficiency and performance optimizations.
This two-part strategy emphasizes the importance of it-
erative design, ensuring that the final embedded solution
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maximizes both speed and energy efficiency for real-time
applications in autonomous vehicles.

3 Methods

This section provides an in-depth examination of the prin-
cipal components and functional blocks of YOLOv4. Sub-
sequently, the evaluation metrics employed to measure the
network’s predictive performance are surveyed. Following
this, the dataset utilized for training the object detection
models is detailed. Lastly, a comprehensive overview of
the experimental setup implemented in this study is pre-
sented.

3.1 YOLO Algorithm

The YOLO (You Only Look Once) algorithm family
has revolutionized real-time object detection by combin-
ing object classification and localization in a single pass
through a Convolutional Neural Network (CNN). This ap-
proach diverges from conventional methods by predicting
bounding boxes and class probabilities for objects in an
image simultaneously. This feature provides a significant
speed advantage, making YOLO well-suited for real-time
applications such as autonomous vehicles.

Figure 1. YOLOv4 Functional Blocks [18].

YOLOv4 [3] builds upon its predecessors while ad-
dressing their limitations. The architecture and functional
blocks of YOLOv4 are illustrated in Figure 1. By lever-
aging robust backbone networks such as CSPDarknet53
and incorporating Feature Pyramid Networks (FPNs) with
Path Aggregation Network (PAN) for enhanced multi-
scale feature extraction, YOLOv4 employs multiple pre-
diction heads to detect objects of various sizes. Addi-
tionally, it utilizes the Mish activation function to further
enhance performance. Regularization techniques, such
as CutMix, within the "Bag of Freebies" (BoF) frame-
work are implemented to improve generalization, while
the Focus loss function addresses class imbalance issues.

Through the integration of these components, YOLOv4
achieves an optimal balance between speed and accuracy,
making it a powerful choice for real-time object detection
tasks on embedded architectures, including applications in
autonomous vehicles.

However, to obtain a thorough understanding of
YOLOv4’s performance on embedded architectures, it is
essential to evaluate its efficiency metrics [4], which in-
clude latency and object detection accuracy.

3.2 Evaluation metrics

To assess object detection models effectively, it is nec-
essary to consider various performance metrics beyond
accuracy alone. This evaluation specifically emphasizes
three key metrics: Mean Average Precision (mAP), Aver-
age Precision (AP), and execution time, thereby providing
a comprehensive assessment of the models’ effectiveness.

Precision [5] serves as an important measure of a
model’s ability to effectively identify true positives (TP),
i.e., accurately recognized objects, while minimizing false
positives (FP), i.e., incorrectly classified objects. It is cal-
culated as:

Precision =
T P

(T P+FP)
(1)

Recall [5] is also a key metric, as it measures the per-
centage of actual positive cases that the model correctly
identifies, with FN representing False Negatives.

Recall =
T P

(T P+FN)
(2)

When assessing object detection models with multi-
ple object classes, Average Precision (AP) offers a detailed
evaluation by considering precision and recall across var-
ious confidence score thresholds for each detection. The
model generates a Precision-Recall curve, and AP sum-
marizes the performance for a single class by averaging
precision across all thresholds.

Mean Average Precision (mAP) expands on the con-
cept of AP by computing the AP for each class in the
dataset and then averaging them to produce a singular met-
ric representing the model’s overall performance across all
object categories.

mAP =
∑

APclass/N (3)

Where N is the number of classes.
Both mAP and AP are essential for evaluating a

model’s ability to detect objects while minimizing false
positives accurately.

Execution time, inference time, or latency [6] mea-
sures the duration required for a model to process an image
and infer detection. This metric is critical for real-time ap-
plications, such as autonomous vehicles, where swift and
accurate object detection is essential. Typically, execution
time is measured in milliseconds (ms) or frames per sec-
ond (FPS).

By considering mAP, AP, and execution time collec-
tively, we gain a comprehensive understanding of an object
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detection model’s effectiveness for a specific task. This
assessment ensures that models are not only accurate but
also efficient and practical for real-world applications.

3.3 Dataset

Training and evaluating datasets that accurately represent
real-world driving conditions is essential for developing
practical object detection algorithms for autonomous ve-
hicles. The KITTI Vision Benchmark Suite is widely rec-
ognized as a premier dataset [7].

The KITTI dataset provides extensive high-resolution
stereo camera images from vehicles navigating diverse ur-
ban environments. It encompasses various lighting condi-
tions, weather variations, and complex traffic scenes, mak-
ing it an excellent resource for training object detection
models.

In our research, we utilize the KITTI dataset to evalu-
ate the performance of YOLOv4 for real-time object de-
tection on embedded architectures in autonomous vehi-
cles. We focus on detecting three object classes essen-
tial for safe navigation: cars, pedestrians, and bicycles.
This approach ensures that our evaluation addresses the
key elements necessary for the safety and reliability of au-
tonomous driving systems.

