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Abstract: This report presents the work of a 6-month internship part of the MSc in Modeling
for Neuronal and Cognitive systems. This work explores possible approaches in the use of simulated
Retinal Waves (RWs) as pre-training for machine learning (ML) computer vision models in Optical
Flow Estimation (OFE). Retinal Waves are one of the early processes of visual system develop-
ment in mammals, structuring the retinal connectivity and thus preparing for vision, including
motion detection. We select a recent, non-Transformer ML architecture, RAFT [1], and adopt a
Transfer Learning strategy to leverage RWs in enhancing OFE performance through a related task.
Additionally, we explore an alternative approach that estimates an approximated optical flow of
RWs, allowing for its direct application within OFE. The idea of using these biological stimuli to
generate more accessible training data to improve the generalization capabilities of OFE models
shows a limited effectiveness with both approaches.
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Pré-entraînement à l’estimation du flux optique avec des
ondes rétiniennes simulées de stade II

Résumé : Ce rapport présente le travail réalisé dans le cadre d’un stage de 6 mois pour le
MSc en Modélisation des systèmes neuronaux et cognitifs. Le projet s’intéresse aux possibilités
d’utiliser des ondes rétiniennes (RW) simulées de stade II pour pré-entraîner des modèles de
computer vision en apprentissage automatique (ML) dédiés à l’estimation du flux optique (OFE).
Les ondes rétiniennes sont un processus clé dans le développement initial du système visuel des
mammifères, structurant les connexions rétiniennes et préparant la détection du mouvement.
Pour évaluer cette idée, nous avons sélectionné une architecture récente d’OFE, RAFT [1], et
mis en place une stratégie de Transfer Learning visant à exploiter les RW à travers un objectif
associée pour améliorer les performances en OFE. Une seconde approche, consistant à approximer
le flux optique des RW afin de l’appliquer directement à l’OFE, a également été explorée. L’idée
d’utiliser ces stimuli biologiques pour générer des données de pré-entraînement plus accessibles,
dans le but d’améliorer les capacités de généralisation des modèles d’OFE, montre une efficacité
limitée avec ces deux approches.

Mots-clés : Estimation du flux optique, Deep Learning, Ondes rétiniennes
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1 Introduction

Mammals, including humans, undergo a crucial phase of learning vision, part of if before
birth, i.e. before light reaches the retina. This process is orchestrated by spontaneous neural
activity within the retina, termed Retinal Waves (RWs). These pre-visual neural activities
play a fundamental role in shaping the neural circuitry necessary for processing motion once
the eyes are functional. In contrast, machine learning (ML) computer vision models learn by
being trained on vast amounts of data, allowing them to fine-tune their artificial neural networks
(ANNs) to accurately process and interpret visual inputs for a given task, such as to identify
and classify actions in videos. Despite fundamental differences between biological learning and
ML, such as one depending on genetically programmed neural development while the other relies
on optimization and statistical algorithms, both processes can involve a form of training to
refine their respective systems. For ML, this involves training on different datasets to obtain
better performance, whereas RWs are a dynamical process, arising in a short period of time, and
triggering plasticity processes in the visual cortex (see [2] and references therein). RWs capture
intricate spatiotemporal dynamics which could serve as accessible and efficient training data. The
central objective of this work, is to investigate whether simulated stage II RWs can contribute in
ML training for a specific computer vision task, namely Optical Flow Estimation (OFE). In
the next section of this introduction, the role of RWs is presented, followed by the related work
about the employed mathematical model for stage II RWs, OFE theory and a literature review.

1.1 Retinal Waves and their role in the visual development of mammals
Retinal Waves have been observed across various vertebrate species and are spontaneous

bursts of action potentials in the immature retina, forming activity waves in abstract patterns.
They occur during late embryonic development and disappear a few weeks after birth [3], de-
pending on the species. Experiments as [4][5][6], show that retinal waves play a crucial role in
development of early activity-dependent formation of retinal circuits as well as their projections
to the visual pathway; i.e. they have an instructive role in eye-specific segregation and retino-
topic refinement. Figure 1 below shows an example of a time-lapse of retinal waves propagating
across the axonal arbors of retinal ganglion cells (RGCs) that terminate in the superior colliculus
(midbrain) in P10 mice [6].

Figure 1: Time-lapse images of retinal waves propagating across the axonal arbors of retinal
ganglion cells that terminate in the right (above dashed lines) and left (below dashed lines)
superior colliculus, from [6].

The development of the retina is divided in several steps explained below, taken from [7].
The first step involves establishing the appropriate distribution of the 7 different cell types that
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compose the retina, namely rod, cone, bipolar, horizontal, amacrine, ganglion and müller cells. In
the second step, the cells undergo migration to accurately position themselves within the retina.
In the third step, neurons establish synaptic connections with other retinal neurons and with
their projections to the brain. In this step, three different stages of retinal waves are observed,
varying in period of occurrence depending on the species. The first stage waves, embryonic
waves (before birth), propagate via electric synapses (gap junctions). The second stage waves,
cholinergic waves, are produced by a transient network of cholinergic (acetylcholine) connections
between amacrine cells, and start around birth and end after the first postnatal week. The third
and final stage of retinal waves, glutamatergic waves, occur 2-3 days before eye opening and end
right after; they are driven by glutamatergic signaling. These retinal wave stages are in line with
a concept of checkpoint model of neuronal development [8], suggesting a sequential maturation
of the retinal circuitry, relying on checkpoints to transition between stages. It is believed, that
stage II retinal waves, cholinergic waves, are one of the main contributors for retinotopic map
refinement, eye-specific segregation of retinal projections, and maturation, connectivity of both
inhibitory and excitatory neurons in the visual cortex [9].

Experiments have shown that Starbust Amacrine Cells (SACs) are the cell type that gives rise
to stage II retinal waves [10] by synchronizing locally through cholinergic coupling (acetylcholine
and nicotinic receptors). These waves start in small clusters of synchronized neurons and then
propagate over the entire retina, with the wave-induced refractory zones as boundaries. Retinal
waves can be characterized by a size, duration, speed and a refractory period [11], and their
global spatial patterns are determined by the local history of retinal activity [12]. Note that,
after the stage II, SACs evolve to show directionally selective behaviour in the mature retina
[13][14], playing a significant role in motion detection in visual processing. The work presented
in this report, employs simulations of cholinergic waves (stage II), using a SAC-model [15][16].

2 Related Work

2.1 Modeling stage II retinal waves
To simulate stage II retinal waves, a biophysical model by B. Cessac [16] and D. Matzakou-

Karvouniari [17][15] is employed. This model allows us to simulate a lattice of SACs in the con-
ditions where stage II retinal waves occur. The following section briefly discusses this biophysical
model. It should be acknowledged that the dynamical model by D. Matzakou-Karvouniari et
al. is highly complex and consists of a substantial number of equations, for this reason the full
model is included in the Appendix.

The model is based on the Morris-Lecar neuron model [18] and involves 6 variables, controlled
by non-linear differential equations. The variables include V (t), the local membrane potential;
N(t), the gating variable for fast voltage-gated K+ channels; C(t), the intracellular Calcium (Ca)
concentration; A(t) the concentration of Actylcholine (Ach) released by SACs ; R(t) and S(t), the
gating variables for slow Ca2+-gated K+ channels. The membrane voltage V (t), contains Leak,
Calcium, Potassium currents, as well as a total current. Depending on the choice of parameters,
and in agreement with experimental observations, SACs exhibit spontaneous bursting which
propagates to the SACs network via Acetylcholine release exciting the connected cells. The
bursting and therefore the waves, are initiated by a white noise ξt with mean-square deviation
σ.

This model simulates the behavior of SACs and aims to demonstrate the underlying mech-
anisms of retinal wave generation. Retinal waves are triggered if the cholinergic conductance
(gA) is large enough to start a chain reaction. A neuron starts bursting, generating a current
which causes other neighbours to burst, with a feedback prolonging the bursting duration of
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6 Kyriazis & Cessac & Wu & Kornprobst

the initiatory SAC [17]. The cholinergic coupling between SACs facilitates local synchrony and
coordinated bursting activity, generating propagating waves of neural activity across the retinal
circuitry.

When simulating this model, a transient period where the network is relaxing to a rest state
is necessary. During this transient state, due to their initial state and the noise, the SACs can
fire in irregular patterns in a desynchronized manner. The transient state allows the system to
stabilize, reaching an equilibrium point.

Simulating Stage II retinal waves in 2D

In order to simulate the previously introduced cholinergic wave model in a two-dimensional
setting, a python package called Brian2 [19] is used. Brian2 is a spiking neural network simulator,
which uses mathematical neuron models to accurately simulate neural behaviour and interaction.
Brian2 allows for complex and memory-efficient clock-driven simulations, and is employed for its
flexibility and relatively simple usage.

