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ARTICLE OPEN

Quantum reservoir computing implementation on coherently
coupled quantum oscillators
Julien Dudas1, Baptiste Carles 1, Erwan Plouet 1, Frank Alice Mizrahi 1, Julie Grollier1 and Danijela Marković 1✉

Quantum reservoir computing is a promising approach for quantum neural networks, capable of solving hard learning tasks on
both classical and quantum input data. However, current approaches with qubits suffer from limited connectivity. We propose an
implementation for quantum reservoir that obtains a large number of densely connected neurons by using parametrically coupled
quantum oscillators instead of physically coupled qubits. We analyze a specific hardware implementation based on
superconducting circuits: with just two coupled quantum oscillators, we create a quantum reservoir comprising up to 81 neurons.
We obtain state-of-the-art accuracy of 99% on benchmark tasks that otherwise require at least 24 classical oscillators to be solved.
Our results give the coupling and dissipation requirements in the system and show how they affect the performance of the
quantum reservoir. Beyond quantum reservoir computing, the use of parametrically coupled bosonic modes holds promise for
realizing large quantum neural network architectures, with billions of neurons implemented with only 10 coupled quantum
oscillators.

npj Quantum Information            (2023) 9:64 ; https://doi.org/10.1038/s41534-023-00734-4

INTRODUCTION
Quantum neural networks are the subject of intensive research
today. They emulate a large number of neurons with only a small
number of physical components, which facilitates scaling up
compared to classical approaches. Indeed, by encoding the
responses of the neurons in the populations of basis states, a
system of N qubits provides up to 2N neurons. Moreover, such
quantum neural networks could automatically transform complex
quantum data into simple outputs representing the class of the
input, that could then be measured with just a few samples
compared to the millions needed today. The first experimentally
realized quantum neural networks are made of 71 to 40 qubits2,
each connected to two or four nearest neighbors.
The major challenge of the field is now to experimentally realize

neural networks capable of real-world classification tasks, and thus
containing millions of neurons each connected by thousands of
connections. The use of qubits poses a conceptual and technical
problem for this purpose. Indeed, when connectivity is obtained
with pairwise couplers between qubits, distant qubits cannot be
interconnected without very cumbersome classical circuitry in
existing 2D architectures.
Here we develop an alternative approach to quantum neural

networks that is both scalable and compatible with experimental
implementations. We propose to leverage the complex dynamics
of coherently coupled quantum oscillators, combined with their
infinite number of basis states, to populate a large number of
neurons much more efficiently than with qubits3. We then show
through simulations with experimentally-validated models that
this system classifies and predicts time-series data with high
efficiency through the approach of reservoir computing4.
With just two quantum oscillators, up to 9 states can be

populated in each oscillator with significant probability ampli-
tudes, which yields a quantum reservoir with up to 81 neurons.
We evaluate its performance on two benchmark tasks in the

field of reservoir computing, sine-square waveform classification
and Mackey-Glass chaotic time-series prediction, that test the

ability of the reservoir to memorize input data and transform it in
a nonlinear way. We obtain a state-of-the-art accuracy of 99% with
our system of two coherently coupled oscillators, which otherwise
requires 24 classical oscillators to achieve. With 10 oscillators we
could have 3 billions of neurons, comparable to the most
impressive neural networks capable of hard tasks such as natural
language processing or generating images from text descrip-
tions5. Furthermore, these neurons can be populated in a much
more efficient way compared to those implemented on qubit
systems, by resonantly driving each of the oscillators and coupling
them strongly pairwise.
The results show that two coupled quantum oscillators

implement a high quality reservoir computer capable of complex
tasks, and open the path to experimental implementations of
quantum reservoirs based on a large number of basis state
neurons, thus providing a quantum neural network platform
compatible with numerous algorithms exploiting physics and
dynamics for computing6–9.