3.4 Experimental setup

The NVIDIA Jetson Xavier AGX [8] is an advanced com-
puting module designed to bring artificial intelligence (AI)
capabilities to the edge of the network. It features a robust
NVIDIA Volta™ GPU architecture with 512 cores, 8-core
Carmel ARM CPUs operating at 2.26 GHz, and 16 GB
of memory. This combination delivers the computational
power necessary to run complex deep learning models like
YOLOv4, while maintaining a compact form factor that is
ideal for embedded architectures.

4 Parallelization process

Convolutional Neural Networks (CNNs) have significantly
transformed the field of computer vision, leading to no-
table progress in tasks such as object detection. However,
the substantial computational resources required for con-
volution operations present a persistent challenge.

At the heart of a CNN lies the pivotal convolution
operation, responsible for discerning image features by
applying a filter across the input data [9]. While effec-
tive, this process experiences escalating computational de-
mands with increasing input size and filters, particularly in
larger models like YOLOv4. The traditional approach, in-
volving nested loops for element-wise multiplications and
summations, necessitates heightened parallelism. This in-
efficiency can present considerable challenges for contem-
porary processors geared toward optimizing parallel exe-
cution. To combat this issue, several optimization tech-
niques have been developed. This study focuses on two
critical methods for parallelizing convolution operations to
enable real-time object detection in resource-constrained
environments, such as autonomous vehicles.

1. General Matrix Multiplication (GEMM): This ap-
proach reformulates the convolution operation as a matrix
multiplication problem, as shown in Figure 2. By utiliz-
ing highly optimized libraries like cuDNN, GEMM sig-
nificantly speeds up the convolution process [10].

Figure 2. GEMM Operation

2. im2col (image to column): An essential compo-
nent of GEMM-based convolution, the im2col technique
restructures the input data by converting the input image
into a column matrix, as shown in Figure 3. Each column
of this matrix represents a local region that the filter pro-
cesses [11]. This transformation enables the entire convo-
lution operation to be carried out as a single matrix multi-
plication, fully leveraging the optimized GEMM routines.

Figure 3. Input image and Kernel transformed into matrix, with
N=h*w and K=k*k*c.

The combined application of GEMM and im2col
facilitates parallel execution of convolution operations,
which is advantageous on hardware architectures such as
GPUs and specialized accelerators with multiple process-
ing units. By reducing computational latency and increas-
ing throughput, parallelization makes real-time processing
achievable for critical applications like autonomous driv-
ing, where timely and accurate object detection is crucial.

This study delves into implementing and optimizing
YOLOv4, an advanced object detection algorithm, for de-
ployment on embedded architectures. By harnessing the
power of GEMM and im2col for parallel convolution oper-
ations, we aim to significantly enhance the performance of
YOLOv4 on resource-constrained architectures, ensuring
it meets the stringent real-time processing requirements
necessary for autonomous vehicles.
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5 Results and discussion

This section will comprehensively evaluate General Ma-
trix Multiplication (GEMM) performance on the NVIDIA
Jetson AGX Xavier architecture, focusing on CPU and
GPU implementations. Initially, we will analyze the per-
formance of a naive GEMM approach on the CPU and
GPU to establish a baseline. Following this, we will assess
the performance of GEMM optimized by the cuDNN li-
brary, a GPU-accelerated library for deep neural networks,
to illustrate the substantial gains in efficiency and speed
that cuDNN offers for embedded architectures.

5.1 Performance analysis

In this study, we trained the model on a workstation fea-
turing an Nvidia Quadro RTX 6000 GPU with 24 GB of
memory and 4608 CUDA cores. Additionally, the work-
station contained an Intel® Xeon(R) W-2265 CPU oper-
ating at 3.50GHz. The KITTI dataset was divided into a
training set, which included 70% of the data (5237 im-
ages) and a test set of 30% (2244 images) [10]. To max-
imize GPU training efficiency, we chose a batch size of
64. The training process encompassed 6000 iterations to
ensure the model’s stability and prevent overfitting, utiliz-
ing a fixed input size of 416x416. Following the training
phase, we evaluated the model’s inference performance on
the Nvidia Jetson AGX Xavier architecture to assess its
effectiveness in a real-world embedded environment.

Figure 4. Time consumption of YOLOv4 functional blocks with
the GEMM naive.

The provided Figure 4 presents the time consump-
tion analysis of different functional blocks in the YOLOv4
model on both the CPU and GPU of the Nvidia Jetson
AGX architecture, with a specific focus on the naive Gen-
eral Matrix Multiplication (GEMM) implementation.