The Python code for simulating the SAC model using Brian2 is based on the work by D.
Matzakou-Karvouniari and E. Kartsaki [20]. The simulation parameters are modified to be
consistent with the work of B. Cessac and D. Matzakou-Karvouniari [15][16]. The script was
substantially modified to accommodate a higher degree of configurability, as well as CUDA
parallelization [21] for large-scale simulations. Further, it should be mentioned that during a
previous internship, a pipeline utilizing an improved algorithm was developed to analyze the
statistical properties of simulated stage II RWs. This pipeline enabled the tuning of model
parameters for the large-scale 2D simulations employed in this work. The SAC model is set to
be simulated with noise-driven bursting, within a square lattice of horizontally and vertically
connected neurons. The intracellular Ca concentrations for each neuron across the lattice, can
be visualized as seen in Figure 2. In the remainder of this report, to avoid confusion with optical
flow vector fields, the SACs Ca concentrations are visualized with a black (low concentration)
and white (high concentration) color-map.

(a) 4.5s (b) 4.8s (c) 5.1s (d) 5.4s (e) 5.7s

Figure 2: Intracellular Ca concentrations of a simulated retinal wave in noise-driven bursting
(400 Neurons). The 5 frames with 0.3 sec intervals are taken from a 80 sec long simulation with
V =-72.0V, σ = 6pAms−

1
2 , gsAHP = 2nS, gA = 0.25nS (See Appendix for the meaning of these

parameters). Starting from the left (4.5-4.8s), a cluster of bursting neurons is triggering a retinal
wave sequence. (5.1-5.8s) The retinal wave is expanding and a refractory zone appears in darker
blue at the previously excited cells. At 5.8s we see the wave disappearing into the edges of the
lattice and a global refractory period is starting.

Inria



Optical Flow Estimation pre-training with simulated stage II retinal waves 7

As seen from the example, the retinal waves are visualized by color-mapping the intracellular
Ca concentrations, C, the medium-timescale variable. C has a much slower timescale compared
to V (see Figure 12 in the Appendix), thus monitoring Ca dynamics provides a more compre-
hensive insight into the global patterns of neuronal activity. During the global refractory period,
neurons do not spike, and by consequence, C is low. Once noise excites one or more neurons
enough to start bursting, the Ach production of the cell increases, thereby increasing the depolar-
isation of neighbours, eventually triggering a bursting chain reaction. The increase of polarity of
the neurons, generates an influx of Ca, forming the wave patterns observed in 2D. Consequently,
Ca-gated Potassium channels generate a slow after hyperpolarization current (sAHP), which
stops the neurons from bursting after a certain time. This forces the neurons to rest, returning
C to a baseline level and hyperpolarizing the neurons (refractory period). For this reason, in a
scenario with multiple interacting waves, we cannot have waves crossing these trails of refractory
zones left by traveling waves.

2.2 Optical Flow Estimation

2.2.1 Theory

Motion analysis has always been one of the fundamental challenges in the field of computer
vision. Motion analysis involves understanding the apparent motion that is present in two or
more consecutive images, where the 3D motion of the physical world is represented in a 2D
medium. A critical component of this analysis is Optical Flow Estimation (OFE), which aims
to estimate the 2D motion of 3D objects within a scene, based on the changes in the 2D pixel
intensities over time.

The term Optical Flow was introduced by J.J. Gibson [22] and is described as the apparent
flow of movement of objects in the visual field, relative to the observer. Mathematically, this
corresponds to a dense field of displacement vectors, representing the pixel motion of adjacent
frames. The problem of estimating Optical Flow is defined as determining the dense field
of displacement vectors that describe the motion of pixels between two consecutive
images of a video.

Definitions:

• The data (two consecutive images) is a function of space (x, y) and time t.

• A pixel at location (x, y, t) has an intensity (brightness) I(x, y, t)

We assume that the time interval (δt) between the two consecutive images is constant and that
the image intensity between these images is also constant (brightness constancy assumption1).
This means that:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (1)

For simplicity, we also assume that the origin (i.e. the camera, the observer) of the images
is immobile; no additional motion is added between the images. By taking the Taylor series
approximation of the RHS, and dividing by δt we obtain the Optical Flow equation:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (2)

1The brightness constancy assumption posits that the intensity of a pixel remains constant as it moves between
frames. While this is an idealized scenario rarely met in real-world conditions due to changing lighting, reflections,
or camera settings, it serves as a fundamental simplification that enables the derivation of the optical flow equation
and forms the basis for many optical flow estimation algorithms.
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8 Kyriazis & Cessac & Wu & Kornprobst

where u = δx/δt and v = δy/δt are the x and y components of the velocity (displacement
vectors) of I(x, y, t) and ∂I

∂x , ∂I
∂y and ∂I

∂t are the derivatives of the image at (x, y, t) in their
respective directions. Rewriting this using the gradient notation we have:

∇I · V⃗ + It = 0 (3)

where ∇I is the gradient of the image, V⃗ is the velocity vector with components (u, v), and It is
the temporal derivative of the image intensity.

Equation (3) has two unknowns (Vu, Vv) and relates to the aperture problem[23] in computer
vision: the ambiguity in estimating motion when an object is viewed through a limited window
of observation. To solve this equation, most methods introduce additional conditions and as-
sumptions for estimating the optical flow V⃗ . One of the classic knowledge-driven approaches to
addressing the aperture problem is the Lucas-Kanade method [24]. Lucas-Kanade introduces the
assumption that the motion is locally constant within a small neighborhood around each pixel.
Equation (3) is then over-constrained and allows to estimate the optical flow V⃗ using a least
squares approach. This approach works well on texture-rich regions and corners in an image,
making it suitable for sparse OFE but less accurate in dense OFE. Another influential method
for OFE is Gunnar Farnebäck’s algorithm [25], which is designed to handle dense OFE. Unlike
Lucas-Kanade method, Gunnar Farnebäck’s algorithm approximates the local neighborhood of
each pixel with a quadratic polynomial, allowing it to capture more detailed motion information.
The algorithm estimates the displacement fields at multiple scales, which enables it to efficiently
capture both fine and large-scale motions. Both of these knowledge driven approaches are tested
in this project, and results of the latter one are discussed in Section 3.2.

To evaluate the performance of OFE approaches, datasets and benchmarks containing dense
ground-truth displacements are created. One of the first of such benchmarks is the synthetic
Yosemite sequence [26], generated by taking an aerial image of Yosemite valley and texture map-
ping it onto a depth map of the valley. Another important early benchmark is the Middleburry
benchmark [27], which provides a comprehensive set of synthetic and real-world sequences with
accurate ground-truth optical flow data. These benchmarks target mostly knowledge-driven ap-
proaches as they provide a very small number of images and are of relatively low resolution. It
should be highlighted that generating accurate optical flow ground truth in real life is challenging
due to factors such as camera calibration, motion capture precision and the inherent complexity
of natural scenes. Real-world environments often feature varying lighting conditions and oc-
clusions, making it difficult and very time consuming to obtain precise and consistent motion
data.

Finally, one of the common metrics of error in OFE is the Endpoint Error (EPE) defined as
the Euclidean distance between the estimated optical flow V⃗est and ground truth optical flow V⃗gt

as ∥V⃗est−V⃗gt∥2. To provide a comprehensive measure of overall performance in OFE benchmarks,
EPE is often averaged across all the N pixels of the image, yielding the average endpoint error
(AEE).

2.2.2 Data-driven methods for Optical Flow Estimation

In recent years, deep learning methods have increasingly lead OFE benchmarks firstly adopt-
ing convolutional neural networks (CNNs) [FlowNet, 2015 [28]] and transformers [FlowFormer,2022
[29]]. As expected, supervised approaches are significantly ahead in minimizing AEE, often re-
ducing the error by more than half than leading unsupervised or semi-supervised approaches.

FlowNet [28] marked a significant milestone in OFE by being the first to leverage CNNs
for this task, offering a new approach to estimating optical flow from raw images, a field which
had previously been dominated by traditional methods. FlowNet demonstrated the feasibility of

Inria



Optical Flow Estimation pre-training with simulated stage II retinal waves 9

using a generic U-Net [30] architecture2 for OFE, showcasing not only its effectiveness but also
its ability to achieve real-time performance, a significant advancement over traditional methods
at the time [31]. Further works based on this architecture followed, until FlowNet2.0 [32] was
introduced in 2017, greatly improving the accuracy of OFE at the cost of increased model size
and inference time. Around the same year, SpyNet [33] proposed a different strategy, utilizing a
spatial pyramid approach to break down the estimation process using a traditional OFE method,
namely coarse-to-fine refinement. This method estimates large motions by progressively refining
flow estimates through pyramid levels at different resolutions. This greatly improved the model
size and inference time, at the cost of accuracy.