RESULTS
Quantum reservoir computing
In this paper, we consider reservoir computing, a machine learning
paradigm that uses nonlinear dynamical systems for temporal
information processing4. Its principle is illustrated in Fig. 1. The
reservoir (blue area) is a dynamical system with arbitrary but fixed
recurrent connections. It takes as input data that is not easily
separable in different classes. The role of the reservoir is to project
these inputs into a highly dimensional state space in which the
data becomes linearly separable. The reservoir outputs are then
classified by a linear, fully connected layer (shown in red arrows)
that can be trained by a simple linear regression. Physical
implementations of reservoir computing commonly perform this
projection of input data to a high dimensional space through
complex nonlinear dynamics and the outputs are obtained by
measuring specific variables on that system10–13.
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The fully connected layer is usually realized in software, and
multiplies the measurement outputs F(X) by a weight matrix W,
such that

WFðXÞ ¼ Y: (1)

The weight matrix is trained to make the neural network output Y
match the target vector ~Y. The particularity of reservoir computing
compared to deep neural networks is that training can be
performed in a single step by matrix inversion

W ¼ ~YtrainFyðXtrainÞ; (2)

where Xtrain is the training data, ~Ytrain is the training target, and F†

is the Moore-Penrose pseudo-inverse of the matrix F containing
the outputs f(xi) of the reservoir neurons for all the training
examples11,14. The matrix inversion method works well for small
matrix dimensions. For larger matrix dimensions other methods
can be used, such as linear regression used in reference15 for a
50,000 node classical reservoir. The learned weight matrix is
applied on the test data contained in the vector Xtest, in order to
find the neural network prediction

Ytest ¼ WFðXtestÞ: (3)

Comparing the prediction to the test target ~Ytest allows to evaluate
the prediction accuracy, i.e., the fraction of times the data point is
correctly classified, as well as the normalized root mean square
error

NRMSE ¼ 1
ymax � ymin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðyi � ~yiÞ2

N

s

: (4)

We will use these measures to evaluate the performance of the
reservoir, and thus the capacity of the chosen dynamical system to
efficiently implement reservoir computing. It should be noted that
there are neural networks capable of achieving higher accuracies
than reservoir computing for the learning tasks investigated in this
study16. Our objective is not to contrast various algorithms, but
rather, for a specific task, employing a straightforward network
architecture and a designated training method, to assess the
benefits conferred by distinct physical properties associated with
diverse physical platforms, including quantum aspects, in enhan-
cing the system’s computing capabilities.
Reservoir computing was implemented on different classical

physical systems, ranging from silicon photonics12 and

optoelectronics10,11, to spintronic nano-oscillators13. Quantum
reservoir computing was first proposed in 2017, with a reservoir
whose neurons correspond to the basis states of a set of qubits,
and computational capabilities are identical to 100–500 classical
neurons with only 5–7 qubits17. Experimentally, quantum reservoir
was implemented with 4 static spins and 8 neurons18, and a
dissipative reservoir was implemented with up to 10 qubits19. We
have recently highlighted that dynamical systems of coherently
coupled quantum oscillators possess all the required features for
quantum reservoir computing3.

Coupled quantum oscillators
We consider the implementation of quantum reservoir computing
with two coupled quantum oscillators a and b (Fig. 2). In this case,
the reservoir neurons are given by the basis states na; nbj i, and the
reservoir outputs by their occupation probabilities. Such a system
can be experimentally implemented using superconducting
circuits featuring resonators whose fundamental modes are
coupled using three- or four-wave mixing elements such as
Josephson mixers20–22, SNAIL23, or even a single transmon23,24.
The Hamiltonian describing such system writes25

Ĥ ¼ _ωaâ
yâþ _ωbb̂

y
b̂þ �hg âb̂

y þ âyb̂
� �

; (5)

where g= χp is the parametric conversion coupling rate that can
typically be controlled by the amplitude of a pump tone. Such
tunable coupling allows us to study the performance of the
quantum reservoir as a function of the coupling strength.
We drive each oscillator at resonance with an amplitude that

encodes the input data, such that the population of the basis
states depends on this input value, the duration for which the
drive signal is applied, and the previous input values, as long as
each input is sent for a time shorter than the lifetime of the
oscillators. The dynamics of the system is driven by three main
processes: resonant drives, dissipation and conversion of photons
between the oscillators at a rate g. We use typical experimental
parameters for superconducting circuits with resonators frequen-
cies ωa= 2π × 10 GHz and ωb= 2π × 9 GHz and dissipation rates
κa= 2π × 17 MHz, κb= 2π × 21 MHz.

