Quantum reservoir computing implementation on coherently coupled quantum oscillators - Archive ouverte HAL
Article Dans Une Revue npj Quantum Information Année : 2023

Quantum reservoir computing implementation on coherently coupled quantum oscillators

Résumé

Abstract Quantum reservoir computing is a promising approach for quantum neural networks, capable of solving hard learning tasks on both classical and quantum input data. However, current approaches with qubits suffer from limited connectivity. We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons by using parametrically coupled quantum oscillators instead of physically coupled qubits. We analyze a specific hardware implementation based on superconducting circuits: with just two coupled quantum oscillators, we create a quantum reservoir comprising up to 81 neurons. We obtain state-of-the-art accuracy of 99% on benchmark tasks that otherwise require at least 24 classical oscillators to be solved. Our results give the coupling and dissipation requirements in the system and show how they affect the performance of the quantum reservoir. Beyond quantum reservoir computing, the use of parametrically coupled bosonic modes holds promise for realizing large quantum neural network architectures, with billions of neurons implemented with only 10 coupled quantum oscillators.
Fichier principal
Vignette du fichier
Dudas - npj QI - 2023.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04802944 , version 1 (25-11-2024)

Identifiants

Citer

Julien Dudas, Baptiste Carles, Erwan Plouet, Frank Alice Mizrahi, Julie Grollier, et al.. Quantum reservoir computing implementation on coherently coupled quantum oscillators. npj Quantum Information, 2023, 9 (1), pp.64. ⟨10.1038/s41534-023-00734-4⟩. ⟨hal-04802944⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More