In 2021, a highly influential model in the field of OFE was introduced, Recurrent All-Pairs
Field Transforms commonly known as RAFT [1]. RAFT is explained in greater detail in section
3.1.1. In short, RAFT outperformed the state-of-the-art at the time (FlowNet2.0) by ∼30%
in most benchmarks, by introducing a 4D correlation volume to capture all-pair similarity and
a recurrent update operator for the iterative refinemenet of the optical flow estimate. This
work inspired many OFE models that followed the next two years, GMA [34], GMFlow [35] and
FlowFormer [29] to name a few. GMA introduced a global motion aggregation module using
transformer-like attention [36] mechanisms to enhance RAFT’s architecture. GMFlow further
developed this concept by proposing a global matching approach with transformer-based feature
enhancement. Finally, FlowFormer presented a full transformer architecture for OFE, leveraging
self-attention and cross-attention mechanisms to process 4D cost volumes more efficiently.

2.2.3 Optical Flow Estimation datasets and benchmarks

At the same time as the method development described above, more OFE datasets and
benchmarks became established, increasing the available training and testing data to develop
and compare data-driven ML models. The following table summarizes the major datasets and
benchmarks.

Name Year Real
World

Dense
GT

Resolution
(H× W)

Benchmark Total images

Middlebury [27] 2011 yes yes 380× 420−
480× 640

yes 24

MPI-Sintel [37] 2012 no yes 436× 1024 yes 1628
KITTI 2012 [38] 2012 yes no 376× 1240 yes 778
KITTI 2015 [39] 2015 yes no 375× 1242 yes 800
FlyingChairs [28] 2015 no yes 384× 512 no 45744
Spring [40] 2023 no yes 1080×1920 yes 6000

Table 1: Comparison of OFE datasets. Both images from an image-pair are added in totals.
Note that while the input images of spring are in FHD resolution, the ground-truth is in UHD
resolution.

We can observe that most datasets and benchmarks are made of synthetically generated data
and except for the Middleburry benchmark [27], real-world datasets do not contain a densely
labeled ground-truth (GT). Additionally, each dataset often specializes in a particular type of

2U-Net is a CNN architecture originally designed for biomedical image segmentation. It features an encoder-
decoder structure where the encoder captures context through downsampling, and the decoder enables precise
localization through upsampling, making it particularly effective for tasks requiring both high-level and low-level
information.

RR n° 9562



10 Kyriazis & Cessac & Wu & Kornprobst

(f) Middleburry (g) MPI-Sintel (h) KITTI 2015 (i) FlyingChairs (j) Spring

Figure 3: Samples from the datasets of Table 1. Top row shows the first image of an optical flow
estimation sample. Bottom row shows the ground truth optical flow of the sample. All optical
flow samples are visualized using the color-wheel in Figure 14a in the appendix.

motion and realism level. While the Middleburry benchmark contains real-world images, it
does not entirely represent realistic motions, as it is mostly created with props and controlled
environments, simulating very specific scenarios of small displacements. On the other hand, the
MPI-Sintel benchmark [37] contains 23 realistic computer-generated scenes, showcasing diverse
displacements across a variety of environments. KITTI 2012 [38] and 2015 [39] are datasets
containing real-world driving scenarios captured from a car-mounted camera, focusing on tasks
such as OFE, stereo vision and visual odometry. While these datasets provide optical flow ground
truth, the labeling is not dense, covering only about 50% of the pixels. One of the more popular
pre-training datasets for OFE, FlyingChairs [28], is synthetically generated by applying affine
transformations to images collected from Flickr and a set of 3D chair models. FlyingChairs offers
a very large variety of motion patterns and displacements, created by overlaying multiple chair
images onto cropped background scenes. While it lacks the realism of the other datasets, its
extensive size, containing the most samples among OFE datasets, makes it particularly useful
for pre-training ANNs. Finally, Spring [40], is a realistic, high-resolution, synthetically generated
dataset designed for OFE, featuring diverse and complex motion scenarios with densely labeled
ground-truth at a higher resolution than its image pairs. It is important to note that data-driven
approaches typically aim to benchmark and train on several of the above-mentioned datasets,
often demonstrating their performance on various subsets of these datasets to highlight their
generalization capabilities.

2.2.4 Simulated Retinal Waves for Optical Flow Estimation

As mentioned in Section 1.1, stage II RWs contribute to the shaping of the retina and the
visual system by forming activity waves in the retina during development, before the retina is
capable to perceive light. Now, our visual system essentially handles motion. Indeed, the real
word is made of movement. Static images do not exist as our eyes, our body, are always moving.
The hypothesis that we make here is that RWs are a way for the visual system to efficiently
sample the huge space of spatio-temporal entries, somewhat constituting a natural basis (in the
sense of functional spaces). Indeed, due to their dynamics and interactions RWs shows a wide
variety of size, duration and curvature [16][17]. Especially, they may display a large training basis
for optical flows sampling. In contrast to classical data basis, here, the samples are dynamically
generated, at minimal computational cost. As introduced in the previous section, state-of-the-art
data-driven approaches for OFE train ANNs using vast amounts of labeled synthetic data. This
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section briefly introduces in which ways these two approaches differ to biological vision as well
as how simulated RWs may be used as ANN-training data.

The main difference between biological visual development and ML for computer vision lies
in the underlying mechanisms of learning. Biological visual development is a gradual process
driven by genetic programming, spontaneous neural activity, and environmental interactions,
which collectively refine the brain’s ability to process visual information [2]. This is notably
different from how ANNs learn, which typically depend on predefined architectures, extensive
training data and machine learning paradigms, where data directly linked to a specific training
objective is provided. While biological systems evolve and adapt over time, classical ML models
do not inherently adapt without explicit re-training. Furthermore, the lack of natural image
datasets for OFE poses the question of potential bias in model performance, as most OFE
datasets are synthetic, and may not fully capture the complexity and variability of real-world
motion.

2.3 Retinal Waves in Machine Learning Literature Review

This idea of pre-training with retinal waves is particularly new, as there exists only two
publicly available papers investigating this [41][42] dating from December and November 2023.
Both works are summarized in the following sections, briefly reviewing and contrasting them
with our general objective. Table 2 below provides an overview of both publications.

A. Ligeralde et al.[41] B. Cappell et al.[42]
Dataset(s)
used

P8-P11 mice retina recordings, reac-
tion diffusion model [43] retinal wave
simulations, CIFAR-10, CIFAR-100

stage II retinal wave model [44] simu-
lations, CIFAR-100, ImageNet1k

Retinal
wave pre-
processing

spatial- and/or temporal-shuffling, in-
activity and noise removal

conversion to binary, discarding of im-
ages based on similarity and activity

Pre-training to maintain temporal order of the se-
quence

to predict the parameter set used to
simulate the input retinal wave image

Task-
training

standard image classification + 2 vari-
ants

standard image classification

Architectures ResNet-18 (frozen during task-
training) + task adapted output
layer

ResNet-50 (not frozen during task-
training) + task adapted output layer

Table 2: Comparison of experimental setups

2.3.1 Unsupervised learning on spontaneous retinal activity leads to efficient neural
representation geometry - A. Ligeralde et al.

In [41], the authors investigate the effects of retinal wave pre-training of Artificial Neural
Networks (ANNs) by comparing a classification pipeline between different variants of recorded
and simulated retinal waves. The performance of the models were evaluated by classification tasks
on the CIFAR dataset. A reaction diffusion model [43] is used for the retinal wave generation,
which has been one of the inspirations for the model by B. Cessac and D. Matzakou-Karvouniari
[15]. Note however that, in contrast to cessac-karvouniari the model [43] does not allow to
modify the probability distribution of RWs. This probability distribution is suspected to play a
prominent role in the visual system shaping [16].
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The general pipeline can be summarized as follows:

• Pre-processing of retinal wave data by removal of inactivity periods and random noise,
as well as shuffling variants of recorded and simulated retinal wave sequences. (variants:
temporally-, spatially-, spatiotemporally-shuffled, unshuffled)

• Pre-training of ResNet-18, a well-established ANN architecture for images [45], using Sim-
CLR as learning framework (self-supervised) [46], here used for temporal similarity.

• Supervised task training of the last (classifier) layer, while freezing the pre-trained hidden
layers.

The authors justify the choice of pre-training objective (temporal similarity) by evidence that
temporally close activity bursts convey the most spatial information about RGC position. Finally,
they evaluate the effects of the pre-trained model variants on 3 supervised classification tasks:
CIFAR-10 classification, spatial translation and color change. The first task involves standard
classification of the 10 classes of the CIFAR-10 dataset. The other two tasks are also classification
tasks, but modified; one randomly chosen image for 10 randomly chosen classes of CIFAR-100,
is randomly translated or color changed. The effects of this pre-training are compared with a
random initialization training on an identical network architecture.

Figure 4 shows the accuracy of the three pre-trained classification tasks, compared to the
random initialization. The color change task is purely selected for comparison purposes; as
retinal waves do not have any role in visual color perception. An important point to understand
the significant overall increase in accuracy (random initialization is above 75%) in the spatial
translation classification task, is that this task is rather simple. 10 randomly selected image
classes of the CIFAR-100 dataset are used to generate 60000 randomly translated versions of
one randomly selected image for each class for training and testing. However, the authors dive
deeper with a manifold analysis to understand the differences between shuffled retinal waves.

