Optical Flow Estimation pre-training with simulated stage II retinal waves - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2024

Optical Flow Estimation pre-training with simulated stage II retinal waves

Résumé

This report presents the work of a 6-month internship part of the MSc in Modeling for Neuronal and Cognitive systems. This work explores possible approaches in the use of simulated Retinal Waves (RWs) as pre-training for machine learning (ML) computer vision models in Optical Flow Estimation (OFE). Retinal Waves are one of the early processes of visual system development in mammals, structuring the retinal connectivity and thus preparing for vision, including motion detection. We select a recent, non-Transformer ML architecture, RAFT, and adopt a Transfer Learning strategy to leverage RWs in enhancing OFE performance through a related task. Additionally, we explore an alternative approach that estimates an approximated optical flow of RWs, allowing for its direct application within OFE. The idea of using these biological stimuli to generate more accessible training data to improve the generalization capabilities of OFE models shows a limited effectiveness with both approaches.

Fichier principal
Vignette du fichier
RR_9562.pdf (11.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04808775 , version 1 (06-12-2024)

Licence

Identifiants

  • HAL Id : hal-04808775 , version 1

Citer

Christos Kyriazis, Bruno Cessac, Hui-Yin Wu, Pierre Kornprobst. Optical Flow Estimation pre-training with simulated stage II retinal waves. RR-9562, Inria & Université Cote d'Azur, CNRS, I3S, Sophia Antipolis, France. 2024. ⟨hal-04808775⟩
0 Consultations
0 Téléchargements

Partager

More