Intersection of parabolic subgroups in Euclidean braid groups: a short proof - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2024

Intersection of parabolic subgroups in Euclidean braid groups: a short proof

Résumé

We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups A [ A (n) ] is again a parabolic subgroup. To that end, we use that the spherical-type Artin group A [ B (n +1) ] is isomorphic to A [ A (n) ] (sic) Z .
Fichier non déposé

Dates et versions

hal-04836461 , version 1 (13-12-2024)

Identifiants

Citer

María Cumplido, Federica Gavazzi, Luis Paris. Intersection of parabolic subgroups in Euclidean braid groups: a short proof. Comptes Rendus. Mathématique, 2024, 362 (G11), pp.1445-1448. ⟨10.5802/crmath.656⟩. ⟨hal-04836461⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More