The manifold analysis addresses quantitative characteristics of manifolds, high-dimensional
geometric structures. Here, the idea is that ANN training corresponds to a motion on a high
dimensional, curved, manifold. In summary, manifolds in machine learning define how data is
represented in the internal feature space of the network. In the current context of classification,
a successful training implies that manifolds are more separable, and more efficiently compressed
in the feature space. To better understand the various results of the manifold analysis and
due to the limited space of this report, readers are encouraged to refer to the original pre-print
[41]. Ligeralde et al. show that in the spatial translation task, manifolds throughout the pre-
trained layers are increasingly more separable primarily for networks of simulated or recorded
unshuffled retinal waves. They also show that the same networks for the same task compresses
the corresponding manifolds best, obtaining a decreasing manifold radius and dimension, across
layers. This effect is absent or even reversed in the shuffled retinal wave variants and in the color
change task. Concluding, both spatial and temporal characteristics are necessary in pre-training
using retinal waves, and with the translation task especially, it is demonstrated that spatial
invariance can be learned, without training on large labeled datasets.

2.3.2 ReWaRD: Retinal Waves for Pre-Training Artificial Neural Networks Mim-
icking Real Prenatal Development - B. Cappell et al.

In [42], the authors use a cholinergic retinal wave model [44] to simulate retinal waves, bi-
narized based on an activation threshold. Their pre-training involves classifying retinal wave
images using two versions of their proposed dataset, one with 1024 classes, altering 5 model
parameters, and one with 4096 classses, altering 6 model parameters. During this pre-training,
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Figure 4: Test accuracy for pre-trained networks in three classification tasks, from [41]. Dashed
lines represent accuracy obtained with the same architecture, without retinal wave pre-training.
Only the last layer is trained for these tasks, explaining the mostly low accuracy. Asterisks
indicate the highest performance increase, with unshuffled retinal waves at the spatial translation
task.

images that are temporally too close or that contain too little activity are skipped, and from
the stated pipeline it can be assumed that the images are shuffled (temporally). Their approach
reuses the pre-training pipeline of FractalDB (fractal images) on Resnet-50 [47], using CIFAR-
100. Interestingly, their resulting test accuracy of the retinal wave pre-trained network is higher
but very close to that of FractalDB, for both CIFAR-100 and ImageNet1k datasets.

The general pipeline can be summarized as follows:

• Pre-processing of simulated retinal waves using [44]: binary conversion, sample removal
based on temporal similarity and cell activity.

• Classification pre-training on retinal wave images labeled with their parameter configurations
(effectively changing wave size, shape and propagation speed) that were used to generate
them.

• Classification fine-tuning on image datasets (CIFAR-100 and ImageNet1k)

Contrary to the previously presented publication, during fine tuning, the weights of pre-
trained layers are also updated, something that is justified with the fact that our visual system is
still adapting after eye opening. Figure 5, shows the validation accuracy during the training on
CIFAR-100 for each of the networks trained. We observe that retinal wave pre-trained networks
converge a bit earlier than fractal pre-training. However, the end accuracy is reasonably close,
perhaps due to the similarity of the pre-trained networks: trained on similar data (black and
white fractals vs binary retinal wave images) using the same pipeline. Finally, a Brain-Score
is also computed, measuring how well the trained networks match physiological measurements
of different regions of the ventral stream of the primate brain. Using this metric, the retinal
wave pre-trained networks finetuned on CIFAR100, show increased brain-scores, compared to
other models. This is not the case for models fine-tuned on ImageNet1k, likely due to the higher
learning rate requirement.
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Figure 5: Validation accuracy during fine-tuning of 4 pre-trained networks from [42]; that is,
the accuracy after each epoch during training on CIFAR-100, after pre-training with various
datasets (denoted pt- ). The scratch network is trained without pre-training, and we can notice
a slower, and lower generalization during training. All models use the same architecture and
learning parameters.

2.3.3 Discussion

The two publications use retinal waves in different ways, to pre-train ANNs for image clas-
sification. Firstly, both consider natural image classification scenarios, which can be considered
less relevant than temporal prediction tasks, when recalling the role of retinal waves in visual
development as well as their temporal nature. As mentioned in the introduction, retinal waves
are responsible for the establishment of retinotopy, and more importantly for the establishment
of directional circuits and motion detection in the retina [14] [48]. This strongly suggests the po-
tential benefits in efficient learning of temporal prediction tasks in machine learning, something
which both papers briefly mention. Secondly, Cappell et al.[42] employ binarized stage II retinal
waves, a choice that comes with the drawback of sacrificing fine spatial details for a simplified rep-
resentation of the underlying neural activity. They pre-train the ANNs in a supervised manner,
using the simulation parameter combinations as labels, and do not consider the spatiotempo-
ral nature of retinal waves, which is what defines them as waves, a spatio-temporally ordered
process. Despite this, they prove that even for classification, a biologically inspired pre-training
with static retinal waves can bring significant improvements to training from scratch.

On the other hand, Ligeralde et al. use stage II retinal waves to showcase specifically the
effects of retinal wave pre-training in three simplified classification tasks through a detailed man-
ifold analysis. The downside here is that they use only one-trainable layer for the classification
networks, preceded with a pre-trained ResNet18 (fixed weights) which yields poor results in com-
bination with the chosen tasks. The manifold analysis supports the expected representational
efficiency improvements only for the spatial translation task. This can be explained from the
usage of SimCLR, pre-training for temporal closeness of the retinal waves, which is very closely
related to random image translations. Here one can almost expect the networks pre-trained on
temporally shuffled waves and spatiotemporally shuffled waves to underperform.
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Having said the above, both publications do not consider temporal prediction tasks, but
classification tasks in supervised and unsupervised pre-training contexts. Both retinal wave
pre-training approaches present interesting results, that showcase the improvements mostly in
efficiency of finetuning (generalization), of a given task. These two pre-training approaches show
the interest and relevancy in further exploring biologically plausible means of machine learning
for computer vision tasks.

3 Retinal Wave pre-training for Optical Flow Estimation

A straightforward idea to use simulated RWs for OFE is to employ them in a pre-training
context, meaning that a ML model would be trained on RWs and then fine-tuned for OFE. One
challenge that arises when using simulated RWs as OFE training data, is the scarcity of the
ground truth RW optical flow. Obtaining a precise optical flow ground truth from simulated
RW activity is challenging, as the system of SACs is heavily influenced by random noise. In
this project, a self-supervised task is adopted using the ML concept of Transfer Learning3 (TL).
Additionally, a second approach is tested, which involves approximating the optical flow of RWs.

The first approach is used to train a first ML model for Sequence-to-Sequence (Seq2Seq) pre-
diction, to predict the progression of RW sequences. Applying TL here could allow a subsequent
ML model to be trained for OFE, utilizing a portion of the pre-trained weights from the first
Seq2Seq model. The second approach attempts to pre-train a ML model directly for OFE, using
an approximated displacement ground-truth. Recalling the role of RWs in visual development,
one could expect that utilizing RWs in both approaches could improve the generalization effi-
ciency of an ML model for OFE, enabling it to achieve performance comparable to its standard
OFE training with less data or fewer model parameters.

3.1 Next Frame Prediction pre-training
A first approach to leverage the spatio-temporal dynamics of RWs for OFE is to employ

them in a self-supervised task that does not require ground truth optical flow. We select next
frame prediction (NFP), as it involves predicting the subsequent frame in a video sequence given
two or more of the previous frames, which inherently captures motion patterns without needing
explicit optical flow ground truth. On RWs, this task enables the model to learn how the wave
fronts evolve. Other than the random noise needed to start a burst causing RWs to emerge, their
propagation is purely deterministic, making it a suitable context for machine learning models to
train. A biologically inspired approach as such, could improve the accessibility of the training
data needed for OFE models and potentially their generalization capabilities. For this project, we
choose RAFT to test this approach, due to its relatively lightweight architecture, recency (2020),
and still relevant performance[49]. In the next sections, the architecture of RAFT and how it
is used in a TL context are explained, followed by the simulated RW dataset, the methodology
and the results.

