Compatible pants decomposition for $\mathrm{SL}_{2}(\mathbb{C})$ representations of surface groups - Archive ouverte HAL
Article Dans Une Revue Groups, Geometry, and Dynamics Année : 2024

Compatible pants decomposition for $\mathrm{SL}_{2}(\mathbb{C})$ representations of surface groups

Résumé

For any irreducible representation of a surface group into \mathrm{SL}_{2}(\mathbb{C}) , we show that there exists a pants decomposition where the restriction to any pair of pants is irreducible and where no curve of the decomposition is sent to a trace \pm 2 element. We prove a similar property for \mathrm{SO}_{3} -representations. We also investigate the type of pants decomposition that can occur in this setting for a given representation. This result was announced by Detcherry and Santharoubane (2022), motivated by the study of the Azumaya locus of the skein algebra of surfaces at roots of unity.
Fichier non déposé

Dates et versions

hal-04828926 , version 1 (10-12-2024)

Identifiants

Citer

Renaud Detcherry, Thomas Le Fils, Ramanujan Santharoubane. Compatible pants decomposition for $\mathrm{SL}_{2}(\mathbb{C})$ representations of surface groups. Groups, Geometry, and Dynamics, 2024, ⟨10.4171/ggd/797⟩. ⟨hal-04828926⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More