Learning tasks with the quantum reservoir
In order to evaluate the capacity of the quantum reservoir with
oscillators, we address two standard benchmark tasks of reservoir
computing, i.e., a classification task that requires a lot of
nonlinearity and short-term memory, and a prediction task that
requires both short- and long-term memory. In order to assess the
advantage brought by the quantum nature of the reservoir, we
compare its performance with that of classical reservoirs on the
same tasks. We differentiate between the contributions of
dynamic features and distinctively quantum properties, by
conducting comparisons with both static and dynamic classical

xi f(xi) yj

Wij
Trained  
weights

Reservoir 
outputs

TargetsInputs
Reservoir 

nodes

|n1⟩ |n2⟩

|n3⟩ |n4⟩

Fig. 1 Principle of quantum reservoir computing. The reservoir
neurons (blue circles) are basis states of a coupled quantum system.
The reservoir outputs (purple circles) are the measured occupation
probabilities of these states. The black connections in the physical
reservoir (blue area) are fixed and the red connections are trained.

Fig. 2 Schematic of two coupled quantum oscillators. The
oscillators are resonantly driven at frequencies ωa and ωb with
amplitudes ϵa and ϵb, with dissipation rates κa and κb. The coherent
coupling at a rate g results in the exchange of excitations between
oscillators.
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reservoirs. For the static reservoir we perform software simulations
of reservoirs with neurons that apply a nonlinear ReLu function
(typically used in machine learning). For the dynamical reservoir
we simulate spin-torque nano-oscillators as neurons, such as they
were used in refs. 13,26, and also compare the different simulation
results with the experimental performance obtained in ref. 26. The
methodology and parameters used for simulations are described
in “Methods”.
The first learning task that we address is the classification of

points belonging to sine and square waveforms. The input data is
sent as a time-series, consisting of 100 randomly arranged sine
and square waveforms, each discretized in 8 points, as shown in
Fig. 3a. The neural network gives a binary output, equal to 0 if it
estimates that the input point belongs to a square, and to 1 if it
estimates that it belongs to a sine. This task was specifically
conceived to test the nonlinearity and the memory of a neural
network as the input data points cannot be linearly separated and
the extremal points require memory to be distinguished (input
points equal to ±1 can both belong to a sine and to a square). At
least 24 classical neurons are needed to solve this task with an
accuracy > 99%26.
We send the input drives to the oscillators for 100 ns, one

immediately after the other, and we measure the occupation
probabilities at the end of each drive. Half of the data is used for
training, and another half for testing the performance. We
investigate the performance of the quantum reservoir as a
function of the number of measured basis states. We first measure
the states 00j i to 33j i, yielding 16 output neurons. The reservoir
prediction, obtained with Eq. (3) is shown in Fig. 3b. The prediction
matches the target with 99.7% accuracy. This is a very good
performance—indeed, it requires at least 40 static classical
neurons and 24 dynamical classical neurons (see Fig. 4 for
simulations and ref. 26 for experiments) to achieve it. The fact that

it is obtained with only 16 measured quantum neurons points to
the first aspect of quantum advantage: all the 81 basis states that
are populated participate to data processing and transformation
even though they are not measured. We push this even further
and perform learning while only measuring states up to 22j i,
which yields 9 neurons. Strikingly, we still obtain an accuracy of
99% (Fig. 3c). Therefore, this task that requires at least 24 classical
dynamical neurons, is perfectly solved by measuring only 9
quantum neurons.
To better understand where does this advantage come from,

we also performed learning with our quantum system in the
classical limit of large dephasing. In this limit, the oscillators exist
in a statistical mixture of states instead of the quantum
superposition, and quantum coherences vanish. Our observation
shows that for 4 and 9 neurons, quantum oscillators perform
better than in the classical limit (see Fig. 4), indicating that
quantum coherences play a crucial role. Moreover, the classical
limit outperforms classical spintronic oscillators, which can be
attributed to the fact that even unmeasured basis states still
participate in the transformation of input data. This aspect is
interesting from an experimental perspective because, even
though quantum measurements need to be repeated multiple
times to reconstruct the probability amplitudes to find a system in
a specific state, it implies that a much smaller number of states
need to be measured in comparison to the classical case.
Furthermore, all the measurements are performed on the same
device, which simplifies the experimental setup, and enables
simultaneous measurement using frequency multiplexing27.
Experimentally, the states would be measured by coupling a

qubit to each resonator and using the dispersive readout. We
study the number of measurements that are needed to obtain
sufficiently precise basis state occupations in order to perform
learning with the same accuracy as with the exact probability
amplitude values28. The variance of the probability amplitude of
the occupation of the states is given by the multinomial law

hpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ
Nshots

s

; (6)

where Nshots is the number of measurements. For three different
values of Nshots, we add to the probability amplitude of the
occupation of the states an error drawn from a Gaussian
distribution of variance 〈p〉. Accuracy on the sine and square
waveform classification task is shown in Fig. 5. For the small drives
that we apply in our simulations, lower energy levels in each
oscillator have higher probabilities to be occupied, which means
that their measurement induces smaller errors. We find that for

Fig. 3 Reservoir performance on the sine and square waveform
classification task. a The input data is a time series of points
belonging to a sine or a square discretized in 8 points.
b Performance on the sine and square waveform classification task
with 16 measured basis state occupations as neural outputs (up to
33j i) and c with 9 measured basis state occupations (up to 22j i). The
target is shown in full orange line and the reservoir prediction in
dashed green line. For simulations methodology see “Methods”.