3.1.1 Overview of RAFT

This section serves as a comprehensive overview of the RAFT model for OFE, based on both
the original publication [1] and its official implementation. RAFT is composed of three main

3Transfer Learning in machine learning is a set of techniques where a model trained on one task or dataset is
adapted to perform on a different task or dataset. This approach allows the model to leverage knowledge from the
original task or dataset, improving performance on the new task or dataset, often with less data and/or training
time.
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components: a feature and a context encoder, a correlation volume, and an update operator.
The feature encoder extracts per-pixel features from both input images using CNNs and outputs
feature maps at 1/8 resolution, requiring cropping or padding of the input images to be divisible
by 8. These features are used to compute a 4D correlation volume, which is then average-pooled
at 1, 1/2, 1/4, 1/8 resolution. It is important to note that the correlation volume is not a trainable
layer, but a dot product computation (to score similarity), between all pairs of the two feature
maps of the feature encoder, corresponding to the two input images. The computed volume
stores similarity scores between all pixels, and only needs to be computed once for every input
image-pair. It allows information to be maintained about both small displacements (at high
resolutions) and big displacements (at low resolutions). This information is utilized by a lookup
operator in the update block, to iteratively refine a flow estimation. Next, the role of the context
encoder is to provide additional context for the flow estimation, extracting features only from the
first frame. This can be understood as, by definition, the optical flow displacement vector field
represents how pixels move from the first image to their corresponding positions in the second
image. The update block refines the optical flow output in iterations, each time retrieving and
processing correlation features from the correlation volume to generate flow features, before
applying the output of the context encoder. All of the above components can be seen in the
RAFT architecture diagram in Figure 6. Finally, it should be noted that RAFT uses a weighted
Manhattan distance4 for the loss function instead of EPE.

The authors of RAFT propose two models, RAFT (∼5.3M parameters) and RAFTsmall
(∼1.0M parameters). Their architectures are mostly identical, scaling down the hidden dimen-
sions and removing some layers of the ANNs of all components, and can be schematically visual-
ized in Figure 6. The two variants are trained and fine-tuned on various OFE datasets and start
the training sequence by pre-training on the FlyingChairs [28] and FlyingThings [50] datasets.
Performance-wise, both variants of RAFT are parameter efficient, achieving lower EPE faster,
with fewer parameters and with a shorter inference time, than other OFE models at the time.
This is also one of the reasons why RAFT is chosen; it is interesting to see whether RWs can
enhance it in any way. Figure 6 color-codes the reusability of components for next frame predic-
tion (NFP). This is an important consideration for TL, as it is most effective when entire parts
of the model can be reused for a different task and/or dataset. Noting how specialized RAFT’s
update block is, we decide to reuse its feature encoder and correlation volume as the encoder of
a NFP model that is trained separately. Then, we transfer those weights to RAFT and train for
OFE.

In the context of NFP, the relevance of the context encoder diminishes, as it extracts features
solely from the first image, an approach beneficial for OFE but of limited use in NFP. The
motion encoder is a key module in RAFT, but is difficult to reuse it as a whole, as it separately
processes correlation features and optical flow. If the motion encoder would be used for TL, only
two convolutional layers would be involved, making it a less ideal TL strategy. The ConvGRU
and FlowHead networks are both specifically designed to handle optical flow features, rendering
them unsuitable for NFP.

4The weighted Manhattan distance loss function is defined as: L =
∑N

i=1 γ
N−i∥fgt − fi∥1 where f1, ..., fN is

the sequence of predictions from N decoder iterations and γ is the weighting factor.
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Figure 6: Schematic diagram of the RAFT architecture. I1, I2 are the two consecutive input
images. fpred is the optical flow prediction. F 1/8 indicate feature map scale; f1/8 indicate flow
prediction scale. Colors indicate reusability of components for NFP; Red denotes components
where weight transfer is impractical, Orange indicates that some modification is required, Green
suggests compatibility with minimal modification. The two input images are fed into the feature
encoder and the correlation volume is computed from their feature maps. Feature maps from the
first frame only are also obtained using the context encoder. The recurrent update block operates
by initialising a flow prediction that is processed by the motion encoder using selected features
from the correlation volume, before passing its output to a ConvGRU 5 that takes additional
context from the first image. The hidden state of the ConvGRU is passed to a 2-layer CNN
(FlowHead). Upon reaching the specified number of iterations, the predicted optical flow is
upsampled and outputted. I1, I2 and fpred are taken from the FlyingChairs dataset.

3.1.2 Simulated Retinal Wave dataset

The SAC model described in section 2.1 is simulated in 2D using Brian2 [19] (see section
2.1). To match the resolution of the RW dataset to the resolution used when pre-training
RAFT (see previous section), the RWs are simulated on a square lattice of 432×432 (186624
cells total). The cells are connected in a grid structure, where each cell has four neighbors: one
above, one below, one left, one right. The simulation parameters are set according to B. Cessac
and D. Matzakou-Karvouniari [16][17]. To generate enough data, 9-minute long simulations (6
simulations total) are performed with 6 levels of acetylcholine conductance [0.2 − 0.25nS]; a
parameter experimentally [51] shown to decrease with time during visual system development,
altering various visual properties of RW [16]. To simulate such long large-scale simulations,
brian2CUDA [21] is employed to parallelize the code on a single GPU. This substantially increases
the efficiency of the simulation, reducing execution time from several days on CPU, to just a
few hours on GPU. Additionally, to make these simulations storage efficient also, only the C
variable (intracellular Ca concentration) is recorded in a binary format, at every t = 10ms
of the simulation. The model operates in a noise-driven bursting mode with noise parameter
σ = 6 pA ms−0.5.

Preprocessing To obtain an exhaustive dataset for ML, the raw simulation files are prepro-
cessed. Each simulation file is split by timestep and normalized between [0, 1] using Min-Max

5A Convolutional Gated Recurrent Unit (ConvGRU) is a variant of GRU that replaces the linear operations
with convolutional operations. GRU is a recurrent type of ANN, designed to capture long-term dependencies in
sequential data.
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normalization6; all the relevant metadata is maintained in the filename of each timestep. Ad-
ditionally, the global quiescent phases7 during each simulation are filtered, by thresholding a
number of cells to cross a certain level of activity. This decision is made as for NFP, having the
entirety of the cell lattice inactive, could hinder the learning process of the model. The dataset
employed for NFP, contains the active samples of each simulation, i.e. once a single cell reaches
an activity threshold (4C0 where C0 is the baseline C concentration) determining that a RW is
starting. Samples are made up of three (NFP) or two (OFE) consecutive frames of the simulation
with a fixed timestep. To augment the samples and have the option to train with more data, at
the runtime of the ML pipeline, all possible combinations of a set of spatial transformations can
be performed: 90◦ clockwise rotation, vertical flip, horizontal flip. Finally, the order which the
samples are fed to the ML model can be shuffled.

3.1.3 Methodology

NFP Model Next frame prediction is a sequence-to-sequence task requiring an encoder-decoder
architecture. To reuse the original feature encoder of RAFT and with OFE as context, we define
the NFP task as predicting the next frame, when given two consecutive frames from a video. In
the context of RWs, the frames are composed by the C values of each cell in the square lattice.
Equivalently to RAFT, the NFP model is implemented in PyTorch [52]. The feature encoder
taking input two frames, is used exactly as in RAFT, allowing to compute a correlation vol-
ume from its outputted feature maps. The correlation features are indexed only once, utilizing
the similarity scores at all scales. The indexing is not repeated as done in RAFT for OFE;
the recurrent decoder predicts and upsamples the output frame using correlation features once.
For simplicity, the official implementation is reused and modified, to accommodate the required
changes for TL in this context. For that reason, the NFP decoder is designed to be comptat-
ible with the feature encoder of both RAFT and RAFTsmall without changes in architecture,
totalling in ∼ 2.8M and ∼ 0.9M parameters. The decoder reuses RAFT’s implementation of
ConvGRU and three transposed convolution layers, each doubling the spatial resolution (to go
from 1/8 to full resolution) with a kernel size of 4.

Figure 7: The NFP model is composed of an encoder using RAFT components: feature encoder,
correlation volume; and a decoder: ConvGRU, ConvTranspose8 upsampling layers. The Con-
vGRU operates at 1/8 of the resolution. The images in this example are simulated RWs from
the previously described dataset.

6Min-max normalization is a feature scaling technique that transforms numerical data to a fixed range ([0,1]),
preserving the relationships among the original data values while bounding the range. Xn =

X−min(X)
max(X)−min(X)

where Xn is the normalized value and X the original value. Here we normalize each cell of the lattice according
to the global min. and max. of each simulation.

7A quiescent phase in a neuronal dynamical system, refers to a period of inactivity, representing a state where
the neuron is temporarily unresponsive to stimuli, often following a period of intense activity.
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3.1.4 Results

The previously described NFP model is trained with the AdamW [53] optimizer with the
same weight decay as RAFT on FlyingChairs. The loss during training is computed using
Mean-Squared-Error9 (MSE) loss. Before training for NFP and performing TL generalization
for OFE, the hyperparameters10 of the NFP model need to be tuned. The learning rate is fixed
at 5e-4, batch size at 16, for 20 epochs. The performance of the model with different intervals
between consecutive frames is also tested; to balance these datasets, we set an upper bound to the
augmented samples at ∼12k training samples and ∼1k testing samples. Lastly, the NFP decoder
iterations are also compared, and for this we compare 1,4 and 8 iterations of the ConvGRU
decoder.