The analysis indicates that the CPU (depicted by the
blue line) consistently demonstrates low and relatively sta-
ble time consumption across all functional blocks. In con-
trast, the GPU (illustrated by the orange line) with the
naive GEMM implementation exhibits significantly higher
time consumption, particularly in computationally inten-
sive blocks such as CSP8 and CBL x5. This disparity
emphasizes the inefficiency of the naive GEMM approach
on the GPU, which fails to effectively utilize the parallel
processing capabilities, resulting in substantially higher la-
tency. Notably, blocks like CSP8 show a drastic spike in
time consumption, further accentuating the necessity for

optimized GEMM implementations like cuDNN, which is
essential for achieving efficient real-time performance.

The overall comparison between the CPU and GPU
without optimization suggests that the GPU’s performance
is subpar in these tasks compared to the CPU, highlighting
the crucial importance of employing optimized libraries to
fully unleash the potential of GPU hardware in embedded
architectures for real-time object detection.

5.2 cuDNN Implementation

In the analysis presented in section 5.1, it was observed
that the naive General Matrix Multiplication (GEMM) im-
plementation on the GPU resulted in significant inefficien-
cies, leading to higher time consumption than the CPU
for different functional blocks of the YOLOv4 model. To
mitigate this issue, the cuDNN (CUDA Deep Neural Net-
work) library, known for its high optimization for deep
learning on GPUs, was integrated to showcase its efficacy
in processing these blocks on the GPU [12].

Figure 5. Time consumption of YOLOv4 functional blocks with
cuDNN.

Figure 5 illustrates the time consumption of the func-
tional blocks of YOLOv4 on the CPU (depicted by the
blue line), GPU with naive GEMM (depicted by the or-
ange line), and GPU with cuDNN (depicted by the green
line). The findings are substantial: while the naive GEMM
implementation on the GPU exhibited notable latency, in-
corporating cuDNN significantly reduced the time con-
sumption across all functional blocks. In most scenar-
ios, the cuDNN-optimized GPU (green line) performed
equivalently to or even outperformed the CPU, demon-
strating significant performance enhancements achieved
through optimization. Notably, in computationally intense
blocks such as CSP8 and CBL x5, the time consump-
tion with cuDNN was almost negligible compared to the
naive GEMM implementation. Leveraging cuDNN illus-
trates the efficient utilization of the GPU’s parallel pro-
cessing capabilities, rendering it an optimal solution for
real-time object detection applications in embedded archi-
tectures with restricted resources.

Upon completing the time consumption analysis, our
next step involved assessing the precision of YOLOv4 for
three crucial classes: cars, pedestrians, and bicycles, as
well as its frames per second (FPS) on the GPU AGX ar-
chitecture while utilizing cuDNN. This supplementary as-
sessment offers a comprehensive insight into not only the
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computational efficiency but also the accuracy and real-
time processing capabilities of YOLOv4 when optimized
with cuDNN on an embedded architecture. This under-
scores its suitability for autonomous vehicle applications.

Table 1. Performance Analysis of YOLOv4 on the KITTI
Dataset.

Model mAP AP car AP pedestrian AP bicycle FPS
YOLOv4 83.53% 94.15% 72.22% 84.20% 11.7

The results of Table 1 show that YOLOv4 achieves
an mAP of 83.53%, indicating overall solid accuracy in
detecting objects. However, despite these promising ac-
curacy metrics, the FPS is recorded at 11.7, which falls
short of the real-time processing requirement typically set
at 30 FPS or higher for autonomous vehicle applications.
This shortfall in FPS highlights the need for further op-
timizations to enhance the model’s real-time processing
capabilities on the AGX architecture. Techniques such
as model pruning and quantization could reduce compu-
tational overhead and improve inference speed, making
YOLOv4 more suitable for deployment in real-time sce-
narios in autonomous vehicles.

6 Conclusion
In this study, we examined the performance of the
YOLOv4 object detection model for real-time applications
on embedded architectures in autonomous vehicles. Our
evaluation of YOLOv4 on the KITTI dataset using the
NVIDIA Jetson Xavier AGX architecture and cuDNN ac-
celeration yielded promising results. YOLOv4 demon-
strated a high mean average precision (mAP) of 83.53%
and average solid precision (AP) values for specific object
classes such as cars, pedestrians, and bicycles, showcasing
its effectiveness in object detection.

However, a significant challenge lies in achieving real-
time processing speeds. The current FPS (11.7) falls
short of the 30 FPS threshold typically required for au-
tonomous vehicles, highlighting the need for further opti-
mization to balance accuracy with real-time performance.
Future work will prioritize enhancements in critical ar-
eas to better adapt YOLOv4 for real-time object detection
in autonomous vehicles: Model Compression, Hardware-
Software Co-design, and Advanced Parallelization Tech-
niques.
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