Fig. 4 Performance comparison of the quantum, dynamical, and
static classical reservoirs. Accuracy on the sine-square waveform
classification task as a function of the number of measured neurons,
for classical reservoir (both static and dynamic) and for quantum
reservoir with quantum oscillators (including the classical limit
obtained at large dephasing). For more details on simulations see
“Methods”.
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the first two levels in each oscillator (4 neurons in Fig. 5), we
obtain with ðNdim þ 1Þ5 shots sufficiently precise values to obtain
the same accuracy as with the exact values. For 2 photon states (9
neurons in Fig. 5) with need ðNdim þ 1Þ9 shots and for 3 and 4
photon states (16 and 25 neurons in Fig. 5) we need ðNdim þ 1Þ11
shots.
Each measurement in a quantum system disrupts the coher-

ence, making it necessary to remember prior inputs for time-
dependent tasks. As a result, portions of the input sequence must
be replayed before every measurement. However, recent studies
have demonstrated that a quantum reservoir can effectively learn
using weak measurements29. This approach eliminates the need
for constant replays and subsequently reduces the overall
duration of the experiment.
The second benchmark task that we address is the prediction of

Mackey-Glass chaotic time-series. Compared to classification, time-
series prediction requires the reservoir to have an enhanced
memory. It also allows us to investigate the impact of the reservoir
temporal dynamics on its prediction capacity; in particular we
study how the coupling between the oscillators and their
dissipation rates impacts the reservoir performance. Figure 6
shows that the dynamics of a quantum reservoir exhibits greater
complexity than that of its classical limit. To make full use of this
richness, we can sample the system occupations at several distinct
times for a single input.
The input data is obtained from the equation

∂xðtÞ
∂t

¼ βxðt � τMÞ
1þ x10ðt � τMÞ � γxðtÞ: (7)

It is chaotic for parameters β= 0.2, γ= 0.1, and τM= 1730. A subset
of the input data is shown in Fig. 7a. The time here takes discrete
values (point index). The task consists in predicting a point with a
certain delay in the future. We have trained the reservoir for
different delays varying from 1 to 100 (delay = 20 is shown in
Fig. 7a). Each point is sent for 100 ns, such that delay = 20
corresponds to 2 μs. In all the simulations we measure 16 basis
state neurons, from 00j i to 33j i, and we sample the reservoir
10 times for each input, corresponding to a measurement every
10 ns.
We train the reservoir on 1000 points and test it on another set of

previously unseen 1000 points. The results are shown in Fig. 7b, c.
We plot the average logarithmic error on 1000 test points as a
function of the delay for different reservoir parameters such as
dissipation rates and oscillator couplings. In all the cases, we
observe an overall logarithmic increase of the error as a function of
the delay, which corresponds to the memory of the reservoir—
points further in future are harder to predict because the memory is
lost. Still, the error saturates for large delays. This saturation is due
to the fact that the reservoir learns the range in which the points
are situated, and in particular the region where the minima and the
maxima of the time-series, that contain a lot of points, are
concentrated. Another common feature that can be noticed in all

the figures are the oscillations in the error signal that reflect the
periodicity in the input data.
We first study the impact of the oscillator dissipation rates κa

and κb on the reservoir performance (Fig. 7b). We observe that for
high dissipation, the error is globally larger, and most importantly,
increases faster—meaning that the memory of the neural network
is shorter. It is thus important to have high-quality-factor
oscillators to solve tasks that require a lot of memory. Second,
we study the impact of the oscillator coupling rate g on the
reservoir performance (Fig. 7c). For larger couplings the error
decreases; indeed, strong coupling gives rise to multiple data
transformations between different basis states which is essential
for learning. It also leads to a significant population of a larger
number of basis state neurons that contribute to computing.
In previous works, this task was solved in simulations with

similar performance using 50 classical dynamical neurons such as
skyrmions30 and experimentally with a classical RC oscillator that
was time-multiplexed 400 times to obtain 400 virtual neurons14.