Dataset/hyperparameter Small → default iterations 1 → 4 iterations 4 →
8

remove aug.

Relative MSE train -38.92%
(±2.76%)

-12.41%
(±3.06%)

-0.50%
(±2.45%)

16.85%
(±6.52%)

Relative MSE val. -38.39%
(±2.62%)

-12.82%
(±3.02%)

0.06%
(±3.30%)

32.63%
(±1.51%)

Table 3: Summary of performance gains on the recorded MSE after training in percent (lower
is better). The rows describe the gains over the training set and validation set. Columns from
left to right: model size, decoder iterations, data augmentation removal. Performance gains are
computed between all equivalent models and then averaged. For this table, comparable RW
datasets of intervals 100ms, 150ms, 200ms are taken into account. All columns except the last,
are performed on datasets of ∼12k samples of all frame intervals with a batch size of 16; removing
augmentations with 100ms frame intervals decreases the dataset size to ∼3k samples and the
batch size is scaled accordingly to 4.

NFP training Table 3 compares the performance gains (relative MSE change) over the model
size, decoder iteration and dataset augmentation on the training and test splits. We can observe
that the larger feature encoder from RAFT (default) obtains improved accuracy over the small
feature encoder. This is in line with the published OFE results as the training EPE decreases by -
35.29% on MPI-Sintel clean, and -32.89% on KITTI-15 training datasets (RAFT and RAFTsmall
pre-trained on FlyingChairs and FlyingThings datasets). Comparing NFP performance to OFE
performance we can get an indication of how the overall model size impacts task performance. For
the NFP ConvGRU decoder performance gains at different iteration counts, we can observe that
4 iterations are sufficient, as at 8 iterations we begin to see minor performance gains. As expected
in this context, keeping the order between samples increases the MSE error by 29.45% (±9.93%).
The temporal ordering within samples (3 images) is always maintained, but not shuffling between
samples increases temporal bias during training and makes the weight updates more prone to
overfitting to sequential patterns, reducing the model’s ability to generalize. Finally, it should be
noted that the models were trained on 4 RW datasets with different intervals between consecutive

8ConvTranspose layers are transposed convolutions which are commonly used for upsampling. They perform
the reverse operation of standard convolution with trainable filters and increase the dimensions of the input.

9MSE is a common loss function in ML, measuring the mean squared difference between predicted and ground-
truth values. It is defined as: MSE = 1

N

∑N
i=1(ygt − ypred)

2 where N is the number of samples, ygt are the
ground truth values, and ypred are the predicted values.

10Hyperparameters in ML are fixed configuration variables that are set before the learning process begins, and
control various aspects of model training and architecture. Common examples include learning rate, epoch count,
batch size, hidden layer count.
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frames (100ms, 150ms, 200ms, 300ms). A larger interval between consecutive frames in a NFP
sample means that there is more time for a wave to start and develop between the second input
frame and the next (ground-truth) frame. This can be visualized in Figure 8 below. The squared
error visualizes the missing waves from the model prediction. It is evident that the models are
not able to predict the waves that started between last input frame and ground-truth as the
model has no information about them. This is the main contributor to the error during training,
with higher frame intervals yielding an increased MSE.

100ms

(a) Prediction (b) Ground-truth (c) Squared error

300ms

Figure 8: RW crops visualizing the NFP model error on 60x60 crops from a 432x432 RW simula-
tion. From left to right, the crops show the prediction, ground-truth and squared error between
the two. The top set is taken from training on dataset samples with a 100ms frame interval, while
the bottom set is from training with a 300ms interval. Black to white color-mapped; lower-higher
values of C, squared error.

OFE training Here we discuss the results after training the NFP model and transferring the
encoder to RAFT for OFE training. The EPE over the training step can be found in Figure 16 in
the Appendix. The top four graphs compare training and validation EPE when training on the
FlyingChairs dataset for both RAFT and RAFTsmall, as well as their NFP pre-trained variants
(RWRAFT, RWRAFTsmall). The pre-trained variants train only the OFE decoder, with the
weights of the encoder completely frozen. While this is not a completely fair comparison, it
shows how the RAFT model performs with a pre-trained encoder, and whether the RWs improve
its training efficiency. From all four graphs, it is clear that the trainable non-pretrained encoder,
extracts and adapts to features from the data much better than the pre-trained variants. To
understand these results better, a generalization training is performed on the MPI-Sintel dataset
and is shown in the bottom four graphs of Figure 16. For a fairer comparison of RW pre-
training, we pre-train both variants of RAFT on FlyingChairs and fine-tune pre-trained models
(both pre-trained on FlyingChairs for OFE, and RW for NFP) with frozen encoders on MPI-
Sintel. The recorded EPE after 50k training steps is 75.37% (±2.29%) higher during training
and 100.73% (±14.49%) higher during validation for the models pre-trained on RWs for NFP.
Example predictions of these last two models can be found in Figure 15(b)(c). We can visually
compare the above-described difference in performance by noticing the edges of the example such
as the tip of the spear and the hair of the left character.
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Since the transferring of the weights is only done on the feature encoder between NFP on RWs
and OFE, the decreased performance are most likely due the differences in the RW data vs OFE
data. The displacement present in RWs is constant and depends on the simulation parameters.
This means that during a RW simulation, the speed at which the waves travel is fixed as it depends
mostly on the acetylcoline conductance of the cells [17]. For this reason we incorporate the
different intervals between frames of the dataset, and different values of the relevant parameter,
gA. Nevertheless, there is not a large variety of displacement in a single sample, contrary to most
OFE datasets, which often contain various types of motions. Additionally, it should be noted
that OFE utilizes certain properties of images, such as texture, edges and corners, all of which
are not present in the RW data. For these reasons, in the following experiment, we attempt
to describe the motion of simulated RWs to generate a somewhat accurate estimation of their
optical flow.

3.2 Optical Flow Estimation pre-training

By the nature of RWs and their biophysical model described in section 2.1, there is no notion
of motion or displacement in the system. The simulated SAC cells are not moving, and the
only thing that is traveling is the activity of the cells which is best visualized with their Ca
concentration, due to the slower timescale with respect to their electrical activity. As with
Optical Flow ground-truth, we cannot have a true correspondence of pixels between recorded
timesteps. In other words, we cannot know that a specific part of a retinal wave front corresponds
to cell i at timestep t and cell j at timestep t+δt. Employing traditional methods such as Gunnar
Farnebäck’s algorithm yields a rather blurry estimation; using this for ML-based OFE with RWs
would be less ideal, as the model would learn an inaccurate optical flow. Figure 9 shows such flow
estimation, depicting rather blurry fronts without the sharp detail that optical flow ground-truth
preserves. Increasing the window size increases the blurriness, and since retinal waves mostly
expand, they challenge the local motion assumption that most traditional approximations are
based on. This means that certain pixels in the second frame do not have a clear source, causing
an inconsistent flow field.

3.2.1 Approximation of Retinal Wave Optical Flow

Knowing that RWs have a constant velocity [17], we can approximate the direction and
orientation of travel by the gradient; obtaining information about change in activity, at the
vertical and horizontal directions at each cell. For this, we can employ structure tensors. A
structure tensor is a 2× 2 matrix used in image processing to capture gradient information in a
local neighborhood. It is formed by computing the outer product of the smoothed image gradient
and then smoothing it again, usually with Gaussian filters.

Smoothed image: Is(x, y) = I(x, y) ∗Gσ1

Structure Tensor: T = (∇Is ⊗∇Is) ∗Gσ2 =

[
I2x IxIy
IxIy I2y

]
∗Gσ2 (4)

Where Ix and Iy are the image gradients (partial derivatives) of the smoothed image Is along
axis x and axis y.

The outer product of the gradient vector with itself is a mapping that allows local averag-
ing without loss of information. It allows to average gradients with opposite direction, without
having them cancel out, maintaining their average orientation. This is achieved with structure
tensors by mapping 2D vectors to a 3D space (since it is a symmetrical matrix).
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Figure 9: Crop from Farnebäck optical flow estimations of retinal wave simulation using the
OpenCV library. [54]. From left to right: estimation using window size of 2, estimation using
window size of 4, reference frame 1, reference frame 2. Top row: 100ms interval between reference
frames; bottom row: 200ms interval between reference frames. All images are crops of 40x40
pixels, corresponding to simulated SAC cells. Flows are visualized with the color-wheel from
Appendix 14a.

This information about the orientation of the gradients can be retrieved from the structure
tensor by eigenvalue analysis. Obtaining the eigenvalues and eigenvectors of this matrix can
give various measures of local image structure such as orientation, coherence, anisotropy, and
curvature.

In the context of retinal waves for Optical Flow Estimation, to obtain a vector field w⃗ that
provides the overall direction of displacement and growth of the retinal waves, we use structure
tensor information in combination with the time derivatives as follows:

The eigenvectors e⃗1 (normalized) corresponding to the larger eigenvalue λ1 give us the infor-
mation about the dominant orientation. To obtain the direction we need to apply a sign α to
the vector field e⃗1:

w⃗(t, x, y) = α(t, x, y)e⃗1 (5)

We want w⃗ to be resembling the gradient vector field z⃗, a vector field of the gradients aligned
to the direction of the time derivative. This is necessary as the Ca concentrations of retinal waves
form fronts with an increasing and then decreasing gradient along the direction of propagation
through time. The outer gradient points towards the origin and the inner gradient towards the
opposite direction. This happens because prolonged bursting of a cell increases its Ca concen-
tration, while exciting its neighbors, until the bursting stops where the Ca concentration starts
to decrease. This can be better understood by the visualization in Figure 10. Since the concen-
trations decrease along time in the inner gradient, and increase in the outer, an extra minus (−)
is required to align the vector field to the propagation of the waves. We use the opposite sign of
the time derivative to align the gradients to its direction as:

z⃗(t, x, y) = −Sign(
∂C

∂t
)∇C(t, x, y) (6)

It is not ideal to use solely z⃗ for the orientation and direction of retinal waves, as Figure 10
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a) and b) show that a white, ring-like structure appears in the gradients. This is the peak of the
gradient at the wave front, where the Ca concentrations are very high and almost equal between
neighbors. This is the main reason we use structure tensors, as both the image and the tensor
are smoothed (we apply a Gaussian filter with σ = 1.0).

We obtain α from Equation 5:

α(t, x, y) = −Sign(
∂C

∂t
)Sign(∇C(t, x, y) · e⃗1) (7)

The Calcium concentration fluctuates on the peak of the gradient, often causing a small
number of cells obtaining the opposite direction by α(t, x, y) (see Figure 10). This is corrected
by applying a 3×3 sliding window that checks if the signs of the neighborhood (N ) are majority
positive or negative.

Let Nx,y = {(i, j) | x− 1 ≤ i ≤ x+ 1, y − 1 ≤ j ≤ y + 1}

Majority sign function is defined as:

f(αx,y) =

1 if
∑

(i,j)∈N(x,y)

Sign(αij) > 0,

−1 otherwise
(8)

f is applied on w⃗(t, x, y) by reflecting border values at the edges of the lattice:

w⃗f = f(α) · e⃗1 (9)

Finally, we scale back w⃗(t, x, y) by multipliying it with the original calcium concentrations C,
which are min-max normalized per simulation between [0, 1]. This allows us to retrieve the precise
shape of the fronts and diminish the gradient changes of the background. It is important to note
that w⃗(t, x, y) does not convey information about displacements on its own, but only about the
exact shapes present, along with their directions, and orientations. Note that by default, the
inactive cells have small fluctuations on their Ca concentrations, hence why the background is
not completely white despite appearing so. The normalized vector field of eigenvalues e⃗1 makes
those background fluctuations more visible, which can be impractical for ML. It is decided to
keep those as their magnitudes are significantly lower than at the fronts. The completely white
parts in the center of the retinal wave (origin) appear white, as the cells are in absolute refractory
periods, thus unable to burst; the Ca concentrations are at the lowest. Figure 10 below, visualizes
the above procedure.
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a) b)

e)c) d)

Figure 10: Visualization of Optical Flow approximation of simulated retinal waves using gradient
information, of reference frame 1 from Figure 9. a) shows the shape of the gradient, computed
using central differences. b) shows the gradient vector field using the corrected sign (z⃗). c)
shows the vector field w⃗. d) shows the vector field w⃗f . e) shows the quiver plot of the vector
field w⃗f . All figures are color-mapped using the colorwheel of Figure 14a.

Comparing Figure 10 d) to the Farnebäck approximation and corresponding reference frame
1 from Figure 9, it is clear that the gradient approach catered to the RW data appears more
consistent and precise. Now the missing element to make vector field w⃗f resemble more to a
displacement vector field, is the scaling of the vector components by a scalar v, such that their
magnitudes correspond to the motion, displacement present in the frames (see [55] for a related
problem). Due to time constraints of the project we roughly estimate this by sampling isolated
waves for each simulation (for each gA value) and compute the change in radius length. We do
this by cropping isolated waves with no interference from other waves throughout T timesteps
between t1 and t2, and apply a mask to identify the circular wave front at t1 and t2. Then,
the contours are detected, and the contour area A is extracted using the Shoelace formula11

to compute the radius of the wave as: rt1 =
√
A/π. With rt1 and rt2 we can compute the

change in the radius over the timesteps, giving us an estimated velocity in pixels (px) v px/T .
For simulations of each gA value present in the RW dataset, an estimated v displacement is
computed as in Figure 13 in the Appendix. It is important to highlight that estimating v using
observed samples could be inaccurate and is solely performed to test this second approach of
employing RWs for OFE. A more accurate approach to calculate the speed of waves would involve
the entire 6-variable dynamical system as in [17].

11The shoelace formula is a mathematical method for calculating the area of a simple polygon given the
coordinates of its vertices. A = 1

2
∥
∑n

i=1(xi+1 + xi)(yi+1 − yi)∥ where xi, yi are the coordinates of the vertices
in clockwise order.
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3.2.2 Results

We train RAFT for 50000 steps using the approximated RW optical flow dataset, achieving
stable convergence. The training and validation EPE graph can be seen in the Appendix on
Figure 14b. Due to the relatively small displacements of the waves at the selected 200 ms frame
interval (<3 px), all EPE values remain sub-pixel (<1 px). Weight decay helps prevent over-
fitting, as the default RAFT configuration (5.3M parameters) is likely oversized for the RW data.
It should be reminded that EPE in this case is an indicative metric and that the model uses a
weighed manhattan distance as a training loss. We set γ to 0.6 (from the default 0.8), to reduce
emphasis on the early predictions of the decoder and yield improved end-results.

A sample frame pair with its ground-truth and model prediction is shown on Figure 11. The
model accurately captures the optical flow of present wave fronts, though it treats background
concentration changes —which are more prominent than ideal (see second-last paragraph of
section 3.2.1)— as noise, effectively ignoring them. This model is compared against an equivalent
instance of the RAFT model trained for 50000 steps on FlyingChairs, by evaluating on the MPI-
Sintel dataset (Figure 15(e)(f)). We notice the prediction (e), from the model solely trained on
the approximated RW optical flow, completely fails to estimate any of the displacements present
on the MPI-Sintel frame accurately. This is partly expected due to the model not converging
on this dataset at all, and due to the many differences in the nature of the two datasets; the
motion type and feature variety present in MPI-Sintel is absent in the RW dataset. On the other
hand, (f), the prediction of the model trained solely on the FlyingChairs dataset is comparable
to the prediction (c), RAFT fine-tuned on FlyingChairs. This is due to the intended statistical
similarity of the two datasets (supp. material of [28]). The range of displacements as well as the
type of motion, textures and edges present in the FlyingChairs dataset are much closer to those
found in MPI-Sintel than the motion and shapes present in RWs.

(a) Frame 1 (b) Frame 2 (c) Ground-truth (d) Prediction

Figure 11: 200 × 200 crops from RW optical flow predictions and their corresponding ground-
truths (validation set). (a) and (b) show the first pair, and (c) and (d) show the second pair
from the approximated RW optical flow dataset described in Section 3.2.1. The model trained
on RWs with a 200ms frame interval for 50000 iterations with a batch size of 16 and a learning
rate of 5× 10−4.
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4 Discussion

The work presented in this report undertakes a preliminary investigation into the potential
use of retinal waves (RWs) for optical flow estimation (OFE). However, the findings suggest that
the tasks selected for transfer learning, such as next frame prediction (NFP), or the specialized
pipeline used for OFE (RAFT), may not be ideally suited for this objective, given the method-
ology and results presented. The structured yet unsupervised nature of RWs was effectively
utilized, offering a novel perspective on how this biological activity could inform ML approaches.
However, the use of a specialized architecture like RAFT, without incorporating a biologically
inspired loss function or constraint, may have hindered both NFP and OFE models from fully
capitalizing on the potential of RWs.

In hindsight, a more straightforward proof-of-concept, utilizing a vanilla architecture, should
have been the initial step of this investigation. Starting with a simpler, baseline model would
have provided a clearer understanding of the feasibility and potential of employing RWs for OFE
without the added complexity of a state-of-the-art architecture like RAFT.

Due to time constraints, the second approach —approximating RWs for optical flow esti-
mation— was not fully developed or explored. An unintended side effect of this approximation,
discussed in Section 3.2.1, was the accentuated noise-like background that may have hindered the
model’s generalization. Additionally, the larger RAFT architecture’s complexity may have led to
overfitting, which could have been mitigated by using a smaller RAFT variant. Next, for the RW
dataset, not enough RW data was generated to include a broader displacement variance similar
to OFE datasets. Finally, the model in Section 3.2.2 was not fine-tuned on MPI-Sintel ; incor-
porating the above-discussed adjustments might allow RAFTsmall to generalize more effectively
on MPI-Sintel using RW data.