Fig. 5 Impact of the finite number of measurements. Accuracy on the sine and square waveform task as a function of the number of
measured neurons with a finite number of measurement samples a Nshots= (Ndim + 1)5, b Nshots= (Ndim + 1)9 and c Nshots= (Ndim + 1)11,
compared to the ideal measurement of the quantum system (quantum exact) and classical dynamic.

Fig. 6 Dynamics comparison of the quantum and classical
reservoirs. Mean photon populations in oscillators Na

mean and
Nb

mean for a sample input in the sine and square waveform
classification task a for the quantum reservoir, and b in the classical
limit featuring strong dephasing.
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In comparison, here we solve it with just two physical devices and
16 measured basis state neurons.

DISCUSSION
We have shown that a simple superconducting circuit, composed
of two coherently coupled quantum oscillators, can successfully
implement quantum reservoir computing. This circuit has been
exploited for quantum computing for years, and can be readily
used to realize experimentally larger scale quantum reservoir
computing.
Compared to classical reservoir, quantum reservoir allows to

encode neurons as basis states and to obtain a number of neurons
exponential in the number of physical devices. Furthermore, even
though it was not the focus of this paper, where we processed
classical data, numerical simulations of different quantum reservoirs
have shown that quantum reservoirs can process input quantum
states31,32 and simultaneously estimate their different properties, as
well as perform quantum tomography33. This is particularly
interesting in the age where quantum computing encodes
information in quantum states and begins to produce more and
more quantum data that will need to be automatically classified.
Quantum reservoirs can be implemented on different quantum

systems17,31,32,34,35. First works have naturally focused on qubits, as
the most common quantum hardware17,31. Nevertheless, quantum
oscillators compared to qubits have a net advantage for scaling—
they have an infinite number of basis states, compared to qubits that
only have two—and they can be much more efficiently populated
using resonant drives and coherent coupling. With just two quantum
oscillators, we can populate up to 9 states in each oscillator with
significant probability amplitudes, which yields a quantum reservoir
with up to 81 neurons. By measuring only 16 basis states, we obtain a
performance equivalent to 24 classical oscillators. Compared to
classical neuromorphic networks, there is an advantage in the
number of physical devices, which simplifies experimental imple-
mentation, and also in the number of neurons that need to be
measured, which simplifies the measurement procedure. Of course,
this does not mean that for classical learning tasks it is more efficient
to use a quantum neural network, as the whole processing with the
measurement will take longer than on a classical computer. Instead,
it proves that measuring basis states of quantum oscillators induces
sufficient nonlinearity to transform information, as well as that
quantum coherences participate to information processing. The tasks
that will certainly be more promising for actual quantum speedup
are learning on quantum states provided by another coupled
quantum system or a quantum computer.
Reservoir computing was already simulated on a single

nonlinear quantum oscillator36 and on a system of coupled
nonlinear parametric oscillators32. Our work significantly differs
from these approaches. In these works, quantum oscillators were
operating in the semi-classical regime, where a strong input signal
with a large number of photons induces Kerr nonlinearity. In that
regime, each oscillator yields two output neurons, i.e., the two
field quadratures, that can be sampled in time in order to increase
the number of effective neurons. Our approach fully exploits the
quantum nature of the system by using the basis states as
neurons, which allows to increase the memory of the system as
there is no need for sampling, and reduce both the number of
physical devices in the system and the number of necessary
measurements. Measuring basis states compared to field quad-
ratures has the advantage for the quantum tasks that it avoids the
need for an amplifier between the quantum system and the
quantum reservoir, but the disadvantage of taking longer to
measure the outputs. It will remain an open question to decide
depending on the task which observables it makes more sense to
measure.

Fig. 7 Impact of the physical reservoir parameters on the
performance on the Mackey-Glass task. a Mackey-Glass chaotic
time-series data. b For each input point, the target is the point with
a certain delay in the future, here illustrated for delay= 20.
c Logarithmic error of the reservoir for the Mackey-Glass task as a
function of the number of points in future that the reservoir
attempts to predict for two different dissipation rates and for fixed
coupling g= 700 MHz, and d for two different oscillator coupling
values g and fixed dissipation rates κa= 17 MHz and κb= 21 MHz.
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We believe that this solution is very promising for the
implementation of quantum neural networks as it is scalable.
Indeed, it has recently been shown that multiple oscillators can be
parametrically coupled all-to-all through a common waveguide37.
The paradigm that we propose would thus allow to realize larger
scale quantum neural networks with readily available devices.

METHODS
Quantum simulations
We simulate the dynamics of the coupled quantum oscillators
using the library QuantumOptics.jl for simulating open quantum
systems in Julia38. The dynamics can be captured by the quantum
master equation

_ρ ¼ �i½Ĥ þ Ĥdrive; ρ� þ ĈρĈ
y � 1

2
Ĉ
y
Ĉρ� 1

2
ρĈ

y
Ĉ; (8)

where ρ is the density matrix of the system. Ĥdrive is the resonant
drive Hamiltonian39–41

Ĥdrive ¼ iϵa
ffiffiffiffiffiffiffi
2κa

p
ðâ� âyÞ þ iϵb

ffiffiffiffiffiffiffi
2κb

p
ðb̂� b̂

yÞ (9)

and

ϵa ¼ ϵb ¼ ϵ0 ´ xi (10)

are the drive amplitudes that encode the input data xi. For sine-
square waveform classification task we use ϵa0 ¼ ϵb0 ¼
1:2 ´ 106

ffiffiffiffiffiffi
Hz

p
in order to populate with a significant probability

the first 5 levels in each oscillator, and to have negligible
probability to populate states above 8 (we truncate the Hilbert
space at 8 photons in each oscillator). The Mackey-Glass data
takes, on average, larger values compared to sine and square
waveform classification—we thus use a smaller value for the
drives amplitudes, ϵa0 ¼ ϵb0 ¼ 5 ´ 105

ffiffiffiffiffiffi
Hz

p
.

We consider that oscillators couplings to transmission lines κa
and κb are dominant terms in the oscillators dissipation, such that
we can neglect the internal losses. The collapse operator
associated with the decay in the modes a and b can thus be
written as

Ĉ ¼ ffiffiffiffiffi
κa

p
âþ ffiffiffiffiffi

κb
p

b̂: (11)

Finally, reservoir outputs are obtained as the expectation values of
the basis states occupations

pðna; nbÞ ¼ hnanbjρjnanbi: (12)

Classical limit of the quantum system
We simulate the classical limit of our quantum reservoir by adding
a large dephasing term to the collapse operator in the matrix
equation

Ĉ ¼ ffiffiffiffiffi
κa

p
âþ ffiffiffiffiffi

κb
p

b̂þ ffiffiffiffiffi
κϕ

p ðn̂a þ n̂bÞ; (13)

with κϕ= 100 MHz. With dephasing, the mean values of the
photon numbers in oscillators are higher than without dephasing,
and we would need to increase the size of the simulated Hilbert
space to Ndim = 12, which would make the simulations too
computationally demanding. This is why in the simulations with
dephasing we decrease the input drive amplitudes to
ϵ0a ¼ ϵ0b ¼ 5:5 ´ 105

ffiffiffiffiffiffi
Hz

p
, which gives the same mean number of

photons as for simulations without dephasing.

Classical static reservoir simulations
The simulations of the classical reservoirs, both static and
dynamic, were performed in the library pytorch for training neural
networks in Python.

The state of the reservoir at time t is

YðtÞ ¼ fðWinXðtÞ þWresYðt� 1ÞÞ (14)

where f is the ReLu function, Win is the vector that has the length
of the size of the reservoir, and maps the input data on the
reservoir,Wres is a square matrix that has the dimension of the size
of the reservoir and which gives the memory to the reservoir. Here
the reservoir has the memory of a single step in the time, which is
sufficient for the sine and square waveform classification task. In
the simulations of the static reservoir, the size of the reservoir is
equal to the number of measured neurons, shown in Fig. 4.

Classical dynamic reservoir simulations
The simulations of dynamical classical reservoir were realized
considering a spin-torque nano-oscillator as a neuron, as in ref. 13.
The dynamics of the nano-oscillator can be modeled as that of a
nonlinear auto-oscillator42

dp
dt

¼ 2ð�Γð1þ QpÞ þW inIσð1� pÞÞp (15)

where p is the power of the oscillator, Γ is the damping rate, Q is
the nonlinearity, I is the current that drives the oscillator and σ is a
factor related to the geometry of the oscillator. The current I
encodes the input data and randomly generated Win maps it on
the reservoir. Reservoir outputs are obtained from the oscillator
power p by numerically integrating Eq. (15).
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