While the role of RWs in developing directional selectivity and motion processing in biological
systems is well-established, there is growing evidence that their influence on orientation selectivity
may be more limited than previously thought [56][13][14][48]. Directly applying the concept
of RWs to machine learning tasks like Optical Flow Estimation (OFE) presents challenges, as
the learning mechanisms in biological and ML systems fundamentally differ. Biological visual
systems undergo complex developmental stages with substantial plasticity[57], allowing adaptive
refinement of neural circuits; a trait that is not easily replicated in current ML architectures [58].
In contrast, ML algorithms typically learn in specialized, task-specific ways, often limited by the
artificial nature or size of synthetic OFE datasets [59]. Recent works, such as [60], suggest that
RWs can be useful in foundational stages of visual learning, particularly for tasks involving basic
spatiotemporal structures, rather than high-level visual processes like OFE. Thus, while RWs
offer valuable insights into biological visual development, directly applying them to ML-based
OFE would likely require rethinking ML-paradigms to bridge the gap between early-stage neural
adaptation and advanced visual tasks.
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5 Conclusion

This work presents a novel approach to leveraging RWs for next frame prediction, with the
broader objective of enhancing optical flow estimation. Through this investigation, significant
differences have been highlighted in how specialized ML models engage with RW stimuli, pre-
senting the limitations of these models in effectively leveraging such biologically inspired data for
optical flow estimation. It becomes evident that biological visual systems mature through a far
more intricate and convoluted process compared to current ML approaches. This disparity calls
for different training stages in ML models, particularly when drawing inspiration from biological
systems. Furthermore, this project sets up a basis for using retinal waves to pre-train ML models
in motion prediction tasks, on which future work can build to evolve and design models that
better replicate the characteristics of biological systems, such as those related to adaptability and
plasticity. Progress was also made toward generating RW-based optical flow data, which could
enhance the generalization capabilities of existing computer vision models. Although still in an
early stage, further refinement in that approach and the presented model adaptation remains for
future work to fully harness the potential of RWs for computer vision tasks. Even though the
models in the first experiment converged, they did not outperform the RAFT model, and several
aspects were not fully explored due to time constraints. In conclusion, this work highlights the
potential of biologically inspired approaches while acknowledging the complexity of biological
visual systems, suggesting that replicating such processes in ML models may require additional
exploration.
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A Appendix

Here we present the extended retinal waves biophysical model [17] used in the simulations
with in Brian2. It consists of 6N coupled non linear differential equations, where N is the number
of SAC neurons. 

Cm
dVi

dt
= ILi

+ ICi
+ IKi

+ IsAHP i
+ IAi

+ σξt

τN
dNi

dt
= Λ(Vi)(N∞(Vi)−Ni)

τC
dCi

dt
= − αC

HX
Ci + C0 − δCgC(Vi)(Vi − VC)

τS
dSi

dt
= αS(1− Si)C

4
i − Si

τR
dRi

dt
= αRSi(1−Ri)−Ri

dAj

dt
= −µAAj + βATA(Vj)

(10)

where Vi, the membrane potential, is influenced by 5 current terms, and Cm is the mem-
brane capacitance. There is a leak current ILi

= −gL(Vi − VL), a calcium current ICi
=

−gCM∞(Vi)(Vi − VC), a potassium current IKi
= −gKNi(Vi − VK), a slow after hyperpolar-

ization (sAHP) current IsAHPi = −gsAHP (R
4
i )(Vi − VK), and finally the Ach current, IAi =

−gA(Vi−VA)
∑

j∈Bi

A2
j

γA+A2
j

. Note that IAi
is a synaptic term, modeling the cholinergic coupling

of the SAC cells, where Bi is the neighbourhood of the neuron i, and i is the neuron index in the
2D lattice. This coupling relies on nichotinic acetylcholine receptors, which respond to Ach, and
are responsible for the mutual excitation between SACs and stage II wave propagation.

There are two gating variables: N (voltage-gated K+ channel), R (Ca2+-gated K+ channel).
IK depends on the Ni gating variable which is a fast variable, along with Vi. IsAHP is a calcium-
gated potassium current, depends on the R gating variable (slow variable), with a fourth power
to model the four bound terminals needed to open the corresponding channel. Four calcium ions
bind to one saturated calmodulin complex (CaM), four CaMs are needed to activate the Ca2+-
gated K+ channel. IA depends on the extracellular acetylcholine concentration Ai, emitted by
neuron i. For noise induced bursting, a parameter σ controls the whitenoise ξ on the voltage
term.

Ci models the intracellular calcium concentration, with C0 the baseline concentration and
tuning parameters αC , HX , δC . Si controls the fraction of saturated calmodulin concentration,
with tuning parameter αS . τN , τC , τS , τR are time-scale separation parameters: V and N are
fast, C is medium, and S and R are slow.

Below, we see the auxiliary functions of the SAC model. M∞ represents the steady-state
activation variable for the Ca-dependent K+ current. Λ(V ) describes the dynamics of the Ca-
dependent current, and its effect on the membrane potential. N∞(V ) represents the fraction of
ion channels that are in the open or activated state at a given membrane potential V.
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M∞ =
1

2

[
1 + tanh

(
Vi − V1

V2

)]
(11)

Λ(V ) = cosh

(
V − V3

2V4

)
(12)

N∞(V ) =
1

2

[
1 + tanh

(
V − V3

V4

)]
(13)

The Ach concentration Aj depends on the pre-synaptic cell’s (j) voltage and is squared
on the synaptic term in Vi as two Ach molecules have to bind to the receptor to open the
corresponding ion channel. TA(Vj) = 1/1 + e−κA(Vj−VA) and µA, κA, βA, VA are parameters
fitted from experiments [16].

The model parameters used for the retinal wave simulations are taken from [17][Table 3.1][16][Ta-
ble 2 and 3] and κA = 60V −1. These parameters are based on biophysical principles, derived
from existing literature or optimized through fitting experimental data.

Figure 12: Voltage V and Calcium C of a
simulated cell using the SAC model [15].
The bursting is noise driven with σ =
6 pA ms−0.5.

Figure 13: Estimated displacement veloc-
ity of RW with gA = 0.2nS. The velocity
is estimated based on the radius increase
over time. The 15 samples present corre-
spond to different RWs sampled from differ-
ent timesteps. A permutation test of inde-
pendence is performed: Pearson r : −0.014,
p− value = 0.95. The retinal wave velocity
is independent of its size.
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(a) Colorwheel used to vi-
sualize (colormap) most
optical flow vector fields
present in this report.
Origin (no motion) is at
the center. Motion ve-
locities in an optical flow
vector field are mapped
on this colorwheel based
on their direction, orienta-
tion and magnitude.

(b) Training and validation graph over 50000 steps on the approximated
RW optical flow. The chosen frame interval is 200ms with a batch size of
16, learning rate of 5 × 10−4 and a weighting factor of the loss function
γ = 0.6. The remainder of hyperparameters are identical to the standard
training of RAFT.

Figure 14: Colorwheel for optical flow visualizations (a) and training and validation graph of RAFT on the
approximated RW optical flow (b).

(a) Sintel ground-truth (b) RW-NFP-pre-trained Sintel
training prediction

(c) RAFT Flyingchairs-pre-
trained Sintel training prediction

(d) Sintel reference frame (e) RW-OFE-pre-trained Sintel
evaluation

(f) FlyingChairs-pre-trained Sin-
tel evaluation

Figure 15: Optical flow predictions from the Mountain 1 scene from the MPI-Sintel dataset. The first row
contains the reference ground-truth (a), the prediction after pre-training for NFP on RWs and fine-tuning only
decoder on Sintel (b), the prediction after pre-training for OFE on FlyingChairs and fine-tuning only decoder
on Sintel (c). The second row contains the first reference frame (d), the equivalent evaluation predictions after
training on the approx. RW optical flow (e) and FlyingChairs (f), both without fine-tuning on MPI-Sintel.
Evaluation EPE on the clean version: 3.45(b), 1.95(c), 13.7(e), 2.3(f).
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Figure 16: Training results on NFP TL for OFE, using RAFT and RAFT on RWs (RWRaft). Top four graphs:
training and validation on the FlyingChairs dataset, RWRaft with frozen encoder, pre-trained on RWs for NFP.
Bottom four graphs: training and validation on the MPI-Sintel dataset, RAFT pre-trained on FlyingChairs
for OFE, RWRaft pre-trained on RWs for NFP, both encoders are frozen. high dt indicates the NFP pre-training
was performed on the RW dataset with 300ms frame intervals, while low dt corresponds to NFP pre-training on
the 100ms RW dataset. The anomaly on the bottom left plot is due to an interrupted training. All models are
trained on the NEF cluster[61].
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